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antisymmetrischen Eigenfunktionen können in der Form (40)
geschrieben werden, falls man dort in den a, b, c,... auch die Spinquantenzahl

einschließt.
Von den ursprünglich vorhandenen n! Eigenfunktionen des n-

Elektronensystems verbleibt eine einzige : die antisymmetrische
Eigenfunktion (40).

II. Darstellung der Valenzformeln durch Eigenfunktionen

6. Atomeigenfunktionen

Wir sind nun soweit, die Konstruktion der Moleküleigenfunktionen,
die den Ausgangspunkt für die Ermittlung der Energie und Elektronenverteilung

chemischer Moleküle bilden, in Angriff zu nehmen.
Charakteristisch für die Spinvalenzvariante der Mesomeriemethode ist,
daß die Moleküle aus Atomen bzw. die Moleküleigenfunktionen aus

Atomeigenfunktionen aufgebaut werden. Unsere nächste Aufgabe
ist also, Atomeigenfunktionen zu konstruieren.

Wie wir gesehen haben, können die Eigenschaften eines Elektronensystems

nur dann vollständig erfaßt werden, wenn man jedem Elektron
einen Spin zuordnet. Somit werden die Eigenfunktionen eines Systems
von n Elektronen außer den Koordinaten noch von den n Spinvariablen

co1; co2, con abhängig sein; d. h. die Eigenfunktion (9) ist in
Wirklichkeit, falls die Wechselwirkungen zwischen den Elektronen
aufgehoben sind, von der allgemeineren Form

Wx, y. Zi Wi ; - - • xn yn zn un) ijjafx, y! z, Wl). +b(x2y2z2«2) /jn
Wxn yn Zn "n)

wo die c|;k(xi y, Zj coj) Funktionen der einzelnen Elektronen sind.
Die Buchstaben a, b, c, sind jetzt als Abkürzungen für die vier
Quantenzahlen n, 1, m1, ms gedacht.

Für die Konstruktion der Eigenfunktionen eines Atoms, bestehend

aus mehreren Elektronen, gibt es zwei Möglichkeiten. Bei der ersten
werden die Atomeigenfunktionen wie in (1) aus den vollständigen
Einelektroneneigenfunktionen aufgebaut. Diese kommt für uns nicht
in Frage. Bei der zweiten Möglichkeit konstruiert man zunächst die

nur von den Koordinaten der Elektronen abhängigen Atomeigen-
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funktionen und ergänzt sie mit den Spinfunktionen zu Gesamteigenfunktionen,

indem man beide Anteile miteinander multipliziert. Die
Aufspaltung der Gesamteigenfunktion des Atoms in zwei Faktoren
ist erlaubt, weil die entsprechenden magnetischen Wechselwirkungen,
die meistens sehr klein sind, vernachlässigt werden können. In der
Sprechweise des Bohrschen Modells bedeutet dies, daß die Koppelung
zwischen der Bahn der Elektronen und dem Spin vernachlässigt wird.
Man erhält also

(2)
4i(x, y, z, co,; .; xnynzncon) u(x, y, z,; x2y2z2; .; xn yn zn) tp(co„co2, .con)

Wenn wir ferner von den magnetischen Wechselwirkungen, die die
Elektronen infolge ihres Spins aufeinander ausüben, ebenfalls absehen,
so ist die Gesamtspinfunktion darstellbar als ein Produkt

<p (co,,co2, con) 9,(co,)92(co2) 9n(con) (3)

wo die cpi(coi) den in (I. 43) eingeführten Spinfunktionen a(coj) oder ß(co;)

entsprechen; für letztere werden wir auch die Bezeichnung <x(i) und
ß(i) verwenden, wobei i 1,2,3, n die Elektronen repräsentieren.

Die Anzahl der Eigenfunktionen, die wir unserem n-Elektronen-
system im Abschnitt 5 zugeordnet haben, wurde zunächst von n! auf
zwei und bei der Berücksichtigung des Pauliprinzips auf die einzige
antisymmetrische reduziert. Trotz dieser Vereinfachung kann man
aber durch Berücksichtigung der verschiedenen Spinfunktionen des

Atoms mehrere antisymmetrische Eigenfunktionen bilden. Betrachten
wir als Beispiel ein Atom bestehend aus zwei Elektronen. Zur Bildung
einer antisymmetrischen Eigenfunktion bieten sich zunächst zwei

Möglichkeiten:

¦+-i(1.2) us(l,2) 9A(1,2)
«MU) uA(l,2) <ps(l,2) ™

Das Pauliprinzip fordert nämlich nur, daß die Gesamteigenfunktion
des Atoms antisymmetrisch sein soll. Das kann aber hier auf zwei
verschiedene Arten realisiert werden. Die Koordinateneigenfunktion
us (1,2) kann symmetrisch sein und die Spinfunktion <pA (1,2) antisymmetrisch

oder umgekehrt; in beiden Fällen ist die Gesamteigenfunktion

antisymmetrisch. Die Frage ist nur, welche der beiden
Funktionen unserem Fall entspricht; für uns kommen nämlich nur solche
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antisymmetrische Atomeigenfunktionen in Betracht, die
nachträglich zum Aufbau von Moleküleigenfunktionen verwendet werden
können. Um diese Frage zu beantworten, erinnern wir zunächst an die

Veranschaulichung des Spins durch Vektoren und an die Vektoradditionsregeln.

Beim Vorhandensein von mehreren Elektronen in einem Atom
kombiniert man die verschiedenen Spins zu einem Gesamtspin nach den

Vektoradditionsregeln: Den Spin eines Elektrons repräsentiert man
durch einen Vektor der Länge 1/2 (in — Einheiten ausgedrückt). Die

Spinvektoren zweier Elektronen sind dann so zu kombinieren, daß die

Beträge der resultierenden Vektoren ganzzahlig werden. Diese
Vektoren können dann mit dem Spinvektor eines dritten Elektrons so

zusammengesetzt werden, daß die Beträge der resultierenden Vektoren
halbzahlig werden, usw. Man erkennt, daß bei ungerader Anzahl von
Elektronen die Spinwerte ein ungerades Vielfaches von 1/2 sind, bei

gerader Zahl von Elektronen erhält man dagegen 0 oder ein gerades
Vielfaches von 1/2, d.h. S 1j2, 3/2,5/2,... bzw. 0, 1, 2, Zu jedem
Wert des Gesamtspins S gehören ferner 2S+1 verschiedene Spinzustände.

Diese entsprechen den Werten der Gesamtspinkomponente in
Richtung des Feldes

Ms - S, - (S - 1), - (S - 2), 0 S - 2, S - 1, S (5)

Diese Werte erhält man übrigens auch als Summe der Spinkomponenten
der einzelnen Elektronen, d.h.

Ms msl + ms2 + + msn (5a)

Ein durch S charakterisierter Term spaltet also maximal in 2S+1
Terme auf. Man bezeichnet Terme mit dem Spindrehimpuls oder

Spinmoment S 0, 1/2, 1, 3/2, als Singulett-, Dublett-, Triplett-
usw. Terme. Allgemein nennt man 2S+1 die Multiplizität.

Im Fall des Heliumatoms können wir bei der Kombination der

Spinvektoren zwei Fälle unterscheiden: entgegengesetzt gerichtete
Spins und parallel gerichtete Spins. Im ersten Fall ist die Spinsumme
S 0, im zweiten Fall ist sie S 1. Es fragt sich nur, wie die Zuordnung
dieser Werte zu den Funktionen (4) vorzunehmen ist.

Beachten wir zu diesem Zweck, daß der Spinvektor mit dem
Gesamtspin S 0 gemäß der Vektoradditionsregeln nur eine Komponente
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Ms 0 hat, während zu dem Gesamtspin S 1 drei Komponenten
Ms +1, 0, —1 gehören. Anderseits kommen aber für die Spinfunktionen

eines Systems von zwei Elektronen die folgenden vier Möglichkeiten

in Betracht

a(l)a(2)
ß(l)ß(2)
a(l)ß(2)

[0>

ß(l)a(2)

Da die vollständigen Eigenfunktionen antisymmetrisch sein müssen,
dürfen nach (4) nur symmetrische und antisymmetrische Spinfunktionen

auftreten. Die ersten zwei Funktionen (6) sind bereits symmetrisch

bei der Vertauschung von a und ß, die anderen dagegen nicht;
man kann sie aber durch eine symmetrische und eine antisymmetrische
Linearkombination ersetzen. Wir erhalten somit statt (6) die folgenden
Ausdrücke :

(7)

Bei der Einführung der Spinfunktionen (I. 43) haben wir gesehen,
daß jedem a ein Spin mit der z-Komponente ms 1/2 und jedem ß

ein Spin mit ms —1/2 entspricht. Zu jeder Spinfunktion (7) gehört
also eine Gesamtspinkomponente Ms in der z-Richtung, die man nach
(5a) durch Addition der einzelnen Komponenten erhält. Diese sind
in (7) ebenfalls angegeben. Das sind aber die Werte, die wir schon oben
als Komponenten des Gesamtspins S 0 und S 1 erhielten.
Dementsprechend können wir auch die vier Spinfunktionen (7) zu den

