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I. Grundlagen der theoretischen Chemie

2. Die Schrödingersche Wellengleichung

Der Zustand und das Verhalten eines molekularen Systems wird
im Rahmen der Wellenmechanik durch die Schrödingersche
Wellengleichung beschrieben. Wir wollen sie hier als etwas Gegebenes
betrachten. Für die Ableitung dieser Gleichung verweisen wir auf das

Literaturverzeichnis und insbesondere auf das leichtverständliche
Büchlein über «Elementare Wellenmechanik» von W. Heitier. Im
Fall eines Teilchens kann die zeitabhängige Wellengleichung folgendermaßen

geschrieben werden:

h ".¦*--£.? «87t2m p 2ttì et

wo h die Plancksche Konstante, m die Masse des Teilchens, A den

Laplaceschen Operator, Ep die potentielle Energie des Teilchens, Y die
Wellenfunktion, i die imaginäre Einheit und t die Zeit repräsentiert.
Den Klammerausdruck kann man als den sogenannten Hamilton-
Operator H auffassen, der auf die Funktion Y wirkt.

/7C1 ot

Wir erinnern daran, daß man unter einem Operator eine Rechenvorschrift

versteht, um aus einer gegebenen Größe eine andere abzuleiten.
Wichtiger ist für uns aber eine zweite, die zeitunabhängige Schrö-

dinger-Gleichung. Diese entsteht aus (1), indem man die
Wellenfunktion in der Form eines Produktes

-—Ft (2)
T (x y z t) <], (x y z) e h v '

schreibt, wo E die Energie und <\i eine nur von den Koordinaten
abhängige Funktion darstellt. Man erhält auf diese Weise die Gleichung

A<1< + ^(E-EPH 0 (3)
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oder unter Verwendung des Hamilton-Operators die vereinfachte Form
H <]j E (Jj (3a)

Von den Lösungen <]; dieser partiellen Differentialgleichung kommen
allerdings nicht alle in Betracht. Auf Grund der sogenannten
Randbedingungen kommen nur solche Funktionen <\i als Lösungen der
Schrödingerschen Gleichung in Betracht, die überall stetig, eindeutig
und endlich sind. Solche Funktionen existieren aber nur für ganz
bestimmte Werte der Energie E, nämlich für die sogenannten Eigenwerte

der Differentialgleichung. Die zu den Eigenwerten gehörenden
Funktionen nennt man Eigenfunktionen.

Es kann nun vorkommen, daß in einem Problem zu jedem Eigenwert

nur eine Eigenfunktion gehört. In diesem Fall bezeichnet man
den Eigenwert als einfach und den Zustand als nicht entartet. Wenn
zu einem Eigenwert mehrere Eigenfunktionen gehören, so sagt man,
daß das System entartet ist und der Eigenwert ein mehrfacher Eigenwert

ist.
Die zeitunabhängige Schrödinger-Gleichung bestimmt die stationären

Zustände des Systems, d. h. die erlaubten Energiewerte E
entsprechen der Energie des Teilchens im stationären Zustand.

Eine wichtige allgemeine Eigenschaft der Eigenfunktion ist ihre
Orthogonalität : Zwei Eigenfunktionen <\in und <\im, die zu verschiedenen

Eigenwerten gehören, genügen der folgenden Orthogonalitätsrelation

J>n +m dT 0 (4)

Hier ist vorausgesetzt, daß die Eigenfunktionen reell sind; für uns
kommen nämlich nur solche in Betracht. Die Eigenfunktionen der
Schrödinger-Gleichung sind nur bis auf eine Konstante bestimmt, über
die man frei verfügen kann. Diese Konstante wird im allgemeinen so

gewählt, daß die folgende sogenannte Normierungsbedingung erfüllt
ist

/•VdT-1 (5)

Die so bestimmte Eigenfunktion nennt man normiert.
Wichtiger als die Gleichungen (1) und (3) ist für unsere Zwecke die

verallgemeinerte Gleichung von Schrödinger, gültig für ein System
von n Massenpunkten. Sie lautet
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rfïHi(^ + 4 + riV + (E~Ep)*"0 (6)

i l

Hier bedeutet m; die Masse und x,, y;, z; die kartesischen Koordinaten
der iten Partikel. E ist die totale Energie und Ep die potentielle Energie
des Systems bestehend aus n Partikeln. Der Ausdruck

n n
V A. 6 - "S f— + — + —U^ lV ^ \cJxj2 eyi2 6z;2 / V

i=l i=l

ist der Laplacesche Operator in einem 3n-dimensionalen Raum, wobei
die Eigenfunktion sich auf denselben Raum bezieht.

