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I. Grundlagen der theoretischen Chemie
2. Die Schridingersche Wellengleichung

Der Zustand und das Verhalten eines molekularen Systems wird
im Rahmen der Wellenmechanik durch die Schrédingersche Wellen-
gleichung beschrieben. Wir wollen sie hier als etwas Gegebenes
betrachten. Fiir die Ableitung dieser Gleichung verweisen wir auf das
Literaturverzeichnis und insbesondere auf das leichtverstindliche
Biichlein iber «Elementare Wellenmechanik» von W. Heitler. Im
Fall eines Teilchens kann die zeitabhdngige Wellengleichung folgender-
mallen geschrieben werden:

h2

h ¢¥
( 8mm

A+Ep)¥ - —5m (1)
wo h die Plancksche Konstante, m die Masse des Teilchens, A den
Laplaceschen Operator, E, die potentielle Energie des Teilchens, V" die
Wellenfunktion, i die imaginidre Einheit und t die Zeit repréisentiert.
Den Klammerausdruck kann man als den sogenannten Hamilton-
Operator H auffassen, der auf die Funktion ¥ wirkt.

h é¥

HY =~ (12)

Wir erinnern daran, dal man unter einem Operator eine Rechenvor-
schrift versteht, um aus einer gegebenen Gréf3e eine andere abzuleiten.
Wichtiger ist fiir uns aber eine zweite, die zeitunabhingige Schro-
dinger-Gleichung. Diese entsteht aus (1), indem man die Wellen-
funktion in der Form eines Produktes
2mi

‘F(xyzt):q;(xyz)e_—lTEt @)

schreibt, wo E die Energie und ¢ eine nur von den Koordinaten ab-

hingige Funktion darstellt. Man erhilt auf diese Weise die Gleichung

Ay + T (E —Ep) ¢ =0 (3)
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oder unter Verwendung des Hamilton-Operators die vereinfachte Form
Hy=Ey (3a)

Von den Losungen ¢ dieser partiellen Differentialgleichung kommen
allerdings nicht alle in Betracht. Auf Grund der sogenannten Rand-
bedingungen kommen nur solche Funktionen ¢ als Losungen der
Schrédingerschen Gleichung in Betracht, die iiberall stetig, eindeutig
und endlich sind. Solche Funktionen existieren aber nur fiir ganz
bestimmte Werte der Energie E, nimlich fiir die sogenannten Eigen-
werte der Differentialgleichung. Die zu den Eigenwerten gehérenden
Funktionen nennt man Eigenfunktionen.

Es kann nun vorkommen, dall in einem Problem zu jedem Eigen-
wert nur eine Eigenfunktion gehort. In diesem Fall bezeichnet man
den Eigenwert als einfach und den Zustand als nicht entartet. Wenn
zu einem Eigenwert mehrere Eigenfunktionen gehéren, so sagt man,
daB das System entartet ist und der Eigenwert ein mehrfacher Eigen-
wert ist.

Die zeitunabhdngige Schrodinger-Gleichung bestimmt die statio-
naren Zustinde des Systems, d. h. die erlaubten Energiewerte E ent-
sprechen der Energie des Teilchens im stationdren Zustand.

Eine wichtige allgemeine Eigenschaft der Eigenfunktion ist ihre
Orthogonalitit: Zwei Eigenfunktionen {, und ¢, die zu verschiedenen
Eigenwerten gehoren, gentigen der folgenden Orthogonalititsrelation

f‘pn q’mdf =0 (4)

Hier ist vorausgesetzt, dall die Eigenfunktionen reell sind; fir uns
kommen nédmlich nur solche in Betracht. Die Eigenfunktionen der
Schrodinger-Gleichung sind nur bis auf eine Konstante bestimmt, tiber
die man frei verfiigen kann. Diese Konstante wird im allgemeinen so

gewdhlt, dall die folgende sogenannte Normierungsbedingung erfiillt
ist

[¢nzde =1 (5)

Die so bestimmte Eigenfunktion nennt man normiert.

Wichtiger als die Gleichungen (1) und (3) ist fiir unsere Zwecke die
verallgemeinerte Gleichung von Schréodinger, giiltig fir ein System
von n Massenpunkten. Sie lautet
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i=1

Hier bedeutet m; die Masse und x;, y;, z; die kartesischen Koordinaten
der i**" Partikel. E ist die totale Energie und E, die potentielle Energie
des Systems bestehend aus n Partikeln. Der Ausdruck

n n o2 9 9

XA ~J o o7\
2 Al LI" = 2 a > o= o ) &= o 2 ‘IJ
: oxi*  Oyi*  Ozi®
i=l1 =1

i

ist der Laplacesche Operator in einem 3n-dimensionalen Raum, wobei
die Eigenfunktion sich auf denselben Raum bezieht.
Auch die allgemeine Schrodinger-Gleichung (6) 1aBt sich durch die
vereinfachte Gleichung
Hy=-E (7)

ausdriicken, insofern der Hamilton-Operator, der Eigenwert und die
Eigenfunktion entsprechend verallgemeinert sind.

