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Les entrelacs dans les arts et les sciences naturelles

par Claudi Weber,
Université de Genève, Section dc Mathématiques,

2-4, rue du Lièvre, Case postale 240, 1211 Genève 24

1. Nœuds usuels et traditionnels

On obtient un nœud en prenant un morceau dc ficelle, ou une corde, une liane que
l'on emmêle d'une certaine façon, puis que l'on serre. Le but d'une telle opération est

d'attacher, de rendre solidaires certains objets. C'est le cas des nœuds effectués par les

marins et les chirurgiens par exemple. Le nœud gordien était, selon la tradition, destine
à attacher le timon au char du roi dans la ville de Gordcs cn Asie-Mineure. Un nœud

peut aussi avoir un intérêt propre, sans que d'autres objets interviennent; c'est le cas

pour les tricots, les tissages, etc. L'art populaire des nœuds consiste à savoir faire le

nœud approprié au but recherché. Cela peut demander dc l'habileté ct des connaissances.

Il existe d'imposants répertoires de nœuds usuels, souvent consacrés aux
nœuds employés dans la marine à voiles. Le plus célèbre csl le «Ashley book of
knots».

Mais, de toute façon, un nœud tel que nous venons de l'envisager peut toujours être
défait. Le truc consiste à chercher l'une des deux extrémités età tirer cn arrière, petit à

petit. De la patience et de la force peuvent être nécessaires.

2. Les nœuds dans les mythologies

L'idée suivante est très répandue, et cela depuis longtemps: l'opération dc dénouement

d'un nœud a une signification qui va bien au-delà du succès d'une technique. Les

psychologues sont très sensibles à cette façon de voir les choses. D'ailleurs, les deux

sens du mot «dénouement» ne sont-ils pas intimement liés? Une variante de cc que
nous venons de dire consiste en ceci : un nœud recèlerait un certain secret, une certaine
parcelle de connaissance. Celui qui dénoue le nœud s'approprie cc savoir. Plus

prosaïquement, les «quipus» incas étaient des registres dc nœuds destinés, pensent les

spécialistes, à faire des comptages, des recensements. Ils contenaient donc une
information certaine.

Dans son livre «Tabou et les périls de l'âme» James G. Frazcr cite dc nombreuses
coutumes où le travail effectué par celui qui dénoue un nœud est un véritable parcours
initiatique. Frazer attache beaucoup d'importance à ces coutumes ct les traite comme
un véritable outil de mythologie comparée. Ce point dc vue csl repris ct amplifié par
Georges Dumézil qui fait des nœuds un des attributs magiques du dieu Varuna, dieu

que l'on retrouve dans d'autres mythologies sous la forme d'Ouranos, dc Jupiter ou
d'Odin. Voir: «Les dieux souverains des Indo-Europccns» dc G. Dumézil. Un cha-
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pitre du livre de Mircea Eliade «Images et symboles» est aussi consacré à ces
questions. Le dieu magicien ne combat pas les humains par la force: il les «charme» en les

liant à l'aide de nœuds.
De toutes façons, je crois pouvoir dire que, dans les mythologies, les nœuds

apparaissent aux points de contact entre le monde des dieux cl le monde des hommes. Ceci

est particulièrement clair dans le mythe du nœud gordien. Le mathématicien fiançais
Bernard Teissier exprime les choses un peu différemment cn disant: «Les nœuds sont
le langage par lequel les dieux parlent aux hommes.»

Pour un topologue, la constatation suivante est un peu décevante: cn général (mais
pas toujours) les nœuds apparaissent dans les pratiques magiques, rituelles, dc façon

générique: n'importe quel nœud fait l'affaire. Le point de vue «tel nœud csl bénéfique
tandis que tel autre est maléfique» semble la plupart du temps absent. Les coutumes
rapportées par J. Frazer vont dans ce sens. Par exemple, dans certaines peuplades
quand une femme va accoucher on défait tous les nœuds qui se trouvent dans la

maison, sans exception. Un bouddhiste qui veut accéder au Nirvana doit se libérer dc
tous les liens qui le rattachent au monde terrcslre; concrètement, il ne porte aucun
nœud sur lui.

