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Zellulare Automaten

von Heinrich Kleisli,
Mathematisches Institut der Universität Freiburg

Bei der Einführung in ein klassisches Gebiet der Mathematik pflegt man oft
mit den Worten «Schon die alten Griechen wußten ...» zu beginnen. Für viele
neuere Gebiete der Mathematik kann man eine ähnliche Formulierung finden,
und die lautet: «Schon John von Neumann sagte ...».

Wer war John von Neumann? Vor zwei Jahrzehnten hätte man sich wohl so

geäußert, daß es sich hier um den bedeutendsten unter den zeitgenössischen
Mathematikern handelt, die es gewagt haben, sich von den klassischen Gebieten
der Mathematik zu lösen, um solides und anwendungsreiches «Neuland» zu
entdecken. Inzwischen ist John von Neumann leider gestorben. Aber seine Beiträge
zu mathematischen Theorien wie der Spieltheorie, der Kybernetik und der
Theorie der Automaten sind von derart wesentlicher Bedeutung, daß er von
vielen Fachleuten als der Begründer von wenigstens zwei der erwähnten Theorien

betrachtet wird.
Im Zusammenhang mit seinen Untersuchungen über die Konstruktion und

Theorie von Computern hat John von Neumann sich folgendes Problem gestellt:
Man beweise die Möglichkeit, einen sich selbst reproduzierenden Automaten
herzustellen. Ein derartiger Automat würde, falls er die richtigen Instruktionen
erhält, ein genaues Duplikat von sich selbst herstellen. Jeder der beiden
Automaten würde dann wiederum einen neuen herstellen. Aus den vier würden acht
werden, und so weiter.

Von Neumann gab einen ersten Beweis, indem er ein Modell eines kinematischen

Automaten entwickelte, der tatsächlich in der Lage war, sich selbst zu
reproduzieren. Ein kinematischer Automat ist nichts anderes als ein digitaler
Computer, der zusätzlich zu den üblichen Computerelementen noch folgende
Arten von Bestandteilen besitzt : kinematische, d. h. bewegungsfähige Elemente,
wie z. B. eine künstliche Hand; Schneide-, Löt- und Schweißelemente; feste
Elemente wie z. B. Träger und Stäbe; eine Art Sinnesorgan, das fähig ist, die
erwähnten Arten von Elementen zu erkennen und die erlangte Information dem

Computer weiterzuleiten. Man muß sich diesen Computer in einem geeigneten
Umweltmilieu vorstellen, das bildhaft wie folgt beschrieben werden kann: Man
denke sich eine unbegrenzt ausgebreitete Flüssigkeitsfläche, auf der eine
unbeschränkte Anzahl der erwähnten Bestandteile verteilt ist, die sich nach der
Art der Moleküle in einem Gas bewegen. Das Ganze soll so angelegt sein, daß
der kinematische Automat, der selbst auf diesem «See» schwimmt, einen
unbegrenzten Nachschub von Bestandteilen zur Verfügung hat.

Auf eine genauere und vollständigere Diskussion dieser Situation und auf die

Beschreibung eines Modells eines sich selbst reproduzierenden Automaten soll
hier nicht eingegangen werden. Einerseits wäre dies ein im Rahmen dieses
Vortrages undurchführbares Unternehmen. Andererseits hat auch John von Neu-
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mann einen einfacheren zweiten Beweis gegeben. Dieser stützt sich auf eine Idee
seines Kollegen Stanislaw Ulam, welche es ermöglicht, sich selbst reproduzierende

Automaten auf elegantere, allerdings auch abstraktere Weise zu beschreiben.

Der neue Beweis benützt zellulare Automaten, die übrigens auch zur
Beschreibung kinematischer Automaten verwendet werden können. Ein zellularer
Automat kann wie folgt definiert werden. Man benütze einen uniformen zellularen

Raum, was im Zweidimensionalen und weniger gelehrt ausgedrückt nichts
anderes ist als ein unendliches Schachbrett. Jede der Zellen - oder Felder - kann
einen von endlich vielen vorgegebenen Zuständen haben, und diese Zustände
werden beeinflußt von denjenigen endlich vieler Nachbarzellen. Eine Zustands-
konfiguration wird in diskreten Zeitabschnitten geändert, und zwar unter Befolgung

von vorgegebenen Regeln, welche sich simultan auf jede einzelne Zelle
beziehen.