Werten des Gesamtspins S 0 und S 1 zuordnen.
Man sieht unmittelbar, daß die Funktionen (7a) und (7c) zu S 1

gehören. Von den beiden anderen kann man zunächst nur sagen, daß
die eine zu S 1, die andere zu S 0 gehört. Um eine definitive
Zuordnung zu treffen, erinnern wir, daß die Funktionen, die zu S 1

und S 0 gehören, verschiedenen Energien entsprechen (Bei zwei
Wasserstoffatomen z. B. entspricht S 1 einer Abstoßung der Atome,
während S 0 die Molekülbildung charakterisiert). Die drei zu S 1

gehörigen Funktionen sind also entartet und man kann sie auch linear
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a(l)ß(2) + a(2)ß(l) Ms 0 (b)

ß(l)ß(2) Ms -1 (c)

a(l)ß(2)-a(2)ß(l) Ms 0 (d)



kombinieren, wobei alle Funktionen entweder symmetrisch oder
antisymmetrisch in den beiden Elektronen sein müssen. Nun sind aber
(7a) und (7c) bereits symmetrisch. Damit die Linearkombinationen
symmetrisch bleiben, muß die dritte Funktion ebenfalls symmetrisch
sein. Daraus folgt, daß die drei ersten Funktionen (7) zu dem Gesamtspin

S 1 und (7d) zu S 0 gehören.
Nun sind wir in der Lage zu entscheiden, ob die Spinfunktion bei

dem Aufbau der Atomeigenfunktionen in (4) symmetrisch oder
antisymmetrisch gewählt werden muß. Die hier betrachtete Theorie der
Spinvalenz beruht nämlich auf der Annahme, daß eine Bindung
zwischen zwei Atomen dann erfolgt, wenn ein Elektron des einen Atoms
mit einem Elektron des anderen Atoms ein Spinpaar bildet.
Molekülbildung zwischen zwei Wasserstoffatomen z. B. tritt
dementsprechend dann auf, wenn die Spins der beiden Elektronen sich
absättigen, d. h. sich so kombinieren, daß der Gesamtspin dem
Zustand S 0 entspricht. Diese Paarbildung der Elektronen entspricht
übrigens genau der Lewisschen Anschauung über die Bildung einer
homöopolaren Bindung, was wiederum den engen Zusammenhang
zwischen dem HRW-Verfahren und der in der organischen Chemie
herrschenden Auffassung der Bindungsverhältnisse besonders deutlich

zum Ausdruck bringt.
Es ist nun klar, welche Funktionen (4) für unsere Zwecke in Frage

kommen. Wir brauchen Atomeigenfunktionen, deren Spins im freien
Atom noch ungesättigt sind. Nach den oben gesagten kann das aber

nur von parallel gerichteten Spins gewährleistet werden, das heißt
von den symmetrischen Spinfunktionen.

Analoges gilt für Atome mit mehr als zwei Elektronen. Für die
Bildung der antisymmetrischen Eigenfunktionen eines Atoms mit
mehreren Elektronen kommen nur symmetrische Spinfunktionen,
deren Spins parallel gerichtet sind, in Betracht. Elektronen deren Spins
abgesättigt sind, wie z. B. im Kohlenstoffatom die Spins der beiden
Elektronen der K-Schale, werden einfach weggelassen. Man berücksichtigt

also nur die Valenzelektronen des Atoms. Die antisymmetrische
Atomeigenfunktion eines Atoms mit mehreren Elektronen besteht also
auch im allgemeineren Fall aus dem Produkt einer antisymmetrischen
Koordinateneigenfunktion und einer symmetrischen Spinfunktion.

+(1,2 n) uA(l,2 n) 9S (1,2 n)
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Die Anzahl der symmetrischen Spinfunktionen eines Systems von
n Elektronen ist gleich n-t 1. Die Gesamtzahl der Spinfunktionen für n
Elektronen ist zunächst nämlich gleich 2n. Nun gehören aber diejenigen
Kombinationen, die die gleiche Zahl von a und ß Werte haben, zur
selben Spinsumme. Wählt man von jeder einen Repräsentanten aus,
so bleiben n+1 Funktionen übrig. Im Fall von drei Elektronen z. B.
haben wir zunächst acht Spinfunktionen

oc(l)a(2)a(3)
a(l)a(2)ß(3) <*(l)ß(2)a(3) ß(l)a(2)a(3)
a(l)ß(2)ß(3) ß(l)a(2)ß(3) ß(l)ß(2)a(3)
ß(l)ß(2)ß(3)

Wenn wir von diesen jeweils einen Repräsentanten mit der gleichen
Anzahl von a und ß Werten auswählen, bleiben bloß die n+1 Funktionen
der ersten Kolonne übrig. Im allgemeinen Fall können wir also einem
Atom mit n gleichgerichteten Spins n+1 symmetrische Spinfunktionen
zuordnen. Allerdings sind diese teilweise Linearkombinationen von
Spinfunktionen, die die gleiche Zahl von a und ß Werte haben. Die
endgültigen Ausdrücke der symmetrischen Spinfunktionen können
in der Form

9n a(l)a(2) a(n)

9r sym -= a(l) a(r)ß(r + 1) ß(n)

\'(?)
(F

9o ß(l)ß(2) ß(n)

geschrieben werden. Wie bereits bemerkt, beschreibt a einen Spin
mit der z-Komponente ms +1/2 und ß einen Spin mit der Komponente
ms —1\2. Somit ist <pn eine Funktion bestehend aus lauter positiven
Spinwerten und <p0 aus lauter negativen. Das Zeichen sym bedeutet,
daß die Funktion symmetrisiert werden soll durch Vertauschung der

Argumente und Bildung von Linearkombinationen der Spinfunktionen ;

—= ist ein Normierungsfaktor.

Gemäß der Theorie der Spinvalenz wollen wir im folgenden
annehmen, daß sich jedes Atom in einem sogenannten S-Zustand
befindet, d. h. das Bahnmoment L 0 ist. Damit wird gleich ange-
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nommen, daß im Grundzustand des Atoms nur eine Eigenfunktion
vorhanden ist. Bei den Zuständen P, D, die den Bahnmomenten
L 1, 2 entsprechen, würde noch eine weitere Entartung, die
sogenannte Richtungsentartung, auftreten. Diese wollen wir, wie das
in der ursprünglichen Form der HRW-Theorie geschehen ist,
beiseite lassen. Die Berücksichtigung dieser Entartung würde nämlich
das ganze Bindungsproblem vom rechnerischen Standpunkt nur noch

komplizieren und den Zusammenhang der quantenmechanischen und
klassischen Valenztheorie nur verwischen. Nun liegt aber, wie bereits
erwähnt, einer der großen Vorteile des Spinvalenzverfahrens gegenüber

der Molekülbahnmethode z. B. gerade darin, daß der
Grundgedanke der klassischen Valenzchemie hier besonders gut zum
Ausdruck kommt. Deshalb wird die vereinfachte Annahme gemacht, daß
außer der Spinentartung keine anderen Entartungen vorliegen.

In Bezug auf das Kohlenstoffatom sei noch daran erinnert, daß
sein Grundzustand ein P-Zustand ist mit vier s-Elektronen und zwei

p-Elektronen, genauer gesagt ls22s22p2. Die vier s-Elektronen bilden
zwei Spinpaare mit abgesättigten Spins, während die zwei p-Elektronen
noch ledig sind. Das Atom besitzt also nur zwei Elektronen mit freien
Spins, d. h. das Kohlenstoffatom ist im Grundzustand nur
zweiwertig. Da dieses Atom in den organischen Verbindungen fast durchwegs

als vierwertig erscheint, wird man annehmen müssen, daß es in
Verbindungen im angeregten Zustand auftritt. Eines der s-Elektronen
geht dabei in ein p-Elektron über (1=0 geht in 1 1) und ferner
erfolgt eine Umklappung des Spins eines Elektrons, der Gesamtspin
wächst dabei von S 1 auf S 2; das Atom ist nun im Zustand 5S

mit vier ledigen Elektronen. Die Anregungsenergie des 5S-Zustands
ist übrigens bekannt, V 96 kcal/mol.

7. Moleküleigenfunktionen

Nun sind wir in der Lage, den Aufbau des Moleküls aus Atomen
näher zu diskutieren. Um die Wechselwirkungsenergie mehrerer
Atome in einem Molekül zu ermitteln, betrachten wir eine Reihe von
Atomen, die wir mit A, B, C, H bezeichnen wollen. Die Atomkerne
sollen unendlich schwer angesehen, d. h. im Raum fixiert gedacht
werden. Die Anzahl der Elektronen wird respektive durch na, nb nh
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repräsentiert; ihre Gesamtzahl ist gleich na+nb+... +nh n. Die
Elektronen der abgeschlossenen Schalen werden hier nicht
berücksichtigt, ihre Spins sind ja abgesättigt. Die entsprechenden spinlosen
Eigenfunktionen sind dann

A: ua(l,2, ...,na)
B: ub(na + 1, na + 2, ...,na + nb)

H: Uh(na + nb+. + ng + 1, na + nb + + ng + nj,)

Die Elektronen sind hier durchgehend numeriert. Die Zahlen stehen
als Abkürzungen für die drei Ortskoordinaten der betreffenden
Elektronen.