3. Les entrelacs en mathématiques

En première approximation, la topologie est la partie des mathématiques qui
considère deux objets de l'espace comme équivalents si l'on peut passer dc l'un à

l'autre continûment, sans déchirure. Ainsi, pour un topologue, deux morceaux dc
ficelle sont toujours équivalents puisque le procédé dc dénouement dont nous avons
parlé plus haut ne rompt pas la ficelle. Alexandre le Grand n'était pas topologue.

On voit donc que, pour empêcher un topologue dc dénouer une corde, il faut cn

supprimer les extrémités cn faisant une épissure. Mathématiquement, une nœud est

une courbe dans l'espace en une seul tenant (on dit qu'elle connexe) ct sans extrémités
(on dit qu'elle est compacte et sans bord). Un entrelacs csl une réunion finie dc telles
courbes, deux à deux disjointes. On considère deux entrelacs comme équivalents (on
dit isotopes) si l'on peut déformer continûment l'un cn l'autre, sans déchirure. (La
définition précise est trop technique pour être donnée ici.)

Une représentation graphique d'un entrelacs est obtenue cn le projetant sur un plan
de façon à ce que l'image ne se recoupe qu'en des points doubles. En un point double,
on indique quel brin se trouve dans l'espace au-dessous dc l'autre cn interrompant
localement le brin inférieur. Ce procédé est utilisé par les artistes depuis qu'ils ont
dessiné des entrelacs.

Remarque: A une représentation graphique, il ne correspond pas un entrelacs bien
défini dans l'espace (il faudrait pour cela deux projections) mais toute une famille
d'entrelacs. Cependant, deux entrelacs de la famille sont toujours isotopes. Dc sorte

que, si l'on veut faire de la topologie, une seule représentation graphique suffit pour se

donner un entrelacs.
Attention: Suivant le contexte, il n'est pas toujours très clair dans le langage dc tous

les jours si les mots nœuds/entrelacs désignent une courbe dans l'espace ou une
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représentation graphique particulière. Par exemple, «le sceau dc Salomon» ou «les
anneaux des Borromées» (Fig. 1) désignent des représentations graphiques explicites.

Fig. 1 : L'entrelacs des Borromées.

4. Les entrelacs de Jacques Lacan

Le psychanalyste français Jacques Lacan s'est intéressé aux entrelacs et a entraîné
dans son sillage plusieurs disciples. Plutôt que d'esquisser une théorie que je ne
maîtrise pas, je préfère donner une illustration dc l'usage des entrelacs fait par cette
école. (Je ne sais pas s'ils se reconnaîtront dans cc qui suit.) Il arrive qu'un groupe
d'individus (disons une équipe sportive) soit lié par une certaine activité, mais que ce

groupe se disperse si l'un quelconque de ses membres se retire. On peut alors essayer dc
décrire les liens qui existent entre les membres dc ce groupe par un entrelacs, chaque
composante de l'entrelacs représentant un membre dc l'équipe. Ceci prend encore plus
de poids si l'on sait que, pour J. Lacan, le signe n'est pas arbitraire. La propriété dc

«dispersion» se traduit par la propriété topologiquc suivante: si l'on supprime une
composante quelconque de l'entrelacs, alors l'entrelacs résiduel peut être entièrement
défait. Un tel entrelacs est appelé brunnien, du nom du mathématicien H. Brunn qui a

le premier étudié cette propriété à la fin du XIXe siècle. L'entrelacs des Borromées est

un entrelacs à trois composantes qui est «brunnien». Bien sûr, on peut varier les

combinaisons: les individus restent groupés si l'un des membres s'en va, mais se

dispersent si un deuxième quitte le groupe. On peut aussi ajouter des individus ayant
des propriétés particulières, etc. J. Lacan a aussi utilisé les entrelacs pour représenter
certains concepts de psychanalyse (Le «nœud du fantasme»).
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5. Des physiciens à l'origine de la théorie des nœuds

A la suite des travaux de H. Helmholtz sur l'écoulement des fluides incompressibles
et sans viscosité, les physiciens Peter G. Tait et William Thomson (le futur Lord
Kelvin) ont tenté vers la fin des années 1860 d'établir une théorie atomique dc la

matière basée sur l'hypothèse que les atomes sont constitués par des nœuds dc l'éthcr.
le nœud étant une ligne de vortex selon la théorie de Helmholtz. Celle théorie s'est
heurtée à de grandes difficultés physiques et mathématiques dc sorte que ses initiateurs

ont rapidement abandonné cette piste. Cependant P. Tait a continué ses
investigations sur la théorie des nœuds et il peut être à juste titre considéré comme le
véritable fondateur de la théorie des nœuds. Il faut ajouter que James C. Maxwell (à la

suite de Carl F. Gauss) avait découvert certaines notions dc base concernant les

entrelacs (comme le coefficient d'enlacement) lors de ses recherches sur I'élcctrody-
namique et qu'il en avait fait bénéficier son ami P. Tait.