3. Lisung der Wellengleichung durch Separation der Variablen

Bekanntlich liuft die wellenmechanische Behandlung chemischer
Systeme auf die Bestimmung der Eigenwerte und Eigenfunktionen
des Systems aus. Wihrend die Wellengleichung (3) im Fall eines
Elektrons, wie es beim Wasserstoff vorliegt, noch streng losbar ist,
stoBt die Losung des Mehrkorperproblems in der Wellenmechanik
auf nicht zu iberwindende Schwierigkeiten. Das ist weiter gar nicht
erstaunlich, wenn man bedenkt, daB die exakte Behandlung des
allgemeinen n-Korperproblems auch in der klassischen Mechanik noch
heute ein ungelostes Problem darstellt. Man ist somit gezwungen, die
allgemeine Gleichung (6) durch Niherungsverfahren zu lésen.

Obwohl die allgemeine Gleichung (6) exakt nicht 16sbar ist, tritt
hiufig der Fall auf, daB die Schrodinger-Gleichung der einzelnen Teil-
chen des Systems bekannt ist, also daB3 die Eigenwerte und Eigen-
funktionen des einzelnen Teilchens bekannt sind. In solchen Fillen
verfahrt man so, dal man die Wechselwirkung der Teilchen zunichst
vernachlassigt. Die Losung der Schrodinger-Gleichung des verein-
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fachten — jetzt aus ungekoppelten Teilchen — bestehenden Systems,
1aBt sich dann als Losung der Wellengleichung der einzelnen Teilchen
betrachten. Die vernachlissigten Wechselwirkungen konnen dann
nachtriglich mit Hilfe der sogenannten Stérungsrechnung beriick-
sichtigt werden.

Betrachten wir also ein System bestehend aus mehreren Teilchen

n 2
Saihs ERE Ky ¢ -0 (62)
1=1

(z. B. aus mehreren Elektronen in einem Kernfeld). Vernachldssigen
wir die Wechselwirkung zwischen den Teilchen, so kann die poten-
tielle Energie der Gleichung (6a) als eine Summe von Funktionen
dargestellt werden, die nur von den Koordinaten je eines Teilchens
abhingen, d. h.

Ep=Ep (xiy121) + Ep2(X2¥222) + ... + Epn (Xn ¥n Zn) (8)

Die Schrédinger-Gleichung desaus ungekoppelten Teilchen bestehenden
Systems kann dann mit der Wellenfunktion

Y= (X1 ¥121) $2(X2¥222) -+« $n (Xn ¥n 2Zn) (9)

und mit der folgenden Zerlegung der Gesamtenergie befriedigt werden.

B =F b By b + By (10)

Fihren wir namlich die Ausdriicke (8), (9) und (10) in die Wellen-
gleichung (6a) ein und dividieren mit ¢, ¢, ... ¢, so erhilt man

(11)

[Ei+E;+.c .+ Eq—(Epi+Eps+...+Epp)] =0

A Ay, Apyn  8n’m
+ SR Lk £
b1 b2 $n h?
Diese Gleichung kann befriedigt werden, wenn die einzelnen Glei-

chungen

8mZm
Al‘pl + - h2 (E1 Epl) ‘;-'1 =0

8m2m (12)
AZQJZ + (Ez Epz) L#Z = O

..........................

gelten. Somit kann z. B. das Problem eines Atoms mit n Elektronen
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auf n Einelektronenprobleme zuriickgefithrt werden. Die Funktion (9)
reprasentiert dann eine rohe Ndherung der Losung des betrachteten
Problems.

Als Illustration dieser Approximationsrechnung soll das Beispiel
des Heliumatoms erwiahnt werden. Gemaf Gleichung (6a) haben wir
im Falle des Heliumatoms bei Vernachldssigung der Kernbewegung,
d. h. also bei ruhendem Kern die Schrodinger-Gleichung

(13)
T T IO I +8n2m(E+g§+Zez e2)¢=0

ox,2  Oy,? 0z, 0x,* dy,2  0z,° a2 i ¥, Tiz

Hier sind also x,y,z, und x,v,z, die rechtwinkligen Koordinaten der
beiden Elektronen, m die Masse des Elektrons, e die positive Elementar-
ladung, E die Gesamtenergie des Atoms, Z die Kernladungszahl,
r, und r, sind die Abstinde der Elektronen vom Kern und r,, der
Abstand zwischen den beiden Elektronen. Die potentielle Energie ist

By — e et (14)

wobel —Ze?/r; die potentielle Energie des ersten und —Ze?/r, die des
zweiten Elektrons ist und e?/r;, die potentielle Energie der Wechsel-
wirkung der beiden Elektronen darstellt. In den beiden ersten Fillen
haben wir selbstverstindlich mit einer Anziehung, im letzten Fall mit
einer AbstoBung der Elektronen zu tun. Ausfiihrlicher geschrieben,
ergibt sich fiir die potentielle Energie des Heliumatoms, falls der Kern
im Ursprung eines rechtwinkligen kartesischen Koordinatensystems
liegt, der Ausdruck

2 2a2 2
Ep = —— Ze B e N e

VXIZ F W "fxzz +¥a? + 257 IVJ(XZ_X])E + (Vo—¥1) %+ (20—24)?