Die Koordinatenfunktionen (9) müssen noch mit den symmetrischen
Spinfunktionen (8) ergänzt werden. Die vollständige Eigenfunktion
eines Atoms erscheint dann als Produkt der Koordinaten- und
Spinfunktionen (die magnetischen Wechselwirkungen wurden ja vernachlässigt)

ua(l,2,...,na) 9ra (10)

Es gibt natürlich im ganzen na +1 solche Produkte, weil das Atom
A ja na+l symmetrische Spinfunktionen besitzt; analoges gilt für die
Eigenfunktionen der Atome B,C,..., H, die Zahl ihrer Eigenfunktionen
vom Typus (10) ist respektive nb + l, nh+l.

Unser Zweck ist jetzt die Energie und die Eigenfunktionen des aus
Atomen aufgebauten Moleküls zu ermitteln. Wir sollten also eigentlich
die Schrödinger-Gleichung lösen, die diesem Molekül entspricht. Die
exakte Berechnung ist natürlich undurchführbar. Im Abschnitt 3

haben wir gesehen, daß die Schrödinger-Gleichung eines Systems,
bestehend aus mehreren Teilchen, lösbar ist, wenn die Wechselwirkungen
zwischen den Teilchen vernachlässigt werden. Die Eigenfunktion der
so vereinfachten Gleichung ist dann gemäß (I. 9) gegeben durch das

Produkt der Eigenfunktionen der einzelnen Teilchen und die Energie
ist nach (I. 10) gleich der Summe der Energien der einzelnen Teilchen.

Im gegenwertigen Fall können aber die Atomeigenfunktionen als

bekannt angesehen werden. Dann kann man die Gesamtheit A, B,
H als ein einziges System betrachten, deren Atome in solchen
Abständen voneinander sind, daß sich die Elektronen der verschiedenen
Atome praktisch nicht beeinflussen. Damit haben wir ein System vor
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uns, dessen Schrödinger-Gleichung nach den im Abschnitt 3 gemachten
Angaben lösbar ist oder besser gesagt.dessen Lösung bereits bekannt
ist; nach Gleichung (I. 9) ist sie durch das Produkt der Atomeigenfunktionen

(10) selbst gegeben

ua?ra • Ub9rb • • • uh?rh (n)

oder beispielsweise
(Ha)

ua(l,2, na) <p„(l,2, na) ub(na + l, na+nb) 9n(na + l, na+nb)
• • • Uh(na+ ¦ • • +ng + l, na+ +nh) 9n(na+ +ng+l na+ +nh)

In (IIa) haben wir der Einfachheit halber überall die Spinfunktionen
mit lauter positiven Spinwerten eingesetzt. Da das Atom A aber na+l,
das Atom B nb+l usw. das Atom H nh+l Spinfunktionen besitzt, gibt
es mehrere Eigenfunktionen (11) des ungekoppelten Systems;
insgesamt gibt es

g K + l)(nb + l)...(nh+l) (12)

Funktionen vom Typus (11).
Nun ist zwar (11) eine genäherte Funktion unseres Systems,

bestehend aus ungekoppelten Atomen, doch genügt sie dem Pauliprinzip
noch nicht, denn sie ist nicht antisymmetrisch in allen Elektronen.
Sie ist zwar antisymmetrisch in Bezug auf die Vertauschung zweier
Elektronen des Atoms A, ferner für die Elektronen des Atoms B usw.
nicht aber bezüglich der Vertauschung zweier Elektronen zwischen
verschiedenen Atomen. Eine antisymmetrische Funktion in Bezug auf
die Vertauschung aller Elektronen erhält man sehr leicht in folgender
Weise :

Im Abschnitt 5 haben wir bei der Besprechung der Austauschentartung

gesehen, daß die Eigenfunktion (I. 37) nicht die einzige
Lösung des aus n ungekoppelten Elektronen bestehenden Systems
ist. Wir erhielten durch Permutation mehrere Eigenfunktionen zum
selben Eigenwert, insgesamt n! Eigenfunktionen. Durch eine
Linearkombination aller dieser Partialeigenfunktionen, versehen mit den
Koeffizienten +1 und —1, je nachdem ob die Permutation gerade oder
ungerade ist, bekamen wir die antisymmetrische Gesamteigenfunktion.

Im Falle (11) entstehen die anderen Partialeigenfunktionen durch
Permutation der Elektronen der verschiedenen Atome; diejenigen
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Permutationen, die sich zwischen den Elektronen der einzelnen Atome
abspielen, sind bereits durchgeführt. Die Permutationen, die nur
Elektronen verschiedener Atome vertauschen, nennen wir Q. Ihre Zahl

ist gegeben durch —:—-^ —-. wo n die Gesamtzahl der Elektronenb b na nb! nh!
des ganzen Systems darstellt, vjq ist gleich +1 wenn Q eine gerade
Permutation ist, im anderen Fall —1.

Mit diesen Bezeichnungen kann die antisymmetrische Eigenfunktion,

bestehend aus der Linearkombination aller Partialfunktionen (11)

(mit einem bestimmten Produkt von Spinfunktionen), in der Form (13)

geschrieben werden

+ra. rb, * ¦ ¦ - ^-^FFF-^F 2,QQUaUb. .nh.9ra9rb. .^ (13)

Der Faktor vor der Summation ist der Normierungsfaktor. Im Fall
eines Systems z. B. von zwei viervalentigen und zwei zweivalentigen
Atomen, unter Heranziehung der symmetrischen Spinfunktionen <pn

für alle Atome, d. h. unter der Annahme, daß sämtliche Spins positive
Werte haben, erhalten wir für (13) den Ausdruck

+4,4,2,2= y/ü^[2! 2 yjQQ,1.(1,2.3.4) Ub(5,6,7,8) uc(9,10) (14)

ud(ll,12) 9+(l,2,3,4) 94(5,6,7,8) <p2(9,10) 92(11,12)

Die Zahl der antisymmetrischen Eigenfunktionen (13) ist dieselbe wie
diejenige der Funktionen (11), d. h. gleich (12). Damit sind die Lösungen

der Schrödinger-Gleichung des ungekoppelten Atomsystems
bekannt. Die Energie des ganzen Systems ist nach (I .10) gleich der
Summe der Energien der einzelnen Atome.

Beim Heliumatom haben wir gesehen, daß die Energie in dieser

Approximation noch viel zu grob ist. Das gleiche gilt selbstverständlich
auch hier. Um eine Verbesserung des Energiewertes zu erzielen, wird
man die Störungsrechnung des entarteten Falles auch hier anwenden
müssen. Die Eigenfunktion nullter Näherung erhält man durch
Linearkombination der g Funktionen (11). Die Säkulargleichung ist vom
Grad g. Wie man sieht, wird man auf diese Weise auf ein ziemlich
hochgradiges Problem geführt. Im Fall des Benzols z. B. hätte man
gemäß (12) ein Gleichungssystem bestehend aus

g (4 + 1) (4 + 1) (4+1) (4 + 1) (4 + 1) (4 + 1) (1 + 1) (1 + 1) (1 + 1) (1 + 1) (1 + 1) (1 + 1) IO6
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linearen Gleichungen. Es ist selbstverständlich, daß die rechnerische

Behandlung derartiger Probleme auch mit den modernsten
Hilfsmitteln völlig ausgeschlossen ist. Zum Glück kann dieses Problem noch

weitgehend reduziert werden. Es ist dabei bemerkenswert und von
großer praktischer Wichtigkeit, daß die Ausreduktion des Problems
vor der Aufstellung der Säkulargleichung erfolgen kann.

