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Zellulare Automaten

von HEINRICH KLEISLI,
Mathematisches Institut der Universitat Freiburg

Bei der Einfiihrung in ein klassisches Gebiet der Mathematik pflegt man oft
mit den Worten «Schon die alten Griechen wuBten ...» zu beginnen. Fiir viele
neuere Gebiete der Mathematik kann man eine dhnliche Formulierung finden,
und die lautet: «Schon John von Neumann sagte ...».

Wer war John von Neumann? Vor zwel Jahrzehnten hdtte man sich wohl so
geduBert, dafl es sich hier um den bedeutendsten unter den zeitgendssischen
Mathematikern handelt, die es gewagt haben, sich von den klassischen Gebieten
der Mathematik zu losen, um solides und anwendungsreiches « Neuland» zu ent-
decken. Inzwischen ist John von Neumann leider gestorben. Aber seine Beitriage
zu mathematischen Theorien wie der Spieltheorie, der Kybernetik und der
Theorie der Automaten sind von derart wesentlicher Bedeutung, dal3 er von
vielen Fachleuten als der Begriinder von wenigstens zwei der erwdhnten Theo-
rien betrachtet wird.

Im Zusammenhang mit seinen Untersuchungen iiber die Konstruktion und
Theorie von Computern hat John von Neumann sich folgendes Problem gestellt:
Man beweise die Moglichkeit, einen sich selbst reproduzierenden Automaten
herzustellen. Ein derartiger Automat wiirde, falls er die richtigen Instruktionen
erhilt, ein genaues Duplikat von sich selbst herstellen. Jeder der beiden Auto-
maten wiirde dann wiederum einen neuen herstellen. Aus den vier wiirden acht
werden, und so weiter.

Von Neumann gab einen ersten Beweis, indem er ein Modell eines kinema-
tischen Automaten entwickelte, der tatsdchlich in der Lage war, sich selbst zu
reproduzieren. Ein kinematischer Automat ist nichts anderes als ein digitaler
Computer, der zusdtzlich zu den iiblichen Computerelementen noch folgende
Arten von Bestandteilen besitzt: kinematische, d. h. bewegungsfihige Elemente,
wie z. B. eine kiinstliche Hand; Schneide-, L.6t- und Schweillelemente: feste
Elemente wie z. B, Trdager und Stdbe; eine Art Sinnesorgan, das fahig ist, die
erwdahnten Arten von Elementen zu erkennen und die erlangte Information dem
Computer weiterzuleiten. Man muf} sich diesen Computer in einem geeigneten
Umweltmilieu vorstellen, das bildhaft wie folgt beschrieben werden kann: Man
denke sich eine unbegrenzt ausgebreitete Fliissigkeitsflache, auf der eine un-
beschrinkte Anzahl der erwahnten Bestandteile verteilt ist, die sich nach der
Art der Molekiile in einem Gas bewegen. Das Ganze soll so angelegt sein, dal
der kinematische Automat, der selbst auf diesem «See» schwimmt, einen unbe-
grenzten Nachschub von Bestandteilen zur Verfiigung hat.

Auf eine genauere und vollstandigere Diskussion dieser Situation und auf die
Beschreibung eines Modells eines sich selbst reproduzierenden Automaten soll
hier nicht eingegangen werden. Einerseits wire dies ein im Rahmen dieses Vor-
trages undurchfithrbares Unternehmen. Andererseits hat auch John von Neu-
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mann einen einfacheren zweiten Beweis gegeben. Dieser stiitzt sich auf eine Idee
seines Kollegen Stanislaw Ulam, welche es ermdéglicht, sich selbst reproduzie-
rende Automaten auf elegantere, allerdings auch abstraktere Weise zu beschrei-
ben. Der neue Beweis beniitzt zellulare Automaten, die iibrigens auch zur Be-
schreibung kinematischer Automaten verwendet werden konnen. Ein zellularver
Automat kann wie folgt definiert werden. Man beniitze einen uniformen zellu-
laren Raum, was im Zweidimensionalen und weniger gelehrt ausgedriickt nichts
anderes ist als ein unendliches Schachbrett. Jede der Zellen — oder Felder — kann
einen von endlich vielen vorgegebenen Zustinden haben, und diese Zustdnde
werden beeinfluBt von denjenigen endlich vieler Nachbarzellen. Eine Zustands-
konfiguration wird in diskreten Zeitabschnitten gedndert, und zwar unter Befol-
gung von vorgegebenen Regeln, welche sich simultan auf jede einzelne Zelle
beziehen.

