Zeitschrift: Bulletin de la Société Fribourgeoise des Sciences Naturelles = Bulletin

der Naturforschenden Gesellschaft Freiburg

Herausgeber: Société Fribourgeoise des Sciences Naturelles

Band: 70 (1981)

Heft: 1-2

Artikel: Contribution à l'étude de l'entomofaune de la strate arbustive à

l'embouchure de la Gérine (Fribourg, Suisse)

Autor: Studemann, Denise

Kapitel: 2: Description du biotope

DOI: https://doi.org/10.5169/seals-308594

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

		Page
	5.14. Mecoptera	117
	5.15. Trichoptera	119
	5.16. Lepidoptera	121
	5.17. Diptera	123
6.	Galles d'Hymenoptera	124
	6.1. Généralités sur les galles	124
	6.2. Galles de Tenthredinidae sur Salix	125
	6.3. Galles de Cynipidae sur Quercus	127
7.	Conclusion	131
	7.1. Comparaison entre espèces caractéristiques et	
	espèces dominantes	131
	7.2. Discussion générale	131
8.	Remerciements	134
9.	Résumé — Zusammenfassung — Summary	134
10.	Bibliographie	135

1. Introduction

La plupart des travaux écologiques concernant une étude entomologique se limitent à un groupe d'insectes, comme GLATTHAAR (1978) aux Simuliidae, ou à une plante hôte, comme MAJZLAN (1979) à Alnus glutinosa et SCHEDL (1975) à Alnus viridis. Je me suis limitée, comme l'ont fait DETHIER et al. (1978), MATTHEY (1971) et ZURWERRA (1978) pour les insectes aquatiques, à un habitat: la strate arbustive d'un biotope. Les 20 352 insectes récoltés du 1^{er} mai au 4 octobre 1979 proviennent tous des feuillages d'arbres ou d'arbustes bordant une rivière, et ils se répartissent dans 17 ordres. Les cécidies produites sur les feuilles sont également traitées. Pour une grande partie des espèces capturées, des indications quant à leur biologie, provenant de la littérature, aident à comprendre leur présence à tel moment, à tel endroit, sur tel hôte. La comparaison de l'entomofaune des diverses essences végétales et des huit sous-biotopes à situation quelque peu différente permet d'évaluer les facteurs importants pour l'apparition qualitative et quantitative des insectes.

2. Description du biotope

2.1. Situation

Après un parcours d'une vingtaine de kilomètres en pays fribourgeois, la Gérine se jette dans la Sarine, à 570 m d'altitude, environ 2 km au sud de Fribourg, dans la commune de Marly (coordonnées: 576.175/181.000). La figure 1 illustre cette situation. La région de l'embouchure de la Gérine est appelée «Au Port», parce qu'autrefois les bateaux y recevaient leur chargement de papier fabriqué à Marly pour le conduire à la Mer du Nord.

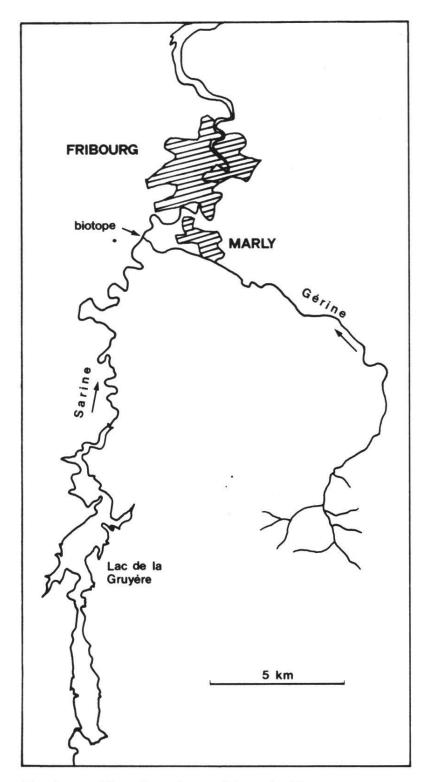


Fig. 1: Situation géographique du biotope.

