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Bemerkungen zur schwingenden Saite
und ihrer Simulation

von BURCHARD KAUP,
Mathematisches Institut der Universitat,
CH-1700 Fribourg

Dieser Text enthalt Ausziuge und Erganzungen zum Vortrag “Die schwingende
Saite aus musikalischer, physikalischer und mathematischer Sicht” und soll in
moglichst einfacher Form den Zugang zu einigen Resultaten (vgl. z. B. CANNON
und HELMHOLTZ) erleichtern und den Leser zu eigenen Experimenten anregen:
es wird gezeigt, wie man durch die Wahl geeigneter Anfangsbedingungen ver-
schiedene Schwingungen der Schwingenden Saite auf einem Computer simulieren
kann und wie man durch Berechnen der zugehorigen Fourierzerlegung Informa-
tionen uber die Klangfarbe des entsprechenden Tons erhalten kann.

1. Schwingende Kugeln

Gegeben sel in der z-y-Ebene ein Gummiband der Lange L, auf dem N + 1
Kugeln der Masse p angebracht sind. Der Abstand der Kugeln sei stets § :=
L/N, die Kugeln befinden sich in den Punkten (z,,0) mit @, := né fir n =
0,1,..., N. Wir nehmen an, dass das Gummiband kleine Schwingungen ausfihrt
(dabei vernachlassigen wir die Erdanziehung und Reibung); die zwei Kugeln an
den Enden des Gummibandes seien fixiert. Ferner nehmen wir an, dass bei den
Schwingungen die z-Koordinaten aller Kugeln konstant bleiben. Es sei 7 eine
Zeiteinheit, uber die wir spater noch verfugen werden. Mit ¢; bezeichnen wir
den Zeitpunkt ty := k7. Es sei u(zp,t) die Auslenkung der n-ten Kugel zur Zeit
t und

Unk = u(xn,tx) = Auslenkung der n—ten Kugel zur Zeit t;.

Wir machen folgende Annahme: die Kraft, welche eine Kugel durch die Spannung
des Gummibandes auf ihre Nachbarkugel austibt, ist von der Form Zotana |
wobel a der Winkel zwischen der Verbindungslinie der beiden Kugeln und der z-
Achse ist und o eine Konstante (welche die Spannung des Gummibandes enthalt);
eine Begrindung fur diese Annahme findet man im unten angegebenen Buch von
FLETCHER, Seite 123. Zur Zeit t; uben die (n — 1)-te und die (n + 1)-te Kugel
auf die n-te Kugel also die Kraft

o_un—l,k - 2un,k + Un41k

Kraft =
ra F

aus.
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Allgemein gilt fur die zweite Ableitung einer Funktion f:

(L) f(a) = lim L8R Z2Ha) + fla + h)

hsll hZ2

(das ergibt sich leicht daraus, dass fiir kleine h gilt: f"(a) & [f'(a+h/2)— f'(a—
hi2)1/h, f'(a+ h/2) = [f(a + h) = f(a)l/h, f'(a = h/2) = [f(a) — f(a = h)]/h).
Insbesondere ergibt sich, dass die mittlere Beschleunigung der n-ten Kugel zur
Zeit t;. gegeben wird durch

U(Jln,f]c - T) - 2U(In,tk) - u(xn)tk - T) _ Unk-1— Qun,k + Un k41

2 p
Nach NEWTON (Kraft = Masse x Beschleunigung) gilt also angenahert

Un—1k — 2Unk + Ung1k #Un,k—1 — 2Up k + Un k41

6 T2

Setzen wir noch ¢ := p/é, dann ergibt sich daraus

Un—1,k — 2Un k + Uny1,k Un k-1 — 2Un k + Un k41
(%) o 52 =P .

72
Wahlen wir als Zeiteinheit 7 := é1/0/0o, dann erhalten wir daraus
Un—1k + Unt1 k = Un k-1 + Un k41 (0<n< Nund k> 0).

Da die zwei Kugeln am Ende des Gummibandes sich nicht bewegen, erhalten wir
also fur kleine Schwingungen die Gleichungen

(+4) Un k4l = Un—1k + Un41,k — Un k-1 (0<n< Nund k > 0)
¥
uor =ung =0 (k> 0).

