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Les entrelacs dans les arts et les sciences naturelles

par CLAUDE WEBER,
Université de Genéve, Section de Mathématiques,
2-4, rue du Lievre, Case postale 240, 1211 Genéve 24

1. Neeuds usuels et traditionnels

On obtient un nceud en prenant un morceau de ficelle, ou unc corde, unce lianc que
I’on emméle d’une certaine facon, puis que I’on serre. Le but d’unc telle opération cst
d’attacher, de rendre solidaires certains objets. C’est le cas des nceuds cffectucs par les
marins et les chirurgiens par exemple. Le nceud gordien était, sclon la tradition, destiné
a attacher le timon au char du roi dans la ville de Gordes en Asic-Mincurc. Un neeud
peut aussi avoir un intérét propre, sans que d’autres objects intervicnnent; c’est Ic cas
pour les tricots, les tissages, etc. L’art populaire des nocuds consiste a savoir faire le
nceud approprié au but recherché. Cela peut demander de I’habileté ¢t des connais-
sances. Il existe d’imposants répertoires de nceuds usucls, souvent consacrés aux
nceuds employés dans la marine a voiles. Le plus célébre cst Ie «Ashley book of
knotsy».

Mais, de toute facon, un nceud tel que nous venons de I'envisager pcut toujours ¢tre
défait. Le truc consiste a chercher I'une des deux extrémités ct a tirer cn arriére, petit a
petit. De la patience et de la force peuvent étre nécessaircs.

2. Les nceuds dans les mythologies

L’idée suivante est trés répandue, et cela depuis longtemps: 'opération de dénouc-
ment d’un nceud a une signification qui va bien au-dela du succés d’unc technique. Les
psychologues sont trés sensibles a cette facon de voir les choses. Daillcurs, les dcux
sens du mot «dénouement» ne sont-ils pas intimement liés? Unc variante de ce que
nous venons de dire consiste en ceci: un nceud recélerait un certain sceret, unc certaine
parcelle de connaissance. Celui qui dénoue le neeud s’appropric cc savoir. Plus pro-
saiquement, les «quipus» incas étaient des registres de nccuds destinés, pensent les
spécialistes, a faire des comptages, des recensements. Ils contcnaient donc unc infor-
mation certaine.

Dans son livre « Tabou et les périls de 'ame» James G. Frazer citc de nombrcuscs
coutumes ou le travail effectué par celui qui dénoue un neeud est un véritable parcours
initiatique. Frazer attache beaucoup d’importance a ces coutumes ct les traitc comme
un véritable outil de mythologie comparée. Ce point de vue est repris ¢t amplifié par
Georges Dumézil qui fait des nceuds un des attributs magiques du dicu Varuna, dicu
que I’on retrouve dans d’autres mythologies sous la forme d’Ouranos, dc Jupiter ou
d’Odin. Voir: «Les dieux souverains des Indo-Europécens» de G. Dumézil. Un cha-
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pitre du livre de Mircea Eliade «Images et symboles» ¢st aussi consacré a ces ques-
tions. Le dieu magicien ne combat pas les humains par la force: il les «charme» en les
liant a I'aide de nceuds.

De toutes facons, je crois pouvoir dire que, dans les mythologices, Ies nccuds appa-
raissent aux points de contact entre le monde des dieux ¢t le monde des hommes. Ceci
est particulierement clair dans le mythe du nceud gordien. Le mathématicien francais
Bernard Teissier exprime les choses un peu difféeremment en disant: «Les nacuds sont
le langage par lequel les dieux parlent aux hommes.»

Pour un topologue, la constatation suivante est un pcu décevantce: cn général (mais
pas toujours) les nceuds apparaissent dans les pratiques magiques, rituclles, de facon
générique: n'importe quel nceud fait I'affaire. Le point de vue «tcl nceud est bénéfique
tandis que tel autre est maléfique» semble la plupart du temps absent. Les coutumes
rapportées par J. Frazer vont dans ce sens. Par exemple, dans ccrtaines pcuplades
quand une femme va accoucher on défait tous les nocuds qui se trouvent dans la
maison, sans exception. Un bouddhiste qui veut accéder au Nirvana doit sc¢ libérer de
tous les liens qui le rattachent au monde terrestre; concrétement, il ne porte aucun
neeud sur lui.