Die Kernladung Ze wurde oben in einer allgemeinen Form ge-
schrieben, so dal3 die Gleichung (13) auch fir heliumdhnliche Systeme
wie z. B. das einfach ionisierte Lithiumatom gelten wird.

Das Wechselwirkungsglied —e?/r;, der beiden Elektronen spielt in
Gleichung (13) die Rolle eines Storungsgliedes. Wird es namlich ver-
nachléssigt, so konnen die zwei Elektronen als unabhingig voneinander
betrachtet werden. Man erhilt also zunichst
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A1¢°+A2¢°+8ﬂ2m( Ze? Ze?

(B )= 0 (15)

wo A, und A, Laplacesche Operatoren darstellen, die sich auf das erste
und zweite Elektron beziehen und {° die ungestoérte Wellenfunktion
1st. Nach (9) kann die Losung dieser Gleichung in den Variablen des
ersten und zweiten Elektrons separiert werden, d. h.

(X V12X ¥22,) = W) (X V1 2)) 45 (X2 Y2 2)) (9a)
wo ¢ und ¢ die ungestérten Funktionen der Elektronen 1 und 2
sind. Fithrt man (9a) in die Gleichung (15) ein, so erhdlt man nach
Division mit ¢ ¢
Ay Ay 87%m

W TR

2 2

B 3 (16)

Zerlegt man ferner E° gemdf (10) in die Bestandteile E, 4+ E9, so
wird (16) durch die beiden Gleichungen

82 Ze?
At + 5 (B + 52} 4 - 0

h2
8mm Let
A + BYE (Eg + T) $3-=0
2

befriedigt. Diese sind aber die Gleichungen des Wasserstoffatoms, die
als bekannt betrachtet werden konnen. Der einzige Unterschied
besteht darin, da3 hier die Kernladungszahl Z gréBer ist. Die Eigen-
funktion des Wasserstoffatoms im Grundzustand ist gegeben durch
1‘2)#2423
| A ([
Y100 \-;c(al € ay
wo a, den ersten Bohrschen Radius reprisentiert. Fiir die nicht
gestorte Eigenfunktion des Heliumatoms erhalten wir also

N £ L (r+1y)
PO = 4 dh = € A

Die Gesamtenergie eines Elektrons des Heliumatoms im Grund-
zustand kann folgendermaBen ausgedriickt werden:

2n?metZ2
EY=E2= ——4112——i—RhCZ2
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wo R die Rydbergsche Konstante und ¢ die Lichtgeschwindigkeit
repriasentiert. Das Produkt —Rhc = — 13,6 eV entspricht der Energie
des Elektrons im Wasserstoffatom. Die Energie der beiden Elektronen
1m Heliumatom ist dementsprechend gleich —8.13,6 eV =-108,8 eV.
Der Experimentalwert der Energie, die notwendig ist, um die beiden
Elektronen des Heliumatoms zu entfernen, ist aber blof3 78,7 eV. Dieser
groBe Unterschied in den zwei Werten ist natiirlich auf die Vernach-
lassigung der AbstoBung der beiden Elektronen zuriickzufiihren.

4. Storungsrechnung

Selbstverstdndlich ist der erhaltene Energiewert des Heliums noch
viel zu grob, und es fragt sich, wie man ihn noch verbessern koénnte.
Wie bereits erwihnt, ist die Schrédinger-Gleichung in den meisten
Fallen nicht exakt lésbar, so dal man gezwungen ist, die Energie auf
Grund von Ndherungsmethoden zu ermitteln. Ein solches Verfahren
ist die sogenannte Storungsrechnung, die wir hier angeben wollen,
soweit sie fiir uns in Frage kommt.

Es kann vorkommen, daB3 ein Problem zwar exakt nicht 16sbar ist,
aber nicht sehr verschieden ist von einem bereits gelésten. Wichtig
ist fir uns der Fall, dall das ungeloste Problem durch eine kleine Ab-
dnderung der potentiellen Energie, die man dann als Stérung be-
trachten kann, aus dem bekannten hervorgeht. In unserem Fall des
Heliumatoms z. B. ist die potentielle Energie (14) des zu lésenden
gestorten Systems

+ = = Ej + AE} (14a)

wo EY die ungestorte potentielle Energie des bekannten Problems,
E/ das Storungsglied der potentiellen Energie und X einen willkiirlichen
Hilfsparameter repriasentiert. Fiir & = o geht dieser Ausdruck in die
potentielle Energie des bekannten Problems iiber. Ist der Stérungs-
parameter hinreichend klein, so kann man zur Berechnung der Eigen-
werte und Eigenfunktionen eine Stérungsrechnung entwickeln.

