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antisymmetrischen Eigenfunktionen koénnen in der Form (40) ge-
schriebenwerden, falls man dort in den a, b, c, ... auch die Spinquanten-
zahl einschlie(3t.

Von den wurspriinglich vorhandenen n! Eigenfunktionen des n-

Elektronensystems verbleibt eine einzige: die antisymmetrische Eigen-
funktion (40).

II. Darstellung der Valenzformeln durch Eigenfunktionen
6. Atomeigenfunkiionen

Wir sind nun soweit, die Konstruktion der Molekiileigenfunktionen,
die den Ausgangspunkt fiir die Ermittlung der Energie und Elektronen-
verteilung chemischer Molekitile bilden, in Angriff zu nehmen. Cha-
rakteristisch fiir die Spinvalenzvariante der Mesomeriemethode ist,
daB die Molekiile aus Atomen bzw. die Molekiileigenfunktionen aus
Atomeigenfunktionen aufgebaut werden. Unsere ndchste Aufgabe
ist also, Atomeigenfunktionen zu konstruieren.

Wie wir gesehen haben, kénnen die Eigenschaften eines Elektronen-
systems nur dann vollstindig erfallt werden, wenn man jedem Elektron
einen Spin zuordnet. Somit werden die Eigenfunktionen eines Systems
von n Elektronen auller den Koordinaten noch von den n Spinvariab-
len w,, o,, ..., 6, abhingig sein; d. h. die Eigenfunktion (9) ist in Wirk-
lichkeit, falls die Wechselwirkungen zwischen den Elektronen auf-
gehoben sind, von der allgemeineren Form

P(X,y1 2,05 - XnYn Zn©n) = Ya(X1 Y1 2y 01) - Yp(X, Y2 22 0,) 1)
----- br(Xn Yn Zn @n)

wo die Y (X;V;z ;) Funktionen der einzelnen Elektronen sind.
Die Buchstaben a, b, ¢, ... sind jetzt als Abktrzungen fir die vier
Quantenzahlen n, 1, m,, m, gedacht.

Fir die Konstruktion der Eigenfunktionen eines Atoms, bestehend
aus mehreren Elektronen, gibt es zwei Moglichkeiten. Bei der ersten
werden die Atomeigenfunktionen wie in (1) aus den vollstindigen
Einelektroneneigenfunktionen aufgebaut. Diese kommt fiir uns nicht
in Frage. Bei der zweiten Moglichkeit konstruiert man zunédchst die
nur von den Koordinaten der Elektronen abhingigen Atomeigen-
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funktionen und ergianzt sie mit den Spinfunktionen zu Gesamteigen-
funktionen, indem man beide Anteile miteinander multipliziert. Die
Aufspaltung der Gesamteigenfunktion des Atoms in zwei Faktoren
ist erlaubt, weil die entsprechenden magnetischen Wechselwirkungen,
die meistens sehr klein sind, vernachldssigt werden konnen. In der
Sprechweise des Bohrschen Modells bedeutet dies, daB3 die Koppelung
zwischen der Bahn der Elektronen und dem Spin vernachlissigt wird.
Man erhdlt also

(2)

Y(X1 Y1205 ...; XnYnZnwn) = WX, Y1 2y; X, V2225 -« -3 Xp Yn Zn) (01,0, - . .0p)

Wenn wir ferner von den magnetischen Wechselwirkungen, die die
Elektronen infolge ihres Spins aufeinander ausiiben, ebenfalls absehen,
so ist die Gesamtspinfunktion darstellbar als ein Produkt

¢ (01,0, - .., 0n) = (w)pa(w2) ... @nlwn) )

wo die ¢;(w;) den in (I. 43) eingefithrten Spinfunktionen «(w;) oder B(wy;)
entsprechen; fiir letztere werden wir auch die Bezeichnung «(i) und
B(1) verwenden, wobei1 - 1,2 3, ..., n die Elektronen repridsentieren.

Die Anzahl der Eigenfunktionen, die wir unserem n-Elektronen-
system im Abschnitt 5 zugeordnet haben, wurde zunichst von n! auf
zwel und be1 der Berticksichtigung des Pauliprinzips auf die einzige
antisymmetrische reduziert. Trotz dieser Vereinfachung kann man
aber durch Beriicksichtigung der verschiedenen Spinfunktionen des
Atoms mehrere antisymmetrische Eigenfunktionen bilden. Betrachten
wir als Beispiel ein Atom bestehend aus zwei Elektronen. Zur Bildung
einer antisymmetrischen Eigenfunktion bieten sich zunichst zwei
Moglichkeiten:

hi(1,2) = us(1,2) ga(1,2) "
$,(1,2) = ua(1,2) 9s(1,2) )

Das Pauliprinzip fordert ndmlich nur, dal die Gesamteigenfunktion
des Atoms antisymmetrisch sein soll. Das kann aber hier auf zwei
verschiedene Arten realisiert werden. Die Koordinateneigenfunktion
ug (1,2) kann symmetrisch sein und die Spinfunktion ¢, (1,2) antisym-
metrisch oder umgekehrt; in beiden Fillen ist die Gesamteigen-
funktion antisymmetrisch. Die Frage ist nur, welche der beiden Funk-
tionen unserem Fall entspricht; fiir uns kommen ndmlich nur solche
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antisymmetrische Atomeigenfunktionen in Betracht, die nach-
traglich zum Aufbau von Molekileigenfunktionen verwendet werden
konnen. Um diese Frage zu beantworten, erinnern wir zunichst an die
Veranschaulichung des Spins durch Vektoren und an die Vektoraddi-
tionsregeln.

Beim Vorhandensein von mehreren Elektronen in einem Atom kom-
biniert man die verschiedenen Spins zu einem Gesamtspin nach den

Vektoradditionsregeln: Den Spin eines Elektrons reprisentiert man

h
- - . Z—W - - .

Spinvektoren zweler Elektronen sind dann so zu kombinieren, dal} die

Betrige der resultierenden Vektoren ganzzahlig werden. Diese Vek-
toren konnen dann mit dem Spinvektor eines dritten Elektrons so
zusammengesetzt werden, dall die Betrage der resultierenden Vektoren
halbzahlig werden, usw. Man erkennt, da3 beil ungerader Anzahl von
Elektronen die Spinwerte ein ungerades Vielfaches von '/, sind, bei
gerader Zahl von Elektronen erhilt man dagegen O oder ein gerades
Vielfaches von !/,, d.h. S =1/,, 3/,,5/,,... bzw. 0, 1, 2, ... Zu jedem
Wert des Gesamtspins S gehéren ferner 2S+1 verschiedene Spinzu-
stinde. Diese entsprechen den Werten der Gesamtspinkomponente in
Richtung des Feldes

durch einen Vektor der Linge !/, (in .- Einheiten ausgedriickt). Die

Mg = —8, —[8—1), —EB—2), 59,0, 55, 8—L8—~1,8 (5)

Diese Werte erhilt man iibrigens auch als Summe der Spinkomponen-
ten der einzelnen Elektronen, d.h.

Mg = mg, + mg, + ... + Mgy (5a)

Ein durch S charakterisierter Term spaltet also maximal in 2S+1
Terme auf. Man bezeichnet Terme mit dem Spindrehimpuls oder
Spinmoment S =0, !/,, 1, 3/,, ... als Singulett-, Dublett-, Triplett-
usw. Terme. Allgemein nennt man 2S+1 die Multiplizitat.

Im Fall des Heliumatoms koénnen wir bei der Kombination der
Spinvektoren zwei Fille unterscheiden: entgegengesetzt gerichtete
Spins und parallel gerichtete Spins. Im ersten Fall ist die Spinsumme
S =0, im zweiten Fall ist sie S = 1. Es frigt sich nur, wie die Zuordnung
dieser Werte zu den Funktionen (4) vorzunehmen ist.

Beachten wir zu diesem Zweck, dafl der Spinvektor mit dem Ge-
samtspin S = 0 gemil der Vektoradditionsregeln nur eine Komponente
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Mg = 0 hat, wihrend zu dem Gesamtspin S =1 drei Komponenten
Mg - +1,0, —1 gehdren. Anderseits kommen aber fir die Spinfunk-
tionen eines Systems von zwei Elektronen die folgenden vier Méglich-
keiten in Betracht

I

(6)

Da die vollstindigen Eigenfunktionen antisymmetrisch sein miissen,
diirfen nach (4) nur symmetrische und antisymmetrische Spinfunk-
tionen auftreten. Die ersten zwel Funktionen (6) sind bereits symme-
trisch bei der Vertauschung von « und (, die anderen dagegen nicht;
man kann sie aber durch eine symmetrische und eine antisymmetrische
Linearkombination ersetzen. Wir erhalten somit statt (6) die folgenden
Ausdriicke:

(1)a(2) Ms=+1 (a)

«(1)B(2) + a(2)B(1) Ms =0 (b) (7)
B1B(2) Mg =—1 (c)

«(1)(2) —«(2)B(1) Ms =0 (d)

Bei der Einfithrung der Spinfunktionen (I. 43) haben wir gesehen,
daB jedem « ein Spin mit der z-Komponente mg =1/, und jedem f
ein Spin mit m, = —!/, entspricht. Zu jeder Spinfunktion (7) gehort
also eine Gesamtspinkomponente Mg in der z-Richtung, die man nach
(5a) durch Addition der einzelnen Komponenten erhilt. Diese sind
n (7) ebenfalls angegeben. Das sind aber die Werte, die wir schon oben
als Komponenten des Gesamtspins S =0 und S = 1 erhielten. Dem-
entsprechend koénnen wir auch die vier Spinfunktionen (7) zu den
Werten des Gesamtspins S = O und S = 1 zuordnen.