Ich bin mir bewul3t, daB3 derartige allgemeine Beschreibungen nicht sehr zum
Verstdndnis der Sache beitragen und méchte deshalb ein einfaches Illustrations-
beispiel entwickeln, welches zwar mit den von Neumannschen zellularen Auto-
maten nur entfernt zu tun hat, jedoch sehr schéne und hilfreiche biologische
Assoziationen erlaubt. Es handelt sich um eine Erfindung von John Horton
Conway, einem Mathematiker an der Universitdit Cambridge, England. Seine
Automaten koénnen unter anderem im Rahmen eines Legespiels prasentiert
werden, was wir ausniitzen wollen. Dieses Spiel wurde iibrigens von Conway
mit dem — wie wir sehen werden sehr passenden — Namen «Life» benannt.

Um «Life» zu spielen, braucht man ein vergroB3ertes Schachbrett oder noch
besser das Spielbrett des orientalischen Spiels Go. Das Spielbrett stellt dann
einen Teil unseres uniformen zellularen Raumes dar. Ferner braucht man flache
Spielsteine, um den Zustand einer Zelle festzulegen. Jede Zelle hat zwei Zu-
stande, «lebendig» oder «tot». Ist sie lebendig, so wird dies mit einem eingelegten
Spielstein bezeichnet, stirbt sie, so wird der Spielstein entfernt. Zustandskon-
figurationen im Conwayschen Spiel treten somit als Ansammlung lebender
Zellen, sogenannter Conwayscher Kreaturen auf. Die Anderung der Zustands-
konfigurationen 1403t sich durch eine Art genetischer Gesetze fiir Geburt, Tod
und Uberleben von Zellen beschreiben.

Zuerst wird der Begrift einer Nachbarzelle festgelegt. Jede Zelle hat acht Nach-
barzellen, namlich die vier orthogonal anliegenden und die vier diagonal anlie-
genden (siehe Figur 1).
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Figur 7:
Jede Zelle (@) hat acht Nachbarzellen (0).
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Die «genetischen Gesetze» lauten:

1. Uberleben. Jede lebende Zelle mit zwei oder drvei lebenden Nachbarzellen iiber-
lebt fiiv die ndchste Genevation.

2. Tod. Jede lebende Zelle mit viev oder mehy lebenden Nachbarzellen stivbt (Uber-
volkerung). Jede lebende Zelle mit nur einer oder keiner lebenden Nachbarzelle stivbt
(Isolation). Der betreffende Spielstein wird weggenommen.

3. Geburt. Jedes leeve Feld mit genau drvei lebenden Nachbavzellen — nicht mehy
und nicht weniger — ist eine Geburtszelle. Fiir die ndchste Generation wird ein
Spielstein in das betreffende Feld gelegt.

Es ist sehr wichtig, dal genau verstanden wird, dal3 Geburt und Tod gleich-
zeitig auftreten und zusammen eine neue Generation in der Lebensgeschichte
einer Conwayschen Kreatur bilden.

Zur Illustration der angegebenen Gesetze sehen wir uns in Figur 2 die Lebens-
geschichte der Trominos — das sind zusammenhdngende Kreaturen, die ‘ur aus
drei lebenden Zellen bestehen - an.
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Figur 2:
Die Lebensgeschichte der fiinf Trominos.