Auch die allgemeine Schrödinger-Gleichung (6) läßt sich durch die
vereinfachte Gleichung

H(Jj - E<> (7)

ausdrücken, insofern der Hamilton-Operator, der Eigenwert und die

Eigenfunktion entsprechend verallgemeinert sind.

3. Lösung der Wellengleichung durch Separation der Variablen

Bekanntlich läuft die wellenmechanische Behandlung chemischer
Systeme auf die Bestimmung der Eigenwerte und Eigenfunktionen
des Systems aus. Während die Wellengleichung (3) im Fall eines

Elektrons, wie es beim Wasserstoff vorliegt, noch streng lösbar ist,
stößt die Lösung des Mehrkörperproblems in der Wellenmechanik
auf nicht zu überwindende Schwierigkeiten. Das ist weiter gar nicht
erstaunlich, wenn man bedenkt, daß die exakte Behandlung des

allgemeinen n-Körperproblems auch in der klassischen Mechanik noch
heute ein ungelöstes Problem darstellt. Man ist somit gezwungen, die
allgemeine Gleichung (6) durch Näherungsverfahren zu lösen.

Obwohl die allgemeine Gleichung (6) exakt nicht lösbar ist, tritt
häufig der Fall auf, daß die Schrödinger-Gleichung der einzelnen
Teilchen des Systems bekannt ist, also daß die Eigenwerte und
Eigenfunktionen des einzelnen Teilchens bekannt sind. In solchen Fällen
verfährt man so, daß man die Wechselwirkung der Teilchen zunächst
vernachlässigt. Die Lösung der Schrödinger-Gleichung des verein-
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fachten - jetzt aus ungekoppelten Teilchen - bestehenden Systems,
läßt sich dann als Lösung der Wellengleichung der einzelnen Teilchen
betrachten. Die vernachlässigten Wechselwirkungen können dann

nachträglich mit Hilfe der sogenannten Störungsrechnung berücksichtigt

werden.
Betrachten wir also ein System bestehend aus mehreren Teilchen

2Ai++^(E^Ep)+ 0 (6a)

i=l

(z. B. aus mehreren Elektronen in einem Kernfeld). Vernachlässigen
wir die Wechselwirkung zwischen den Teilchen, so kann die potentielle

Energie der Gleichung (6a) als eine Summe von Funktionen
dargestellt werden, die nur von den Koordinaten je eines Teilchens
abhängen, d. h.

Ep Epl (x, y, z,) + Ep2 (x2 y2 z2) + + Epn (xn yn zn) (8)

Die Schrödinger-Gleichung des aus ungekoppelten Teilchen bestehenden
Systems kann dann mit der Wellenfunktion

¦J* <l*i (xi yi zi) «1*2 (x2 Yz z2) • • • Ì>n (xn yn Zn) (9)

und mit der folgenden Zerlegung der Gesamtenergie befriedigt werden.

E Ei + E2 + + En (10)

Führen wir nämlich die Ausdrücke (8), (9) und (10) in die
Wellengleichung (6a) ein und dividieren mit <\>l ^2 J>n so erhält man

(11)
Al(k A2<Ji, An+n 87t2m
—i— + —r— + • • • + —r—- + -y-f- LEj + E2 + + En — (Kpl + Ep2 + + Epn)J 0

Yi Y2 yn n

Diese Gleichung kann befriedigt werden, wenn die einzelnen
Gleichungen

Ai+! + Tjr (E* - ep>) +* °

87r2m,„ _ n
(12>

A2 + 2 + -^T" (E2 ~ EP2) +2 0

gelten. Somit kann z. B. das Problem eines Atoms mit n Elektronen
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auf n Einelektronenprobleme zurückgeführt werden. Die Funktion (9)

repräsentiert dann eine rohe Näherung der Lösung des betrachteten
Problems.