Man sieht unmittelbar, daB die Funktionen (7a) und (7c) zu S = 1
gehoren. Von den beiden anderen kann man zunéichst nur sagen, dal
die eine zu S = 1, die andere zu S = 0 gehort. Um eine definitive Zu-
ordnung zu treffen, erinnern wir, dal die Funktionen, die zu S =1
und S =0 gehoren, verschiedenen Energien entsprechen (Bel zwei
Wasserstoffatomen z. B. entspricht S = 1 einer AbstoBung der Atome,
wiahrend S = 0 die Molekiilbildung charakterisiert). Die drei zu S =1
gehorigen Funktionen sind also entartet und man kann sie auch linear
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kombinieren, wobei alle Funktionen entweder symmetrisch oder anti-
symmetrisch in den beiden Elektronen sein miissen. Nun sind aber
(7a) und (7c) bereits symmetrisch. Damit die Linearkombinationen
symmetrisch bleiben, muf3 die dritte Funktion ebenfalls symmetrisch
sein. Daraus folgt, daB die drei ersten Funktionen (7) zu dem Gesamt-
spin S = 1 und (7d) zu S = 0 gehoren.

Nun sind wir in der Lage zu entscheiden, ob die Spinfunktion bei
dem Aufbau der Atomeigenfunktionen in (4) symmetrisch oder anti-
symmetrisch gewdhlt werden muBl. Die hier betrachtete Theorie der
Spinvalenz beruht namlich auf der Annahme, daBl eine Bindung zwi-
schen zwel Atomen dann erfolgt, wenn ein Elektron des einen Atoms
mit einem Elektron des anderen Atoms ein Spinpaar bildet. Mole-
kilbildung zwischen zwei Wasserstoffatomen z. B. tritt dement-
sprechend dann auf, wenn die Spins der beiden Elektronen sich ab-
sattigen, d.h. sich so kombinieren, daBl der Gesamtspin dem Zu-
stand S = 0 entspricht. Diese Paarbildung der Elektronen entspricht
ibrigens genau der Lewisschen Anschauung tiber die Bildung einer
homdopolaren Bindung, was wiederum den engen Zusammenhang
zwischen dem HRW-Verfahren und der in der organischen Chemie
herrschenden Auffassung der Bindungsverhidltnisse besonders deut-
lich zum Ausdruck bringt.

Es ist nun klar, welche Funktionen (4) fiir unsere Zwecke in Frage
kommen. Wir brauchen Atomeigenfunktionen, deren Spins im freien
Atom noch ungesittigt sind. Nach den oben gesagten kann das aber
nur von parallel gerichteten Spins gewidhrleistet werden, das heil3t
von den symmetrischen Spinfunktionen.

Analoges gilt fiir Atome mit mehr als zwei Elektronen. Fir die
Bildung der antisymmetrischen Eigenfunktionen eines Atoms mit
mehreren Elektronen kommen nur symmetrische Spinfunktionen,
deren Spins parallel gerichtet sind, in Betracht. Elektronen deren Spins
abgesattigt sind, wie z. B. im Kohlenstoffatom die Spins der beiden
Elektronen der K-Schale, werden einfach weggelassen. Man bertick-
sichtigt also nur die Valenzelektronen des Atoms. Die antisymmetrische
Atomeigenfunktion eines Atoms mit mehreren Elektronen besteht also
auch im allgemeineren Fall aus dem Produkt einer antisymmetrischen
Koordinateneigenfunktion und einer symmetrischen Spinfunktion.

$(1,2, ...,n) =uu(l,2, ...,n)es (1,2, ..., n)
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Die Anzahl der symmetrischen Spinfunktionen eines Systems von
n Elektronen ist gleich n +1. Die Gesamtzahl der Spinfunktionen fiir n
Elektronen ist zundchst namlich gleich 2", Nun gehoren aber diejenigen
Kombinationen, die die gleiche Zahl von « und § Werte haben, zur
selben Spinsumme. Wihlt man von jeder einen Reprisentanten aus,
so bleiben n+1 Funktionen tbrig. Im Fall von drei Elektronen z. B.
haben wir zunidchst acht Spinfunktionen

Wenn wir von diesen jeweils einen Repridsentanten mit der gleichen
Anzahl von zund  Werten auswihlen, bleiben bloB die n +1 Funktionen
der ersten Kolonne tbrig. Im allgemeinen Fall kénnen wir also einem
Atom mit n gleichgerichteten Spins n +1 symmetrische Spinfunktionen
zuordnen. Allerdings sind diese teilweise Linearkombinationen von
Spinfunktionen, die die gleiche Zahl von « und § Werte haben. Die
endgiiltigen Ausdriicke der symmetrischen Spinfunktionen koénnen
in der Form

.................................

.................................

geschrieben werden. Wie bereits bemerkt, beschreibt « einen Spin
mit der z-Komponente m, = +*/, und § einen Spin mit der Komponente
m, = —!/,. Somit ist ¢, eine Funktion bestehend aus lauter positiven
Spinwerten und ¢, aus lauter negativen. Das Zeichen sym bedeutet,
daB die Funktion symmetrisiert werden soll durch Vertauschung der
Argumente und Bildung von Linearkombinationen der Spinfunktionen;

i . : ;
—— ist ein Normierungsfaktor.
V(T

Gemdll der Theorie der Spinvalenz wollen wir im folgenden an-
nehmen, dal3 sich jedes Atom in einem sogenannten S-Zustand be-
findet, d. h. das Bahnmoment L - 0 ist. Damit wird gleich ange-
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nommen, dall 1m Grundzustand des Atoms nur eine Eigenfunktion
vorhanden ist. Bei den Zustinden P, D, ... die den Bahnmomenten
L =1, 2... entsprechen, wiirde noch eine weitere Entartung, die
sogenannte Richtungsentartung, auftreten. Diese wollen wir, wie das
in der urspriinglichen Form der HRW-Theorie geschehen ist, bei-
seite lassen. Die Berticksichtigung dieser Entartung wirde niamlich
das ganze Bindungsproblem vom rechnerischen Standpunkt nur noch
komplizieren und den Zusammenhang der quantenmechanischen und
klassischen Valenztheorie nur verwischen. Nun liegt aber, wie bereits
erwahnt, einer der groBen Vorteile des Spinvalenzverfahrens gegen-
tiber der Molekiillbahnmethode z. B. gerade darin, dal der Grund-
gedanke der klassischen Valenzchemie hier besonders gut zum Aus-
druck kommt. Deshalb wird die vereinfachte Annahme gemacht, dalB
auller der Spinentartung keine anderen Entartungen vorliegen.

In Bezug auf das Kohlenstoffatom sei noch daran erinnert, dal3
sein Grundzustand ein P-Zustand ist mit vier s-Elektronen und zwei
p-Elektronen, genauer gesagt 1s22s?2p?. Die vier s-Elektronen bilden
zwel Spinpaare mit abgesittigten Spins, wihrend die zwei p-Elektronen
noch ledig sind. Das Atom besitzt also nur zwei Elektronen mit freien
Spins, d. h. das Kohlenstoffatom ist im Grundzustand nur zwei-
wertig. Da dieses Atom in den organischen Verbindungen fast durch-
wegs als vierwertig erscheint, wird man annehmen miissen, dal} es in
Verbindungen im angeregten Zustand auftritt. Eines der s-Elektronen
geht dabei in ein p-Elektron iber (1 =0 geht in 1=1) und ferner
erfolgt eine Umklappung des Spins eines Elektrons, der Gesamtspin
wichst dabel von S =1 auf S = 2; das Atom ist nun im Zustand 3S
mit vier ledigen Elektronen. Die Anregungsenergie des >S-Zustands
ist tibrigens bekannt, V = 96 kcal/mol.

7. Molekiileigenfunktionen

Nun sind wir in der Lage, den Autbau des Molekiils aus Atomen
niaher zu diskutieren. Um die Wechselwirkungsenergie mehrerer
Atome in einem Molekiil zu ermitteln, betrachten wir eine Reihe von
Atomen, die wir mit A, B, C, ..., H bezeichnen wollen. Die Atomkerne
sollen unendlich schwer angesehen, d.h. im Raum fixiert gedacht
werden. Die Anzahl der Elektronen wird respektive durch n,, ny ... ny
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reprasentiert; ihre Gesamtzahl ist gleich n,+ny+...+n, =n. Die
Elektronen der abgeschlossenen Schalen werden hier nicht bertick-
sichtigt, ithre Spins sind ja abgesittigt. Die entsprechenden spinlosen
Eigenfunktionen sind dann

By Wl 50y By
B: up(ng +1,n, +2, ..., ng+nyp) (9)
H: Gg(ng + gt ..+ Wyt by oo By + 054 ... 4 Hy + Hp)

Die Elektronen sind hier durchgehend numeriert. Die Zahlen stehen
als Abkirzungen fir die drei Ortskoordinaten der betreffenden
Elektronen.