3. Les entrelacs en mathématiques

En premiére approximation, la topologie est la partic des mathématiques qui
considére deux objets de I'espace comme équivalents si 'on peut passer de 'un a
I’autre continument, sans déchirure. Ainsi, pour un topologuc, deux morceaux de
ficelle sont toujours équivalents puisque le procédé de dénoucment dont nous avons
parlé plus haut ne rompt pas la ficelle. Alexandre le Grand n’¢tait pas topologuc.

On voit donc que, pour empécher un topologue de dénouer une corde, il faut en
supprimer les extrémités en faisant une épissure. Mathématiquement, une noeud cst
une courbe dans I’espace en une seul tenant (on dit qu’elle connexc) ¢t sans extrémités
(on dit qu’elle est compacte et sans bord). Un entrelacs e¢st unc ré¢union finic de telles
courbes, deux a deux disjointes. On considére deux entrelacs comme ¢quivalents (on
dit i1sotopes) si 'on peut déformer continiment I'un en I'autre, sans déchirure. (La
définition précise est trop technique pour étre donnée ici.)

Une représentation graphique d’un entrelacs est obtenue en le projetant sur un plan
de facon a ce que I'image ne se recoupe qu’en des points doubles. En un point double,
on indique quel brin se trouve dans I'espace au-dessous dc I'autre en interrompant
localement le brin inférieur. Ce procédé est utilis¢ par les artistes depuis qu’ils ont
dessiné des entrelacs.

Remarque: A une représentation graphique, il ne correspond pas un cntrelacs bicn
défini dans I’espace (il faudrait pour cela deux projections) mais toute une famille
d’entrelacs. Cependant, deux entrelacs de la famille sont toujours 1sotopes. De sorte
que, si I’on veut faire de la topologie, une seule représentation graphique suffit pour s¢
donner un entrelacs.

Attention: Suivant le contexte, il n’est pas toujours trés clair dans le langage de tous
les jours si les mots nceuds/entrelacs désignent unc courbe dans I'espace ou unce
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représentation graphique particuliére. Par exemple, «lc sccau de Salomon» ou «les
anneaux des Borromées» (Fig. 1) désignent des représentations graphiques cxplici-
tes.

Fig. 1: L’entrelacs des Borromées.

4. Les entrelacs de Jacques Lacan

Le psychanalyste francais Jacques Lacan s’est intéress¢ aux entrelacs ¢t a entrainé
dans son sillage plusieurs disciples. Plutot que d’esquisser une théoric que je nc
maitrise pas, je préfére donner une illustration de I'usage des entrelacs fait par cette
école. (Je ne sais pas s’ils se reconnaitront dans ce qui suit.) Il arrive qu’un groupe
d’individus (disons une équipe sportive) soit lié par unc certaine activité, mais quc cc
groupe se disperse si I’'un quelconque de ses membres se retire. On peut alors essayer de
décrire les liens qui existent entre les membres de ce groupe par un cntrelacs, chaque
composante de I’entrelacs représentant un membre de I’équipe. Ceci prend encore plus
de poids si I’on sait que, pour J. Lacan, le signe n’est pas arbitrairc. La propric¢t¢ de
«dispersion» se traduit par la propriété topologique suivante: si I'on supprime unc
composante quelconque de I’entrelacs, alors I’entrelacs résiducl pcut étre entiérement
défait. Un tel entrelacs est appelé brunnien, du nom du mathématicien H. Brunn quia
le premier étudié cette propriété a la fin du XIX¢ siécle. L'entrelacs des Borromées est
un entrelacs a trois composantes qui est «brunnien». Bien sir, on pcut varier les
combinaisons: les individus restent groupés si I'un des membres s'en va, mais sc¢
dispersent si un deuxi¢me quitte le groupe. On peut aussi ajouter des individus ayant
des propriétés particuliéres, etc. J. Lacan a aussi utilisé les entrelacs pour représenter
certains concepts de psychanalyse (Le «nceud du fantasme»).
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5. Des physiciens a I'origine de la théorie des neeuds

Ala suite des travaux de H. Helmholtz sur I’écoulement des fluides incompressibles
et sans viscosité, les physiciens Peter G. Tait et William Thomson (lc futur Lord
Kelvin) ont tenté vers la fin des années 1860 d’établir une théoric atomique de la
matiére basée sur I’hypothése que les atomes sont constitués par des nceuds de I'éther,
le nceud étant une ligne de vortex selon la théorie de Helmholtz. Cette théoric s’est
heurtée a de grandes difficultés physiques et mathématiques de sorte quc ses initia-
teurs ont rapidement abandonné cette piste. Cependant P. Tait a continué scs inves-
tigations sur la théorie des nceuds et il peut étre a juste titre considéré comme le
véritable fondateur de la théorie des nceuds. Il faut ajouter que James C. Maxwell (a la
suite de Carl F. Gauss) avait découvert certaines notions dc basc concernant les
entrelacs (comme le coefficient d’enlacement) lors de scs recherches sur I'électrody-
namique et qu’il en avait fait bénéficier son ami P. Tait.