6. Les Pietés et les manuscrits irlandais

A partir de l'an mille avant Jésus-Christ, les Celtes ont envahi l'Europe occidentale

par vagues successives. Leur art ornemental est très caractéristique ct se distingue par
une abondance d'arabesques (que l'on devrait appeler des «celtiques»). Une partie des
Celtes se sont établis en Grande-Bretagne; sous la poussée romaine ils se sont repliés en
Ecosse puis en Irlande. Peut-être au contact des populations qui se trouvaient là

auparavant, ces Celtes ont développé une forme d'art unique qui a frappé les Romains
à tel point qu'ils leur ont donné le nom de Pietés (Picti ceux qui dessinent). Ils nous
ont transmis des bijoux extraordinairement ciselés (la broche dc Tara, par exemple),
des pierres gravées et les fameux «manuscrits irlandais», dont les plus anciens remontent

au VIIIe siècle. Il s'agit de manuscrits des Evangiles abondamment illustrés par
des entrelacs extrêmement complexes. Il en existe quelques dizaines cn Europe, le plus
célèbre étant le «Book of Keils», précieusement conservé à Dublin après avoir subi
bien des aventures.
Voir: «The Book of Keils. Reproductions from the manuscript in Trinity College
(Dublin) with a study of the manuscript» par Françoise Henry. Thomas and Hudson:
London 1976.

«Celtic art. The methods of construction» par Georges Bain. Constable: London.

Trois volumes de la collection Zodiaque intitulés «L'Art irlandais», malheureusement

presque épuisés.

7. Les entrelacs chez les Arabes

Comme les Pietés, les Arabes ont développé un art ornemental abstrait qui utilise
abondamment les entrelacs (mais pas exclusivement). On retrouve des entrelacs dans
les palais et les mosquées, représentés dans le bois des plafonds, la pierre des parois, les
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croisillons des fenêtres, la marqueterie des portes, etc. Ils sont d'une facture très
différente des entrelacs pietés, moins «sauvages», plus disciplinés, du moins cn
apparence.

Bien sûr, le mieux est de pou voir admirer les bâtiments originaux, qui sont répandus
tout autour de la Méditerranée. A défaut, il existe dc bons livres dc reproductions. Je

recommande «L'art arabe» de Prisse d'Avenncs, édité cn 1869, ct réédité depuis.
Attention: Les manuscrits arabes, très richement illustrés, ne contiennent cn général

pas d'entrelacs.

8. La notion d'enchevêtrement

Il y a un principe (non explicité mais néanmoins bien présent) caché dans
l'utilisation des entrelacs par les artistes: On ne dessine pas un nœud au hasard.

Remarque: Construire un nœud «au hasard» est un concept intéressant cn soi; il a

des applications potentielles, en chimie des polymères par exemple.
Bien au contraire, les artistes dessinent des nœuds/entrelacs organisés, structurés.

Cette structure est, en fait, mathématique. Dans cc qui suit, je vais essayer dc dégager

une partie de cette structure mathématique, basée sur la notion d'enchevêtrement ct dc
combinaison d'enchevêtrements.

Ces notions ont été introduites par le mathématicien John Conway vers 1970 sous le

nom de «tangles» et «tangles moves». En toute généralité un enchevêtrement consiste
en la donnée d'une boule dans l'espace; en plus cette boule contient un certain nombre
d'arcs (un arc se matérialise par un morceau de ficelle dont les extrémités sont dans le

bord de la boule) et, éventuellement, un entrelacs.
Etant données deux enchevêtrements, on peut les additionner dc la façon

suivante:

1. On choisit une face dans le bord de chaque boule, dc façon que chaque face

contienne le même nombre d'extrémités d'arcs.
2. On recolle les deux boules le long des faces choisies de facon que l'extrémité d'un

arc dans une face corresponde à l'extrémité d'un arc dans l'autre face.