Betrachten wir also die Schrédinger-Gleichung eines exakt nicht
losbaren Problems (z. B. das Heliumatom)

8m?m , ‘
Adg + Ve (Ex —Ep — AEp) ¢k =0 (17)
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Die entsprechende Gleichung im ungestorten Fall ist dann

8 2
Agg + T (Ef — ED) g = 0 (18)

deren Eigenwerte und Eigenfunktionen als bekannt vorausgesetzt
sind. Der Index o soll den ungestérten Zustand andeuten. Ferner
nehmen wir an, dal das System nicht entartet ist, d. h. zu jedem
Eigenwert gehort nur eine Eigenfunktion

0 0 0
ES ES, ..., E ...

bowa e

Da die Stérung der potentiellen Energie in (17) im Verhiltnis zur
urspriinglichen in (18) als klein vorausgesetzt ist, kann man annehmen,
daB sich die Eigenwerte und Eigenfunktionen von den entsprechenden
des nicht gestorten auch nur wenig unterscheiden werden. Es liegt
also nahe, die unbekannten Eigenwerte E, und Eigenfunktionen
nach steigenden Potenzen von A zu entwickeln. Wir schreiben folglich

Ex=E)+AE, + ME/ + ... (19)
G = g + A + A2+ .. (20)

wo E,, E., ... Storungsglieder der Energie und {y, by, ... diejenigen der
Eigenfunktionen von erster, zweiter usw. Ordnung sind. Wir werden
hier nur Glieder nullter und erster Ordnung in Betracht ziehen.

Fiihren wir nun (19) und (20) in die Gleichung (17) ein, so erhilt man

AYp + AAY, + TR (EY + AEL —Ep — AEp) (4 + Mf) = 0
Diese Gleichung muB nun fiir jeden Wert des Parameters 2 erfiillt sein,
was nur dann moglich ist, wenn die Koeffizienten der Potenzen von %
einzeln verschwinden. Sie zerfillt somit in die beiden Gleichungen
8 2
Ayp + T (B —Eg) 4 = 0

,  Sm’m ,  8m'm ,__, ,
Ady + Tt (Ex — Ep) i = ?(Ep —Ey) ¢

(21)

Die erste ist der Koeffizient von 2° und ist identisch mit der Schroé-
dinger-Gleichung des ungestorten Systems, die zweite entspricht 2!,
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wihrend der Koeffizient von 22 gemaf3 Voraussetzung vernachldssigt
1st.

Die Gleichung (21) ist eine inhomogene Differentialgleichung. Nach
der Theorie der Differentialgleichungen besitzt diese nur dann eine
Loésung, wenn die rechte Seite zur Losung der entsprechenden homoge-
nen Gleichung orthogonal ist. Gleichung (21) hat also nur dann eine
Losung, wenn ) zur rechten Seite von (21) orthogonal ist, d. h.

[(Bp — B 4g2de - 0

Wegen der Normierung der ungestorten Eigenfunktionen konnen wir
schlieBlich schreiben

Bj - [Epgirds (22)

Sind also die Eigenfunktionen nullter Ordnung ¢} sowie die Stérung
der potentiellen Energie des zu losenden Systems bekannt, so kann die
Storung erster Ordnung der Gesamtenergie E, durch eine Integration
gewonnen werden. Im Fall des Heliumatoms — um den Ausdruck zu
konkretisieren — entspricht E; der Wechselwirkung der beiden Elek-
tronen und {p*dr = Jp*dr,dr, reprasentiert die Wahrscheinlichkeit,
die Elektronen 1 und 2 bzw. in den Volumelementen dz, und dr, an-
zutreffen. Dementsprechend ist die Stérung der Gesamtenergie Elz
gleich dem mit dieser Verteilungsfunktion {9’d<x gebildeten Mittel-
wert des Storunspotentials E;.

Die angegebene Stérungsrechnung ist nicht ohne weiteres anwend-
bar, wenn das ungestorte System entartet ist, d. h. wenn zu einem
Eigenwert E; etwa n linear unabhingige Eigenfunktionen gehdren:

Eg: ki, Gz - dkis oo -0 Ykn (23)
Beim nicht entarteten Fall ist die Situation eindeutig: 148t man die
Storung der potentiellen Energie immer kleiner werden, so geht die
gestorte Eigenfunktion in die entsprechende nicht gestorte tiber. Im
entarteten Fall dagegen geht die gestorte Eigenfunktion ¢y zwar
auch in eine nicht gestorte tber mit dem Unterschied, dall wir zum
Voraus nicht wissen kénnen, in welche nicht gestorte Eigenfunktion
der Ubergang erfolgt; meistens geht ¢, gar nicht in eine bestimmte {9, ,
sondern in eine Kombination der Funktionen (23) tiber. Da die Schro-
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dinger-Gleichung eine homogene lineare Differentialgleichung ist,
bildet jede Linearkombination der Eigenfunktionen (23) auch eine
Losung der ungestorten Gleichung fiir denselben Eigenwert E,. Somit
konnen wir die einzelnen Funktionen (23) durch ihre Linearkombi-
nation der Form

Pk = C1YRy + CodR, + ... + Cnfn (24)

ersetzen, wobei die Koeffizienten zunidchst noch unbestimmt sind; es
wird sich aber zeigen, da3 die folgende Stérungsrechnung gleichzeitig
auch die Bestimmung der Koeffizienten ¢; in (24) ermdglicht. Wird nun
die Stérung immer kleiner, so geht die gestorte Eigenfunktion in die
entsprechende Linearkombination (24) tber. Die Eigenfunktionen
vom Typus (24) nennt man «Eigenfunktionen nullter Ndherung». Es
sel noch ausdriicklich darauf hingewiesen, daf3 die Eigenfunktionen
(23), die zum selben Eigenwert E, gehdren, im allgemeinen nicht
orthogonal sind, was wir auch hier annehmen wollen.