Es treten hier drei verschiedene Arten von Lebensgeschichten auf, namlich
1. das Absterben, 2. das stabile Weiterleben, 3. das oszillierende Weiterleben.
Es stellt sich die Frage, ob es noch andere, wesentlich verschiedene Arten von
Lebensgeschichten gibt.

Bevor wir mit der Diskussion des Conwayschen Spiels weiterfahren, sei daran
erinnert, da3 wir dieses eigentlich nur eingefithrt hatten, um den Begriff des
zellularen Automaten zu illustrieren. Dieser wurde von John von Neumann
benutzt, um seinen zweiten Beweis der Moglichkeit eines sich selbst reprodu-
zierenden Automaten zu geben. Von Neumann benutzte einen zweidimensio-
nalen zellularen Raum, in dem jede Zelle 29 Zustiande erlaubt. Diese Zustande
werden mittels ziemlich komplizierter Regeln durch die Zustdande der vier — und
nicht acht wie bei Conway — orthogonal anschlieBenden Nachbarzellen beein-
fluBt. Mit einem derartigen Modell beweist er nun die Existenz einer Konfigu-
ration von etwa 200 000 Zellen, welche in der Lage ist, sich selbst zu reprodu-
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zieren. Der Grund fiir diese enorme Konfiguration ist der, da3 die von Neumann-
sche Konstruktion auf reale kinematische Automaten Bezug nimmt und nicht
auf einen beliebigen zellularen Automaten. Wenn man ndmlich diese erschwe-
rende Bedingung fallen 148t, ist es ziemlich einfach, einen sich selbst reprodu-
zierenden zellularen Automaten anzugeben.

Zuriick zu den Conwayschen Automaten oder Kreaturen oder, was auf das-
selbe herauskommt, zum Legespiel «Life». Die genetischen Gesetze, welche in
diesem Zusammenhang angegeben wurden, sind nicht willkiirlich gewahlt. Viel-
mehr hat Conway seine Regeln sorgfaltig und nach vielem Experimentieren
derart gewdhlt, daB die folgenden drei Bedingungen erfiillt sind:

1. Es darf keine Kreatur geben, bei der sofort eingesehen werden kann, daf3
sie Anlall zu unbegrenztem Wachstum gibt.

2. Es soll Kreaturen geben, die scheinbar ohne Grenzen wachsen.

3. Es soll Kreaturen geben, die iiber einige Generationen wachsen und sich
andern, bevor sie auf eine der folgenden drei Weisen enden: durch Tod, durch
Stabilitdat oder durch Oszillation.

In andern Worten, die Spielregeln sollen so gewdhlt werden, dal3 es nicht zum
Vorherein klar ist, wie die Lebensgeschichte einer jeden Kreatur aussieht.

Es sei in Figur 3 die Lebensgeschichte der fiinf Tetrominos angegeben.

Figur 3:

Die Lebensgeschichte
der fiinf Tetrominos.

Was die Lebensgeschichte der zwo6lf Pentominos betrifft, so verschwinden
sechs vor der finften Generation, zwei erreichen eine stabile Form und drei
werden in kurzer Zeit zur oszillierenden Form, welche wir bei den Tetrominos
gefunden haben. Die Lebensgeschichte des iibriggebliebenen Pentominos ist,
soviel ich weil3, noch unbekannt. Conway hat seinerzeit 460 Generationen
berechnet und auf Grund der dabei gesammelten Erfahrung die Vermutung
ausgesprochen, dall die Kreatur allméahlich absterben diirfte.
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Die Lebensgeschichte der Hexominos ist vollstindig bekannt, wogegen 1972
fiir die Lebensgeschichte der Heptominos diejenige von sieben Kreaturen noch
ausstehend war.