Ich bin mir bewußt, daß derartige allgemeine Beschreibungen nicht sehr zum
Verständnis der Sache beitragen und möchte deshalb ein einfaches Illustrationsbeispiel

entwickeln, welches zwar mit den von Neumannschen zellularen
Automaten nur entfernt zu tun hat, jedoch sehr schöne und hilfreiche biologische
Assoziationen erlaubt. Es handelt sich um eine Erfindung von John Horton
Conway, einem Mathematiker an der Universität Cambridge, England. Seine
Automaten können unter anderem im Rahmen eines Legespiels präsentiert
werden, was wir ausnützen wollen. Dieses Spiel wurde übrigens von Conway
mit dem - wie wir sehen werden sehr passenden - Namen «Life» benannt.

Um «Life» zu spielen, braucht man ein vergrößertes Schachbrett oder noch
besser das Spielbrett des orientalischen Spiels Go. Das Spielbrett stellt dann
einen Teil unseres uniformen zellularen Raumes dar. Ferner braucht man flache
Spielsteine, um den Zustand einer Zelle festzulegen. Jede Zelle hat zwei
Zustände, «lebendig» oder «tot». Ist sie lebendig, so wird dies mit einem eingelegten
Spielstein bezeichnet, stirbt sie, so wird der Spielstein entfernt. Zustandskon-
figurationen im Conwayschen Spiel treten somit als Ansammlung lebender
Zellen, sogenannter Conwayscher Kreaturen auf. Die Änderung der Zustands-
konfigurationen läßt sich durch eine Art genetischer Gesetze für Geburt, Tod
und Überleben von Zellen beschreiben.

Zuerst wird der Begriff einer Nachbarzelle festgelegt. Jede Zelle hat acht
Nachbarzellen, nämlich die vier orthogonal anliegenden und die vier diagonal
anliegenden (siehe Figur 1).

Figur 1.

Jede Zelle • hat acht Nachbarzellen (o).
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Die « genetischen Gesetze » lauten :

1. Überleben, fede lebende Zelle mit zwei oder drei lebenden Nachbarzellen überlebt

für die nächste Generation.
2. Tod. Jede lebende Zelle mit vier oder mehr lebenden Nachbarzellen stirbt

(Übervölkerung) Jede lebende Zelle mit nur einer oder keiner lebenden Nachbarzelle stirbt
(Isolation). Der betreffende Spielstein wird weggenommen.

3. Geburt. Jedes leere Feld mit genau drei lebenden Nachbarzellen - nicht mehr
und nicht weniger - ist eine Geburtszelle. Für die nächste Generation wird ein
Spielstein in das betreffende Feld gelegt.

Es ist sehr wichtig, daß genau verstanden wird, daß Geburt und Tod gleichzeitig

auftreten und zusammen eine neue Generation in der Lebensgeschichte
einer Conwayschen Kreatur bilden.

Zur Illustration der angegebenen Gesetze sehen wir uns in Figur 2 die
Lebensgeschichte der Trominos — das sind zusammenhängende Kreaturen, die hur aus
drei lebenden Zellen bestehen - an.
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Figur 2:
Die Lebensgeschichte der fünf Trominos.

Es treten hier drei verschiedene Arten von Lebensgeschichten auf, nämlich
1. das Absterben, 2. das stabile Weiterleben, 3. das oszillierende Weiterleben.
Es stellt sich die Frage, ob es noch andere, wesentlich verschiedene Arten von
Lebensgeschichten gibt.

Bevor wir mit der Diskussion des Conwayschen Spiels weiterfahren, sei daran
erinnert, daß wir dieses eigentlich nur eingeführt hatten, um den Begriff des

zellularen Automaten zu illustrieren. Dieser wurde von John von Neumann
benutzt, um seinen zweiten Beweis der Möglichkeit eines sich selbst
reproduzierenden Automaten zu geben. Von Neumann benutzte einen zweidimensionalen

zellularen Raum, in dem jede Zelle 29 Zustände erlaubt. Diese Zustände
werden mittels ziemlich komplizierter Regeln durch die Zustände der vier - und
nicht acht wie bei Conway - orthogonal anschließenden Nachbarzellen beeinflußt.

Mit einem derartigen Modell beweist er nun die Existenz einer Konfiguration

von etwa 200 000 Zellen, welche in der Lage ist, sich selbst zu reprodu-
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zieren. Der Grund für diese enorme Konfiguration ist der, daß die von Neumann-
sche Konstruktion auf reale kinematische Automaten Bezug nimmt und nicht
auf einen beliebigen zellularen Automaten. Wenn man nämlich diese erschwerende

Bedingung fallen läßt, ist es ziemlich einfach, einen sich selbst
reproduzierenden zellularen Automaten anzugeben.