Nach dieser Vorbereitung kénnen wir die Uberlegungen des nicht
entarteten Falles auf den entarteten {ibertragen, um die Stérung des
Energiewertes zu bestimmen. Wir wollen aber diesmal die Entwicklung
wie das hiufig geschieht, mit der einfacheren Form der Schrodinger-
Gleichung (3a) durchfiihren. Schreiben wir also die Gleichung fiir ein
gestortes Problem in die Form

Hy—E¢=0 (25)

und die entsprechende Gleichung des nicht gestérten Systems

HO 0 — E° ¢ - 0 (26)
Wir nehmen ferner an, das der Hamilton-Operator H in der Form
H - Ho + AH' (27)

dargestellt werden kann. Fur den gestorten Eigenwert E, und die
gestorte Eigenfunktion {§, setzen wir analog (19) und (20) die Ent-
wicklungen an:

Ex =E2+ AE + ME{ + ... (28)
e R R (29)

Fihrt man nun die Ausdricke (27), (28) und (29) in die gestorte
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Schrodinger-Gleichung (25) und vernachldssigt die Glieder zweiter
und hoherer Ordnung, so erhidlt man die Gleichung

(H + AH') (px + M) — (Ex + AE) (o + My) = 0
(Hg — Egeg) + 2 (H'og + Hobi — Erop — Egdy) = 0

Da die Koeffizienten von 2° und ! einzeln verschwinden missen, ist
der erste Klammerausdruck identisch mit der ungestérten Schrodinger-
Gleichung, wihrend die zweite Klammer die zu (21) analoge Gleichung
ergibt.
(H® — Ey) ¢ = (Ex— H') og (30)
Der Satz iiber Differentialgleichungen, den wir beim nicht entarteten
Fall bereits verwendet haben, fithrt dann in der erweiterten Form zum
folgenden: Damit das Problem eine Losung besitzt, mul3 die rechte
Seite der Gleichung (30) zu allen LLosungen der homogenen Gleichung
orthogonal sein, d. h. mull folgendes Gleichungssystem erfillt sein:
¥k (B —Ej) gpdr - 0
J ke (Y —Ef) of dx = 0

----------------------

Fihren wir fiir ¢f den Ausdruck (24) ein, so erhidlt man

C;fnpﬂl (H' —E}) ¢ dr+ ... + cnf¢§1 (H' — E}) ¢ dr = 0
.................................................... (31)

Fiir die hier auftretenden Integrale fithren wir noch die folgende Be-

zeichnung ein:

Hip = [ H'$f de
(32)
Ay = f ki ki dv

bei denen wir den Index k weglassen. Das Gleichungssystem (31) kann
somit in der einfacheren Form geschrieben werden

(Hy —EgAp) ey + (Hy, —EAp) e+ ..o + (Hin —EgAn) ¢ =0
(Hay — ExAgy) ¢ + (Hpy — EfAgy) ¢+ .0 + (Hon — EfAgp) ¢p =0 (33)

----------------------------------------------------------
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Das 1st ein homogenes lineares Gleichungssystem fiir die c; als Unbe-
kannten. Dieses System hat nur dann eine von Null verschiedene
Losung, wenn die Determinante der Koeffizienten verschwindet

H]l—E]’{All HIZ_E;{AIZ ..... H]n‘;Ei‘Aln
H, — Eidy, Hy—EAp ... .. Hon — ExAon =0 (34)
H!’ll E;(Anl an = ELAHZ ..... Hnn == EkAnn

Die Ausrechnung der Determinante liefert eine Gleichung n-ten
Grades in E,. Die entsprechenden n Wurzeln

Ei(l» Ei(Z’ LR Ei{n (35)

sind die Werte fiir die Storung erster Ordnung des k-ten Eigenwertes.
Diese sind reell in allen uns interessierenden Problemen.

Der k-te Eigenwert war urspriinglich entartet. Sind alle Wurzeln (35)
verschieden voneinander, so wird die Entartung durch die Stérung
aufgehoben, weil jetzt n Eigenwerte vorhanden sind, nimlich

Eg; = EQ + Ek,
Ekz = 1(;) ¥ Ei(Z (36)

..............

Ekn = Efi + Ef;n

Fihren wir einen Wert (35) in das Gleichungssystem (33) ein, so
konnen die ¢; bestimmt werden. Dadurch sind die Koeffizienten der
Eigenfunktion nullter Niherung (24) auch festgelegt. Wie man sieht,
gehort zu jedem Wert (35) ein Koeffizientensystem ¢; und dement-
sprechend eine Eigenfunktion nullter Niherung ¢f. Es sei schliellich
darauf hingewiesen, dal man aus (33) nur die Verhiltnisse der c;
bestimmen kann; ein Koeffizient ist noch verfiigbar. Dieser kann aber
durch die Normierung der Eigenfunktionen (24) festgelegt werden.