Um die Diskussion dieser Reduktion möglichst einfach zu gestalten,
soll sie an Systemen von einvalentigen Atomen verfolgt werden. Die
Verallgemeinerung auf mehrelektronige Atome bietet dann keine

Schwierigkeiten mehr.
Es sei nochmals betont, daß vom Standpunkt des Koordinatenanteils

in (13) ein System von n Atomen nur eine antisymmetrische
Funktion besitzt, die Entartung in (13) stammt ausschließlich vom
Spinanteil. Bereits für zwei einvalentige Atome haben wir die vier
Möglichkeiten

Wi =427lQÖua(1)ub(2)a(l)a(2)
12

Wo 77= 2 IQ Q ua(l) ub(2) a(l) ß(2)
V £

¦kt =.-^2^QÖua(l)ub(2)ß(l)a(2)

Wo=-|2*lQQua(l)ub(2)ß(l)ß(2)

Um die Energiestörung und die Eigenfunktion nullter Näherung zu
ermitteln, muß hier eine 4-reihige Determinante (I. 34) berechnet
werden. Bei einem System von vier einvalentigen Atomen haben wir
schon 16 Funktionen vom Typus (13) und demnach eine 16-reihige
Säkulardeterminante (I. 34). Die Zahl dieser Funktionen steigt auch
bei einvalentigen Atomen sehr rapid an. Nach den Angaben der zweiten
Kolonne in der Tabelle 2 kann man sich von der Größe dieses Anstieges
Rechenschaft geben. Wie man sieht, ist das Problem bereits bei 8

Elektronen praktisch unlösbar.
Um weiter zu kommen, betrachten wir das System von vier Atomen

mit je einem Elektron. Die Funktionen (13) sind von der Form

Wi,i)1=7^27)QQua(l)ub(2)uc(3)ud(4) «(l)«(2)a(3)a(4) (15)
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Die Spinanteile der 16 Funktionen sind in der Tabelle 1 angegeben,
wobei A das erste Atom mit dem Elektron 1, B das zweite Atom mit
dem Elektron 2 usw. repräsentieren. In der zweiten Kolonne findet
man die Spinverteilungen, die den 16 Molekülfunktionen (13)
entsprechen und in der letzten ist die zugehörige Summe der Spinkomponenten

angegeben.
Die Säkulardeterminante dieses Systems ist nach (I. 34) von der

Form

Hn —EAU H12 — EA12 H116 — EA, 16

H2, — EA21 H22 — EA22 H216 —EA216

H161-EA161 HI62-EA162 H^je-EA, 6 16

0 (16)

In den H;i und An haben wir nach (I. 32) die Eigenfunktionen (15)

mit den verschiedenen Spinanteilen der Tab. 1 einzuführen.
Jeder Wurzel von (16) entspricht nach der Störungsrechnung eine

Eigenfunktion, die eine Linearkombination der 16 Funktionen (15)
darstellt. Die Wurzeln von (16) entsprechen den Wechselwirkungs-
energien zwischen den Atomen, die bis jetzt vernachlässigt wurden.
Wenn die vier einvalentigen Atome ein gemeinsames System bilden,
so unterscheiden sich die verschiedenen Zustände des Systems durch
die Wechselwirkungsenergie und durch den resultierenden Spin. Zu
jedem Spinwert S gehören im allgemeinen mehrere Wechselwirkungsenergien

und mehrere Eigenfunktionen.
Bei der Berechnung der Determinante (16) tritt eine Vereinfachung

wegen der Orthogonalität (I. 44) der Spinfunktionen ein. Dies läuft
praktisch darauf hinaus, daß alle Elemente der Determinante (16)

verschwinden, welche in Hü und An zwei Eigenfunktionen enthalten,
deren Gesamtspinkomponenten Ms verschieden sind. Es entsteht
somit aus (16) - bei Beachtung der Tab. 1 - die Determinante (17),

wo alle Elemente außerhalb der Quadrate verschwinden. Es entstehen
also zwei einreihige, zweivierreihige Teildeterminanten und eine sechs-

reihige. Die ursprüngliche Gleichung (16) erhält man dann aus (17)
durch Multiplikation der Teildeterminanten, die entlang der Diagonalen
situiert sind. Um die Wurzeln von (16) zu berechnen, setzt man die
einzelnen Teildeterminanten gleich Null. Durch diese Operation wird
die Bestimmung der Energie der ursprünglichen Gleichung (16) auf
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(17)

eine Reihe von Gleichungen niedrigeren Grades zurückgeführt, was
natürlich eine wesentliche Vereinfachung der Rechnungen darstellt.

Aber noch eine weitere Vereinfachung kann erzielt werden. Wir
wissen nämlich, daß eine Bindung zwischen zwei Atomen dann auf-

Tabelle 1. Spinfunktionen des Systems von 4 Atomen mit je einem Elektron

A B C D -Ms

9im a X cc a + 2

9lU0 a a X ß + 1

91101 a y. ß a + 1

<Pl011 a ß a a + 1

"Pom ß a a a + 1

<Pl " <Puoo a oc ß ß 0

<P2 9l010 a ß oc ß 0

93 9oiio ß a X ß 0

?4 91001 a ß ß a 0

95 9oioi ß a ß a 0

96 9oon ß ß a a 0

9l000 a ß ß ß -1
9oioo ß a ß ß -1
9ooio ß ß a ß -1
9oooi ß ß ß a -1
9oooo ß ß ß ß -2
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tritt, wenn die Spins der Elektronen beider Atome verschieden sind
und sich kompensieren um ein Spinpaar zu bilden. Dementsprechend
kommen für die Bindungen nur die Funktionen (15) mit den
Spinanteilen

9i,92,93,94,95,96 (18)

der Tab. 1 in Betracht, welche die gleiche Anzahl von Spinfunktionen
a. und ß enthalten, d. h. für welche Ms 0 ist. Für die Chemie ist dieser
Fall der wichtigste, die anderen können zunächst ganz weggelassen
werden. Bei der Energieberechnung unseres Systems genügt es also,
die sechsreihige Teildeterminante von (17) zu verwenden. In der dritten
Kolonne der Tab. 2 findet man die Zahl der Eigenfunktionen, die bei
größeren einvalentigen Systemen nach dieser Reduktion noch übrig
bleiben.

8. Die Spininvarianten

Obwohl die erzielte Vereinfachung im Abschnitt 7 beträchtlich ist,
bleiben die Rechnungen doch sehr weitläufig; nach der Tab. 2 muß
man für 8 Elektronen noch immer eine Determinante vom Grad 70

berechnen. Es wäre sehr vorteilhaft, wenn eine Reduktion noch vor
der Aufstellung der Säkulardeterminante erzielt werden könnte. Dies
ist nun tatsächlich möglich. Das Verfahren läuft im wesentlichen auf
die Bildung von geeignet gewählten Linearkombinationen von
Eigenfunktionen des Typus (18) aus, indem man eine Zuordnung zwischen
Valenzdispositionen der Chemie und Eigenfunktionen errichtet. In
der zusammenfassenden Darstellung (HRW) wird dieses Problem
sowie die Frage der Reduktion der Zahl der Eigenfunktionen, die im
Abschnitt 7 erzielt wurde, auf Grund von gruppen- und
invariantentheoretischen Überlegungen durchgeführt. Die Kenntnis dieser Zweige
der Algebra kann hier aber nicht vorausgesetzt werden. Wir wollen
deshalb die Zuordnung auf elementare Weise vornehmen, und begnügen
uns nachträglich, die Einführung des Begriffs der Spininvarianten
nach der genaueren Theorie kurz anzudeuten.

Wir knüpfen wieder an das obige System von vier Atomen mit je
einem Valenzelektron an. Die Verbindung der Atome durch Valenzstriche

führt auf die drei Valenzverteilungen (19), wo jeder Valenzstrich

aus später ersichtlichen Gründen mit einem Pfeil versehen ist.
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Die Richtung des Pfeiles ist an und für sich willkürlich, vorausgesetzt,
daß die einmal gewählten Richtungen für alle Operationen beibehalten
werden.

D

/ V

A D
<-

A D A

\F
V f

B /\C B C

%
C B

^3

(19)

Andere Valenzverteilungen gibt es hier selbstverständlich nicht.
Wir haben also einerseits drei Valenzdispositionen und anderseits die
sechs Eigenfunktionen vom Typus (18), zwischen denen eine
eindeutige Zuordnung zu konstruieren ist.

Vergleichen wir zu diesem Zweck die Valenzdisposition <\i1 mit den a

und ß Verteilungen der Funktionen (18) in Tab. 1 und insbesondere
die Situation des Atompaars A und B. In <\i1 sind die zwei Atome mit
einem Valenzstrich verbunden. Nach dem Spinvalenzverfahren tritt
eine Bindung dann auf, wenn die Spins der entsprechenden Elektronen
verschieden sind. Von den sechs Funktionen erfüllen für das Atompaar

A und B nur <p2, <p3, cp4, cp, diese Bedingung. Nur bei diesen können
sich dem Valenzstrich entsprechende Spinpaare bilden. Bei denselben
Funktionen können auch die Elektronen der Atome C und D ein Spinpaar

bilden, das dem Valenzstrich zwischen diesen Atomen entspricht.
Einen algebraischen Repräsentanten der Valenzdisposition <\i1 erhält
man, wenn der Koordinatenanteil zunächst weggelassen wird, durch
Kombination der vier Spinfunktionen cp2, 93, <p4, <p5 mit geeignet
gewählten Koeffizienten, d. h.

9 a2cp2 + a3cp3 + a4 <p4+ a59s (20)

Bei dem Zweielektronensystem in (7) gehören die drei symmetrischen
Spinfunktionen zu dem Gesamtspin S 1 und die antisymmetrische
zu S 0. Eine ähnliche Situation haben wir hier bei den
Spinpaarbildungen zwischen A, B und C, D. Die Linearkombination (20) muß
antisymmetrisch sein und ihr Vorzeichen ändern bei der Vertauschung
der Spinfunktionen a und ß. Vertauschen wir diese zunächst bei den
Atomen A und B. Die Funktion 9-, geht in 93 über und umgekehrt,
ferner geht 9,, in 95 über und umgekehrt. Man erhält also
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a2<p3 — a3<p2 — a4cp5 — a5cp4

Vertauschen wir anderseits die Spinfunktionen der Atome C und D,
so entsteht analog

<p — a2<p4 — a395 — a4q>2 — a593

Aus den Ausdrücken folgt, daß a2 a5 —a3 —a4 sein muß. Die
Kombination (20) kann unter diesen Bedingungen auch in der Form
(20a) geschrieben werden

9 92 - 93 — 94 + 9s (20a)

Wir sind jetzt soweit, die vollständige Linearkombination der
Funktionen <\>1010, <\>ono, ^i00i» 'r'oioi (m^ dem Koordinatenanteil
inbegriffen) und damit den mathematischen Repräsentanten (21) der
Valenzdisposition i\i1 anzugeben.