Bien sûr, on peut répéter l'opération en utilisant un troisième enchevêtrement, puis
un quatrième, etc.

Ces procédés ont des analogues à deux dimensions, qui permettent d'additionner les

représentations graphiques d'enchevêtrements. C'est cette technique qui est utilisée
parles Pietés et par les Arabes. Elle admet uncertain nombre dc variantes, dc sorte que
nous n'entrons pas plus avant dans les détails.

Il est clair que le résultat final va dépendre de deux facteurs: des enchevêtrements
choisis initialement, qui vont jouer le rôle de «motifs» ct dc la combinatole sous-

jacente aux additions. On peut représenter celte combinatole, cn tout cas partiellement,

par un graphe.
La combinatoire utilisée par les Arabes est très intéressante. Elle est associée à des

pavages du plan, provenant très souvent dc groupes dc symétrie. C'est pourquoi il y a

en général un bord chez les Arabes, qui représentent un enchevêtrement plutôt qu'un
entrelacs; l'enchevêtrement n'étant qu'une vue partielle dc l'entrelacs infini qu'on ne

peut pas voir en entier.
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La combinatoire utilisée par les Pictcs est plus simple, mais les motifs sont plus
complexes. Les Pietés font en sorte que le résultat final soit sans bord: ils obtiennent un
véritable entrelacs après un nombre fini d'opérations.

Je conseille au lecteur intéressé de se reporter aux ouvrages conseillés et d'essayer dc
voir la structure sous-jacente à certaines reproductions.

9. Quelques exemples

1 La figure 2 est un enchevêtrement à deux dimensions. La «boule» est un triangle
rectangle. Elle contient deux arcs.

Ensuite, on combine quatre exemplaires du même enchevêtrement de façon à

obtenir un carré. Pour cela, on dessine les deux diagonales d'un carré; elles partagent le
carré en quatre triangles rectangles.

Pour obtenir la projection d'un entrelacs dans l'espace, les Pietés commencent
par dédoubler les courbes afin de rendre la configuration plus complexe.
Ensuite, ils rendent la projection alternée, c'est-à-dire: lorsqu'on suivra un
brin, on passera alternativement dessus et dessous à chaque croisement.

Sur l'original, le dessin ne fait que quelques millimètres dc
diamètre.

Fig. 2: Enchevêtrement à deux dimensions.
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2) La figure 3 est un dessin effectué par Georges Bain, reproduisant fidèlement une
des enluminures du livre de Kclls. Ici, d'autres procédés que les combinaisons
d'enchevêtrements sont utilisés.

19

%
Vs

Fig. 3: Une des enluminures du livre dc Kclls.
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3) Voici un enchevêtrement utilisé par les Arabes. La boule est représentée dans le

plan par un triangle equilateral (Fig. 4).

\

\

Fig. 4: Enchevêtrement utilisé par les Arabes.
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Ensuite, les Arabes considèrent un pavage du plan par des triangles équilatéraux
(issu d'un réseau hexagonal). Ils remplissent chaque triangle par une copie dc
l'enchevêtrement de la figure 4.

4) Voici une construction arabe plus subtile. La figure 5 représente un enchevêtrement

dont la boule est représentée dans le plan par un rectangle.

\ /

/

/
Fig Un autre enchevêtrement arabe. Pour simplifier le dessin, on n'a pas des¬

siné le bord de la boule.

33



Ensuite, les Arabes considèrent un pavage du plan par des rectangles cn quinconce,
suivant le schéma de la figure 6 et remplissent chaque rectangle par une copie de
l'enchevêtrement de la figure 5.

Fig. 6: Pavage du plan par des rectangles.

10. L'ADN

Selon le modèle proposé par Francis Crick et James Watson, l'ADN se présente
comme une hélice à deux brins. Des considérations chimiques permettent d'orienter
chacun des brins en suivant l'ordre dans lequel se succèdent les sucres et les

phosphates. Les deux brins de l'hélice sont alors orientés dc façon opposée. On pense
actuellement que le modèle en double hélice n'est valable que localement ct sans la

présence d'agents «extérieurs» (chimiques ou physiques).
Mathématiquement, on peut représenter grossièrement un segment d'ADN à deux

brins par un rectangle long et mince. L'âme du rectangle représente l'axe dc l'hélice ct
les deux longs côtés du rectangle représentent les deux brins d'ADN.

