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Bemerkungen zur schwingenden Saite
und ihrer Simulation

von Burchard Kaup,
Mathematisches Institut der Universität,

CH-1700 Fribourg

Dieser Text enthält Auszüge und Ergänzungen zum Vortrag "Die schwingende
Saite aus musikalischer, physikalischer und mathematischer Sicht" und soll in
möglichst einfacher Form den Zugang zu einigen Resultaten (vgl. z. B. Cannon
und Helmholtz) erleichtern und den Leser zu eigenen Experimenten anregen:
es wird gezeigt, wie man durch die Wahl geeigneter Anfangsbedingungen
verschiedene Schwingungen der Schwingenden Saite auf einem Computer simulieren
kann und wie man durch Berechnen der zugehörigen Fourierzerlegung Informationen

über die Klangfarbe des entsprechenden Tons erhalten kann.

1. Schwingende Kugeln

Gegeben sei in der x-y-Ebene ein Gummiband der Länge L, auf dem N + 1

Kugeln der Masse fi angebracht sind. Der Abstand der Kugeln sei stets 5 :=
L/N, die Kugeln befinden sich in den Punkten (xn,0) mit xn := nb für n
0,1,..., iV. Wir nehmen an, dass das Gummiband kleine Schwingungen ausführt
(dabei vernachlässigen wir die Erdanziehung und Reibung); die zwei Kugeln an
den Enden des Gummibandes seien fixiert. Ferner nehmen wir an, dass bei den

Schwingungen die ^-Koordinaten aller Kugeln konstant bleiben. Es sei r eine
Zeiteinheit, über die wir später noch verfügen werden. Mit t\. bezeichnen wir
den Zeitpunkt tk := kr. Es sei u(x„,t) die Auslenkung der n-ten Kugel zur Zeit
t und

w„,fc := u(xn,tk) — Auslenkung der n—ten Kugel zur Zeit t^.

Wir machen folgende Annahme: die Kraft, welche eine Kugel durch die Spannung
des Gummibandes auf ihre Nachbarkugel ausübt, ist von der Form ±<rtana
wobei a der Winkel zwischen der Verbindungslinie der beiden Kugeln und der x-
Achse ist und a eine Konstante (welche die Spannung des Gummibandes enthält);
eine Begründung für diese Annahme findet man im unten angegebenen Buch von
FLETCHER, Seite 123. Zur Zeit tk üben die (n - l)-te und die (n + l)-te Kugel
auf die n-te Kugel also die Kraft

,r r. «n-iJb — 2u„ t + un+1 tKraft er ¦
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Allgemein gilt für die zweite Ableitung einer Funktion /:

ii Hm /(a-ft)-2/(a) + /(a + ft)
' h^O h2

(das ergibt sich leicht daraus, dass für kleine h gilt: f"(a) « [f'(a + h/2) — f'(a —

h/2)]/h, f'(a + h/2) « [f(a + h) - f(a)]/h, f'(a - h/2) « [/(«) - /(« - /,)]/*,).
Insbesondere ergibt sich, dass die mittlere Beschleunigung der n-ten Kugel zur
Zeit tk gegeben wird durch

u{xn,tk -r) - 2u(xn,tk) + u(xn,tk + t) u„,jb_i - 2un,k + u„,jfe+i

Nach NEWTON (Kraft Masse x Beschleunigung) gilt also angenähert

U„-l,ib - 2unk + Un+ik U„k-1 - 2unk + Unk+1
a

6
ß Z '

Setzen wir noch q := p./6, dann ergibt sich daraus

«n_i,i — 2u„i+«n+n «„,1-1 - 2un,fc + u„.i + i(*) ff p e -2 ¦

Wählen wir als Zeiteinheit r := h\Jq/a, dann erhalten wir daraus

«n-t,i + Un+i./fc «n.*-i + «Ti.n-i (0 < n < N und fc > 0).

Da die zwei Kugeln am Ende des Gummibandes sich nicht bewegen, erhalten wir
also für kleine Schwingungen die Gleichungen

u„k+i=un-ik + un+ik-u„k-i (0 < n < N und k > 0)

v-o.k «N,* 0 (k > 0).