Als Illustration dieser Approximationsrechnung soll das Beispiel
des Heliumatoms erwähnt werden. Gemäß Gleichung (6a) haben wir
im Falle des Heliumatoms bei Vernachlässigung der Kernbewegung,
d. h. also bei ruhendem Kern die Schrödinger-Gleichung

(13)
d2<l> d2i> c2<li d2^ e2^ 82<\> 87T2m / Ze2 Ze2 e2 \

FxF2
+

IfyF2
+ "ëz? + FF/ + 6yF + FtF2 +

h2 \
+ "r? +

~FF ~~~FF2) * ~

Hier sind also x^Zj und x2y2z2 die rechtwinkligen Koordinaten der
beiden Elektronen, m die Masse des Elektrons, e die positive Elementarladung,

E die Gesamtenergie des Atoms, Z die Kernladungszahl,
t1 und r2 sind die Abstände der Elektronen vom Kern und r12 der
Abstand zwischen den beiden Elektronen. Die potentielle Energie ist

7P2 7P2 p2E„=-— -±F + F- (14)P rl r2 r12

wobei -Ze2/rx die potentielle Energie des ersten und -Ze2/r2 die des

zweiten Elektrons ist und e2/r12 die potentielle Energie der Wechselwirkung

der beiden Elektronen darstellt. In den beiden ersten Fällen
haben wir selbstverständlich mit einer Anziehung, im letzten Fall mit
einer Abstoßung der Elektronen zu tun. Ausführlicher geschrieben,
ergibt sich für die potentielle Energie des Heliumatoms, falls der Kern
im Ursprung eines rechtwinkligen kartesischen Koordinatensystems
liegt, der Ausdruck

2e2 2e2 e2

ep-
V'x12 + y12 + z12 Vx22+y22 + z22 y'(x2-x1)2 + (y2~y1)2 + (z2-z1)2

Die Kernladung Ze wurde oben in einer allgemeinen Form
geschrieben, so daß die Gleichung (13) auch für heliumähnliche Systeme
wie z. B. das einfach ionisierte Lithiumatom gelten wird.

Das Wechselwirkungsglied -e2/r12 der beiden Elektronen spielt in
Gleichung (13) die Rolle eines Störungsgliedes. Wird es nämlich
vernachlässigt, so können die zwei Elektronen als unabhängig voneinander
betrachtet werden. Man erhält also zunächst
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A^ + A^o + ^^ + ^ + ^^O (15)

wo Ax und A2 Laplacesche Operatoren darstellen, die sich auf das erste
und zweite Elektron beziehen und <|i° die ungestörte Wellenfunktion
ist. Nach (9) kann die Lösung dieser Gleichung in den Variablen des

ersten und zweiten Elektrons separiert werden, d. h.

y10 (xi yi zi x2 y2 z2) <|*î (xi yi zi) <\>°2 (x2 y2 z2) (9a)

wo <p° un<i 'l'" ^e ungestörten Funktionen der Elektronen 1 und 2

sind. Führt man (9a) in die Gleichung (15) ein, so erhält man nach
Division mit ^ dy° :

¥+*tf+!Ê*(—"?£)-
Zerlegt man ferner E° gemäß (10) in die Bestandteile E, + E2, so

wird (16) durch die beiden Gleichungen

A^^^+f)^«

befriedigt. Diese sind aber die Gleichungen des Wasserstoffatoms, die
als bekannt betrachtet werden können. Der einzige Unterschied
besteht darin, daß hier die Kernladungszahl Z größer ist. Die
Eigenfunktion des Wasserstoffatoms im Grundzustand ist gegeben durch

wo al den ersten Bohrschen Radius repräsentiert. Für die nicht
gestörte Eigenfunktion des Heliumatoms erhalten wir also