6. Les Pictes et les manuscrits irlandais

A partir de I’'an mille avant Jésus-Christ, les Celtes ont envahi I’Europc occidentale
par vagues successives. Leur art ornemental est trés caractéristique ct sc distingue par
une abondance d’arabesques (que I’'on devrait appeler des «celtiques»). Une partic des
Celtes se sont établis en Grande-Bretagne:; sous la poussée romainc ils sc sont repliés en
Ecosse puis en Irlande. Peut-étre au contact des populations qui sc¢ trouvaicnt la
auparavant, ces Celtes ont développé une forme d’art unique qui a frappé lecs Romains
a tel point qu’ils leur ont donné le nom de Pictes (Picti = ccux qui dessinent). Ils nous
ont transmis des bijoux extraordinairement ciselés (la broche de Tara, par exemple),
des pierres gravées et les fameux «manuscrits irlandais», dont les plus anciens remon-
tent au VIII¢ siecle. Il s’agit de manuscrits des Evangiles abondamment illustrés par
des entrelacs extrémement complexes. Il en existe quelques dizaines e¢n Europe, le plus
célebre étant le « Book of Kells», précicusement conscrvé a Dublin aprés avoir subi
bien des aventures.

Voir: «The Book of Kells. Reproductions from the manuscript in Trinity College
(Dublin) with a study of the manuscript» par Francoisc Henry. Thomas and Hudson:
London 1976.

«Celtic art. The methods of construction» par Georges Bain. Constable: Lon-
don.

Trois volumes de la collection Zodiaque intitulés «L’Art irlandais», malhcurcusc-
ment presque épuisés.

7. Les entrelacs chez les Arabes
Comme les Pictes, les Arabes ont développé un art ornemental abstrait qui utilise

abondamment les entrelacs (mais pas exclusivement). On rcetrouve des entrelacs dans
les palais et les mosquées, représentés dans le bois des plafonds, la picrre des parois, Ics
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croisillons des fenétres, la marqueterie des portes, ctc. Ils sont d’unc facturc trés
différente des entrelacs pictes, moins «sauvages», plus disciplinés, du moins ¢n appa-
rence.

Bien sur, le mieux est de pouvoir admirer les batiments originaux, qui sont répandus
tout autour de la Méditerranée. A défaut, il existe de bons livres de reproductions. Je
recommande «L’art arabe» de Prisse d’Avennes, ¢dit¢ cn 1869, ct réédité depuis.

Attention.: Les manuscrits arabes, trés richement illustrés, ne contiennent en général
pas d’entrelacs.

8. La notion d’enchevétrement

Il y a un principe (non explicité mais néanmoins bicn présent) caché dans 'utili-
sation des entrelacs par les artistes: On ne dessine pas un nccud au hasard.

Remarque: Construire un nceud «au hasard» est un concept intéressant en soi: il a
des applications potentielles, en chimie des polyméres par exemple.

Bien au contraire, les artistes dessinent des nceuds/centrelacs organiscs, structurés.
Cette structure est, en fait, mathématique. Dans ce qui suit, jc vais cssayer de dégager
une partie de cette structure mathématique, basée sur la notion d’enchevétrement et de
combinaison d’enchevétrements.

Ces notions ont été introduites par le mathématicien John Conway vers 1970 sous le
nom de «tangles» et «tangles moves». En toute généralit¢ un enchevétrement consiste
en la donnée d’une boule dans I’espace; en plus cette boule contient un certain nombre
d’arcs (un arc se matérialise par un morceau de ficelle dont les extrémités sont dans le
bord de la boule) et, éventuellement, un entrelacs.

Etant données deux enchevétrements, on peut les additionner de la facon sui-
vante:

1. On choisit une face dans le bord de chaque boule, de facon que chaque face
contienne le méme nombre d’extrémités d’arcs.