^r^f2^QQua(l)ub(2)uc(3)ud(4).a(l)ß(2)a(3)ß(4)

2 IQ Q ua(!) ub(2) uc(3) ud(4). ß(l) a(2) «(3) ß(4)
1

(21)
V41

-•"7=7 2 IQQua(]) ub(2) uc(3) ud(4).«(1) ß(2) ß(3) a(4)
V4!

+ 7>Jy 2 IQ Q "at1) ub(2) uc(3) ud(4). ß(l) a(2) ß(3) «(4)1

Durch analoge Überlegungen erhält man auch die Moleküleigenfunktionen,

die den Valenzdispositionen <\i2 und ^3 entsprechen. In (22)
sind diese in einer einfacheren Form mit den ausführlich geschriebenen
Indizes der C\iTa Tb angegeben.

4*1
2

[^IOIO — 4*0110 — +1001 + +0101]

+2
2

t+1100 " +1010 ™ Voi *< +0011] (22)

+3=2 [+1001 ~ +0011 — +1100 + 4*oiio]

Nach Heitler-Rumer-Weyl wird aber noch eine andere, die
Invarianten Schreibweise, verwendet. Auf Grund von (21) können wir
auch diese ohne Schwierigkeit einführen. In den Spinfunktionen (21)
sind die Elektronen durch Zahlen, die positiven und negativen Spin-
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werte mit a und ß bezeichnet. Statt der Nummern 1,2,... der Elektronen
führt man jetzt für jedes Elektron das Symbol des entsprechenden
Atoms ein, wobei die positiven und negativen Spinwerte mit den
Indizes 1 und 2 bezeichnet werden. Wenn z. B. das Elektron 3 mit
einem positiven Spinwert zum Atom A gehört, so wird man statt
a (3) einfach Aj schreiben ; die Elektronennummer tritt also explizite
gar nicht auf.

Mit dieser Bezeichnung lassen sich die sechs Spinfunktionen der
Tab. 1 so schreiben

9l : A,B,C2D2 <p4: A,B2C2D,
cp2: A,B2C,D2 95 : A2B,C2D1
93 : AjB^D;, <p6 : A2B2C,D1

Für die Moleküleigenfunktion (21) erhält man damit die einfachere
Form

+i =-4=2i)QQua(l)ub(2)uc(3)ud(4).|(A1B2-A2B1)(C1D2-C2D1) (23)
\A z

Wenn man schließlich die Abkürzungen

[AB] 4= (AiB2 - A2B,) - [BA]
V2\ (24)

[CD] — (C,D2 - C2D,) - [DG]
V2

einführt, so kann man die drei mathematischen Repräsentanten der
Valenzformeln (19) in ihre definitive Form bringen

+1 ^= 2 IQQ ua(l) ub(2) uc(3) ud(4). [AB] [CD]

+2 7/= 2 IQ Q ua(l) ub(2) uc(3) ud(4). [AD] [BC] (25)

+3 7*-= 2 IQQ ua(!) ub(2) nc(3) ud(4). [AC] [DB]

Wie man sieht, unterscheiden sich die drei Moleküleigenfunktionen
(25) nur in ihren Spinanteilen. Man kann diese als die direkten
Repräsentanten der Valenzbilder betrachten, wobei jedem Valenzstrich
ein Klammerausdruck [AB], [BC] entspricht. [AB] bedeutet also
einen Valenzstrich zwischen den Atomen A und B. Es sei aber darauf
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hingewiesen, daß die Zuordnung hier nicht bloß formaler Natur ist,
wie das etwa noch am Anfang dieses Jahrhunderts in ähnlich
gerichteten Zuordnungen der Fall war. Nach (24) entspricht nämlich
jedem mathematischen Repräsentanten des Valenzstriches zwischen
den Atomen A und B ein Elektronenpaar mit verschiedenen Spins.
Die rechte Seite (24) ist nämlich eine antisymmetrische Linearkombination

von entgegengesetzt gerichteten Spins. Den Ausdruck [AB]
oder das Produkt solcher Ausdrücke nennt man Spininvariante.

Dieses Ergebnis läßt sich auch auf den allgemeinen Fall übertragen,
so daß man für die Moleküleigenfunktionen eines Systems von ein-
und mehrelektronigen Atomen schreiben kann

*Pab, Pbc, * * * - y/^r^ 2 ^Q Q Ua Ub [ABfab [BC]"- (26)

Hier repräsentieren pab, pbc, die Anzahl Valenzstriche zwischen
den Atomen A und B, B und C usw. Die Bedeutung der übrigen Symbole

ist analog dem Ausdruck (13).
Zum Schluß soll die Zuordnung zwischen Valenzbild und

Spinfunktion auch vom Standpunkt der ursprünglichen Entwicklung nach

(HRW) wenigstens kurz angedeutet werden.
Betrachte man zu diesem Zweck zwei orthogonale Vektoren vom

gleichen Betrag mit den Komponenten x, y, z und X, Y, Z, so daß

x2 + y2 + z2 X2 + Y2 + Z2 1, xX + yY + zZ 0

ist. Bilde man anderseits einen komplexen Vektor mit den Komponenten

X' x + iX, Y' y + iY, Z' -= z + iZ

die der Relation X'2 + Y'2 + Z'2 0 genügt. Wenn man nun die
Ausdrücke

A, V X' + iY' A2 V—X' + iY'

konstruiert, so kann man zeigen, daß die zwei Größen Al und A2 die
Komponenten eines zweidimensionalen komplexen Vektors sind, die
sich bei einer Drehung des Koordinatensystems linear transformieren
nach
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Aj 3>21 1 "l~ *^*22-^2

wo die Transformation orthogonal im komplexen Sinne ist mit der
Determinante ana22 — a12a21 1.

Anderseits kann man auch zeigen, daß die verwendeten Spinfunktionen

a und ß bei der Drehung des Koordinatensystems gerade
derselben Transformation unterworfen sind. Es besteht somit folgende
Zuordnung

ciivA, ß cv. A2

d. h. a transformiert sich wie A1 usw.
Betrachten wir unter diesen Voraussetzungen die symmetrischen

Spinfunktionen (8). Wenn für jedes Elektron a und ß sich wie Aj und
A2 transformieren, so werden sich die Spinfunktionen wie die Produkte

9n ~ A,"a

9ra c^> A^a A2na-ra

9o ~ A2na

transformieren. Die Spinfunktionen können dann, insofern man ihr
Verhalten bei der Rotation betrachtet, durch die Größen

t/(na) A/aA^a-fa

ersetzt werden.
Wenn die Spinfunktion eines Atoms durch einen Vektor repräsentiert

werden soll, so muß man nach (13) für jedes Atom einen Vektor
einführen. Für das zweite Atom hat man dann B1( B2, die sich so
transformieren wie Aj und A2. Die Spinfunktionen des Atoms B sind durch

9W(rb)BirbB2nb_rb

zu ersetzen. Somit transformiert sich die ganze Funktion (13) wie das

Produkt 9r 9r d. h.

4>r cv; A/a A2na - **a. B,rb B2nb - **b.

Die Eigenfunktionen (13) gehören, wie wir bereits wissen, zu
verschiedenen Spinwerten. Für die Chemie sind die zu S 0 gehörenden
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am wichtigsten. Die Funktionen, die dem Gesamtspin S 0

entsprechen, bleiben aber gegenüber Spindrehung unverändert, d. h. sie

sind Invarianten der Rotation. Um Funktionen zu bilden, für welche
S 0 ist, muß man also Linearkombinationen von solchen Funktionen
wählen, die invariant sind.

Welche sind aber die Invarianten der Rotation? Falls man zwei
komplexe Vektoren A und B betrachtet, erhält man eine Invariante
durch Bildung der Determinante [AB] A^ - A2BX - [BA].
Dieser Ausdruck ist eine Invariante, weil die Determinante der
Transformationsmatrix gleich 1 ist. Um Linearkombinationen zu erhalten,
muß man mehrere Invarianten von diesem Typus miteinander
multiplizieren. Damit kommt man wieder zum Ausdruck (26). Die
Spininvarianten sind also Kombinationen von Spinfunktionen, die bei der

Drehung des Koordinatensystems unverändert bleiben.
Nun sind wir soweit, daß wir jede chemische Formel oder

Valenzverteilung durch eine Eigenfunktion charakterisieren können, wobei
jedem Valenzstrich zwischen zwei Atomen A und B ein Klammerausdruck

[AB] zugeordnet ist. Sind mehrere Valenzstriche zwischen
zwei Atomen, so wird dies durch den Wert des Exponenten pabi zum
Ausdruck gebracht [AB] Pab. Die Exponenten in (26) müssen natürlich
die Bedingungen

Pab + Pac + Pad + • • • na

Pab + Pbc + Pbd + ¦ ¦ • nb (27)

erfüllen.
Im allgemeinen gibt es für jedes System bestehend aus mehreren

Atomen eine Reihe von Moleküleigenfunktionen (26). Aus den
vorhergehenden Diskussionen folgt eindeutig, daß ihre Zahl gleich der Zahl
der Valenzformeln ist, die man erhält, wenn die Valenzstriche auf allen

möglichen Arten zwischen den Atomen des Moleküls verteilt werden.
Natürlich werden hier auch Valenzformeln vorkommen, die für den
Chemiker zunächst fremd erscheinen. Es sind grundsätzlich aber
zunächst alle Valenzdispositionen des Moleküls in Betracht zu ziehen.