Die Koordinatenfunktionen (9) miissen noch mit den symmetrischen
Spinfunktionen (8) erginzt werden. Die vollstindige Eigenfunktion
eines Atoms erscheint dann als Produkt der Koordinaten- und Spin-
funktionen (die magnetischen Wechselwirkungen wurden ja vernach-
lassigt).

ua(1,2, i G .,I‘la) . Cpra (10)

Es gibt natiirlich im ganzen n,+1 solche Produkte, weil das Atom
A ja n, +1 symmetrische Spinfunktionen besitzt; analoges gilt fir die
Eigenfunktionen der Atome B, C, ..., H, die Zahl ihrer Eigenfunktionen
vom Typus (10) ist respektive ny+1, ..., n,+1.

Unser Zweck ist jetzt die Energie und die Eigenfunktionen des aus
Atomen aufgebauten Molekiils zu ermitteln. Wir sollten also eigentlich
die Schrodinger-Gleichung lésen, die diesem Molekiil entspricht. Die
exakte Berechnung ist natiirlich undurchfithrbar. Im Abschnitt 3
haben wir gesehen, dal3 die Schrédinger-Gleichung eines Systems, be-
stehend aus mehreren Teilchen, 16sbar ist, wenn die Wechselwirkungen
zwischen den Teilchen vernachlissigt werden. Die Eigenfunktion der
so vereinfachten Gleichung ist dann gemal (I.9) gegeben durch das
Produkt der Eigenfunktionen der einzelnen Teilchen und die Energie
ist nach (I. 10) gleich der Summe der Energien der einzelnen Teilchen.

Im gegenwertigen Fall kénnen aber die Atomeigenfunktionen als
bekannt angesehen werden. Dann kann man die Gesamtheit A, B, ...,
H als ein einziges System betrachten, deren Atome in solchen Ab-
stinden voneinander sind, daB3 sich die Elektronen der verschiedenen
Atome praktisch nicht beeinflussen. Damit haben wir ein System vor
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uns, dessen Schrodinger-Gleichung nach den im Abschnitt 3 gemachten
Angaben l6sbar ist oder besser gesagt,dessen Losung bereits bekannt
1st; nach Gleichung (I. 9) ist sie durch das Produkt der Atomeigen-
funktionen (10) selbst gegeben

uaq)ra . ubq)rb s uh‘?rh (11)

oder beispielsweise
(11a)
Ua(1,2, ..., 0a) 0n(1,2, ..., ng) . up(na+1, ..., ng+np) pp(ng+1, ..., ny+np)
vooup(Ng+. .. 4ng+l, L., Da+. . 4+0p) Qu(Dg+. . +0g+], L., Dyt . 4Dy)

In (11a) haben wir der Einfachheit halber iiberall die Spinfunktionen
mit lauter positiven Spinwerten eingesetzt. Da das Atom A aber n, +1,
das Atom B ny+1 usw. das Atom H ny, +1 Spinfunktionen besitzt, gibt
es mehrere Eigenfunktionen (11) des ungekoppelten Systems; ins-
gesamt gibt es

g = (ng +1) (np + 1)...(np+1) (12)

Funktionen vom Typus (11).

Nun ist zwar (11) eine gendherte Funktion unseres Systems, be-
stehend aus ungekoppelten Atomen, doch geniigt sie dem Pauliprinzip
noch nicht, denn sie ist nicht antisymmetrisch in allen Elektronen.
Sie ist zwar antisymmetrisch in Bezug auf die Vertauschung zweier
Elektronen des Atoms A, ferner fiir die Elektronen des Atoms B usw.
nicht aber beziiglich der Vertauschung zweier Elektronen zwischen
verschiedenen Atomen. Eine antisymmetrische Funktion in Bezug auf
die Vertauschung aller Elektronen erhilt man sehr leicht in folgender
Weise:

Im Abschnitt 5 haben wir bei der Besprechung der Austausch-
entartung gesehen, daBl die Eigenfunktion (I.37) nicht die einzige
Losung des aus n ungekoppelten Elektronen bestehenden Systems
ist. Wir erhielten durch Permutation mehrere Eigenfunktionen zum
selben Eigenwert, insgesamt n! Eigenfunktionen. Durch eine Linear-
kombination aller dieser Partialeigenfunktionen, versehen mit den
Koeffizienten +1 und —1, je nachdem ob die Permutation gerade oder
ungerade ist, bekamen wir die antisymmetrische Gesamteigenfunktion.

Im Falle (11) entstehen die anderen Partialeigenfunktionen durch
Permutation der Elektronen der verschiedenen Atome; diejenigen
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Permutationen, die sich zwischen den Elektronen der einzelnen Atome

abspielen, sind bereits durchgefithrt. Die Permutationen, die nur

Elektronen verschiedener Atome vertauschen, nennen wir Q. Thre Zahl
n!

Ila! Ilb! v Dy

des ganzen Systems darstellt. »q ist gleich +1 wenn Q eine gerade

Permutation ist, im anderen Fall —1.

Mit diesen Bezeichnungen kann die antisymmetrische Eigenfunk-
tion, bestehend aus der Linearkombination aller Partialfunktionen (11)
(mit einem bestimmten Produkt von Spinfunktionen), in der Form (13)
geschrieben werden

ist gegeben durch wo n die Gesamtzahl der Elektronen

ng! np! ... np!
b rb,...:\/ !l B! S g Qua e U Brry By (13)

Der Faktor vor der Summation ist der Normierungsfaktor. Im Fall
eines Systems z. B. von zwel viervalentigen und zwei zweivalentigen
Atomen, unter Heranziehung der symmetrischen Spinfunktionen g,
fir alle Atome, d. h. unter der Annahme, dal3 simtliche Spins positive
Werte haben, erhalten wir fir (13) den Ausdruck

41412121
G, u,2,2 = \/T N 10 Q ua(1,2,3,4) up(5,6,7,8) u(9,10) (14)
14(11,12) 0,(1,2,3,4) 9,(5,6,7,8) 9,(9,10) 0,(11,12)

Die Zahl der antisymmetrischen Eigenfunktionen (13) ist dieselbe wie
diejenige der Funktionen (11), d. h. gleich (12). Damit sind die Losun-
gen der Schrodinger-Gleichung des ungekoppelten Atomsystems
bekannt. Die Energie des ganzen Systems ist nach (I .10) gleich der
Summe der Energien der einzelnen Atome.

Beim Heliumatom haben wir gesehen, dall die Energie in dieser
Approximation noch viel zu grob ist. Das gleiche gilt selbstverstandlich
auch hier. Um eine Verbesserung des Energiewertes zu erzielen, wird
man die Stérungsrechnung des entarteten Falles auch hier anwenden
miissen. Die Eigenfunktion nullter Niherung erhidlt man durch Linear-
kombination der g Funktionen (11). Die Sédkulargleichung ist vom
Grad g. Wie man sieht, wird man auf diese Weise auf ein ziemlich
hochgradiges Problem gefiihrt. Im Fall des Benzols z. B. hitte man
gemdl (12) ein Gleichungssystem bestehend aus

g=“#+1)4+1)4+)4+1) ¢ +H4+1) 1+ (1+1) (1 +1) (1+1) (1 +1) (1 +1) = 109
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linearen Gleichungen. Es ist selbstverstindlich, daB die rechnerische
Behandlung derartiger Probleme auch mit den modernsten Hilfs-
mitteln vollig ausgeschlossen ist. Zum Gliick kann dieses Problem noch
weitgehend reduziert werden. Es ist dabel bemerkenswert und von
groBer praktischer Wichtigkeit, dal die Ausreduktion des Problems
vor der Aufstellung der Sikulargleichung erfolgen kann.

Um die Diskussion dieser Reduktion moglichst einfach zu gestalten,
soll sie an Systemen von einvalentigen Atomen verfolgt werden. Die
Verallgemeinerung auf mehrelektronige Atome bietet dann keine
Schwierigkeiten mehr.

Es sei nochmals betont, da vom Standpunkt des Koordinaten-
anteils in (13) ein System von n Atomen nur eine antisymmetrische
Funktion besitzt, die Entartung in (13) stammt ausschlieBlich vom
Spinanteil. Bereits fir zweil einvalentige Atome haben wir die vier
Moglichkeiten

b = 5 SnaQuall) us(2) «(1) (2
bio = % N0 Qua(1) up(2) o(1) B(2)
bot = V% N0 Q ua(1) up(2) B(1)2(2)

s = 5—5 SnqQua(l) up(2) B(1) B(2)

Um die Energiestérung und die Eigenfunktion nullter Niherung zu
ermitteln, mull hier eine 4-rethige Determinante (I.34) berechnet
werden. Bel einem System von vier einvalentigen Atomen haben wir
schon 16 Funktionen vom Typus (13) und demnach eine 16-reihige
Siakulardeterminante (I. 34). Die Zahl dieser Funktionen steigt auch
bei einvalentigen Atomen sehr rapid an. Nach den Angaben der zweiten
Kolonne in der Tabelle 2 kann man sich von der Gré8e dieses Anstieges
Rechenschaft geben. Wie man sieht, ist das Problem bereits bei 8
Elektronen praktisch unldsbar.