2. On recolle les deux boules le long des faces choisics de facon que 'extrémité d’un
arc dans une face corresponde a I’extrémité d’'un arc dans I'autre facc.

Bien sar, on peut répéter I'opération en utilisant un troisi¢me enchevétrement, puis
un quatriéme, etc.

Ces procédés ont des analogues a deux dimensions, qui permettent d’additionner les
représentations graphiques d’enchevétrements. Cest cette technique qui est utilisée
par les Pictes et par les Arabes. Elle admet un certain nombre de variantcs, de sorte que
nous n’entrons pas plus avant dans les détails.

Il est clair que le résultat final va dépendre de deux factcurs: des enchevétrements
choisis initialement, qui vont jouer le role de «motifs» ¢t de la combinatoire sous-
jacente aux additions. On peut représenter cette combinatoire, en tout cas particlle-
ment, par un graphe.

La combinatoire utilisée par les Arabes est trés intéressante. Elle ¢st associc¢e a des
pavages du plan, provenant trés souvent de groupes de symétric. C’est pourquoi il y a
en général un bord chez les Arabes, qui représentent un enchevétrement plutét qu’un
entrelacs; I’enchevétrement n’étant qu’une vue particlle de ’entrelacs infini qu’on ne
peut pas voir en entier.
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La combinatoire utilisée par les Pictes est plus simple, mais les motifs sont plus
complexes. Les Pictes font en sorte que le résultat final soit sans bord: ils obticnnent un
véritable entrelacs aprés un nombre fini d’opérations.

Je conseille au lecteur intéressé de se reporter aux ouvrages conscillés et d’essayer de
voir la structure sous-jacente a certaines reproductions.

9. Quelques exemples

I) Lafigure 2 est un enchevétrement a deux dimensions. La «boule» est un triangle
rectangle. Elle contient deux arcs. '

Ensuite, on combine quatre exemplaires du méme enchevétrement de facon a
obtenir un carré. Pour cela, on dessine les deux diagonales d’un carré; clles partagent Ie
carré en quatre triangles rectangles.

Pour obtenir la projection d’un entrelacs dans I'espace, les Pictes commencent
par dédoubler les courbes afin de rendre la configuration plus complexe.
Ensuite, ils rendent la projection alternée, c’est-a-dire: lorsqu’on suivra un
brin, on passera alternativement dessus et dessous a chaque croisc-
ment. Sur I'original, le dessin ne fait que quelques millimétres de
diametre.

Fig. 2: Enchevétrement a deux dimensions.
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2) La figure 3 est un dessin effectué par Georges Bain, reproduisant fidélement une
des enluminures du livre de Kells. Ici, d’autres procédés que les combinaisons d’en-
chevétrements sont utilisés.

Fig. 3: Une des enluminures du livre de Kells.
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3) Voici un enchevétrement utilisé par les Arabes. La boule cst représentée dans le
plan par un triangle équilatéral (Fig. 4).

\

Fig. 4: Enchevétrement utilisé par les Arabes.
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Ensuite, les Arabes considérent un pavage du plan par des triangles ¢quilatéraux
(1ssu d’un réseau hexagonal). Ils remplissent chaque triangle par une copie de I'en-
chevétrement de la figure 4.

4) Voici une construction arabe plus subtile. La figure 5 représente un enchevétre-
ment dont la boule est représentée dans le plan par un rectangle.

o

Fig. 5: Un autre enchevétrement arabe. Pour simplifier le dessin, on n’a pas des-
sin¢ le bord de la boule.

/
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Ensuite, les Arabes considérent un pavage du plan par des rectangles en quinconce,
suivant le schéma de la figure 6 et remplissent chaque rectangle par une copie de
I’enchevétrement de la figure 5.

Fig. 6: Pavage du plan par des rectangles.

10. L’ADN

Selon le mod¢le proposé par Francis Crick et James Watson, ’ADN s¢ présente
comme une hélice a deux brins. Des considérations chimiques permettent d’orienter
chacun des brins en suivant I'ordre dans lequel se succédent les sucres et les phos-
phates. Les deux brins de I’hélice sont alors orientés de facon opposéc. On pense
actuellement que le modéle en double hélice n’est valable que localement ¢t sans la
présence d’agents «extérieurs» (chimiques ou physiqucs).