Die Eigenfunktionen (26) beziehen sich noch immer auf ein System
von ungekoppelten Atomen. Sie sollten also den Ausgangspunkt für
die Störungsrechnung bilden, um die Wechselwirkungsenergien
zwischen den Atomen des Moleküls zu berechnen. Bei vier einvalen-
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tigen Atomen, wo nur die drei Valenzverteilungen (19) möglich sind,
wird man auf ein Säkularproblem (I. 33) dritten Grades geführt.
Gegenüber (18), wo eine sechsreihige Determinante zu berechnen war,
bedeutet die Einführung der Valenzdispositionen eine interessante
Vereinfachung. Geht man aber zu größeren Systemen über, so stellt
man fest, daß die erzielte Reduktion zunächst aufgehoben wird und
schon bei 8 Elektronensystem ist der Grad der Säkulardeterminante
größer als vor der Einführung der Valenzdispositionen.

Mit dem Übergang von (18) zu (26) haben wir somit das chemisch

wichtige Ergebnis der Repräsentierbarkeit von Valenzformeln durch
mathematische Ausdrücke zwar realisiert, eine Vereinfachung der

Rechnungen konnte aber dabei nicht erzielt werden, sie sind im
Gegenteil noch komplizierter geworden. Die Tabelle 2 illustriert diese

Situation. In der vierten Kolonne findet man die Anzahl der
Valenzdispositionen bzw. der Eigenfunktionen (26) eines Systems von
einvalentigen Atomen. Zum Glück bietet hier die Invariantentheorie
einen Ausweg, um das Problem rechnerisch weiter zu vereinfachen.

Bereits im einfachsten Fall von vier einelektronigen Atomen kann
man zeigen, daß die drei Eigenfunktionen (25) nicht linear unabhängig
sind. Zwischen den entsprechenden Spininvarianten besteht nämlich
die lineare Beziehung

[AB] [CD] + [AC] [DB] + [AD] [BC] 0 (28)

Man überzeugt sich leicht von der Richtigkeit dieser Relation durch
Einführen aller Ausdrücke vom Typus (24) in (28) und Multiplikation.
Von den drei Spininvarianten (28) sind nur zwei unabhängig. Ein
Fundamentalsatz der Invariantentheorie besagt ferner, daß alle
linearen Abhängigkeiten der Invarianten sich auf die einzige Gleichung
(28) zurückführen lassen. Somit kann man auf Grund dieser einzigen
Gleichung aus der Gesamtheit aller Valenzdispositionen eines Systems
diejenigen auswählen, die linear unabhängig sind.

Die letzte Kolonne der Tab. 2 gibt die Anzahl von linear unabhängigen

Eigenfunktionen bzw. Valenzdispositionen für den Fall von
einvalentigen Atomen an. Wie man sieht, erreicht man auf diese Weise
eine sehr weitgehende Reduktion der Anzahl Funktionen, die für die

Rechnungen in Frage kommen müssen. Bei 8 Elektronen z. B. kann
man insgesamt 105 Valenzdispositionen konstruieren, von denen
aber für die Rechnungen nur 14 notwendig sind.
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Tabelle 2. Anzahl der Moleküleigenfunktionen eines Systems von n Atomen
mit je einem Elektron

Elektronenzahl Von der Form (13) Vom Typus (18) Val«
Zahl der

nzdispositionen
Linear unabhängige
Valenzdispositionen

2 4 2 1 1

4 16 6 3 2

6 64 20 15 5

8 256 70 105 14

10 1 024 252 945 42
12 4 096 924 10 395 132
14 16 384 3 432 135 135 429
16 65 536 12 870 2 027 025 1430
18 262 144 48 620 34 459 425 4 862

Die Gesamtheit der linear unabhängigen Funktionen nennt man
eine unabhängige Basis von Eigenfunktionen oder einfach
unabhängige Basis. Wir werden auch von einer unabhängigen Basis von
Valenzdispositionen sprechen, obwohl diese Ausdrucksweise nicht ganz
richtig ist. Algebraisch betrachtet besteht nämlich nach (28) eine

Abhängigkeit zwischen den drei Invarianten. Man kann also auch
schreiben

[AB] [CD] + [AD] [BC] [AC] [BD] (29)

Die entsprechende Gleichung in Valenzformeln ausgedrückt lautet

+

B B

(29a)

B

Diese Gleichung kann nur dahin interpretiert werden, daß eine
gekreuzte Disposition in zwei kreuzungslosen aufgelöst werden kann.
Zwischen den Atomen A und B z. B. tritt aber auf der linken Seite
ein Valenzstrich auf, rechts dagegen überhaupt keiner. In diesem Sinne
sind die drei Valenzdispositionen linear gar nicht abhängig. Diese

Bemerkung ist notwendig, weil man in der Mesomeriemethode bei
der Berechnung der Elektronenverteilung die beiden Ausdrücke (29)

häufig als völlig gleichwertig behandelt hat.
Die Auswahl einer unabhängigen Basis auf Grund der Gleichung (28)

ist im Prinzip immer möglich. Ihre praktische Anwendung auf Systeme
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von mehr als 6 einvalentigen Atomen führt aber zu äußerst
weitläufigen, um nicht zu sagen, undurchführbaren Operationen. Zum
Glück existiert eine auf die Relation (28) axierte Regel von Rumer,
die in sehr einfacher Weise die Auswahl einer unabhängigen Basis

gestattet. Man bringe zu diesem Zweck die Atome des Moleküls in
einer willkürlichen Reihenfolge auf einem Kreis und bilde alle
Valenzdispositionen, bei denen sich keine Valenzstriche kreuzen. Die so
erhaltene Gesamtheit von Valenzdispositionen entspricht einer

unabhängigen Basis von Spininvarianten oder Eigenfunktionen (26).

Bezüglich der Auswahl einer unabhängigen Basis sei ausdrücklich
bemerkt, daß die Reihenfolge der Atome auf dem Kreis tatsächlich
belanglos ist; die Atome müssen also nicht in der natürlichen Anord-
nun disponiert werden. Daraus folgt aber, daß die verschiedenen
Reihenfolgen der Atome auf dem Kreis zu verschiedenen unabhängigen

Basen führen. Wenn wir die zwei Kohlenstoffatome A und B
und die vier Wasserstoffatome C, D, E, F z. B. in zwei verschiedenen

Reihenfolgen auf einen Kreis bringen, so bekommt man die zwei

unabhängigen Basen (30) des Äthylens. Es muß aber betont werden,
daß die so erhaltenen zwei Basen wie übrigens alle anderen unab-

(30a)

A B

F C / \
3

/
4 /1F xx \ /

6

1

A / 2
E D

(30b)

hängigen Basen gleichwertig sind in dem Sinne, daß die Berechnung
der Energie auf Grund jeder unabhängigen Basis zum selben Resultat
führen muß. Dasselbe muß auch für die Berechnung der Elektronenverteilung

gelten.
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9. Anzahl der Valenzdispositionen einer unabhängigen Basis

Der Ausgangspunkt für die Berechnung der Energie im Rahmen
der Störungsrechnung ist also nach obiger Reduktion durch die
Eigenfunktionen bzw. Valenzdispositionen der unabhängigen Basis gegeben.
Natürlich kann die Zahl der Valenzdispositionen der Basis immer
durch direkte Konstruktion festgelegt werden. Für die Beurteilung
der Komplexität des Problems ist es aber von Vorteil, die Anzahl der
Dispositionen im Voraus zu kennen, abgesehen davon, daß man bei
der praktischen Durchführung der Konstruktion der Dispositionen
eines größeren Systems immer zweifeln kann, ob die Basis vollständig
ist oder nicht. Wir wollen deshalb einen Weg angeben, der erlaubt,
diese Zahl für ein beliebiges Molekül festzulegen.

Wir gehen von folgender Bemerkung Heitiers (HRW) aus: die Zahl
der unabhängigen Invarianten (also auch der Valenzdispositionen)
stimmt mit der Zahl der Terme überein, die nach dem Vektormodell
mit einem Gesamtspin S 0 entstehen.