5. Austausch- und Spinentartung
Im Abschnitt 3 haben wir gesehen, dal3 die Schrédinger-Gleichung
eines aus n Teilchen bestehenden Systems ohne Schwierigkeit 16sbar

ist, falls die Wechselwirkung zwischen den Teilchen vernachlassigt
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wird, also talls die Teilchen ungekoppelt sind. Die Losung der Schro-
dinger-Gleichung eines Atoms, bestehend aus n ungekoppelten Elek-
tronen, kénnen wir also gemaf3 (9) in der Form

Y1 = Ya()dp(2)9c(3) - -+ dr(n) (37)

schreiben. Hier haben wir die drei Ortskoordinaten jedes Elektrons
einfach mit der entsprechenden Zahl 1, 2, 3, ..., n bezeichnet. Ferner
wurde der Quantenzustand der verschiedenen Elektronen mit a, b,
c, .., r repriasentiert, wobei diese Buchstaben an Stelle der drei
Quantenzahlen n, 1, m, stehen.

Nun tritt aber bei diesem Problem wegen der Identitit der Teilchen
d. h. der Elektronen eine Entartung auf. Die Energie des Atoms ist
namlich symmetrisch in allen Elektronen, d. h. sie ist eine Funktion
von 1, 2, ..., n, die sich nicht dndert, wenn man die Elektronen per-
mutiert. Somit ist die Eigenfunktion (37) nicht die einzige, die zum
selben Eigenwert gehort. Man erhilt aus (37) noch weitere durch eine
Permutation der Elektronen. Z. B. ist

b2 = al2)ep(1)9e(3) - - Pr(n) (37a)

auch eine Eigenfunktion zum selben Eigenwert. Es gibt also mehrere
Eigenfunktionen zum selben Eigenwert, weil die Elektronen vonein-
ander nicht unterscheidbar sind. Man spricht in solchen Fillen von
Austauschentartung.

Falls sich alle Elektronen in verschiedenen Quantenzustinden
a, b, ... befinden, gehdren zu einem Eigenwert des Atoms n! linear
unabhingige Funktionen. Man sagt ferner, dal3 der betreffende Zustand
des Atoms (n!-1)-fach entartet ist. Wenn sich zwei oder mehrere
Elektronen im selben Quantenzustand befinden, so ist die Anzahl der
Eigenfunktionen auch entsprechend kleiner. Falls alle Elektronen im
selben Quantenzustand sind, z. B. im Zustand {,, so dndert eine Per-
mutation an der Funktion (37) tberhaupt nichts. In diesem Fall
gehort zu dem betreffenden Eigenwert nur eine Eigenfunktion.

Sind alle Elektronen in verschiedenen Quantenzustianden, so haben
wir also im ganzen n! Eigenfunktionen zum selben Eigenwert. Die
allgemeine Losung erhidlt man durch Linearkombination aller Partial-
eigenfunktionen, ndmlich

¢ =ciy + oy +Cads + L. (38)
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Die Koeffizienten ¢; kénnen im Rahmen der Stérungsrechnung
entarteter Systeme festgelegt werden. Das fithrt zundchst auf ver-
schiedene Kombinationen vom Typus (38) mit verschiedenen Koeffi-
zientensitzen. Die Erfahrung zeigt, dal fiir ein System von n gleichen
Teilchen unter allen Eigenfunktionen (38) nur zwei in Frage kommen
konnen: eine in allen Elektronen symmetrische und eine in allen
Elektronen antisymmetrische Eigenfunktion. Im ersten Fall sind alle
Koeffizienten gleich 1, wir haben also

vs = 2 P 9a(l)p(2)9e(3) - . . (39)

wobei die Summe tber alle Permutationen P zu erstrecken ist; beim
zweiten ist der Koeffizient gleich + 1 fur die geraden Permutationen
und — 1 fiir die ungeraden. Dies 146t sich in die Determinantenform

Ya(l) Ya(2) ... da(n)
a o | WO 92) o b -

schreiben. Bei der Vertauschung zweier Elektronen, bleibt die symme-
trische Funktion unverindert, wihrend die antisymmetrische blof ihr
Vorzeichen wechselt. Die anderen Eigenfunktionen vom Typus (38)
sind vom gemischten Symmetriecharakter, denn sie verhalten sich bei
Vertauschung gewisser Elektronen symmetrisch, bei anderen anti-
symmetrisch. Diese kommen fiir uns nicht in Betracht.

Bei einem System von zwei Elektronen kommen also erfahrungs-
miBig nur die symmetrische

¥s = Ya(l)96(2) + Pa(2) (1) (39a)
und die antisymmetrische Funktion

‘%(1) Ya(2)
p(l)  Yu(2)

(40a)

ba = = ¥a(l)wp(2) — va(2)wu(1)

in Betracht. Dies ist iibrigens auch aus theoretischen Griinden zu
fordern.