Um weiter zu kommen, betrachten wir das System von vier Atomen
mit je einem Elektron. Die Funktionen (13) sind von der Form

5y

"[)1, Ty Lyd T Nﬂ

ET}Q Qua(l) up(2) ue(3) ug(4) . a(l) ee(2) o(3) cx(4) (15)
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Die Spinanteile der 16 Funktionen sind in der Tabelle 1 angegeben,
wobel A das erste Atom mit dem Elektron 1, B das zweite Atom mit
dem Elektron 2 usw. repriasentieren. In der zweiten Kolonne findet
man die Spinverteilungen, die den 16 Molekiilfunktionen (13) ent-
sprechen und in der letzten ist die zugehdrige Summe der Spinkompo-
nenten angegeben.

Die Sikulardeterminante dieses Systems ist nach (I. 34) von der
Form

HII_EAII HIZ_EAIZ ..... Hl 16"_“EA1 16
H, — EAy Hy, —EA; oo H; 16— EAj 16

...........................................

-0 (16)

In den H; und A; haben wir nach (I.32) die Eigenfunktionen (15)
mit den verschiedenen Spinanteilen der Tab. 1 einzufiihren.

Jeder Wurzel von (16) entspricht nach der Stérungsrechnung eine
Eigenfunktion, die eine Linearkombination der 16 Funktionen (15)
darstellt. Die Wurzeln von (16) entsprechen den Wechselwirkungs-
energien zwischen den Atomen, die bis jetzt vernachlassigt wurden.
Wenn die vier einvalentigen Atome ein gemeinsames System bilden,
so unterscheiden sich die verschiedenen Zustinde des Systems durch
die Wechselwirkungsenergie und durch den resultierenden Spin. Zu
jedem Spinwert S gehoren im allgemeinen mehrere Wechselwirkungs-
energien und mehrere Eigenfunktionen.

Bei der Berechnung der Determinante (16) tritt eine Vereinfachung
wegen der Orthogonalitat (I. 44) der Spinfunktionen ein. Dies lauft
praktisch darauf hinaus, daB alle Elemente der Determinante (16)
verschwinden, welche in H;; und A;; zwei Eigenfunktionen enthalten,
deren Gesamtspinkomponenten Mg verschieden sind. Es entsteht
somit aus (16) — bei Beachtung der Tab. 1 — die Determinante (17),
wo alle Elemente auBerhalb der Quadrate verschwinden. Es entstehen
also zwei einreihige, zwel vierreihige Teildeterminanten und eine sechs-
reihige. Die urspriingliche Gleichung (16) erhilt man dann aus (17)
durch Multiplikation der Teildeterminanten, die entlang der Diagonalen
situiert sind. Um die Wurzeln von (16) zu berechnen, setzt man die
einzelnen Teildeterminanten gleich Null. Durch diese Operation wird
die Bestimmung der Energie der urspriinglichen Gleichung (16) auf
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eine Reihe von Gleichungen niedrigeren Grades zurtickgefiihrt, was
natiirlich eine wesentliche Vereinfachung der Rechnungen darstellt.

Aber noch eine weitere Vereinfachung kann erzielt werden. Wir
wissen niamlich, dal eine Bindung zwischen zwei Atomen dann auf-

Tabelle 1. Spinfunktionen des Systems von 4 Atomen wmit je eimem Elektron

A B C D Mg
P1111 o o o o +2
Pii10 o o o B +1
P1101 o o B o +1
Pio11 o & o o .
Por11 B o o & il
P1 = P1100 o &% B B 0
P2 = Pio10 ox B o B 0
P3 = Po11o B & « B 0
P4 = Pioo01 o B8 B8 o 0
Ps = Qo101 B o B o 0
@6 = Qoo11 B B o o 0
P1o00 o B B B =l
Po1o0 ¢ o B B =l
Pooto £ G o B =1
Pooo1 B e e o =
Poooo B B B B —2
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tritt, wenn die Spins der Elektronen beider Atome verschieden sind
und sich kompensieren um ein Spinpaar zu bilden. Dementsprechend
kommen fiir die Bindungen nur die Funktionen (15) mit den Spin-
anteilen

D1, Pz, P3, P4, Ps, Po (18)

der Tab. 1 in Betracht, welche die gleiche Anzahl von Spinfunktionen
« und § enthalten, d. h. fiir welche Mg = 0 1st. Fiir die Chemie ist dieser
Fall der wichtigste, die anderen kdénnen zunichst ganz weggelassen
werden. Bei der Energieberechnung unseres Systems geniigt es also,
die sechsreihige Teildeterminante von (17) zu verwenden. In der dritten
Kolonne der Tab. 2 findet man die Zahl der Eigenfunktionen, die bei
groleren einvalentigen Systemen nach dieser Reduktion noch iibrig
bleiben.

8. Die Spininvarianten

Obwohl die erzielte Vereinfachung im Abschnitt 7 betrichtlich ist,
bleiben die Rechnungen doch sehr weitldufig; nach der Tab. 2 mul
man fir 8 Elektronen noch immer eine Determinante vom Grad 70
berechnen. Es wire sehr vorteilhaft, wenn eine Reduktion noch vor
der Aufstellung der Sikulardeterminante erzielt werden koénnte. Dies
ist nun tatsichlich moéglich. Das Verfahren lduft im wesentlichen auf
die Bildung von geeignet gewihlten Linearkombinationen von Eigen-
funktionen des Typus (18) aus, indem man eine Zuordnung zwischen
Valenzdispositionen der Chemie und Eigenfunktionen errichtet. In
der zusammenfassenden Darstellung (HRW) wird dieses Problem
sowie die Frage der Reduktion der Zahl der Eigenfunktionen, die im
Abschnitt 7 erzielt wurde, auf Grund von gruppen- und invarianten-
theoretischen Uberlegungen durchgefiihrt. Die Kenntnis dieser Zweige
der Algebra kann hier aber nicht vorausgesetzt werden. Wir wollen
deshalb die Zuordnung auf elementare Weise vornehmen, und begniigen
uns nachtréaglich, die Einfiithrung des Begriffs der Spininvarianten
nach der genaueren Theorie kurz anzudeuten.

Wir kniipfen wieder an das obige System von vier Atomen mit je
einem Valenzelektron an. Die Verbindung der Atome durch Valenz-
striche fithrt auf die drei Valenzverteilungen (19), wo jeder Valenz-
strich aus spiter ersichtlichen Griinden mit einem Pfeil versehen ist.
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Die Richtung des Pfeiles ist an und fiir sich willkiirlich, vorausgesetzt,
dal3 die einmal gewidhlten Richtungen fiir alle Operationen beibehalten
werden.

(19)

C B C B C B
Y‘l \'VZ \IJ3

Andere Valenzverteilungen gibt es hier selbstverstidndlich nicht.
Wir haben also einerseits drei Valenzdispositionen und anderseits die
sechs Eigenfunktionen vom Typus (18), zwischen denen eine ein-
deutige Zuordnung zu konstruieren ist.

Vergleichen wir zu diesem Zweck die Valenzdisposition ¢, mit den «
und @ Verteilungen der Funktionen (18) in Tab. 1 und insbesondere
die Situation des Atompaars A und B. In ¢, sind die zwei Atome mit
einem Valenzstrich verbunden. Nach dem Spinvalenzverfahren tritt
eine Bindung dann auf, wenn die Spins der entsprechenden Elektronen
verschieden sind. Von den sechs Funktionen erfiillen fiir das Atom-
paar A und B nur ¢,, 9;, ¢,, ¢, diese Bedingung. Nur bel diesen konnen
sich dem Valenzstrich entsprechende Spinpaare bilden. Bei denselben
Funktionen kénnen auch die Elektronen der Atome C und D ein Spin-
paar bilden, das dem Valenzstrich zwischen diesen Atomen entspricht.
Einen algebraischen Reprisentanten der Valenzdisposition ¢, erhdlt
man, wenn der Koordinatenanteil zunichst weggelassen wird, durch
Kombination der vier Spinfunktionen o,, ¢;, @, o, mit geeignet ge-
wiahlten Koeffizienten, d. h.

@ = Axpy + azPz + Ay Pyt A5Ps (20)

Bei dem Zweielektronensystem in (7) gehoren die drei symmetrischen
Spinfunktionen zu dem Gesamtspin S = 1 und die antisymmetrische
zu S = 0. Eine dhnliche Situation haben wir hier bei den Spinpaar-
bildungen zwischen A, B und C, D. Die Linearkombination (20) muBl
antisymmetrisch sein und ihr Vorzeichen dndern bei der Vertauschung
der Spinfunktionen « und p. Vertauschen wir diese zundchst bei den
Atomen A und B. Die Funktion ¢, geht in ¢, Giber und umgekehrt,
ferner geht ¢, in ¢4 tiber und umgekehrt. Man erhélt also
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@ = —QyP3; — A3Py — A4P5 — AsPy

Vertauschen wir anderseits die Spinfunktionen der Atome C und D,
so entsteht analog

© = — AxPy — A3Qs — 4Py — A5P3

Aus den Ausdriicken folgt, dall a, = a; = —a; = —a, sein mul}. Die
Kombination (20) kann unter diesen Bedingungen auch in der Form
(20a) geschrieben werden

@ =@ —P3— Py + Ps (20a)

Wir sind jetzt soweit, die vollstindige Linearkombination der
Funktionen 4,050, Yo1100 Y1001, Yo101 (mit dem Koordinatenanteil
inbegriffen) und damit den mathematischen Repriasentanten (21) der
Valenzdisposition {; anzugeben.