Aus diesen Gleichungen kann man in eindeutiger Weise alle unk berechnen,
wenn die Werte von unk gegeben sind für 0 < n < N und k 0,k 1. Man
beachte, dass diese sog. Anfangswerte ganz beliebig vorgegeben werden dürfen.

Im vierten Abschnitt findet man Beispiele, wie man durch geeignete Wahl der

Anfangsbedingungen verschiedene Schwingungen auf einem Computer simulieren
kann.

2. Übergang zur schwingenden Saite

Wir betrachten jetzt eine Saite der Länge L, die in den Punkten x 0 und
x L eingespannt ist und kleine Schwingungen ausführt. Es sei a die Spannung
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und q die Dichte der Saite, es sei u(x,t) die Auslenkung der Saite an der Stelle
x zur Zeit t.

Wir denken uns die Saite in TV + 1 Teile zerschnitten: das erste und das letzte
Teil haben die Länge ^, alle anderen Teile haben die Länge ^ =: 6 und die
Masse p q6. Wir ersetzen jetzt jedes der Teile durch eine Kugel der Masse p
und denken uns die Kugeln durch ein Gummiband der Spannung a verbunden:
damit erhalten wir für grosses TV eine gute Approximation der gegebenen Saite.
Da die Bewegungen des Gummibandes mit den Kugeln durch die Gleichung (*)
beschrieben wird, erhält man die Bewegungsgleichung der schwingenden Saite
aus (*) durch den Grenzübergang N —> oo. Wegen (L) gilt

u(x — 8,t) — 2u(x,t) + u(x + 6, t) 6^0 d~u

P ÖM(XJ)

u(x,t — t) — 2u(x,t) + u(x,t + r) r—0 d2u

z ' w(x>i]-
Aus (*) ergibt sich also (da 5 L/N —» 0 und r —> 0 wenn N —* co)

x d2u(x,t) d2u(x,t)
(+) a-dM- e^I2—
Da die Saite an den Enden x 0 und x L eingespannt ist. werden kleine
Schwingungen der Saite also beschrieben durch die Gleichungen

d2u{x,t) _ d2u(x,t)
(++) a dx2 ~8 dt2

u(0,t) u(L,t) 0.

Man rechnet leicht nach, dass

7T 7T

Cj(x,t) := sm(j-x) cos(jujt) und Sj(x,t) := sin(j — x) sin(jujt)L L

mit u) := x\lW Lösungen von (++) sind. Folglich sind auch alle Linearkombinationen

(F) u(x,t) := ^(ajCj+bjSj)

Lösungen von (++) für beliebige reelle Koeffizienten a;. fc; und beliebige natürliche

Zahlen K. Die Koeffizienten üj bj nennt man die Fourierkoeffizienten von
u. Cj und Sj stellen Schwingungen der Frequenzen

ÀJ- 2LV e
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dar; diese Frequenzen werden Eigenfrequenzen der schwingenden Saite genannt.
Ihre gegenseitigen Verhältnisse sind

Ai : A2 '¦ A3 :...= 1 '. 2 '. o '.

Man beachte, dass durch Vergrössern der Spannung a die Eigenfrequenzen grösser
werden (höhere Töne) und dass durch Vergrössern der Dichte g die Eigenfrequenzen

kleiner werden (tiefere Töne). Diese Tatsache nutzt man bei
Saiteninstrumenten so aus, dass man durch Verändern der Saitenspannung die Tonhöhe
variiert (man nennt diesen Vorgang "stimmen" und dass man die Saiten für die
tiefen Töne aus dickerem Material macht, damit sie etwa die gleiche Spannung
haben wie die Saiten für die höheren Töne.