Z3 _Z_(ri+r2)
ï \, a, j

Die Gesamtenergie eines Elektrons des Heliumatoms im
Grundzustand kann folgendermaßen ausgedrückt werden:

2-n:2me4Z2
E _

Z.1Z me z.
_ RhcZ2
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wo R die Rydbergsche Konstante und c die Lichtgeschwindigkeit
repräsentiert. Das Produkt -Rhc - 13,6 eV entspricht der Energie
des Elektrons im Wasserstoffatom. Die Energie der beiden Elektronen
im Heliumatom ist dementsprechend gleich -8. 13,6 eV - 108,8 eV.
Der Experimentalwert der Energie, die notwendig ist, um die beiden
Elektronen des Heliumatoms zu entfernen, ist aber bloß 78,7 eV. Dieser
große Unterschied in den zwei Werten ist natürlich auf die
Vernachlässigung der Abstoßung der beiden Elektronen zurückzuführen.

4. Störungsrechnung

Selbstverständlich ist der erhaltene Energiewert des Heliums noch
viel zu grob, und es fragt sich, wie man ihn noch verbessern könnte.
Wie bereits erwähnt, ist die Schrödinger-Gleichung in den meisten
Fällen nicht exakt lösbar, so daß man gezwungen ist, die Energie auf
Grund von Näherungsmethoden zu ermitteln. Ein solches Verfahren
ist die sogenannte Störungsrechnung, die wir hier angeben wollen,
soweit sie für uns in Frage kommt.

Es kann vorkommen, daß ein Problem zwar exakt nicht lösbar ist,
aber nicht sehr verschieden ist von einem bereits gelösten. Wichtig
ist für uns der Fall, daß das ungelöste Problem durch eine kleine
Abänderung der potentiellen Energie, die man dann als Störung
betrachten kann, aus dem bekannten hervorgeht. In unserem Fall des

Heliumatoms z. B. ist die potentielle Energie (14) des zu lösenden

gestörten Systems

Ep - (- Z-f - ^2) + FF
Ep + XEp (14a)

\ rl r2 / 'l2

wo Ep die ungestörte potentielle Energie des bekannten Problems,
Ep das Störungsglied der potentiellen Energie und X einen willkürlichen
Hilfsparameter repräsentiert. Für X o geht dieser Ausdruck in die
potentielle Energie des bekannten Problems über. Ist der
Störungsparameter hinreichend klein, so kann man zur Berechnung der Eigenwerte

und Eigenfunktionen eine Störungsrechnung entwickeln.
Betrachten wir also die Schrödinger-Gleichung eines exakt nicht

lösbaren Problems (z. B. das Heliumatom)

A*k + ~ (Ek - E»p - XEy fe 0 (17)
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Die entsprechende Gleichung im ungestörten Fall ist dann

87tfm
IFA« + ^T (EJ - Ep) «J4 0 (18)

deren Eigenwerte und Eigenfunktionen als bekannt vorausgesetzt
sind. Der Index o soll den ungestörten Zustand andeuten. Ferner
nehmen wir an, daß das System nicht entartet ist, d. h. zu jedem
Eigenwert gehört nur eine Eigenfunktion

E°, E°, ...,Eg,
*?. Vz *K. •¦¦

Da die Störung der potentiellen Energie in (17) im Verhältnis zur
ursprünglichen in (18) als klein vorausgesetzt ist, kann man annehmen,
daß sich die Eigenwerte und Eigenfunktionen von den entsprechenden
des nicht gestörten auch nur wenig unterscheiden werden. Es liegt
also nahe, die unbekannten Eigenwerte Ek und Eigenfunktionen <\ik

nach steigenden Potenzen von X zu entwickeln. Wir schreiben folglich

Ek Eg + XEi + X2Ey + (19)
+k « + Hi + ^k + • • • (20)

wo Ek, Ek, Störungsglieder der Energie und <]>k, <\>k, diejenigen der

Eigenfunktionen von erster, zweiter usw. Ordnung sind. Wir werden
hier nur Glieder nullter und erster Ordnung in Betracht ziehen.