2.2. Division du biotope

Le biotope étudié (photos 1 et 2) a été divisé en huit régions, que j'appellerai par la suite places ou sous-biotopes, désignées par les lettres A, B, ...H (fig. 2).

La situation de chaque arbre et arbuste frappé est indiquée sur la figure 2. Pour les grands arbres, seules les branches jusqu'à 3 m de hauteur ont été examinées.

En règle générale, les places se ressemblent par leur composition en arbres et arbustes et

Photo 1: Vue générale du biotope (places C à G).

par leur proximité d'un cours d'eau. Toutefois, les différences suivantes ont leur importance quant à l'entomofaune:

- Les places A et B sont au bord de la Sarine, à courant plus lent que la Gérine.
- Les arbustes surplombent l'eau dans les places A à E, et G, tandis que H est situé à une vingtaine de mètres du courant.
- La moyenne de l'humidité relative de l'air lors des ramassages s'est avérée la plus élevée en A. C'est aussi la place la moins ensoleillée. Elle est contiguë à la forêt.
- Les endroits F et G sont bordés d'un côté par un pré, tandis que les places B à E ont une surface vers un champ de maïs.
- Les crues de la Gérine ont amené en C, D, E de nombreuses branches et autres déchets.
 Les arbustes sains de ces places sont entremêlés de branchages cassés, secs, souvent couverts d'algues ou de champignons. La photo 3 illustre les places C et D du côté de la Gérine.
- La place F est protégée sur sa face est par un talus d'environ 5 m de hauteur.
 Il faut ajouter que la Gérine change souvent son cours, suivant les intempéries.

Photo 2: Vue générale du biotope (places A à G).

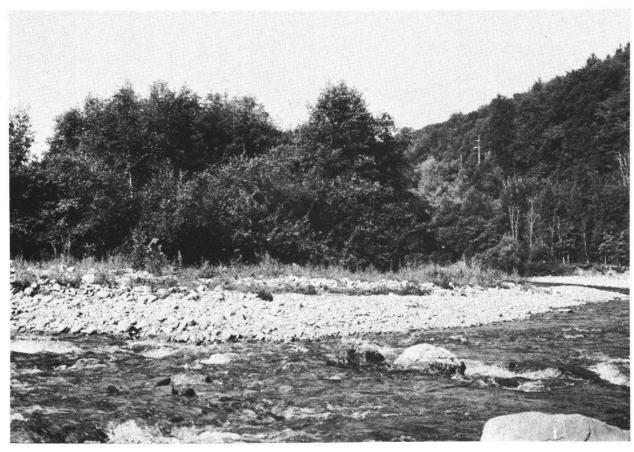


Photo 3: Places C et D vues de la Gérine.