Aus diesen Gleichungen kann man in eindeutiger Weise alle u, ; berechnen,
wenn die Werte von u, ; gegeben sind fur 0 <n < N und k¥ = 0,k = 1. Man
beachte, dass diese sog. Anfangswerte ganz beliebig vorgegeben werden diirfen.

Im vierten Abschnitt findet man Beispiele, wie man durch geeignete Wahl der
Anfangsbedingungen verschiedene Schwingungen auf einem Computer simulieren
kann.

2. ﬁbergang zur schwingenden Saite

Wir betrachten jetzt eine Saite der Lange L, die in den Punkten z = 0 und
x = L eingespannt ist und kleine Schwingungen ausfihrt. Es sei ¢ die Spannung
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und ¢ die Dichte der Saite, es sei u(z,t) die Auslenkung der Saite an der Stelle
X zur Zeit t.

Wir denken uns die Saite in N + 1 Teile zerschnitten: das erste und das letzte
Teil haben die Lange %, alle anderen Teile haben die Lange % =: 6 und die
Masse p = pb. Wir ersetzen jetzt jedes der Teile durch eine Kugel der Masse u
und denken uns die Kugeln durch ein Gummiband der Spannung & verbunden:
damit erhalten wir fur grosses N eine gute Approximation der gegebenen Saite.
Da die Bewegungen des Gummibandes mit den Kugeln durch die Gleichung (*)
beschrieben wird, erhalt man die Bewegungsgleichung der schwingenden Saite
aus (*) durch den Grenzubergang N — oco. Wegen (L) gilt

u(z —6,t) — 2u(z,t) +u(z +8,1) 40 O%u
57 527"

u(z,t — 7) — 2u(z,t) +u(z,t+7) =0 9%u
T2 at? (
Aus (*) ergibt sich also (da é = L/N — 0 und 7 — 0 wenn N — o0)

. £).

Q*u(x,t)  8*u(z,1)
(+) "oz ez

Da die Saite an den Enden # = 0 und # = L eingespannt ist, werden kleine
Schwingungen der Saite also beschrieben durch die Gleichungen

O%u(z,t)  9*u(x,t)

(+4) T 8z2z ¢ a2
w(0,¢) = w(L,t) = 0.

Man rechnet leicht nach, dass

Gilwt) = sin(j%a:) cos(jwt) und Silmd) 1= sin(j%a:) sin(jwt)

mit w = 7 \/% Losungen von (++) sind. Folglich sind auch alle Linearkombi-

nationen

(F) w(z,t) = Z(a,-c,- +b;S;)

Losungen von (++) fur beliebige reelle Koeffizienten a;, b; und beliebige natiir-
liche Zahlen K. Die Koeffizienten a;,b; nennt man die Fourierkoeffizienten von
u. C; und S; stellen Schwingungen der Frequenzen

o o
Aj = —, =
2 2L\ o
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dar; diese Frequenzen werden Eigenfrequenzen der schwingenden Saite genannt.
Ihre gegenseitigen Verhaltnisse sind

X s I A Y == Y 1P D B

Man beachte, dass durch Vergrossern der Spannung o die Eigenfrequenzen grosser
werden (hohere Tone) und dass durch Vergrossern der Dichte o die Eigenfre-
quenzen kleiner werden (tiefere Tone). Diese Tatsache nutzt man bei Saitenin-
strumenten so aus, dass man durch Verandern der Saitenspannung die Tonhohe
variiert (man nennt diesen Vorgang “stimmen” ) und dass man die Saiten fur die
tiefen Tone aus dickeremm Material macht, damit sie etwa die gleiche Spannung
haben wie die Saiten fur die hoheren Tone.