=3 [i/% S 10 Q u(1) 1p(2) ue(3) ug(4) . a(1)B(2)(3)8(4)
= v; S 10 Qua(1) up(2) 1e(3) ua(®) . B(1) a(2) «(3) B(4)

| (21)
= v_tﬁ S 10 Q (1) ub(2) ue(3) ug(#) . (1) B(2) B3) a(4)

+ Vlﬁ > 1 Qua(l) up(2) uc(3) ug(4) . B(1) (2) £(3) cx(4)]

Durch analoge Uberlegungen erhilt man auch die Molekiileigen-
funktionen, die den Valenzdispositionen {, und {; entsprechen. In (22)
sind diese in einer einfacheren Form mit den ausfithrlich geschriebenen
Indizes der {Yr, 1y, - angegeben.

‘-P1 - % [‘l’wlo - '-pmlo - ‘~IJ1001 + 4’0101]
Y, = % [$1100 — Y1010 — Vo101 + Poo11] (22)
4’3 - % Hﬁom - Ll-’oou - LL’uoo + ‘-lv‘ouo]

Nach Heitler-Rumer-Weyl wird aber noch eine andere, die In-
varianten Schreibweise, verwendet. Auf Grund von (21) kénnen wir
auch diese ohne Schwierigkeit einfithren. In den Spinfunktionen (21)
sind die Elektronen durch Zahlen, die positiven und negativen Spin-
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werte mit « und p bezeichnet. Statt der Nummern 1, 2, ... der Elektronen
fihrt man jetzt fir jedes Elektron das Symbol des entsprechenden
Atoms ein, wobel die positiven und negativen Spinwerte mit den
Indizes 1 und 2 bezeichnet werden. Wenn z. B. das Elektron 3 mit
einem positiven Spinwert zum Atom A gehort, so wird man statt
« (3) einfach A, schreiben; die Elektronennummer tritt also explizite
gar nicht auf.

Mit dieser Bezeichnung lassen sich die sechs Spinfunktionen der
Tab. 1 so schreiben

: A;BC:D, : A,B,C,D,
cp2 A,B.C,D, cpsABCD
;. A,B,C,D, 9s: A,B,C,D,

Fir die Molekiileigenfunktion (21) erhdlt man damit die einfachere
Form

by = \E > 1Q Q ua(1)up(2) uc(3) ug(4). (A B,—A,B))(C,D,—C,D,) (23)

Wenn man schlieBlich die Abkiirzungen

[AB] = —=(A;B; — A;B)) = —[BA]

L3
V2
il
[CD] \/2( ) [DC]

(24)

einfithrt, so kann man die drei mathematischen Reprisentanten der
Valenzformeln (19) in ihre definitive Form bringen

iy i ZVJQQua(l) up(2) uc(3) uq(4) .[AB] [CD]

Ve
b= Ty Q@ ua(h) (@) ued) ua(4) (D] (BC (25)
b= 7 S 10 Q1) u6(2) vel3) ug(4).[AC) DB

Wie man sieht, unterscheiden sich die drei Molekiileigenfunktionen
(25) nur in ihren Spinanteilen. Man kann diese als die direkten Repri-
sentanten der Valenzbilder betrachten, wobei jedem Valenzstrich
ein Klammerausdruck [AB], [BC] ... entspricht. [AB] bedeutet also
einen Valenzstrich zwischen den Atomen A und B. Es sei aber darauf
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hingewiesen, dall die Zuordnung hier nicht bloB formaler Natur ist,
wie das etwa noch am Anfang dieses Jahrhunderts in dhnlich ge-
richteten Zuordnungen der Fall war. Nach (24) entspricht namlich
jedem mathematischen Repriasentanten des Valenzstriches zwischen
den Atomen A und B ein Elektronenpaar mit verschiedenen Spins.
Die rechte Seite (24) ist nimlich eine antisymmetrische Linearkombi-
nation von entgegengesetzt gerichteten Spins. Den Ausdruck [AB]
oder das Produkt solcher Ausdriicke nennt man Spininvariante.

Dieses Ergebnis 146t sich auch auf den allgemeinen Fall tibertragen,
so daBl man fir die Molekileigenfunktionen eines Systems von ein-
und mehrelektronigen Atomen schreiben kann

ng! np! ...~ p p
Yoab Phe ---=\/———a nb! S noQuguy. . .[AB] b [BC) be (26)
Hier reprisentieren p,,, Pue --- die Anzahl Valenzstriche zwischen

den Atomen A und B, B und C usw. Die Bedeutung der iibrigen Sym-
bole ist analog dem Ausdruck (13).

Zum SchluBl soll die Zuordnung zwischen Valenzbild und Spin-
funktion auch vom Standpunkt der urspriinglichen Entwicklung nach
(HRW) wenigstens kurz angedeutet werden.

Betrachte man zu diesem Zweck zwei orthogonale Vektoren vom
gleichen Betrag mit den Komponenten x, y, zund X, Y, Z, so dal3

x2+y2+22=X2+Y2+722=1, xX+yY+zZ =0

ist. Bilde man anderseits einen komplexen Vektor mit den Kompo-
nenten

X=x+4+1X, Y =y +1Y¥Y, Z'=z+1iZ
die der Relation X" + Y’ + Z’? = 0 geniigt. Wenn man nun die Aus-
dricke
A, = VX' +iY A, =V=X +iY’
konstruiert, so kann man zeigen, dall die zwei GroBen A, und A, die
Komponenten eines zweidimensionalen komplexen Vektors sind, die

sich bei einer Drehung des Koordinatensystems linear transformieren
nach
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Al =aj A +a,A,
Al =anA; + apA,

wo die Transformation orthogonal im komplexen Sinne ist mit der
Determinante aa,, —a;,a, = 1.

Anderseits kann man auch zeigen, dal3 die verwendeten Spinfunk-
tionen o und B bei der Drehung des Koordinatensystems gerade der-
selben Transformation unterworfen sind. Es besteht somit folgende

Zuordnung
avA; B A,

d. h. o transformiert sich wie A; usw.

Betrachten wir unter diesen Voraussetzungen die symmetrischen
Spinfunktionen (8). Wenn fiir jedes Elektron « und 8 sich wie A, und
A, transformieren, so werden sich die Spinfunktionen wie die Produkte

Pn ™ A fa

..................

transformieren. Die Spinfunktionen kénnen dann, insofern man ihr
Verhalten bei der Rotation betrachtet, durch die GréBen

N

ersetzt werden.

Wenn die Spinfunktion eines Atoms durch einen Vektor reprisen-
tiert werden soll, so mufl man nach (13) fiir jedes Atom einen Vektor
einfithren. Fiir das zweite Atom hat man dann B,, B,, die sich so trans-
formieren wie A, und A,. Die Spinfunktionen des Atoms B sind durch

n -
N

zu ersetzen. Somit transformiert sich die ganze Funktion (13) wie das
Produkt ¢ ¢ ..., d. h.

‘pra’ rb’. - . (-\-) A.lra A—Zna_ ra.Blrb anb_ rb‘ . .

Die Eigenfunktionen (13) gehoéren, wie wir bereits wissen, zu ver-
schiedenen Spinwerten. Fiir die Chemie sind die zu S = 0 gehérenden
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am wichtigsten. Die Funktionen, die dem Gesamtspin S =0 ent-
sprechen, bleiben aber gegeniiber Spindrehung unverdndert, d. h. sie
sind Invarianten der Rotation. Um Funktionen zu bilden, fiir welche
S = 01ist, mull man also Linearkombinationen von solchen Funktionen
wihlen, die invariant sind.

Welche sind aber die Invarianten der Rotation? Falls man zwel
komplexe Vektoren A und B betrachtet, erhilt man eine Invariante
durch Bildung der Determinante [AB] = A;B, — A,B, = —[BA].
Dieser Ausdruck ist eine Invariante, weil die Determinante der Trans-
formationsmatrix gleich 1 ist. Um Linearkombinationen zu erhalten,
mull man mehrere Invarianten von diesem Typus miteinander multi-
plizieren. Damit kommt man wieder zum Ausdruck (26). Die Spin-
invarianten sind also Kombinationen von Spinfunktionen, die bei der
Drehung des Koordinatensystems unverdndert bleiben.

Nun sind wir soweit, dall wir jede chemische Formel oder Valenz-
verteilung durch eine Eigenfunktion charakterisieren koénnen, wobei
jedem Valenzstrich zwischen zwei Atomen A und B ein Klammer-
ausdruck [AB] zugeordnet ist. Sind mehrere Valenzstriche zwischen
zwel Atomen, so wird dies durch den Wert des Exponenten p,y, ... zum
Ausdruck gebracht [AB] Pab, Die Exponenten in (26) miissen natiirlich
die Bedingungen

Pab + Pac + Pad + ... =113
Pab + Pbc + Pbd + -+ . = Ip (27)

------------------------

erfiillen.