Führen wir nun (19) und (20) in die Gleichung (17) ein, so erhält man

A<K + XA44 +^ (Eg + XEk - E» - XEp) (« + X<|4) - 0

Diese Gleichung muß nun für jeden Wert des Parameters X erfüllt sein,

was nur dann möglich ist, wenn die Koeffizienten der Potenzen von X

einzeln verschwinden. Sie zerfällt somit in die beiden Gleichungen

"*7t2m

37t2m 8K2m
A44 + -j-r (E£ - Ep) 44 -j^- (Ep

87t2m/T,„ „„, 87T*m,
*21'

Die erste ist der Koeffizient von X° und ist identisch mit der
Schrödinger-Gleichung des ungestörten Systems, die zweite entspricht X1,
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während der Koeffizient von X2 gemäß Voraussetzung vernachlässigt
ist.

Die Gleichung (21) ist eine inhomogene Differentialgleichung. Nach
der Theorie der Differentialgleichungen besitzt diese nur dann eine

Lösung, wenn die rechte Seite zur Lösung der entsprechenden homogenen

Gleichung orthogonal ist. Gleichung (21) hat also nur dann eine

Lösung, wenn ijik zur rechten Seite von (21) orthogonal ist, d. h.

/(EP-Ek) 44^ 0

Wegen der Normierung der ungestörten Eigenfunktionen können wir
schließlich schreiben

Ei-/EM4*dT (22)

Sind also die Eigenfunktionen nullter Ordnung <]£ sowie die Störung
der potentiellen Energie des zu lösenden Systems bekannt, so kann die

Störung erster Ordnung der Gesamtenergie Ek durch eine Integration
gewonnen werden. Im Fall des Heliumatoms - um den Ausdruck zu
konkretisieren - entspricht Ep der Wechselwirkung der beiden
Elektronen und i|k2dT i];^2dT1dT2 repräsentiert die Wahrscheinlichkeit,
die Elektronen 1 und 2 bzw. in den Volumelementen dzl und dx2

anzutreffen. Dementsprechend ist die Störung der Gesamtenergie Ek
gleich dem mit dieser Verteilungsfunktion ^k2dr gebildeten Mittelwert

des Störunspotentials Ep.
Die angegebene Störungsrechnung ist nicht ohne weiteres anwendbar,

wenn das ungestörte System entartet ist, d. h. wenn zu einem

Eigenwert Ek etwa n linear unabhängige Eigenfunktionen gehören:

E£: <|&.«2. ••- Hi Wn (23)

Beim nicht entarteten Fall ist die Situation eindeutig: läßt man die

Störung der potentiellen Energie immer kleiner werden, so geht die

gestörte Eigenfunktion in die entsprechende nicht gestörte über. Im
entarteten Fall dagegen geht die gestörte Eigenfunktion i}k zwar
auch in eine nicht gestörte über mit dem Unterschied, daß wir zum
Voraus nicht wissen können, in welche nicht gestörte Eigenfunktion
der Übergang erfolgt ; meistens geht <\>k gar nicht in eine bestimmte <Jiki,

sondern in eine Kombination der Funktionen (23) über. Da die Schrö-
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dinger-Gleichung eine homogene lineare Differentialgleichung ist,
bildet jede Linearkombination der Eigenfunktionen (23) auch eine

Lösung der ungestörten Gleichung für denselben Eigenwert Ek. Somit
können wir die einzelnen Funktionen (23) durch ihre Linearkombination

der Form

<Pk cMi + c2Yi2 + + cnYin (24)

ersetzen, wobei die Koeffizienten zunächst noch unbestimmt sind; es

wird sich aber zeigen, daß die folgende Störungsrechnung gleichzeitig
auch die Bestimmung der Koeffizienten c; in (24) ermöglicht. Wird nun
die Störung immer kleiner, so geht die gestörte Eigenfunktion in die

entsprechende Linearkombination (24) über. Die Eigenfunktionen
vom Typus (24) nennt man «Eigenfunktionen nullter Näherung». Es
sei noch ausdrücklich darauf hingewiesen, daß die Eigenfunktionen
(23), die zum selben Eigenwert Ek gehören, im allgemeinen nicht
orthogonal sind, was wir auch hier annehmen wollen.