Von grösster Bedeutung ist nun, dass man jede Lösung von (++) beliebig
genau durch Funktionen der Form (F) approximieren kann. Es sei u(x,t)
Z~2j(ajCj + bjSj) eine Lösung von (++)• Dann erhält man für die Funktionen

un(x) := u(x,0) (Auslenkung zur Zeit t 0) und u\(x) := t?t{x,0) (Geschwindigkeit

zur Zeit t 0) die Darstellungen

M1) ^Z;sin(j—x) ,ui(x) y^Juibjsm(j-x).
} }

Da die Funktionen un und u\ an den Stellen x 0 und x L verschwinden, gibt
es Darstellungen

u0(x) ]Za;sin(j-.z) ,ui(x) ^ßj sin(j-x)

(man setzt uq und «1 auf ganz IR fort zu ungeraden Funktionen der Periode 2L
und nimmt deren Fourierreihen, die reine Sinus-Reihen sind). Dann ist

u Y,(<*jCj + %-Sj),
3

J

aus den Fourierkoeffizienten üj und ßj von un bzw. u\ erhält man also die Fouri-
erkoeffizenten von u. (Auf Fragen der Konvergenz für unendliche Fourierreihen
soll hier nicht eingegangen werden).

Damit haben wir gesehen: kleine Schwingung der Schwingenden Saite sind
eine (eventuell unendliche) Überlagerung von Grundschwingungen der Frequenzen

Ai,A2,A3,
Man kann die Fourierkoeffizienten a,, bj einer Lösung u(x,t) £\ a.jCj +bjSj

von (+ + auch aus v(t) := |j-(0,it) berechnen (die Funktion v beschreibt den
Winkel zwischen der i-Achse und der Tangente an die schwingende Saite an
ihrem linken Ende): ist

v(t) M. Aj cos(jiüt) -f Bj sm(juit);
3
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die Fourierentwicklung von v, dann erhält man durch Koeffizientenvergleich mit

v(t) -]Z(jajcos(j^) +j^sin^t))
3

die Gleichungen

_
LA3 i _

LB3
1 xj 3

IXj
Insbesondere folgt, dass u schon eindeutig durch v bestimmt ist.

3. Freie Enden

Wenn das rechte Ende des Gummibandes nicht fixiert ist (wir nehmen an, dass

trotzdem eine Spannung vorhanden ist; das kann etwa dadurch erreicht werden,
dass die Kugeln sich reibungslos in vorgegebenen vertikalen Führungen bewegen),
dann wirkt auf die TV-te Kugel nur die Kraft der (N — l)-ten Kugel und man
erhält anstelle von (**) die Gleichungen

«n.Jfc+l «n-l.ifc + «n+lifc ~ «n./fc-l (0 < Tl < N Und k > 0)

u0,t =0 (k > 0)

«iV./fc+l WjV-l.ifc + «iV.fc - «A7,/b-l (k > 0).

Anstelle von (++) erhält man die Gleichungen

d2u(x,t)
_

d2u(x,t)
° dx2 ~ e~dt2

u(0,t) 0

Analoge Gleichungen gelten, wenn auch das linke Ende frei ist. In dem Fall
muss man jedoch darauf achten, dass einem die Saite nicht "wegschwebt"; das

jV L
ist genau dann der Fall, wenn Yl (uk,i — uk.o) 0 bzw. f §f-(x, 0) dx 0.

J=() o

4. Beispiele

Es folgen einige Beispiele (dabei ist stets TV 36 und «o,fc uN,k 0; damit
man auf einem Bildschirm interessante Figuren erhält, sind in der Regel alle

u„ k mit einer geeigneten positiven Konstanten zu multiplizieren). Die Bilder
der Beispiele 1 bis 3 sind jeweils so zu interpretieren: das linke Bild zeigt eine
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konkrete Stellung der Kugeln und den Weg, den jede Kugel im Laufe der Zeit
durchläuft. Bei einer schnellen Schwingung nimmt das Auge also nur den Ura-
riss des schraffierten Bereichs wahr. Das rechte Bild zeigt die Auslenkung einer

speziellen Kugel, aufgetragen gegen die Zeit (in allen folgenden Beispielen ist die

gleiche Zeitskala gewählt worden; zwischen zwei senkrechten Strichen ist jeweils
eine Periode der Grundschwingung). Das dritte Bild enthält die Fourierkoeffizienten

(unten beginnend mit a\ bzw. b\ ; nach links ist jeweils jaj, nach rechts

jbj aufgetragen; eine ausgefüllte Linie bedeutet einen positiven Koeffizienten,
eine hohle Linie einen negativen Koeffizienten; bis auf einen konstanten Faktor
sind also nicht die Fourierkoeffizienten von u, sondern diejenigen von v, siehe

oben, aufgetragen).