Um das zu verstehen, nehmen wir an, die Atome A und B haben
respektive na und nb parallele Spins. Das Gesamtspinmoment des

Atoms A ist dann Sa na/2 und dasjenige von B ist Sb nb/2. Wenn
die zwei Atome reagieren, so findet eine Koppelung der beiden Spins
Sa und Sb statt. Das Vektoradditionsmodell zeigt uns, wie die Kopplung
im einzelnen erfolgen wird.

Wir wissen bereits (Abschnitt 6), daß der Spin eines Elektrons
durch einen Vektor der Länge 1/2 repräsentiert werden kann und daß
der Gesamtspin eines Systems von mehreren Elektronen durch
Kombination der zu den verschiedenen Elektronen gehörenden Vektoren
ermittelt werden kann. Es ist also in unserem Fall zunächst möglich,
daß der Vektor Sa der verschiedenen Elektronen des Atoms A und der
Vektor Sb der Elektronen des Atoms B die gleiche Richtung haben,
dann wird die Spinresultante der beiden Atome S Sa+Sb sein. Der
Vektor Sb kann aber auch andere erlaubte Richtungen annehmen
und zwar solche, für die die Resultante Sa+Sb einen um eine oder
mehrere Einheiten kleineren Wert annimmt, bis der Vektor Sb eine

zum Vektor Sa entgegengesetzte Richtung aufweist. Falls Sa>Sb ist,
wird das Gesamtspinmoment also folgende Werte annehmen

S Sa + Sbj Sa + Sb-1, Sa + Sb~2, Sa-Sb (31)
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Diese Sachlage kann man auch so interpretieren: wenn p die Anzahl
Elektronenpaare mit antiparallelen Spins repräsentiert, ist der resultierende

Spin S Sa+Sb —p, wo p die Werte p 0, 1, 2, nb annimmt
Sind mehr als zwei Atome zusammenzusetzen, so kann man

zunächst zwei Atome kombinieren und dann das Resultat mit dem
dritten Atom zusammensetzen. Die resultierenden Terme sind
unabhängig von der Reihenfolge der Zusammensetzung. Hierbei kommt
häufig vor, daß mehr als ein Term die gleiche Multiplizität hat.

Zwei Beispiele sollen zur Illustrierung dieser Sachlage dienen. Statt
des resultierenden Spins wollen wir aber in diesem Abschnitt die Anzahl
der Elektronen mit nicht kompensiertem Spin verwenden, d. h.

na 2Sa> nb 2Sbj...
Als erstes Beispiel betrachten wir ein Atom A mit drei

Valenzelektronen, also na 3 und ein Atom B mit zwei Valenzelektronen
nb 2. Man hat dann drei Kombinationsmöglichkeiten : Die Elektronen
beider Atome haben alle parallelen Spins, somit ist na+nb =3+2 =5.
Ein Elektron von A und ein Elektron von B sind antiparallel, die Zahl
der parallelen Spins sinkt um zwei Einheiten und hat den Wert 3. Im
dritten Fall stellen sich zwei Elektronen von A und zwei Elektronen
von B antiparallel, die Zahl der Elektronen mit nicht kompensiertem
Spin ist gleich 1. Man kann auch sagen, daß die drei Fälle durch vek-
torielle Addition entstehen.

Erweitern wir das obige System von zwei Atomen mit einem dritten
einvalentigen, so erhält man durch Kombination der Werte 5, 3, 1

mit dem dritten Atom:
aus dem Wert 5 bekommt man 6, 4
aus dem Wert 3 bekommt man 4, 2

aus dem Wert 1 bekommt man 2, 0.

Die Anzahl der Elektronen mit nicht kompensiertem Spin sind also 6,
4, 2 und 0. Diese Werte treten hier aber mit verschiedenen Häufigkeiten
auf, die respektive 1, 2, 2, 1 sind. Es sei besonders darauf hingewiesen,
daß der Wert 0 nur einmal auftritt und daß die Anzahl der
Valenzdispositionen mit nicht gekreuzten Valenzstrichen ebenfalls gleich
eins ist: C—A=B.

Als zweites Beispiel nehmen wir den Fall von vier Atomen mit den

Wertigkeiten 2,2,2,2. Durch Zusammensetzung der beiden ersten
Atome erhalten wir für die Anzahl der Elektronen mit parallelen Spins

4, 2, 0 (I)
mit den Häufigkeiten 1, 1. 1
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Tabelle 3. Linear unabhängige Valenzdispositionen bei T,"

IV =r2+r0
r,3 r3+2r1
r,4 r4+3r2+2r0
IV r5+4r3+5r,
r,6 r6+5r4+9r2+5r0
iy r7+6r5+i4r3+i4r1
ry r8+7r6+2or4+28r2+i4r0
iy r9+8r7+27r5+48r3+42r,
ry° r10+9r8+35r6+75r4+9or2+42r0
iy* rn+ior9+44r7+iior5+i65r3+i32r1
Ti12 r12+nr10+54rs+i54r6+275r4+297r2+i32r0
r," r13+i2r„+65r9+208r7+429r5+572r3+429r1
ry4 r,4+i3r12+77r10+273r8+637r6+iooir4+iooir2+429r0
IV5 r15+i4r13+9or11+35or9+9ior7+i638r5+2002r3+i43or1
ry* r16+i5r14+io4r12+44or10+i26or8+2548r6+364or4+

+3432r2+1430r0

Durch Addition des dritten Atoms zu (I) bekommt man
aus 4 6, 4, 2

aus 2 4, 2, 0

aus 0 2 (II)
Das Ergebnis ist also 6, 4, 2, 0

mit den Häufigkeiten 1, 2, 3, 1.

Schließlich ergibt die Addition des vierten Atoms zu (II) :

6 ergibt 8, 6, 4
4 ergibt 6, 4, 2

4 ergibt 6, 4, 2

2 ergibt 4, 2, 0

2 ergibt 4, 2, 0 (III)
2 ergibt 4, 2, 0

0 ergibt 2.

Die Kombinationsmöglickheiten sind also 8, 6, 4, 2, 0

mit den Häufigkeiten 1, 3, 6, 6, 3

Dieses Beispiel, absichtlich so ausführlich dargestellt, führt uns
zu einem Ausdruck, der die Anzahl der unabhängigen Spininvarianten
zu berechnen gestattet. Bezeichnen wir nämlich ein Atom mit zwei

parallelen Spins mit T2 und die vektorielle Addition zweier derartiger
Systeme mit r2xr2, so kann das Ergebnis (I) auch so formuliert werden

r2xr2 ir4+ir2+ir0
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Tabelle 4. Linear unabhängige Valenzdispositionen bei Y2n

iy =r4+r2+r0
iy r6+2r4+3r2+r0
iy r8+3r6+6r4+6r2+3r0
r25 r10+4r8+ior6+i5r4+i5r2+6r0
iy r12+5r10+i5r8+29r6+4or4+36r2+i5r0
iy r14+6r12+2ir10+49r8+84r6+io5r4+9ir2+36r0
r28 r16+7r14+28r12+76r10+i54r8+238r6+28or4+232r2+9ir0
iy r18+8r,6+36r14+nir12+258r10+468r8+672r6+75or4+603r2+

+232r0
r210 r20+9r,8+45r16+i55r,4+405r12+837r10+i398r8+i89or6+

+2025r4+1585r2+603ro
r2n r22+ior20+55r,8+209r,6+605r14+i397r12+264or,0+

+4215r8+5313r6+5500r4+4213r2+1585r0
r212 r24+nr22+66r20+274r18+869r16+22iir,4+4642r12+8i62r10+

+12078r8+14938rfi+15026r4+11298r,+4213r„

d. h. durch Kombination von zwei Atomen mit je zwei parallelen
Spins (linke Seite) entstehen drei Zusammensetzungen : mit vier (T4),
zwei (T2) und null (ro) parallelen Spins, deren Häufigkeiten durch die
Koeffizienten zum Ausdruck kommen. Analog können wir das
Ergebnis (II) durch folgende Beziehung zum Ausdruck bringen

r2xr2xr2 ir6+2r++ir2+ir0

und schließlich bekommt man für (III)

ryryryr, ir8+3r6+6r4+6r2+3r0

D. h.,wenn man vier zweielektronige Atome kombiniert, so bekommt
man eine Zusammensetzung mit 8 parallelen Spins, drei Zusammensetzungen

mit 6 parallelen Spins usw. und schließlich drei Zusammensetzungen

mit durchwegs gesättigten Spins. Das letzte Glied gibt
gleichzeitig die Anzahl der unabhängigen Spininvarianten oder der

entsprechenden Valenzdispositionen der unabhängigen Basis an.
Das, was hier durch Vektoraddition in einem Spezialfall erreicht

wurde, kann verallgemeinert werden. Der entsprechende allgemeine
Ausdruck lautet

ra x rb ra+b + ra+b_2 + ra+b_4 + + ria—t>i (32)
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Tabelle 5. Linear unabhängige Valenzdispositionen bei T3n

iy =r6Tr4+r2+r0
iy r9+2r7+3r5+4r3+2r,
iy r12+3r10+6r8+ior6+iir4+9r2+4r0
jy r15+4r13+ior11+2or9+3or7+36r5+34r3+2or1
ry - r,8+5r16+i5r,4+35r,2+64r,0+96r8+i2or6+i2or4+9or2+34r0
17 - r21+6r19+2ir17+56r15+ii9r13+2iorn+3i5r9+40or7+426r5+

+364r3+2ior,
iy r24+7r22+28r20+84r18+202r16+406r14+70or12+io44r10+ i35ir8+

+i505r6+i4oor4+iooor2+364r0
ry r27+8r25+36r23+i2or21+32irI9+72or17+i392rI5+2352r,3+

+350irn+4600r9+5300r7+5256r5+4269r3+2400ri
17" -r30+9r28+45r26 + 165r24+485r22 + 1197r20+2553ri8+4785ri6 +

+ 7965ri4 + 11845ri2 + 15753ri0 + 18657r8 + 19425r„+17225r4 +
+11925r2+4269r0

Diese Formel, die in der Gruppentheorie für die Ausreduzierung von
Produktdarstellungen der Drehgruppe Verwendung findet, ist die
sogenannte Clebsch-Gordansche Formel.