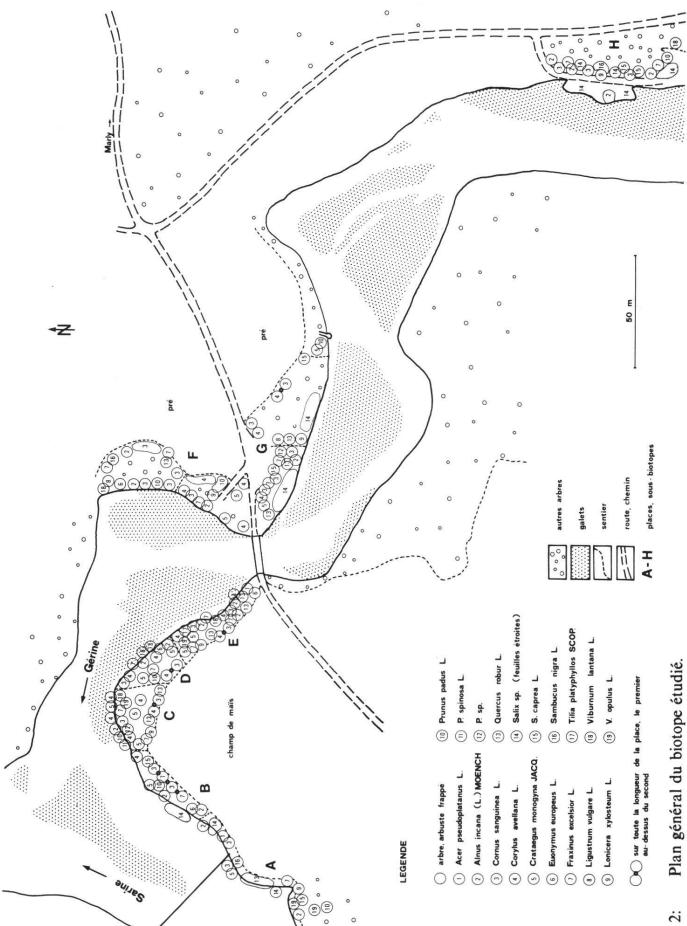


Fig. 2:

2.3. Répartition des arbres et arbustes

La végétation a été déterminée d'après BINZ et THOMMEN (1966). Le tableau 1 indique la surface de feuilles prospectées pour chaque essence dans chaque place. Les calculs sont expliqués dans le chapitre 3.5.

Essence	Surface de feuillages prospectée par semaine (m ²)								
_	А	В	С	D	Ε	F	G	Н	Total
Acer pseudoplatanus L.	-	1,0	-	-	0,6	-	-	-	1,6
Alnus incana (L.) MOENCH	1,8	4,9	1,2	4,3	3,1	4,3	1,8	5,5	26,9
Cornus sanguinea L.	1,3	11,3	13,2	9,4	9,4	11,3	4,7	8,5	69,1
Corylus avellana L.	-	8,1	10,4	12,7	25,5	19,7	11,6	-	88,0
Crataegus monogyna JACQ.	1,6	1,6	4,3	3,2	3,2	4,8	2,7	-	21,4
Euonymus europeus L.	-	0,7	-	0,7	0,7	0,7	-	-	2,8
Fraxinus excelsior L.	1,9	7,5	1,9	5,6	7,5	5,6	4,7	4,7	39,4
Ligustrum vulgare L.	-	=	_	-	-	0,7	0,7		1,4
Lonicera xylosteum L.	0,8	-	0,8	-	0,8	0,8	0,8	0,8	4,8
Prunus padus L.	0,5	1,4	0,9	0,5	-	2,8	1,9	0,9	8,9
Prunus spinosa L.	-	-	0,5	1944	-	-0	-	-	0,5
Prunus sp.	-	-	0,5	-	-	-8	0,5	-	1,0
Quercus robur L.	15,3	-	5,5	15,3	13,9	11,1	11,1	-	72,2
Salix sp. (feuilles étroites)	2,3	3,8	-	-	-		9,9	9,1	25,1
Salix caprea L.	3,0	3,0	-	-	-	-	2,2	2,2	10,4
Sambucus nigra L.	1,7	-	-	-	-	0,7	-	0,7	3,1
Tilia platphyllos SCOP.	-	-	-	-	2,5		-	-	2,5
Viburnum lantana L.	n-x	-	1,4	0,9	0,9	0,9	-	0,9	5,0
Viburnum opulus L.	0,5	-	0,5	(-)	0,5	-	-	-	1,5
Surface totale	30,7	43,3	41,1	52,6	68,6	63,4	52,6	33,3	385,6
Nombre d'espèces	11	10	12	9	12	12	12	8	19

Tab. 1: Surface de feuillages prospectée hebdomadairement pour chaque essence dans chaque place.

Chaque semaine, près de 400 m² de feuillages ont été secoués. Les feuillages à plus grande surface examinée sont ceux des noisetiers, des chênes et des cornouillers. Ces essences influencent nettement la surface totale battue pour chaque place. Les places A et H n'ayant pas de noisetiers, A ne possédant qu'un petit cornouiller et H pas de chêne, leur total en est diminué de moitié par rapport aux places les plus fournies, E et F. Les essences présentes dans une ou deux places seulement ne jouent qu'un rôle peu important pour la surface totale.