Im Oktober 1970 setzte Conway einen Preis von 50 Dollars aus, falls jemand
vor Ende des Jahres beweisen oder widerlegen koénne, ob es in seinem Spiel
unbegrenztes Wachstum gidbe. Der Preis wurde von einer Forschungsgruppe
des «Artificial Intelligence Projects» an der M. I. T. gewonnen, welche eine —
allerdings unzusammenhingende — Kreatur entdeckte, die wie in Figur 4 dar-

Figur 4:

Eine Pentomino-Quelle
(schwarze Konfiguration).

gestellt aussieht und folgendes zu leisten fahig ist: Die schwarz gezeichnete
Grundfigur hat eine Periode von 30 Generationen und produziert zusidtzlich
alle 30 Generationen einen — weill gezeichneten — Pentomino, der sich mit
konstanter Geschwindigkeit diagonal nach rechts unten bewegt.

Die Existenz derartiger Pentomino-Quellen zeigt nun, dall im Conwayschen
Spiel « Life» unbeschranktes Wachstum mdoglich ist. Sie legt aber auch die Frage
nahe, ob mit Hilfe derartiger Pentomino-Quellen die Simulation einer Turing-
maschine moéglich ware. Eine Turingmaschine ist ein universeller Computer, der
im Prinzip in der Lage ist, jede Rechnung durchzufithren. Die Idee bestdnde
darin, die wandernden Pentominos als Einheitsimpulse zu beniitzen, um Infor-
mation zu iibertragen. Wire es moglich, eine Turingmaschine zu simulieren,
dann wire es nur ein kleiner Schritt zur Simulierung einer universellen Kon-
struktionsmaschine, woraus die Moglichkeit, einen sich selbst reproduzierenden
Automaten herzustellen, folgen wiirde. Es handelt sich hier um ein meines
Wissens zur Zeit noch offenes Problem.

Wir kommen nun zum letzten Problem, das im Rahmen dieses Vortrags
behandelt werden soll. Es bezieht sich auf die Frage, ob es Zustandskonfigu-
rationen gibt, welche nur als initiale Konfigurationen und nicht als Konfigu-
rationen in einer spiteren Generation der Lebensgeschichte einer Kreatur auf-
treten konnen. Bekanntlich sind angelsidchsische Wissenschafter bibelbeschlagen.
Es ist daher nicht verwunderlich, daB3 der Name «Garten-Eden-Konfiguration»
tiir derartige Zustandskonfigurationen eingefiihrt wurde. In der Tat handelt es
sich ja hier um Formen, die ihre Existenz einer Art Schépfungsakt verdanken.

Unsere Frage lautet: Gibt es im Conwayschen Spiel Garten-Eden-Konfigura-
tionen? Die Beantwortung dieser Frage stellt ein keinesfalls triviales Problem.
Man kennt meines Wissens zur Zeit noch keine explizit beschreibbare Garten-
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Eden-Konfiguration !. Andrerseits weill man, dal3 es derartige Konfigurationen
gibt, und zwar auf Grund mathematischer Sitze aus der Theorie der zellularen
Automaten. Ich mochte als Abschlull dieses Vortrags einen derartigen Satz
anfithren, welcher fiir beliebige zellulare Strukturen, d.h. beliebige zellulare
Raume, verniinftige Umgebungsbegriffe und sehr allgemeine Regeln fiir die
Zustandsanderungen giiltig ist. Um diesen Satz in gehoriger Weise formulieren
und beweisen zu konnen, miissen allerdings einige neue Begriffe eingefiihrt,
beziehungsweise schon beniitzte Begriffe strenger gefal3t werden.

Eine Konfiguration ist gegeben durch eine Teilmenge S der zellularen Ebene
Z? und eine Abbildung f: S — (0,7}, genannt Figur auf S. Zwei Konfigura-
tionen (S, f) und (S, g) heillen austauschbar, wenn die folgenden Bedingungen
erfiillt sind: 1. Die Teilmenge S ist endlich. 2. Die beiden Figuren f und g auf S
sind verschieden (Figur 5). 3. Falls die beiden Konfigurationen durch ein- und
dieselbe komplementiare Konfiguration auf die ganze Ebene ausgedehnt werden,
so sollen die vervollstindigten Konfigurationen in der ndchsten Generation
iibereinstimmen.