Als Beispiel für die Anwendung dieser Formel nehmen wir ein
System von vier einvalentigen Atomen. Die Kombination der beiden
ersten Atome gibt

r^^-rj+r,
Die Zusammensetzung von drei Atomen führt auf

ivryr, (r2+r0)xr, r2xr,+r0xr, r3+2r.

Schließlich ergibt die Gesamtheit aller vier Atome

iyxivryr, (r3+2r,)xr, (r3xr,)+2(r,xr,)
(r4+r2)+2 (r2+r0) r4+3r2+2r0

Den vier einvalentigen Atomen entsprechen somit zwei unabhängige
Valenzdispositionen, was wir in (28) bereits festgestellt haben.

Für die praktische Berechnung der Anzahl von Spininvarianten
bzw. Valenzdispositionen der unabhängigen Basis eines beliebigen
Moleküls stellt man am besten Tabellen auf für Partialsysteme
bestehend aus lauter Atomen mit 1, 2, 3 und 4 parallelen Spins; diese

sind in den Tabellen 3, 4, 5 und 6 angegeben. Zur Abkürzung der
Schreibweise haben wir dort die Anzahl der Atome mit der gleichen
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Tabelle 6. Linear unabhängige Valenzdispositionen bei T/1

iy r8+r6+r4+r2+r0
iy r12+2r,0+3r8+4r6+5r4+3r2+r0
r44 r16+3rl4+6r12+ior10+i5r8+i7r6+i6r4+i2r2+5r0
IY r20+4r,8+ior16+2or14+35r12+5ir10+64r8+7or6+65r4+45r2+

+ier0
iy r24+5r22+i5r20+35r18+7or16+i2or14+i8or12+24or10+285r8+

+295r6+26or4+i8or2+65r0
r47 r28+6r2b+2ir24+56r22+i26r20+245r18+42or16+645r14+895r,2+

+H2or10+i26or8+i26or6+io85r4+735r2+26or0
r48 r32+7r30+28r28+84r26+2ior24+454r22+868r20+i492r,8+

+ 233iri6 + 3325rl4+4340rl2 + 5180r,0+5620r8 + 5460r6+4600r4 +

+3080r,+1085ro

Zahl nicht kompensierter Spins im Exponent zum Ausdruck gebracht,
also z. B. statt I\ x rx x V1 x Ti x I\ einfach IV oder statt T3 x T3 x T3 x r3,
T34 geschrieben.

Aus der Tabelle 3 entnimmt man beispielsweise, daß ein System,
bestehend aus 14 Atomen mit je einem Elektron, 429 unabhängige
Valenzdispositionen hat; das ist der Koeffizient von ro in iy4. Anderseits

entnimmt man aus Tabelle 6, daß die Zahl der Valenzdispositionen
eines aus 6 vierwertigen Atomen bestehenden Systems 65 ist.

Die Tabellen können selbstverständlich, wenn nötig, sehr leicht
noch erweitert werden auf Grund der allgemeinen Gleichung (32) bei
gleichzeitiger Beachtung der bereits bekannten Ausdrücke.

Im allgemeinen Fall, d. h. für ein Molekül bestehend aus ax

einwertigen, a2 zweiwertigen, a3 dreiwertigen und a4 vierwertigen Atomen,
erhält man den Koeffizienten von T0 durch schrittweise Ausrechnung
von

iyi x r/2 x iys x iy4 (33)

auf Grund von (32). Man ermittelt also z. B. zunächst T^ixT/2 dann

(T^xT/2) x r3a3 und schließlich (33) unter Verwendung der Angaben
der vier Tabellen.

Als Beispiel betrachte man die Berechnung der Anzahl Valenzbilder
des Äthylens, das aus zwei Kohlenstoffatomen und vier Wasserstoffatomen

besteht. Die Zusammensetzung von T/ und VF, deren einzelne
Ausdrücke aus den Tabellen 6 und 3 zu entnehmen sind, ergibt
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iy x r/ (r8+r6+r4+r2+r0) x (r4+3r2+2r0)
— 1 12 +1 10 +r8 +r6 +r4

+r,„ +r« +r6 +r4 +r2
+r8 +r6 +r4 +r2 +r0

+r6 +r4
+r4

+r2

+3r10 +3r8 +3r6
+3r8 + 3T6 +3r4

+3r6 +3r4
+3r4

+3r2
+3r2+3F0
+3r2

+2r8 +2r„ +2r4 +2r2+2r0

(34)

iy x iy r12+5r10+nr8+i5r6+i6r4+i4r2+6r0

Die unabhängige Basis des Äthylens besteht also aus 6 Valenzbildern,
was wir in (30) bereits durch die direkte Konstruktion festgestellt
haben. Die weitere Ergänzung (33) durch zwei und dreiwertige Atome
erfolgt ganz analog.

Man kann aber noch einen Schritt weiter gehen, um die Rechnungen
zu vereinfachen. Liegen nämlich zwei Teilausdrücke vor, wie z. B.
die oben verwendeten T42 und rx4, so ist der Koeffizient ro in der
Komposition (33) gegeben durch die Summe

S oevßv (35)

wo av und ßv die Koeffizienten von demselben Tv in den beiden
Teilausdrücken bedeutet. Denn eine Zusammensetzung Ta x Tb enthält
dann - und nur dann - ein Glied ro, wenn a b ist. Man hat also bei
der Bildung der Kompositionen Ta x Tb alle Tv zu beachten, die in
beiden Teilausdrücken auftreten. Bildet man die Produkte aller
solchen Koeffizienten und summiert sie, so erhält man die Summe (35),
die den Koeffizienten von ro repräsentiert.

Im obigen Beispiel des Äthylens sind nur T4, r2, ro beiden
Klammerausdrücken (34) gemeinsam. Multiplizieren wir die entsprechenden
Koeffizienten, so erhält man

S oevßv 1+3+2 - 6

Betrachte man noch das Beispiel des Benzols. In den Tabellen
3 und 6 findet man unter FF und r46, daß T6, T4, T2, ro gemeinsam
sind.
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S avßv 1.295+5.260+9.180 + 5.65 3540

In dieser Form stellt die Berechnung der Anzahl von Spininvarianten
oder Valenzdispositionen keine Schwierigkeiten mehr.

III. Die Energieberechnung

Durch die Auswahl einer unabhängigen Basis von Valenzformeln
aus der Gesamtheit aller Valenzdispositionen ist das Problem soweit
reduziert, wie es überhaupt bei dem heutigen Stand der Theorie
möglich ist. Wir denken hier an Reduktionen allgemeiner Natur, die

vor der Aufstellung des Säkularproblems durchführbar sind. Es wird
sich nämlich zeigen, daß in gewissen Fällen auch eine Vereinfachung
der Säkulardeterminante möglich ist, die aber von Fall zu Fall
verschieden sein wird.

Die Eigenfunktionen (II. 26) der unabhängigen Basis, die dem

Pauli-Prinzip genügen und zu einem Spinmoment S 0 gehören,
bilden den Ausgangspunkt unseres Störungsproblems. Es interessieren
uns hier hauptsächlich zwei Fragen: Die Berechnung der Störungsenergie

erster Ordnung auf Grund des Gleichungssystems (I. 33)

f
S (Hik - sAik) ck 0 i-1,2. ...f

k l
Hik J to H <\>k dx Aik j (fo <\>k dT

und die Ermittlung der Eigenfunktion nullter Näherung
iji c,to + c2t]i2 + + Cfto* (2)

In diesem Kapitel beschäftigen wir uns ausschließlich mit der Berechnung

der Energie. Auf die zweite Frage kommen wir im nächsten

Kapitel zu sprechen.

10. Säkulargleichung eines Systems von Atomen mit je einem Elektron

Da die numerische Berechnung der Energie bei großen Molekülen
oft sehr weitläufig wird, ist man in solchen Fällen gezwungen, sich mit
einer radikalen Approximation zu begnügen, indem man das Molekül
durch ein System von Atomen mit je einem Elektron approximiert.
Selbstverständlich erfährt auf diese Weise das Säkularproblem eine
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