Les essences les plus riches en entomofaune sont présentes dans la majorité des places: Alnus incana, Cornus sanguinea, Corylus avellana, Crataegus monogyna, Fraxinus excelsior et Quercus robur. Parmi les autres essences, seuls les saules ont une importance quantitative et qualitative pour les insectes récoltés. Ils sont présents dans la majorité des places. Dans chacune de ces places, on trouve des saules à feuilles étroites (divers Salix) et des saules à feuilles larges (Salix caprea).

Le comportement social des arbres du biotope a été analysé d'après ELLENBERG (1974). Presque tous ces arbres et arbustes font partie de la classe phytosociologique Querco-

Fagetae. L'indice de température est en moyenne 5 (indicateur de chaleur moyenne). Les indices d'humidité varient entre 4 et 8 (indicateur de fraîcheur resp. indicateur de forte humidité). Mais une bonne partie de ces essences sont indifférentes quant à l'humidité. Alnus incana et Prunus padus sont indicateurs d'inondation.

3. Méthodes de travail

3.1. Nombre de récoltes, facteurs abiotiques

Du 1^{er} mai 1979 au 4 octobre 1979, tous les sous-biotopes ont été prospectés une fois par semaine, ce qui fait 22 fois en tout (une seule récolte pour les deux dernières semaines). Dans les tableaux, toutes les dates de capture sans mention de l'année se rapportent à cette année 1979.

A côté des insectes capturés, chaque relevé comporte des indications sur la température, l'humidité relative de l'air, l'ensoleillement, le vent, l'heure de la récolte.

Habituellement, les récoltes ont eu lieu entre 8 h et 18 h, plus tard le matin dès le mois d'août à cause de la rosée déposée sur les feuilles. Les prospections duraient 2 à 3 heures par place pendant les grandes récoltes (juin, juillet). Pour chaque place, l'heure variait d'une semaine à l'autre.

Les températures de l'air ont atteint leur maximum (26°C) de la mi-juillet à la mi-août.

La première semaine de juillet, les récoltes ont eu lieu en fin d'après-midi, jusqu'à 20 h. La température était déjà descendue à 13°C (minimum pour toute la période des relevés), et les captures ont été nettement réduites par rapport aux autres semaines, pour la majorité des insectes.

3.2. Capture et conservation des insectes

Les feuillages des arbustes et des arbres jusqu'à 3 m de hauteur étaient secoués avec insistance dans un grand sac de toile (diamètre 54 cm, profondeur 70 cm). Etourdis, les insectes se laissaient prendre du sac dans un bocal contenant un fond d'ouate et de papier filtre imbibés d'ester éthylique d'acide acétique (C₄H₈O₂). Les larves et les insectes fragiles (Aphidina, Ephemeroptera, Typhlocybidae) étaient introduits directement dans des flacons remplis d'alcool à 80 %. Ainsi, chaque bocal contenait les prises d'une seule essence d'arbre d'une seule place. Chaque exemplaire d'insecte était ensuite étiqueté, puis préparé pour la conservation à sec (piqué sur épingle ou collé sur minutie) ou mis en alcool à 80 %, suivant la grandeur et le nombre des captures. Toutes les récoltes sont conservées.

3.3. Analyses de présence et de dominance

Chaque espèce déterminée a été soumise à une analyse de présence et à une analyse de dominance.

L'analyse de présence se rapporte à tout le biotope, sans tenir compte du nombre d'individus. Elle indique dans combien de sous-biotopes une espèce a été trouvée (LAMPEL, 1973). J'ai exprimé les résultats comme l'indique le tableau 2.

L'analyse de dominance est effectuée pour chaque espèce déterminée dans chacun des huit sous-biotopes. Le nombre total d'insectes (y compris les non déterminés) dans une