BEISPIEL 1. Setze u„i0 := 0 und unl := sin(n/l^) für 0 < n < N (dabei sei

A > 0 eine kleine natürliche Zahl). Für A Ì erhält man die Grundschwingung:

»

COS SIN

Durch eine Überlagerung von Grundschwingung und einigen Oberschwingungen
erhält man zum Beispiel:

BEISPIEL 2. Setze u„,0 := 0 und unA := N
man die Schwingungen der gestrichenen Saite:

n für 0 < n < jV. Dann erhält
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Man muss sich die Bewegung so vorstellen, dass die Spitze des Dreiecks sich
im Gegenuhrzeigersinn entlang dem Rande des schraffierten Bereichs bewegt.
Ändert man die Anfangsbedingungen der gestrichenen Saite etwas ab in der Art,
dass der Knick abgerundet wird, so ergeben sich folgende Bilder:

Offensichtlich hat der entsprechende Ton eine weichere Klangfarbe, da die Obertöne

nur weniger intensiv mitschwingen. Je näher beim Steg eine Saite angestrichen

wird, desto ausgeprägter ist der Knick und desto obertonreicher folglich der
dabei entstehende Ton.

BEISPIEL 3. Setze un,o '¦= n für 0 < n < 3, wn,o := 7 — n für 4 < n < 7,

ii„.o := 0 für 7 < n < N und un \ := Wn-i.o für alle n. Dann erhält man eine
wandernde Welle:
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v~
JL'V

J\_
'T

BEISPIEL 4. Die Schwingungen der Luft in einem beidseits offenen Rohr
(z. B. Orgelpfeife) sind ein Beispiel für Schwingungen mit zwei freien Enden;
allerdings schwingen die Luftmoleküle nicht transversal, sondern longitudinal.
Die longitudinale Auslenkung der Luft wird wieder durch die Wellengleichung
beschrieben (vgl. Gerthsen, Abschnitt 4.2.2). Das Verhältnis der Eigenfrequenzen

wird durch folgende Gleichungen gegeben: Ai_ : A2 : A3 : 1 :

2:3:... Die folgenden Bilder sind so zu interpretieren: im Ruhezustand
füllen die senkrechten Linien das Rohr gleichmässig aus und die Kugeln liegen
auf der gestrichelten Geraden. Im Schwingungszustand entspricht der horizontalen

Auslenkung einer Linie im oberen Bild die vertikale Auslenkung der Kugel
im jeweils unteren Bild (einer Auslenkung nach links im oberen Bild entspricht
eine Auslenkung nach unten im unteren Bild). Dargestellt sind zwei Phasen der

Grundschwingung und die zwei folgenden Oktaven.

Ill HU

IIIIMIIIIIIII UNI I IM

Schwingungen der Luft in einem einseitig offenen Rohr (z. B. gedackte
Orgelpfeife) sind ein Beispiel für Schwingungen mit einem freien Ende; bei gleicher
Länge hat die Grundschwingung jedoch die halbe Frequenz wie die Schwingung

26



des beidseitig offenen Rohres; die Oberschwingungen stehen zueinander in den
Verhältnissen Ai : A2 : A3 : 1 : 3 : 5 : Dargestellt sind wieder zwei Phasen
der Grundschwingung und zwei Oberschwingungen; die zugehörigen Eigenfrequenzen

verhalten sich zueinander wie 1:3:9; durch Spiegelung des "Kugelbandes"

am rechten Ende erhält man jeweils ein Schwingungsbild der schwingenden
Saite doppelter Länge.