Im allgemeinen gibt es fiir jedes System bestehend aus mehreren
Atomen eine Reihe von Molekiileigenfunktionen (26). Aus den vorher-
gehenden Diskussionen folgt eindeutig, daBl ihre Zahl gleich der Zahl
der Valenzformeln ist, die man erhilt, wenn die Valenzstriche auf allen
moglichen Arten zwischen den Atomen des Molekiils verteilt werden.
Natitirlich werden hier auch Valenzformeln vorkommen, die fiir den
Chemiker zunichst fremd erscheinen. Es sind grundsitzlich aber zu-
nichst alle Valenzdispositionen des Molekiils in Betracht zu ziehen.

Die Eigenfunktionen (26) beziehen sich noch immer auf ein System
von ungekoppelten Atomen. Sie sollten also den Ausgangspunkt fiir
die Storungsrechnung bilden, um die Wechselwirkungsenergien zwi-
schen den Atomen des Molekiils zu berechnen. Bei vier einvalen-
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tigen Atomen, wo nur die drei Valenzverteilungen (19) méglich sind,
wird man auf ein Sikularproblem (I.33) dritten Grades gefiihrt.
Gegeniiber (18), wo eine sechsreihige Determinante zu berechnen war,
bedeutet die Einfithrung der Valenzdispositionen eine interessante
Vereinfachung. Geht man aber zu gréBeren Systemen tiber, so stellt
man fest, dal} die erzielte Reduktion zunichst aufgehoben wird und
schon bei 8 Elektronensystem ist der Grad der Sikulardeterminante
groBer als vor der Einfiihrung der Valenzdispositionen.

Mit dem Ubergang von (18) zu (26) haben wir somit das chemisch
wichtige Ergebnis der Reprisentierbarkeit von Valenzformeln durch
mathematische Ausdriicke zwar realisiert, eine Vereinfachung der
Rechnungen konnte aber dabei nicht erzielt werden, sie sind im
Gegenteil noch komplizierter geworden. Die Tabelle 2 illustriert diese
Situation. In der vierten Kolonne findet man die Anzahl der Valenz-
dispositionen bzw. der Eigenfunktionen (26) eines Systems von ein-
valentigen Atomen. Zum Gliick bietet hier die Invariantentheorie
einen Ausweg, um das Problem rechnerisch weiter zu vereinfachen.

Bereits im einfachsten Fall von vier einelektronigen Atomen kann
man zeigen, dal3 die drei Eigenfunktionen (25) nicht linear unabhangig
sind. Zwischen den entsprechenden Spininvarianten besteht namlich
die lineare Beziehung

[AB] [CD] + [AC] [DB] + [AD] [BC] = 0 (28)

Man iiberzeugt sich leicht von der Richtigkeit dieser Relation durch
Einfihren aller Ausdriicke vom Typus (24) in (28) und Multiplikation.
Von den drei Spininvarianten (28) sind nur zwel unabhingig. Ein
Fundamentalsatz der Invariantentheorie besagt ferner, dall alle
linearen Abhédngigkeiten der Invarianten sich auf die einzige Gleichung
(28) zurtickfiihren lassen. Somit kann man auf Grund dieser einzigen
Gleichung aus der Gesamtheit aller Valenzdispositionen eines Systems
diejenigen auswiihlen, die linear unabhingig sind.

Die letzte Kolonne der Tab. 2 gibt die Anzahl von linear unabhingi-
gen Eigenfunktionen bzw. Valenzdispositionen fiir den Fall von einva-
lentigen Atomen an. Wie man sieht, erreicht man auf diese Weise
eine sehr weitgehende Reduktion der Anzahl Funktionen, die fir die
Rechnungen in Frage kommen miissen. Bei 8 Elektronen z. B. kann
man insgesamt 105 Valenzdispositionen konstruieren, von denen
aber fiir die Rechnungen nur 14 notwendig sind.
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Tabelle 2. Anzahl der Molekiileigenfunktionen eines Systems von n Atomen
mit je einem Elektron

Zahl der Linear unabhangige

Elektronenzahl | Von der Form (13) Vom Typus (18) Valenzdispositionen Valenzdispositionen
2 4 2 1 1
+ 16 6 3 2
6 64 20 15 5
8 256 70 105 14
10 1 024 252 945 42
12 4 096 924 10 395 132
14 16 384 3432 135135 429
16 65 536 12 870 2 027 025 1430
18 262 144 48 620 34 459 425 4 862

Die Gesamtheit der linear unabhingigen Funktionen nennt man
eine unabhingige Basis von Eigenfunktionen oder einfach unab-
hingige Basis. Wir werden auch von einer unabhingigen Basis von
Valenzdispositionen sprechen, obwohl diese Ausdrucksweise nicht ganz
richtig ist. Algebraisch betrachtet besteht namlich nach (28) eine
Abhingigkeit zwischen den drei Invarianten. Man kann also auch
schreiben

[AB][CD] + [AD] [BC] = [AC] [BD] (29)
Die entsprechende Gleichung in Valenzformeln ausgedriickt lautet

D A D A D A
%

+ (29a)

” B L B - B

Diese Gleichung kann nur dahin interpretiert werden, dall eine ge-
kreuzte Disposition in zwel kreuzungslosen aufgelost werden kann.
Zwischen den Atomen A und B z. B. tritt aber auf der linken Seite
ein Valenzstrich auf, rechts dagegen tiberhaupt keiner. In diesem Sinne
sind die drei Valenzdispositionen linear gar nicht abhingig. Diese
Bemerkung ist notwendig, weil man in der Mesomeriemethode bei
der Berechnung der Elektronenverteilung die beiden Ausdriicke (29)
hiufig als vollig gleichwertig behandelt hat.

Die Auswahl einer unabhangigen Basis auf Grund der Gleichung (28)
ist im Prinzip immer moglich. Thre praktische Anwendung auf Systeme

34



von mehr als 6 einvalentigen Atomen fiihrt aber zu duBerst weit-
laufigen, um nicht zu sagen, undurchfiihrbaren Operationen. Zum
Glick existiert eine auf die Relation (28) axierte Regel von Rumer,
die in sehr einfacher Weise die Auswahl einer unabhingigen Basis
gestattet. Man bringe zu diesem Zweck die Atome des Molekiils in
einer willkiirlichen Reihenfolge auf einem Kreis und bilde alle Valenz-
dispositionen, bei denen sich keine Valenzstriche kreuzen. Die so
erhaltene Gesamtheit von Valenzdispositionen entspricht einer
unabhidngigen Basis von Spininvarianten oder Eigenfunktionen (26).

Beziiglich der Auswahl einer unabhingigen Basis sei ausdriicklich
bemerkt, daf3 die Reihenfolge der Atome auf dem Kreis tatsichlich
belanglos ist; die Atome miissen also nicht in der natiirlichen Anord-
nun disponiert werden. Daraus folgt aber, dall die verschiedenen
Rethenfolgen der Atome auf dem Kreis zu verschiedenen unabhin-
gigen Basen fithren. Wenn wir die zweil Kohlenstoffatome A und B
und die vier Wasserstoffatome C, D, E, F z. B. in zwel verschiedenen
Reihenfolgen auf einen Kreis bringen, so bekommt man die zwei
unabhingigen Basen (30) des Athylens. Es muB3 aber betont werden,
daB die so erhaltenen zwel Basen wie tbrigens alle anderen unab-

(30a)

I”
I

N/

|
.
o

{ >
w

b

R\
=<7 — T <7

hingigen Basen gleichwertig sind in dem Sinne, dal3 die Berechnung
der Energie auf Grund jeder unabhingigen Basis zum selben Resultat
fithren muf3. Dasselbe muf3 auch fiir die Berechnung der Elektronen-
verteillung gelten.

85



9. Anzahl der Valenzdispositionen einer unabhingigen Basis

Der Ausgangspunkt fiir die Berechnung der Energie im Rahmen
der Storungsrechnung ist also nach obiger Reduktion durch die Eigen-
funktionen bzw. Valenzdispositionen der unabhingigen Basis gegeben.
Natitirlich kann die Zahl der Valenzdispositionen der Basis immer
durch direkte Konstruktion festgelegt werden. Fiir die Beurteilung
der Komplexitit des Problems ist es aber von Vorteil, die Anzahl der
Dispositionen im Voraus zu kennen, abgesehen davon, dall man bei
der praktischen Durchfiithrung der Konstruktion der Dispositionen
eines groferen Systems immer zweifeln kann, ob die Basis vollstindig
ist oder nicht. Wir wollen deshalb einen Weg angeben, der erlaubt,
diese Zahl fiir ein beliebiges Molekiil festzulegen.

Wir gehen von folgender Bemerkung Heitlers (HRW) aus: die Zahl
der unabhingigen Invarianten (also auch der Valenzdispositionen)
stimmt mit der Zahl der Terme tiberein, die nach dem Vektormodell
mit einem Gesamtspin S = 0 entstehen.

Um das zu verstehen, nehmen wir an, die Atome A und B haben
respektive n, und n, parallele Spins. Das Gesamtspinmoment des
Atoms A ist dann S, = n,/2 und dasjenige von B ist Sy = ny/2. Wenn
die zwel Atome reagieren, so findet eine Koppelung der beiden Spins
S, und Sy statt. Das Vektoradditionsmodell zeigt uns, wie die Kopplung
im einzelnen erfolgen wird.