Von grosster Bedeutung ist nun, dass man jede Losung von (++) beliebig
genau durch Funktionen der Form (F') approximieren kann. Es sei u(z,t) =
>_;(a;C; + b;S;) eine Losung von (++). Dann erhalt man fiir die Funktionen
uo(z) := u(z,0) (Auslenkung zur Zeit t = 0) und ui(z) := $%(z,0) (Geschwin-
digkeit zur Zeit ¢t = 0) die Darstellungen

uo(z) = Zaj sin(j%a:) Juile) = ijbj sin(j%:v).

J J

Da die Funktionen up und u; an den Stellen £ = 0 und z = L verschwinden, gibt
es Darstellungen

o(@) =Y agsin(iTa) ,ui(@) = Y fsin(j T2)
3 j

(man setzt ug und u; auf ganz IR fort zu ungeraden Funktionen der Periode 2L
und nimmt deren Fourierreihen, die reine Sinus-Reihen sind). Dann ist

u_Z(aJC' +ﬁJS)

J

aus den Fourierkoeffizienten a; und 3; von ug bzw. u; erhalt man also die Fouri-
erkoeffizenten von u. (Auf Fragen der Konvergenz fir unendliche Fourierreihen
soll hier nicht eingegangen werden).

Damit haben wir gesehen: kleine Schwingung der Schwingenden Saite sind
eine (eventuell unendliche) Uberlagerung von Grundschwingungen der Frequen-
zen Ay, Aa, Az, ...

Man kann die Fourierkoeffizienten a;, b; einer Losung u(z,t) = Zj a5 (5 +6;5;
von (++) auch aus v(t) := g—‘;(o,t) berechnen (die Funktion v beschreibt den
Winkel zwischen der z-Achse und der Tangente an die schwingende Saite an
ihrem linken Ende): ist

v(t) = Z A; cos(jwt) + Bj sin(jwt);
J
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die Fourierentwicklung von v, dann erhalt man durch Koeffizientenvergleich mit

™ ; ; ; o
v(t) = 7 Ej (jaj cos(jwt) + jbj sin(jwt))
die Gleichungen
LA; LB;
w=Tg W=Tg

Insbesondere folgt, dass u schon eindeutig durch v bestimmt ist.

3. Freie Enden

Wenn das rechte Ende des Gummibandes nicht fixiert ist (wir nehmen an, dass
trotzdem eine Spannung vorhanden ist; das kann etwa dadurch erreicht werden,
dass die Kugeln sich reibungslos in vorgegebenen vertikalen Fiihrungen bewegen),
dann wirkt auf die N-te Kugel nur die Kraft der (N — 1)-ten Kugel und man
erhalt anstelle von (#%) die Gleichungen

Un k41 = Un—1.k + Un41 k — Un k-1 (0 <n< Nund k > 0)
uox =0 (k> 0)
UN k41 = UN-1k F UNE — UN k-1 (k> 0).

Anstelle von (4++) erhalt man die Gleichungen

0%u(z,t) d%u(z,t)

I

Ox? e o2
u(0,t) =0

du

%(L,t) = 0.

Analoge Gleichungen gelten, wenn auch das linke Ende frei ist. In dem Fall

muss man Jedoch darauf achten, dass einem die Saite nicht “wegschwebt”; das
N L
ist genau dann der Fall, wenn g O(UkJ —ugo) =0 bzw. 6]“%‘;(;;:, 0) dez = 0.

4. Beispiele

Es folgen einige Beispiele (dabei ist stets N = 36 und ug = un x = 0; damit
man auf einem Bildschirm interessante Figuren erhalt, sind in der Regel alle
U, r mit einer geeigneten positiven Konstanten zu multiplizieren). Die Bilder
der Beispiele 1 bis 3 sind jeweils so zu interpretieren: das linke Bild zeigt eine
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konkrete Stellung der Kugeln und den Weg, den jede Kugel im Laufe der Zeit
durchlauft. Bei einer schnellen Schwingung nimmt das Auge also nur den Um-
riss des schraffierten Bereichs wahr. Das rechte Bild zeigt die Auslenkung einer
speziellen Kugel, aufgetragen gegen die Zeit (in allen folgenden Beispielen ist die
gleiche Zeitskala gewahlt worden; zwischen zwei senkrechten Strichen ist jeweils
eine Periode der Grundschwingung). Das dritte Bild enthalt die Fourierkoef-
fizienten (unten beginnend mit a; bzw. by; nach links ist jeweils ja;, nach rechts
jb; aufgetragen; eine ausgefiillte Linie bedeutet einen positiven Koeffizienten,
eine hohle Linie einen negativen Koeffizienten; bis auf einen konstanten Faktor
sind also nicht die Fourierkoeffizienten von u, sondern diejenigen von v, siehe
oben, aufgetragen).