Nach der Quantenmechanik reprasentiert nimlich ¢,dr = ¢,dr,dr,
im Fall zweier Elektronen die Wahrscheinlichkeit, dall man das Teil-
chen 1 im Volumelement dr; und das Teilchen 2 im Volumelement
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dr, gleichzeitig antrifft. Da die zwei Elektronen sich nicht unter-
scheiden lassen, mul notwendigerweise die Wahrscheinlichkeit, dal3
man die Elektronen 1 und 2 respektive in dr, und dr, simultan an-
trifft, gleich der Wahrscheinlichkeit sein, die Elektronen 2 und 1
beziehungsweise in dr, und dr, gleichzeitig anzutreffen. Eine Messung
ermoglicht ndmlich nur die Wahrscheinlichkeit zu bestimmen, dal3
ein Elektron in dr;, und das andere in dr, vorhanden ist; welches
Elektron im ersten und welches im zweiten Volumelement sich befindet,
kann aber physikalisch nicht festgestellt werden, weil ja die beiden
Teilchen sich nicht unterscheiden lassen. Es mul} also notwendiger-
welse

$?(1,2) = ¢2(2,1) (41)

sein, d. h. das Quadrat des Betrages der Eigenfunktion muf3 invariant
sein bei der Vertauschung der Elektronen. Diese Bedingung wird aber
nur von einer symmetrischen oder antisymmetiischen Eigenfunktion
erfilllt. Aus (41) folgt namlich

$(1,2) = ¢(2,1)
oder (42)

$(1,2) = —9(2,1),

was im Einklang mit den Funktionen (39a) und (40a) steht. Dieses
Ergebnis gilt auch allgemein: Wenn das System aus n Elektronen
besteht, mull die Aufenthaltswahrscheinlichkeit der Teilchen bei der
Vertauschung zweier Elektronen invariant bleiben. Diese Bedingung
wird aber auch im allgemeinen Fall nur von den symmetrischen und
antisymmetrischen Eigenfunktionen erfiillt.

Von den n! Eigenfunktionen, die wir urspriinglich unserem System,
aus n Elektronen bestehend, zugeordnet haben, bleiben also nur mehr
zwel brig. A priori ist es nicht moglich zu sagen, welche der beiden
Funktionen (39) oder (40) dem Problem besser entspricht. Um das zu
entscheiden, miissen wir auch den Spin des Elektrons beriicksichtigen.

Es wurde bisher angenommen, dal3 der Zustand des Elektrons durch
seine Koordinaten und die entsprechenden Impulse bzw. Quanten-
zahlen n, 1 und m, vollstindig beschrieben ist, d. h. daBl man das
Elektron als einen Massenpunkt ansehen darf. Die Erfahrung zeigt
aber, daB diese Vorstellung nicht zutreffend ist. Die Eigenschaften
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eines Elektronensystems kénnen nur dann ganz erfallt werden, wenn
man dem Elektron wie einem Kreisel eine Eigendrehung zuordnet.
Sein Rotationszustand ist durch die einzige Quantenzahl s = 14 fest-
gelegt. Der Eigendrehimpuls oder Spin des Elektrons hat den einzigen

2m gt
der Richtung der z-Achse orientiert sich der Elektronenkreisel zu

diesem Feld. Die entsprechende magnetische Quantenzahl hat aller-
dings nur die zwei Werte my = + 14. Die z-Komponente des Spindreh-

impulses ist -+ % 21—;
keiten um die Drehachse oder den zwei Einstellungsmoglichkeiten
der Drehachse. Haufig bezeichnet man s = + 15 und mg = + 14 selbst

Wert %3 (genauer Vs(s+1) E-)- Beim Vorhandensein eines Feldes in

. Diese entsprechen den zwei Drehungsmoglich-

als Spindrehimpuls bzw. z-Komponente des Spindrehimpulses (in 2%

Einheiten ausgedriickt).

Es ist oft niitzlich, den Spin des Elektrons durch eine Eigenfunktion
zu beschreiben. Einem Elektron kann man ja zwel Spinzustinde
zuordnen. Wir fithren deshalb zwei Funktionen « (w) und £ (w) ein,
die den Werten + 1, und — 14 der Spinkomponenten entsprechen.
Man kann also sagen, dal3 jede Eigenfunktion durch den Spin in zweil
Funktionen aufgespalten wird, nimlich

By = Y(xy 2). (o)
bs = (xy 2) . B(o) )

Die Spinvariable » kann die Orientierung des Elektrons reprdsen-
tieren, ihre Natur ist aber fiir unsere Zwecke belanglos. Wichtig ist
fir uns dagegen, da8 die Spinfunktionen orthogonal zueinander sind,
denn die beiden Zustinde entsprechen ja in einem Magnetfeld ver-
schiedenen Energien

[(e)Blo)do = 0 (44)
Wir nehmen ferner an, dal3 sie normiert sind
f a2(c)de = 1 f B2(w)de = 1 (45)

Nun sind wir soweit zu entscheiden, welche der Eigenfunktionen
(39) oder (40) fir uns in Frage kommt. Wir wollen diese Auswahl am
Beispiel von zwei Elektronen des Heliumatoms durchfithren. In diesem
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Fall erhilt man die vollstindigen Eigenfunktionen, die den Funktionen
(43) entsprechen, durch Kombination von (39a) und (40a) mit den im
niachsten Kapitel angegebenen Spinfunktionen, von denen (7d)
antisymmetrisch, die tibrigen symmetrisch sind. Durch das Auftreten
des Spins bekommt man somit insgesamt die 8 Eigenfunktionen (46)
statt zwei. Wir haben hier neben der gewohnlichen Austauschent-
artung noch mit einer sogenannten Spinentartung zu tun.