Wir wissen bereits (Abschnitt 6), daBl der Spin eines Elektrons
durch einen Vektor der Lange 1/2 repriasentiert werden kann und daf3
der Gesamtspin eines Systems von mehreren Elektronen durch Kom-
bination der zu den verschiedenen Elektronen gehorenden Vektoren
ermittelt werden kann. Es ist also in unserem Fall zundchst moglich,
dal} der Vektor S, der verschiedenen Elektronen des Atoms A und der
Vektor Sy der Elektronen des Atoms B die gleiche Richtung haben,
dann wird die Spinresultante der beiden Atome S = S, +Sy sein. Der
Vektor Sy kann aber auch andere erlaubte Richtungen annehmen
und zwar solche, fiir die die Resultante S,+S, einen um eine oder
mehrere Einheiten kleineren Wert annimmt, bis der Vektor S, eine
zum Vektor S, entgegengesetzte Richtung aufweist. Falls S, >S5, ist,
wird das GGesamtspinmoment also folgende Werte annehmen

S =8a2+Sp, Sa+Sp—1, Sa+Sp—2, ..., Sa—Sp (31)
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Diese Sachlage kann man auch so interpretieren: wenn p die Anzahl
Elektronenpaare mit antiparallelen Spins reprisentiert, ist der resultie-
rende Spin S = S, +Sy;—p, wo p die Wertep =0, 1, 2, ..., n, annimmt

Sind mehr als zwel Atome zusammenzusetzen, so kann man zu-
nichst zwei Atome kombinieren und dann das Resultat mit dem
dritten Atom zusammensetzen. Die resultierenden Terme sind un-
abhingig von der Reihenfolge der Zusammensetzung. Hierbei kommt
haufig vor, dal3 mehr als ein Term die gleiche Multiplizitit hat.

Zwel Beispiele sollen zur Illustrierung dieser Sachlage dienen. Statt
des resultierenden Spins wollen wir aber in diesem Abschnitt die Anzahl
der Elektronen mit nicht kompensiertem Spin verwenden, d. h.
n, = 25, Ny = 255,

Als erstes Beispiel betrachten wir ein Atom A mit drei Valenz-
elektronen, also n, = 3 und ein Atom B mit zwei Valenzelektronen
n, = 2. Man hat dann drei Kombinationsméglichkeiten: Die Elektronen
beider Atome haben alle parallelen Spins, somit ist n,+n, = 3+2 = 5.
Ein Elektron von A und ein Elektron von B sind antiparallel, die Zahl
der parallelen Spins sinkt um zweil Einheiten und hat den Wert 3. Im
dritten Fall stellen sich zwei Elektronen von A und zwei Elektronen
von B antiparallel, die Zahl der Elektronen mit nicht kompensiertem
Spin ist gleich 1. Man kann auch sagen, dal3 die drei Fille durch vek-
torielle Addition entstehen.

Erweitern wir das obige System von zwei Atomen mit einem dritten
einvalentigen, so erhilt man durch Kombination der Werte 5, 3, 1
mit dem dritten Atom:

aus dem Wert 5 bekommt man 6, 4

aus dem Wert 3 bekommt man 4, 2
aus dem Wert 1 bekommt man 2, 0.

Die Anzahl der Elektronen mit nicht kompensiertem Spin sind also 6,
4, 2und 0. Diese Werte treten hier aber mit verschiedenen Haufigkeiten
auf, die respektive 1, 2, 2, 1 sind. Es sei besonders darauf hingewiesen,
dall der Wert O nur einmal auftritt und daBl die Anzahl der Valenz-
dispositionen mit nicht gekreuzten Valenzstrichen ebenfalls gleich
eins ist: C—A =B.

Als zweites Beispiel nehmen wir den Fall von vier Atomen mit den
Wertigkeiten 2,2,22. Durch Zusammensetzung der beiden ersten

Atome erhalten wir fiir die Anzahl der Elektronen mit parallelen Spins

4,2,0 (1)
mit den Haufigkeiten 1, 1.1
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Tabelle 3. Linear unabhdngige Valenzdispositionen bei I' )P

I'?2 =I+T%

' = Dy+20

T =T 430,321,

'S =T',+4I';+5T,

I'¢ =TI¢+51,+91,+5T,

') =T';+6I5+141',+141,

I'® = Iy+7T+201",+28T",+14T",

') =T'+8I';+27T5+481';+42T",

' =T, +93+ 35 +75T ,+901",+42T",

'yt =T, +10T+441",+110I's+165I"5+132I",

I'12 =T, +1110 5+ 54 +1541°+ 2751, +2971",+ 1321,

' =T,,+12I",, +651'4+208I", +4291's+ 572I'; +429T",

L4 =T1,,+13I',,+771,,+273'3+637';+1001I", +10011",+ 429",

It =T5+141";+90I",,+3501T°,+910I",+ 163815 +2002I";+ 14 301",

I'j1% =T',,+15I',+1041",,+440I",,+ 126013+ 25481, + 36401", +
+3432T°,+1430T",

Durch Addition des dritten Atoms zu (I) bekommt man

aus 4 6, 4, 2
aus 2 4,2,0
aus 0 2 (IT)

Das Ergebnis ist also 6,4, 2,0
mit den Haufigkeiten 1, 2, 3, 1.

’

SchlieBlich ergibt die Addition des vierten Atoms zu (II):

6 ergibt 8, 6, 4
4 ergibt 6, 4
4 ergibt 6, 4
2 ergibt 4
4
4

)

-

RN NN

2 ergibt
2 ergibt
0 ergibt
Die Kombinationsmoglickheiten sind also 8, 6, 4, 2, 0
mit den Hiufigkeiten 1,.3,6.6 3

-

’

(IT1)

o O O

-

)

Dieses Beispiel, absichtlich so ausfiihrlich dargestellt, fithrt uns
zu einem Ausdruck, der die Anzahl der unabhingigen Spininvarianten
zu berechnen gestattet. Bezeichnen wir nimlich ein Atom mit zwei
parallelen Spins mit I', und die vektorielle Addition zweier derartiger
Systeme mit I',xI",, so kann das Ergebnis(I) auch so formuliert werden

I',xI', = 1I',+11',+11°,
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Tabelle 4. Linear unabhdngige Valenzdispositionen bei I',)n

T2 =TT+

I =TI'¢+2I',+30,+T,

I', =TIg+3+6I',+6I',+3T,

T, =T',,+43+10I'+15T",+15T",+61°,

I, =TI',+5I',,+15I'3+29T"c+40T",+ 361",+151",

I',7 =T',+6I';,+211",,+491's + 841", +1051", +91T",+ 361,

'8 =1, +70,+280,+761",,+154I'y + 2381+ 280I", + 2321",+ 91",

I')° =T'3+81"4+361",,+1111",,+2581",, +4681';+ 6721+ 7501",+ 6031, +
+232T°;

I, = T'yq+9I",3+451",,+1551",, +405T",+ 8371, ,+ 13981, + 18901 +

+2025I",+1585I',+603T°,

I',,+101,,+ 551", +2091",,+ 605", +13971",,+ 2640I", , +

+4215I';+53131+5500I", +42131I",4+1585T,

I',12 =T1,,+11T,,+661",,+ 27413+ 8691, s +22111",,+46421",,+ 8162I", , +
+12078T3+14938I',+15026T",+11298T,+4213T,

I‘oll

Il

d. h. durch Kombination von zwei Atomen mit je zwei parallelen
Spins (linke Seite) entstehen drei Zusammensetzungen: mit vier (I',),
zwel (I',) und null (I')) parallelen Spins, deren Hédufigkeiten durch die
Koeffizienten zum Ausdruck kommen. Analog koénnen wir das Er-
gebnis (II) durch folgende Beziehung zum Ausdruck bringen

R (VS S |y (RE; Ly Y, )

und schlieBlich bekommt man fiir (I11I)

I',xI',xI',xI', = 1T+ 31 +61",+61',+ 31,

D. h.,wenn man vier zweielektronige Atome kombiniert, so bekommt
man eine Zusammensetzung mit 8 parallelen Spins, drei Zusammen-
setzungen mit 6 parallelen Spins usw. und schlieBlich drei Zusammen-
setzungen mit durchwegs gesittigten Spins. Das letzte Glied gibt
gleichzeitig die Anzahl der unabhingigen Spininvarianten oder der
entsprechenden Valenzdispositionen der unabhédngigen Basis an.

Das, was hier durch Vektoraddition in einem Spezialfall erreicht
wurde, kann verallgemeinert werden. Der entsprechende allgemeine
Ausdruck lautet

Pa X Pb = I‘a+b + 1’a+b4_2 + Pa+b_4 4= e s + ].—‘|a,_b| (32)
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Tabelle 5. Linear unabhdngige Valenzdispositionen bei I' )

2 =+ I+1,+T,

3 = Tg+2I',+ 35 +4;+ 2T,

V=T, +30,+603+10:+111", + 91", +4TI",

5 =T s+413+101°,,+200'4+30I",+ 361"+ 341", + 201",

6 = I g+504+151",,+351",,+64I",,+961'3+1201",+120I",+90I",+ 341",

;7 =1, +61,+211",,+ 561", 5+1191",;+2101";, +3151"y +4001", +4 261" s+
+3641';,+210I',

U8 =1,,+71,,+281,,+841 3+ 2021, +4061",+ 7001, ,+ 10441, + 135113 +
+15051";+14001",+10001",+ 3641,

'y =TI,,+80,5+36I',;+1201",,+3211",,+720T",,+1392T",5+2352T" 5+
+35011";,+46001'y+5300I";+ 52561 ; +42691"; + 2400T",

510 = I3 +91,5+451 56+ 1651,,+4851°,,+ 11971 ,0+ 25531 ;s +47851" 4+

+7965I',+11845I",,+157531",,+ 1865713+ 194251+ 172251 ,+

+11925I',+4269T",

ry
|
Iy
Iy
I
.