BEISPIEL 1. Setze u, 0 := 0 und u, ; :=sin(n-A-%) fir 0 < n < N (dabei sei
A > 0 eine kleine naturliche Zahl). Fir A = 1 erhalt man die Grundschwingung:

‘K i IlIF||..

| e i ===

]

_

COs SIN

Durch eine Uberlagerung von Grundschwingung und einigen Oberschwingungen
erhalt man zum Beispiel:

COos SIN

BEISPIEL 2. Setze u, 0 := 0 und u, 1 := N —n flir 0 < n < N. Dann erhalt
man die Schwingungen der gestrichenen Saite:
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cos SIN

Man muss sich die Bewegung so vorstellen, dass die Spitze des Dreiecks sich
im Gegenuhrzeigersinn entlang dem Rande des schraffierten Bereichs bewegt.
Andert man die Anfangsbedingungen der gestrichenen Saite etwas ab in der Art,
dass der Knick abgerundet wird, so ergeben sich folgende Bilder:

-

Ccos

w0
-
z

Offensichtlich hat der entsprechende Ton eine weichere Klangfarbe, da die Ober-
tone nur weniger intensiv mitschwingen. Je naher beim Steg eine Saite angestri-

chen wird, desto ausgepragter ist der Knick und desto obertonreicher folglich der
dabel entstehende Ton.

BEISPIEL 3. Setze upo :=nfur0 <n <3, upo :=7—nfir4 <n <7,

upo = 0 fur 7 < n < N und 4, ; = u,_1 fur alle n. Dann erhalt man eine
wandernde Welle:
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BEISPIEL 4. Die Schwingungen der Luft in einem beidseits offenen Rohr
(z. B. Orgelpfeife) sind ein Beispiel fur Schwingungen mit zwei freien Enden;
allerdings schwingen die Luftmolekile nicht transversal, sondern longitudinal.
Die longitudinale Auslenkung der Luft wird wieder durch die Wellengleichung
beschrieben (vgl. GERTHSEN, Abschnitt 4.2.2). Das Verhaltnis der Eigenfre-
quenzen wird durch folgende Gleichungen gegeben: A} : Ay @ Az 1 ... = 1
2 : 3 : ... Die folgenden Bilder sind so zu interpretieren: im Ruhezustand
fullen die senkrechten Linien das Rohr gleichmassig aus und die Kugeln liegen
auf der gestrichelten Geraden. Im Schwingungszustand entspricht der horizon-
talen Auslenkung einer Linie im oberen Bild die vertikale Auslenkung der Kugel
im jeweils unteren Bild (einer Auslenkung nach links im oberen Bild entspricht
eine Auslenkung nach unten im unteren Bild). Dargestellt sind zwei Phasen der
Grundschwingung und die zwel folgenden Oktaven.

ARV ETNNNNNANENNNEENENAA [ TN,

o e o B

.
" .
........
--------

.. .
e g A Y i o g e e g

Schwingungen der Luft in einem einseitig offenen Rohr (z. B. gedackte Or-

gelpfeife) sind ein Beispiel fur Schwingungen mit einem freien Ende; bei gleicher
Lange hat die Grundschwingung jedoch die halbe Frequenz wie die Schwingung
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des beidseitig offenen Rohres; die Oberschwingungen stehen zueinander in den
Verhaltnissen Ay : Ap : Az :...=1:3:5:... Dargestellt sind wieder zwei Phasen
der Grundschwingung und zwei Oberschwingungen; die zugehorigen Eigenfre-
quenzen verhalten sich zueinander wie 1:3:9; durch Spiegelung des “Kugelban-
des” am rechten Ende erhalt man jeweils ein Schwingungsbild der schwingenden
Saite doppelter Lange.