Zurück zu den Conwayschen Automaten oder Kreaturen oder, was auf
dasselbe herauskommt, zum Legespiel «.Life». Die genetischen Gesetze, welche in
diesem Zusammenhang angegeben wurden, sind nicht willkürlich gewählt.
Vielmehr hat Conway seine Regeln sorgfältig und nach vielem Experimentieren
derart gewählt, daß die folgenden drei Bedingungen erfüllt sind:

1. Es darf keine Kreatur geben, bei der sofort eingesehen werden kann, daß
sie Anlaß zu unbegrenztem Wachstum gibt.

2. Es soll Kreaturen geben, die scheinbar ohne Grenzen wachsen.
3. Es soll Kreaturen geben, die über einige Generationen wachsen und sich

ändern, bevor sie auf eine der folgenden drei Weisen enden: durch Tod, durch
Stabilität oder durch Oszillation.

In andern Worten, die Spielregeln sollen so gewählt werden, daß es nicht zum
Vorherein klar ist, wie die Lebensgeschichte einer jeden Kreatur aussieht.

Es sei in Figur 3 die Lebensgeschichte der fünf Tetrominos angegeben.

Figur 3:
Die Lebensgeschichte
der fünf Tetrominos.
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Was die Lebensgeschichte der zwölf Pentominos betrifft, so verschwinden
sechs vor der fünften Generation, zwei erreichen eine stabile Form und drei
werden in kurzer Zeit zur oszillierenden Form, welche wir bei den Tetrominos
gefunden haben. Die Lebensgeschichte des übriggebliebenen Pentominos ist,
soviel ich weiß, noch unbekannt. Conway hat seinerzeit 460 Generationen
berechnet und auf Grund der dabei gesammelten Erfahrung die Vermutung
ausgesprochen, daß die Kreatur allmählich absterben dürfte.
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Die Lebensgeschichte der Hexominos ist vollständig bekannt, wogegen 1972

für die Lebensgeschichte der Heptominos diejenige von sieben Kreaturen noch
ausstehend war.

Im Oktober 1970 setzte Conway einen Preis von 50 Dollars aus, falls jemand
vor Ende des Jahres beweisen oder widerlegen könne, ob es in seinem Spiel
unbegrenztes Wachstum gäbe. Der Preis wurde von einer Forschungsgruppe
des «Artificial Intelligence Projects» an der M. I. T. gewonnen, welche eine -
allerdings unzusammenhängende - Kreatur entdeckte, die wie in Figur 4 dar-
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Figur 4:
Eine Pentomino-Quelle
(schwarze Konfiguration).

gestellt aussieht und folgendes zu leisten fähig ist: Die schwarz gezeichnete
Grundfigur hat eine Periode von 30 Generationen und produziert zusätzlich
alle 30 Generationen einen - weiß gezeichneten - Pentomino, der sich mit
konstanter Geschwindigkeit diagonal nach rechts unten bewegt.

Die Existenz derartiger Pentomino-Quellen zeigt nun, daß im Conwayschen
Spiel «Life» unbeschränktes Wachstum möglich ist. Sie legt aber auch die Frage
nahe, ob mit Hilfe derartiger Pentomino-Quellen die Simulation einer Turing-
maschine möglich wäre. Eine Turingmaschine ist ein universeller Computer, der
im Prinzip in der Lage ist, jede Rechnung durchzuführen. Die Idee bestände
darin, die wandernden Pentominos als Einheitsimpulse zu benützen, um
Information zu übertragen. Wäre es möglich, eine Turingmaschine zu simulieren,
dann wäre es nur ein kleiner Schritt zur Simulierung einer universellen
Konstruktionsmaschine, woraus die Möglichkeit, einen sich selbst reproduzierenden
Automaten herzustellen, folgen würde. Es handelt sich hier um ein meines
Wissens zur Zeit noch offenes Problem.

Wir kommen nun zum letzten Problem, das im Rahmen dieses Vortrags
behandelt werden soll. Es bezieht sich auf die Frage, ob es Zustandskonfigu-
rationen gibt, welche nur als initiale Konfigurationen und nicht als Konfigurationen

in einer späteren Generation der Lebensgeschichte einer Kreatur
auftreten können. Bekanntlich sind angelsächsische Wissenschafter bibelbeschlagen.
Es ist daher nicht verwunderlich, daß der Name «Garten-Eden-Konfiguration»
für derartige Zustandskonfigurationen eingeführt wurde. In der Tat handelt es

sich ja hier um Formen, die ihre Existenz einer Art Schöpfungsakt verdanken.
Unsere Frage lautet: Gibt es im Conwayschen Spiel Garten-Eden-Konfigurationen?