(1) (1]

[$a(1)¥b(2) + Ya(2)dp(1)] . B(1)B(2)

[Ga(1)Up(2) + Ya(@9p(1)] [x(1)B2) + 2(2)B(1)]

[9a(1)¥6(2) — Ya(@dp(1)] [2(1)B(2) — x(2)B(1)]

(46)

[a(1)¥6(2) + Ya(@)dp(1)] [2(1)B(2) — a(2)B(1)]

[a(1)¥6(2) — Ya(2)p(1)] x(1)x(2)

[$a(1) ¥6(2) — Ya(2)9p(1)] B(1)E(2)

[9a(1)¥6(2) — $a(@dp(1)] [=(L)(2) + «(2)B(1)]

Die ersten vier sind symmetrisch, die anderen antisymmetrisch.

Falls man die Wechselwirkung der Elektronen in Betracht zieht,
gehoren die Linearkombinationen (39a) und (40a) zu verschiedenen
Eigenwerten. Wegen der Spinstorung sollten ferner zu den g und Y,
je vier Einzelniveaus gehoren. Experimentell findet man aber keine
4-fachen Terme. Es i1st bekannt, dal3 das Termschema des Heliums
in ein Singulettsystem mit einfachen und ein Triplettsystem mit
dreifachen Termen auftritt. Diese Erfahrungstatsache 1i3t sich nur
so deuten, daB in der Natur entweder nur die symmetrischen oder nur
die antisymmetrischen Gesamteigenfunktionen (46) realisiert sind.
Eine explizite Rechnung zeigt nun, dal3 der zu g5 gehorige Term héher
liegt als derjenige von {, (durch die Spinstérung bedingter Unter-
schied kann hier vernachlissigt werden). Nach der Erfahrung liegen
aber die Singuletterme hoher als die Tripletterme. Daraus folgt bei
Beachtung von (46), dall in der Natur nur die antisymmetrische
Gesamteigenfunktion realisiert ist.

Dieses wichtige Resultat 146t sich aber verallgemeinern. Die Er-
fahrung zeigt, daB3 bei einem System bestehend aus mehreren Elektro-
nen nur solche Zustinde in der Natur realisiert sind, fir welche die
Orts-Spin-Eigenfunktion in allen Elektronen antisymmetrisch ist. Das
ist das bekannte Paulische AusschlieBungsprinzip. Die entsprechenden
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antisymmetrischen Eigenfunktionen koénnen in der Form (40) ge-
schriebenwerden, falls man dort in den a, b, c, ... auch die Spinquanten-
zahl einschlie(3t.

Von den wurspriinglich vorhandenen n! Eigenfunktionen des n-

Elektronensystems verbleibt eine einzige: die antisymmetrische Eigen-
funktion (40).

II. Darstellung der Valenzformeln durch Eigenfunktionen
6. Atomeigenfunkiionen

Wir sind nun soweit, die Konstruktion der Molekiileigenfunktionen,
die den Ausgangspunkt fiir die Ermittlung der Energie und Elektronen-
verteilung chemischer Molekitile bilden, in Angriff zu nehmen. Cha-
rakteristisch fiir die Spinvalenzvariante der Mesomeriemethode ist,
daB die Molekiile aus Atomen bzw. die Molekiileigenfunktionen aus
Atomeigenfunktionen aufgebaut werden. Unsere ndchste Aufgabe
ist also, Atomeigenfunktionen zu konstruieren.

Wie wir gesehen haben, kénnen die Eigenschaften eines Elektronen-
systems nur dann vollstindig erfallt werden, wenn man jedem Elektron
einen Spin zuordnet. Somit werden die Eigenfunktionen eines Systems
von n Elektronen auller den Koordinaten noch von den n Spinvariab-
len w,, o,, ..., 6, abhingig sein; d. h. die Eigenfunktion (9) ist in Wirk-
lichkeit, falls die Wechselwirkungen zwischen den Elektronen auf-
gehoben sind, von der allgemeineren Form

P(X,y1 2,05 - XnYn Zn©n) = Ya(X1 Y1 2y 01) - Yp(X, Y2 22 0,) 1)
----- br(Xn Yn Zn @n)

wo die Y (X;V;z ;) Funktionen der einzelnen Elektronen sind.
Die Buchstaben a, b, ¢, ... sind jetzt als Abktrzungen fir die vier
Quantenzahlen n, 1, m,, m, gedacht.

Fir die Konstruktion der Eigenfunktionen eines Atoms, bestehend
aus mehreren Elektronen, gibt es zwei Moglichkeiten. Bei der ersten
werden die Atomeigenfunktionen wie in (1) aus den vollstindigen
Einelektroneneigenfunktionen aufgebaut. Diese kommt fiir uns nicht
in Frage. Bei der zweiten Moglichkeit konstruiert man zunédchst die
nur von den Koordinaten der Elektronen abhingigen Atomeigen-
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