NN AN AR (T AT —

-
......
. .
........

Das folgende Pascal-Programm deutet an, wie man die Schwingungen der
Kugeln mit dem Computer berechnen und auf den Bildschirm bringen kann:

program SchwingendeKugeln;

const N=36;
type Stellung = array[0..N] of real,;
var a,b,c: Stellung;
i: integer;
procedure input;
begin
(* Eingabe von a := (ug,...,un0) und b := (ug1,...,un1) *)
end;

procedure zeichne;
begin

(* 16scht die durch a und zeichnet die durch b gegebene Stellung *)
end;

function stop : boolean;
begin

(* testet, ob die Ausfiihrung des Programms beendet werden soll *)
end;
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begin
¢[0] = D:e[N] e=103
input;
repeat
zeichne;
for i := 1 to N-1 do c[i] := b[i — 1] + b[i + 1] — a[i];
a=hb=¢
until stop
end.

5. Dampfung

Will man bei der Schwingung einer Saite die Dampfung bericksichtigen, so
kann man das folgendermassen tun: wir denken uns die Saite (wie bereits oben
beschrieben) zerschnitten in N + 1 Teile. Zu der Kraft, welche das (n — 1)-te
und das (n + 1)-te Saitenelement auf das n-te Saitenelement ausiiben, addieren
wir die durch Reibung verursachte Kraft —36(u, p — u, r—1)/7 (dabei ist 3 eine
Reibungskonstante, § die Lange des n-ten Saitenelementes und (un g — un £—1)/7
seine Geschwindigkeit zur Zeit ¢;). Anstelle von (%) erhalt man dann die Glei-
chung

Upn—1k — 2Un k + Unt1k Up k — Un k=1 _  Up k=1 — 2Un k + Un k+1
62 =0 ) — e

und durch Grenzubergang

O*u(z,t)  0%u(x,t) du(z,t)
() oz e TP a
und damit das System

O%u(z,t)  9%u(x,t) Ju(z,t)
(xx) o T e TP g

u(0,t) = u(L,t) = 0.

Dieses System lasst sich nicht mehr einfach durch die ((**) entsprechenden)
diskreten Gleichungen

Un k+1 = Un—1k + Unt1,k — (1 — B)un k-1 — Btin k

losen: dem Leser sei empfohlen, mit diesen Gleichungen zu experimentieren
(dabei ist in jedem Fall # klein zu wahlen). Andererseits ist es nicht schwer,
Losungen von (X x) anzugeben (wir nehmen an, dass ¢ = ¢ = 1, L = 7 und
setzen £ = 2v):
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Fur 0 <+ < 1ist

u(z,t) = e~ 7 Z [aj cos(v/j2 =% -t) + bjsin(/j? — 7 t)] sin jr
J
eine Losung von (X X).
Aus den Fourierreihen von ug(z) := u(z,0) und ui(z) := %%(z,0) kann man
die Koeffizienten a;, b; bestimmen. So ist z. B.

e~ !
u(e,t) = ——=sin(\/1 — % -t)sinz

die eindeutig bestimmte Losung mit u(z,0) = 0 und £%(z,0) = sinz.

6. Exaktheit des Algorithmus

Eine Funktion u(z,t) ist genau dann eine Losung der Wellengleichung , wenn
fur beliebige x und kleine h gilt: u(z—h,t)+u(x+h,t) = u(z,t —h)+u(z, t+h).
(Der Beweis der einen Richtung ergibt sich leicht aus (L), fiir den Beweis der
Umkehrung nutzt man aus, dass sich u in der folgenden Form schreiben lasst:
u(z,t) = f(z+t)—g(x—t)). Deshalb ist der durch (x) gegebene Algorithmus zur
Berechnung diskreter Werte von Losungen der eindimensionalen Wellengleichung
exakt. Da “kleine” Schwingungen von Saiten Losungen der Wellengleichung sind,
werden durch den Algorithmus (*x) “kleine” Schwingungen exakt simuliert.
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