Figur 5: Beispiel zweier im Conwayschen Spiel austauschbarer Konfigurationen.

Sei S eine Teilmenge der Ebene Z2. Dann bezeichnet N (S) die Vereinigung von
S mit der Menge aller Nachbarzellen. Weiter stehe Fig S beziehungsweise
Fig N(S) fiir die Menge aller Figuren auf S beziehungsweise auf N (S). Schliel3-
lich bezeichnen wir mit
Fs: Fig N(S) — Fig S

die Funktion, welche jeder Figur auf N (S) die durch sie eindeutig bestimmte
Nachfolgefigur auf S zuordnet. Man spricht von einer Garten-Eden-Konfiguration
(S,f), wenn die Figur fauf S kein Fg-Bild ist.

Satz von Moore (1962). Aus der Existenz austauschbarver Konfigurationen folgt
die Existenz von Garten-Eden-Konfigurationen. Die Bedeutung dieses Satzes in
bezug auf die Beantwortung unserer Frage ist klar: Wie wir in einem einfachen

! Es ist mir karzlich mitgeteilt worden, daBl inzwischen eine explizit angebbare
Garten-Eden-Konfiguration gefunden worden ist.
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Beispiel (siehe Figur 5) gesehen haben, gibt es im Conwayschen Spiel austausch-
bare Konfigurationen. Somit gibt es auch Garten-Eden-Konfigurationen. Wie
die nun aussehen — dies ist eine andere Frage. Da der Beweis des Satzes von
Moore mit elementaren Mitteln gegeben werden kann, wollen wir unsere Betrach-
tungen mit einer Beweisskizze fiir diesen Satz abschlieBen.

Beweis: Die Ausgangslage bildet die Vorgabe zweier austauschbarer Konfi-
gurationen (Q, f) und (Q,g). Ohne Beschrankung der Allgemeinheit kénnen wir
annehmen, dall die Teilmenge Q ein Quadrat ist. Sei ¢ die Seitenlinge des
Quadrats und % eine spater ndher zu bestimmende natiirliche Zahl. Wir bilden
ein Quadrat S der Seitenlinge kg-2. Dann ist N (S) ein Quadrat der Seitenldnge
kq. Wir wollen zeigen, daB fiir eine geniigend gro@3 gewdhlte Zahl & die Abbildung

Fs Fig N(S) — Fig S

nicht subjektiv sein kann; d. h., da@3 es mindestens eine Figur auf S gibt, welche
kein Fg-Bild ist. Bezeichnen wir mit a die Anzahl der méglichen Figuren auf S
und mit b die Anzahl der verschiedenen Bilder von Figuren auf N (S), dann ist
zu zeigen, dall b ¢ a. Es ist nun nicht schwer zu sehen, daf}

(kg-2)° ¢
a = 2 und b < (2 -7) ,

so daf} es geniigt, sich die Aufgabe zu stellen, fiir ein passendes % die Ungleichung

¢ K (kg-2)?
(2 -1) <2

zu beweisen. Es kommt offenbar auf dasselbe hinaus, wenn wir die Ungleichung

2

q
k? log, (2 -1) < (kg-2)?

oder die Ungleichung

2

7 q 2\2
2—qlog2 (2 -7) <(7"k_q)
behandeln.
Wir setzen 5
7 ( g )
= 7 log, \2 -1

und erhalten

Nun gilt
¢ lim (;_2 )2 _7
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Somit gibt es ein geniigend groBes %, so dal3

4 2\2
y <(\7 —E) <1,

woraus die gesuchte Ungleichung

7 (92 ) 21\2
q—zlogz 2 -7 <(7 —k—q)

folgt.
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