Die Beantwortung dieser Frage stellt ein keinesfalls triviales Problem.
Man kennt meines Wissens zur Zeit noch keine explizit beschreibbare Garten-
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Eden-Konfiguration l. Andrerseits weiß man, daß es derartige Konfigurationen
gibt, und zwar auf Grund mathematischer Sätze aus der Theorie der zellularen
Automaten. Ich möchte als Abschluß dieses Vortrags einen derartigen Satz
anführen, welcher für beliebige zellulare Strukturen, d. h. beliebige zellulare
Räume, vernünftige Umgebungsbegriffe und sehr allgemeine Regeln für die
Zustandsänderungen gültig ist. Um diesen Satz in gehöriger Weise formulieren
und beweisen zu können, müssen allerdings einige neue Begriffe eingeführt,
beziehungsweise schon benützte Begriffe strenger gefaßt werden.

Eine Konfiguration ist gegeben durch eine Teilmenge 5 der zellularen Ebene
Z2 und eine Abbildung /; S —> \0,1), genannt Figur auf S. Zwei Konfigurationen

(S, f) und (S, g) heißen austauschbar, wenn die folgenden Bedingungen
erfüllt sind: 1. Die Teilmenge S ist endlich. 2. Die beiden Figuren/und g auf S

sind verschieden (Figur 5). 3. Falls die beiden Konfigurationen durch ein- und
dieselbe komplementäre Konfiguration auf die ganze Ebene ausgedehnt werden,
so sollen die vervollständigten Konfigurationen in der nächsten Generation
übereinstimmen.

—"¦"¦"¦T""

1

•#
i

Figur 5 : Beispiel zweier im Conwayschen Spiel austauschbarer Konfigurationen.

Sei S eine Teilmenge der Ebene Z2. Dann bezeichnet N(S) die Vereinigung von
S mit der Menge aller Nachbarzellen. Weiter stehe Fig S beziehungsweise
Fig N(S) für die Menge aller Figuren auf S beziehungsweise auf N(S). Schließlich

bezeichnen wir mit
Fs: Fig N(S) —f Fig S

die Funktion, welche jeder Figur auf N(S) die durch sie eindeutig bestimmte
Nachfolgefigur auf S zuordnet. Man spricht von einer Garten-Eden-Konfiguration
(S,f), wenn die Figur/auf S kein F^-Bild ist.

Satz von Moore (1962). Aus der Existenz austauschbarer Konfigurationen folgt
die Existenz von Garten-Eden-Konfigurationen. Die Bedeutung dieses Satzes in
bezug auf die Beantwortung unserer Frage ist klar : Wie wir in einem einfachen

1 Es ist mir kürzlich mitgeteilt worden, daß inzwischen eine explizit angebbare
Garten-Eden-Konfiguration gefunden worden ist.
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Beispiel (siehe Figur 5) gesehen haben, gibt es im Conwayschen Spiel austauschbare

Konfigurationen. Somit gibt es auch Garten-Eden-Konfigurationen. Wie
die nun aussehen - dies ist eine andere Frage. Da der Beweis des Satzes von
Moore mit elementaren Mitteln gegeben werden kann, wollen wir unsere Betrachtungen

mit einer Beweisskizze für diesen Satz abschließen.

Beweis: Die Ausgangslage bildet die Vorgabe zweier austauschbarer
Konfigurationen (Q,f) und (Q,g). Ohne Beschränkung der Allgemeinheit können wir
annehmen, daß die Teilmenge Q ein Quadrat ist. Sei q die Seitenlänge des

Quadrats und k eine später näher zu bestimmende natürliche Zahl. Wir bilden
ein Quadrat S der Seitenlänge kq-2. Dann ist N(S) ein Quadrat der Seitenlänge
kq. Wir wollen zeigen, daß für eine genügend groß gewählte Zahl k die Abbildung

Fs Fig N(S) —* Fig S

nicht subjektiv sein kann; d. h., daß es mindestens eine Figur auf S gibt, welche
kein F5-BÌM ist. Bezeichnen wir mit a die Anzahl der möglichen Figuren auf S

und mit b die Anzahl der verschiedenen Bilder von Figuren auf N(S), dann ist
zu zeigen, daß b < a. Es ist nun nicht schwer zu sehen, daß

(kq-2)2 q2 k2

a 2 und b < (2 -/)

so daß es genügt, sich die Aufgabe zu stellen, für ein passendes k die Ungleichung

q2 k2 (kq-2)2
(2 -1) < 2

zu beweisen. Es kommt offenbar auf dasselbe hinaus, wenn wir die Ungleichung

q2
k2 log2 (2 -1) < (kq-2)2

1 1 I 2 \2
{2 -1)<\1-ka)

oder die Ungleichung

1_
2« ~"bz v '' x V kq

behandeln.

Wir setzen
7

r= Zïlog, \2 -1

und erhalten

Nun gilt

;
r <

q2 q2

lim lf _2_\2
k^r-^j \ kq/
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Somit gibt es ein genügend großes k, so daß

-<('4,)2<'-

woraus die gesuchte Ungleichung

'?«.(f-')<(>-&
folgt.
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