Mathématiquement, on peut représenter grossiérement un scgment d’ADN a dcux
brins par un rectangle long et mince. L’ame du rectangle représente I'axe de I’hélice et
les deux longs cotés du rectangle représentent les deux brins d’ADN.

La plupart des virus et des prokaryotes ont un ADN dont I'ame se¢ referme pour
former une courbe sans extrémités dans I’espace. (La situation cst becaucoup plus
compliqués chez les eukaryotes.) L’ADN est alors un ruban dans I'espacc ¢t non un
ruban de Moebius a cause des orientations chimiques sur le bord.

Les biologistes pensent que, in vivo, 'ame du ruban est unc courbe cn général non
nouc¢e dans I’espace. Cependant, le bord du ruban est un entrelacs a dcux composantes
non banal; son coefficient d’enlacement est trés grand.

Un probléme trés important a I’heure actuelle consiste a comprendre quelle est la
forme (la géométrie) de ’ADN in vivo et de savoir quels factcurs déterminent cette
forme.
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11. Enzymes modifiant la topologie de ’ADN

Lors de certains processus biochimiques (comme la réplication ou la recombinai-
son) la topologie de ’ADN est modifiée, parfois de facon trés importante (Ie cocfficient
d’enlacement peut provisoirement devenir nul). Par la définition méme du mot «to-
pologie», ceci ne peut étre fait que brutalement, en cassant ¢t ¢n recollant différem-
ment. On pense depuis quelques années que certains enzymes sont responsables de ces
modifications. Les biologistes les ont baptisés topoisomérascs ¢t rccombinascs. Les
mécanismes biochimiques précis selon lesquels ces opérations sont cffectuces ne sont
pas connus. Mais, dans certains cas, c’est-a-dire pour certains cnzymes, on a pu
observer, au moyen d’expériences trés ingénieuses, quelle modification de la topologic
est effectueé par un enzyme donné. En quelques mots: on a pu «voir» (via microscopic
¢lectronique) que I’enzyme modifie in vitro des noeuds d’ADN d’un certain type en des
nceuds d’un certain autre type.

Le modéle suivant a été proposé par le topologue De Witt Sumners; il nc préjuge pas
de I'action spécifiquement biochimique. On représente I’enzyme par unc boule dans
’espace. La partie de ’TADN interceptée par la boule c¢st un enchevétrement. Pour les
processus étudiés, il est raisonnable de penser que cet enchevétrement est composé de
deux arcs. Dans plusieurs situations ces deux arcs sont oricntés (par exemple lors de la
«site specific recombination»). On suppose alors que I'action de I’enzyme consiste a
remplacer cet enchevétrement par un autre. Autrement dit, il cffectucrait unc modi-
fication d’enchevétrement («tangle move»). Il est entendu que la partic de 'ADN qui
est en dehors de la boule représentant I’enzyme est laissée intactc.

Le probléme topologique qui se pose est alors le suivant: sachant quc I’cnzyme
modifie tel nceud en tel nceud, quelles sont les modifications d’enchevétrement sus-
ceptibles d’induire les transformations de nceuds obscrvées?

D.W. Sumners a montré par exemple que, pour I’enzyme appclé TN3-resolvase, il y
a une et une seule modification d’enchevétrement compatible avee les expériences. 1l a
méme pu faire une prédiction qui a été confirmée par unc nouvclle cxpérience. La
démonstration de D.W. Sumners utilise des résultats récents asscz complexes de
théorie des nceuds. La figure 7 représente 'action de TN3-resolvase proposée par
D.W. Sumners. Noter que I’extérieur de la boule est non banal.
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Fig. 7: Nceeuds d’ADN
a) avant I'action de I’ecnzyme TN3-rcsolvasc,
b) aprés I'action de I’enzyme TN3-resolvasc.

12. Les polynomes de V. Jones

Les modifications d’enchevétrement a decux arcs oricniés les plus simples sont
représentées sur la figure 8. Elles interviennent de facon essenticllc dans Ies propri¢iés
fondamentales des polynomes découverts par Vaughan Jones. Ces polynomes ont des
liens étroits et encore mystérieux avec la mécanique statistiquce ct la théoric quantique
des champs. IlIs donnent licu actuellement a une grande activité entre physiciens
théoriciens et mathématiciens.
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Fig. 8: Modifications d’enchevétrement a deux arcs orientcs.
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