Diese Formel, die in der Gruppentheorie fiir die Ausreduzierung von
Produktdarstellungen der Drehgruppe Verwendung findet, ist die
sogenannte Clebsch-Gordansche Formel.

Als Beispiel fiir die Anwendung dieser Formel nehmen wir ein

System von vier einvalentigen Atomen. Die Kombination der beiden
ersten Atome gibt
Tl = T+ T,

Die Zusammensetzung von drei Atomen fiihrt auf

T Tyx T, = (T Tiyoely = DonDdiDal, = D421,

SchlieBlich ergibt die Gesamtheit aller vier Atome

[ xI'y xI'y xI'y = (T'3+21,) xI'y = (T3x<Iy) +2(, xI'y)
= (T'y+1'y)+2 (T',+T,) = I'y+3T,+2T,

Den vier einvalentigen Atomen entsprechen somit zwel unabhingige
Valenzdispositionen, was wir in (28) bereits festgestellt haben.

Fir die praktische Berechnung der Anzahl von Spininvarianten
bzw. Valenzdispositionen der unabhingigen Basis eines beliebigen
Molekiils stellt man am besten Tabellen auf fir Partialsysteme be-
stehend aus lauter Atomen mit 1, 2, 3 und 4 parallelen Spins; diese
sind in den Tabellen 3, 4, 5 und 6 angegeben. Zur Abkirzung der
Schreibweise haben wir dort die Anzahl der Atome mit der gleichen
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Tabelle 6. Linear unabhdngige Valenzdispositionen bei I',P

'y = D+ + 1 +1,+17,

I'2 = T'3+2I0+30 3 +41+ 51" 4+ 3, + T’

' =T +30,,+61,,+10T,,+15T"+17T"+161",+121",+ 5T,

'y = I'pg+413+100 4+ 2007 ,+ 3517, + 511,y + 6415+ 701+ 651", + 451", +
+161°,

'8 =T, +51,,+15T ), +35T" 3+ 70T, +120T",,+180T" ,+ 2401, ,+ 2851 +
+295T"+260I',+1801",+651",

I'y7 = Ty +6I'56+211,4,+ 561", +1261 5+ 245113 +4201 4 +645T" 1, + 8951, +
+1120I';,+1260I's+1260I'¢+1085I',+735I",+ 2601,

I8 =T34+ 703,+ 281 5 +841 4+ 2101, + 4541, + 868I 5o+ 14921 5 +
+2331T",4+3325I',,+4340I";,+ 5180I';, + 562015+ 5460 +4600T" , +
+3080I",+1085I

Zahl nicht kompensierter Spins im Exponent zum Ausdruck gebracht,
also z. B. statt I', «I', xI'; xI'; xI'; einfach I',% oder statt I';x 'y xI';x[';,
I',* geschrieben.

Aus der Tabelle 3 entnimmt man beispielsweise, dall ein System,
bestehend aus 14 Atomen mit je einem Elektron, 429 unabhingige
Valenzdispositionen hat; das ist der Koeffizient von I'; in I';**. Ander-
seits entnimmt man aus Tabelle 6, da3 die Zahl der Valenzdispositionen
eines aus 6 vierwertigen Atomen bestehenden Systems 65 ist.

Die Tabellen konnen selbstverstindlich, wenn nétig, sehr leicht
noch erweitert werden auf Grund der allgemeinen Gleichung (32) bei
gleichzeitiger Beachtung der bereits bekannten Ausdriicke.

Im allgemeinen Fall, d. h. fiir ein Molekiil bestehend aus a, ein-
wertigen, a, zweiwertigen, a;dreiwertigen und a, vierwertigen Atomen,
erhdlt man den Koeffizienten von I'j durch schrittweise Ausrechnung
von

I'at x I',3z2 x I';a3 x I",a4 (33)

auf Grund von (32). Man ermittelt also z. B. zunichst I'}*1 xI",*2 dann
(I'y*1<I",*2) x I';% und schlieBlich (33) unter Verwendung der Angaben
der vier Tabellen.

Als Beispiel betrachte man die Berechnung der Anzahl Valenzbilder
des Athylens, das aus zwei Kohlenstoffatomen und vier Wasserstoff-
atomen besteht. Die Zusammensetzung von I';* und I';?, deren einzelne
Ausdriicke aus den Tabellen 6 und 3 zu entnehmen sind, ergibt
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T2 x 't =(Cg+le+T,+1,4T,) x (T'y+3T,+2T)
=TI, +I'}, +I's +I'y +I,
+I'y, +Ty +I +I'y +I',
+I'y +I'y +I'y +I', +I,
+I'y  +I'y  +1',
+I',
+3I';, +3I'y +3I7
+3I'y +3I'g +30°,
+3I'¢ +3I', +3I,
+3I', +3I',+3I0,
+3I°,
+2T°y +2T°; +21', +2I',+20,

I'2 x T'j# = T';,+5T4+110+ 15 +16T",+14T,+ 6T,

(34)

Die unabhingige Basis des Athylens besteht also aus 6 Valenzbildern,
was wir in (30) bereits durch die direkte Konstruktion festgestellt
haben. Die weitere Ergidnzung (33) durch zwei und dreiwertige Atome
erfolgt ganz analog.

Man kann aber noch einen Schritt weiter gehen,um die Rechnungen
zu vereinfachen. Liegen ndmlich zwel Teilausdriicke vor, wie z. B.
die oben verwendeten I',? und I'\*, so ist der Koeffizient I'; in der
Komposition (33) gegeben durch die Summe

2 oy (35)

wo o, und B, die Koeffizienten von demselben I', in den beiden Teil-
ausdriicken bedeutet. Denn eine Zusammensetzung I',x I, enthilt
dann — und nur dann - ein Glied I',, wenn a = b ist. Man hat also be1
der Bildung der Kompositionen I'y xI'y alle I, zu beachten, die in
beiden Teilausdriicken auftreten. Bildet man die Produkte aller sol-
chen Koeffizienten und summiert sie, so erhilt man die Summe (35),
die den Koeffizienten von I'; reprdsentiert.

Im obigen Beispiel des Athylens sind nur I',, I',, I’y beiden Klammer-
ausdriicken (34) gemeinsam. Multiplizieren wir die entsprechenden
Koeffizienten, so erhilt man

Z avBV =1+34+2 =6

Betrachte man noch das Beispiel des Benzols. In den Tabellen
3 und 6 findet man unter I''* und I, daB ', I",, T',, I', gemeinsam
sind.
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2 ayPy = 1.295+5.260+9.180+5.65 = 3540

In dieser Form stellt die Berechnung der Anzahl von Spininvarianten
oder Valenzdispositionen keine Schwierigkeiten mehr.

III. Die Energieberechnung

Durch die Auswahl einer unabhidngigen Basis von Valenzformeln
aus der Gesamtheit aller Valenzdispositionen ist das Problem soweit
reduziert, wie es iiberhaupt bei dem heutigen Stand der Theorie
moglich 1st. Wir denken hier an Reduktionen allgemeiner Natur, die
vor der Aufstellung des Sdkularproblems durchfiihrbar sind. Es wird
sich ndmlich zeigen, daBl in gewissen Féallen auch eine Vereinfachung
der Sikulardeterminante moglich ist, die aber von Fall zu Fall ver-
schieden sein wird.

Die Eigenfunktionen (II.26) der unabhdngigen Basis, die dem
Pauli-Prinzip gentigen und zu einem Spinmoment S = 0 gehoren,
bilden den Ausgangspunkt unseres Storungsproblems. Es interessieren
uns hier hauptsichlich zwel Fragen: Die Berechnung der Storungs-
energie erster Ordnung auf Grund des Gleichungssystems (1. 33)

f
2, (Hik“SAik) Ck:() 1=1,2, ,..1
k=1

(1)

mit

Hik:fllJiHlled'r Aik:f%'JJde

und die Ermittlung der Eigenfunktion nullter Ndherung
Y =Ciy + Copp + -+ CpYf (2)

In diesem Kapitel beschiftigen wir uns ausschlieBlich mit der Berech-
nung der Energie. Auf die zweite Frage kommen wir im nédchsten
Kapitel zu sprechen.

10. Sikulargleichung eines Systems von Atomen wmat je eimem Elektron

Da die numerische Berechnung der Energie bei groBen Molekilen
oft sehr weitlaufig wird, ist man in solchen Fillen gezwungen, sich mit
einer radikalen Approximation zu begniigen, indem man das Molekiil
durch ein System von Atomen mit je einem Elektron approximiert.
Selbstverstandlich erfihrt auf diese Weise das Sidkularproblem eine
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