La plupart des virus et des prokaryotes ont un ADN dont l'âme se referme pour
former une courbe sans extrémités dans l'espace. (La situation est beaucoup plus
compliqués chez les eukaryotes.) L'ADN est alors un ruban dans l'espace ct non un
ruban de Moebius à cause des orientations chimiques sur le bord.

Les biologistes pensent que, in vivo, l'âme du ruban est une courbe cn général non
nouée dans l'espace. Cependant, le bord du ruban est un entrelacs à deux composantes
non banal; son coefficient d'enlacement est très grand.

Un problème très important à l'heure actuelle consiste à comprendre quelle est la

forme (la géométrie) de l'ADN in vivo et de savoir quels facteurs déterminent cette
forme.
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11. Enzymes modifiant la topologie de l'ADN

Lors de certains processus biochimiques (comme la replication ou la recombinaison)

la topologie de l'ADN est modifiée, parfois dc façon très importante (le coefficient
d'enlacement peut provisoirement devenir nul). Par la définition même du mot
«topologie», ceci ne peut être fait que brutalement, en cassant ct cn recollant différemment.

On pense depuis quelques années que certains enzymes sont responsables dc ces
modifications. Les biologistes les ont baptisés topoisomérascs ct recombinascs. Les
mécanismes biochimiques précis selon lesquels ces opérations sont effectuées ne sont
pas connus. Mais, dans certains cas, c'est-à-dire pour certains enzymes, on a pu
observer, au moyen d'expériences très ingénieuses, quelle modification de la topologie
est effectuée par un enzyme donné. En quelques mots: on a pu «voir» (via microscopie
électronique) que l'enzyme modifie in vitro des nœuds d'ADN d'un certain lypecn des

nœuds d'un certain autre type.
Le modèle suivant a été proposé par le topologue De Witt Sumncrs; il ne préjuge pas

de l'action spécifiquement biochimique. On représente l'enzyme par une boule dans
l'espace. La partie de l'ADN interceptée par la boule est un enchevêtrement. Pour les

processus étudiés, il est raisonnable de penser que cet enchevêtrement est composé dc
deux arcs. Dans plusieurs situations ces deux arcs sont orientés (par exemple lors dc la

«site specific recombination»). On suppose alors que l'action dc l'enzyme consiste à

remplacer cet enchevêtrement par un autre. Autrement dit, il effectuerait une
modification d'enchevêtrement («tangle move»). Il est entendu que la partie de l'ADN qui
est en dehors de la boule représentant l'enzyme est laissée intacte.

Le problème topologique qui se pose est alors le suivant: sachant que l'enzyme
modifie tel nœud en tel nœud, quelles sont les modifications d'enchevêtrement
susceptibles d'induire les transformations de nœuds observées?

D.W. Sumnersa montré par exemple que, pour l'enzyme appelé TN3-rcsolvasc, il y
a une et une seule modification d'enchevêtrement compatible avec les expériences. Il a

même pu faire une prédiction qui a été confirmée par une nouvelle expérience. La
démonstration de D.W. Sumners utilise des résultats récents assez complexes dc
théorie des nœuds. La figure 7 représente l'action dc TN3-rcsolvase proposée par
D.W. Sumners. Noter que l'extérieur de la boule est non banal.
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Fig. 7: Nœuds d'ADN

a) avant l'action de l'enzyme TN3-rcsolvasc,
b) après l'action de l'enzyme TN3-rcsolvase.
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12. Les polynômes de V. Jones

Les modifications d'enchevêtrement à deux arcs orientés les plus simples soni
représentées sur la figure 8. Elles interviennent de façon essentielle dans les propriétés
fondamentales des polynômes découverts par Vaughan Joncs. Ces polynômes ont des

liens étroits et encore mystérieux avec la mécanique statistique ct la théorie quantique
des champs. Ils donnent lieu actuellement à une grande activité entre physiciens
théoriciens et mathématiciens.
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Fig. 8: Modifications d'enchevêtrement à deux arcs orientés.
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