Ill I I I I IIÏÏTT

i i i illumini umilili

Das folgende Pascal-Programm deutet an, wie man die Schwingungen der
Kugeln mit dem Computer berechnen und auf den Bildschirm bringen kann:

program SchwingendeKugeln;

const N=36;
type Stellung array[0..N] of real;
vara,6,c: Stellung;

i: integer;
procedure input;
begin

(* Eingabe von a := (u00, • ¦ • «at,o) und b :— (uo.i, ¦ ¦ ¦ «tv.i) *)
end;

procedure zeichne;
begin

(* löscht die durch a und zeichnet die durch b gegebene Stellung *)
end;

function stop : boolean;
begin

(* testet, ob die Ausführung des Programms beendet werden soll *)
end;
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begin
c[0] := 0; c[N] := 0;

input;
repeat

zeichne;
for i : 1 to N-l do c[i] := b[i - 1] 4- b[i 4 1] - a[i
a := 6; è := c

until stop
end.

5. Dämpfung

Will man bei der Schwingung einer Saite die Dämpfung berücksichtigen, so
kann man das folgendermassen tun: wir denken uns die Saite (wie bereits oben
beschrieben) zerschnitten in N 4 1 Teile. Zu der Kraft, welche das (n — l)-te
und das (n 4 l)-te Saitenelement auf das n-te Saitenelement ausüben, addieren
wir die durch Reibung verursachte Kraft —ß6(unk — unk_i)/r (dabei ist ß eine

Reibungskonstante, 8 die Länge des n-ten Saitenelementes und (unk — unk-i)/r
seine Geschwindigkeit zur Zeit tk)- Anstelle von (*) erhält man dann die
Gleichung

Un-l.k — 2unk + Un + xjc 0 Unic — Unk-1 "n,fc-l — 2un,fc 4-Un.fc+l
a p ß—;— e 72

und durch Grenzübergang

„ d2u(x,t) d2u(x,t) „du(x,i)

und damit das System

d2u(x,t) d2u(x,t) du(x,t)
a—^3— e—-^,— + ß-(xx) dx2 * dt2

' ' dt
u(0,t) u(L,t) 0.

Dieses System lässt sich nicht mehr einfach durch die ((**) entsprechenden)
diskreten Gleichungen

»ni+l "n-l,* + «77 + 1.77 - (1 - ß)un,k-l - ßdn.k

lösen: dem Leser sei empfohlen, mit diesen Gleichungen zu experimentieren
(dabei ist in jedem Fall ß klein zu wählen). Andererseits ist es nicht schwer.

Lösungen von (xx) anzugeben (wir nehmen an, dass g a 1, L ir und
setzen ß 27):
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Für 0 < 7 < 1 ist

u(x,t) e '* Z, \aj cos(vZ — 72 ' 0 + (>j sin(vi2 — 72 '0 sin jx

eine Lösung von (xx).
Aus den Fourierreihen von uo(x) := u(x, 0) und «i(x) := 4t-(x,0) kann man

die Koeffizienten a})bj bestimmen. So ist z. B.

-7'
u(x,t) —j= sin(vl — 72 ' t)sin x

\J\-12
die eindeutig bestimmte Lösung mit u(x,0) 0 und jj-(x,0) sin x

6. Exaktheit des Algorithmus

Eine Funktion u(x,t) ist genau dann eine Lösung der Wellengleichung wenn
für beliebige x und kleine h gilt: u(x — h,t) + u(x + h,t) — u(x,t — h) + u(x,t + h).
(Der Beweis der einen Richtung ergibt sich leicht aus (L), für den Beweis der

Umkehrung nutzt man aus, dass sich u in der folgenden Form schreiben lässt:

u(x,t) f(x + t) — g(x — t)). Deshalb ist der durch (*) gegebene Algorithmus zur
Berechnung diskreter Werte von Lösungen der eindimensionalen Wellengleichung
exakt. Da "kleine" Schwingungen von Saiten Lösungen der Wellengleichung sind,
werden durch den Algorithmus (**) "kleine" Schwingungen exakt simuliert.
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