Nach dieser Vorbereitung können wir die Überlegungen des nicht
entarteten Falles auf den entarteten übertragen, um die Störung des

Energiewertes zu bestimmen. Wir wollen aber diesmal die Entwicklung
wie das häufig geschieht, mit der einfacheren Form der Schrödinger-
Gleichung (3a) durchführen. Schreiben wir also die Gleichung für ein

gestörtes Problem in die Form

H <\, - E <Jj 0 (25)

und die entsprechende Gleichung des nicht gestörten Systems

Ho 4,0 _ Eo ^0 0 (26)

Wir nehmen ferner an, das der Hamilton-Operator H in der Form

H H° + XH' (27)

dargestellt werden kann. Für den gestörten Eigenwert Ek und die

gestörte Eigenfunktion <\ik setzen wir analog (19) und (20) die
Entwicklungen an :

Ek Eg + XEg + X2Eg' + (28)

+k <Pk + Hk + *2+k' + ¦ • ¦ (29)

Führt man nun die Ausdrücke (27), (28) und (29) in die gestörte
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Schrödinger-Gleichung (25) und vernachlässigt die Glieder zweiter
und höherer Ordnung, so erhält man die Gleichung

(H° + XH') (cpg + XYg) - (Eg + XEg) (9» + 14,') 0

(H°9g - Egçg) + X (H>g + H°44 - Eg9g - Eg+g) 0

Da die Koeffizienten von X° und X1 einzeln verschwinden müssen, ist
der erste Klammerausdruck identisch mit der ungestörten Schrödinger-
Gleichung, während die zweite Klammer die zu (21) analoge Gleichung
ergibt.

(H- - Eg) 44 (Eg - H') 9g (30)

Der Satz über Differentialgleichungen, den wir beim nicht entarteten
Fall bereits verwendet haben, führt dann in der erweiterten Form zum
folgenden: Damit das Problem eine Lösung besitzt, muß die rechte
Seite der Gleichung (30) zu allen Lösungen der homogenen Gleichung
orthogonal sein, d. h. muß folgendes Gleichungssystem erfüllt sein :

J"<Ki (H' -Eg)9k»dx 0

/*K2 (H' - Eg) 9g dx 0

(31)

jKn(H'-Eg)9gdx 0

Führen wir für <p£ den Ausdruck (24) ein, so erhält man

Cl_f>£i (H' - Eg) «|& dx + + c^g, (H' - Eg) <K„ dr 0

C1/-J&, (H' - Eg) Kn dx + + cnjWn (H' - Eg) «n dx 0

Für die hier auftretenden Integrale führen wir noch die folgende
Bezeichnung ein:

Ha fKi H'Kl dx
F (32)

Ail =JKiKldT

bei denen wir den Index k weglassen. Das Gleichungssystem (31) kann
somit in der einfacheren Form geschrieben werden

(H„ - EgA„) c, + (H12 - EgA12) c2 + + (Hln - EgAln) cn 0

(H21 - EgA21) c, + (H22 - EgA22) c2 + + (H2n - EgA2n) cn 0

(Hm - EgAnl) c, + (Hn2 - EgAn2) c2 + + (Hnn - EgAnn) cn 0
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Das ist ein homogenes lineares Gleichungssystem für die c; als
Unbekannten. Dieses System hat nur dann eine von Null verschiedene
Lösung, wenn die Determinante der Koeffizienten verschwindet

Hu —EgAn H,2 —EgA12 Hln —EgAln
H2i — EgA21 H22 — EgA22 H2n — EgA2n

Hm — EgAnl Hn2 — EgAn2 Hnn — EgAnn

0 (34)

Die Ausrechnung der Determinante liefert eine Gleichung n-ten
Grades in Ek. Die entsprechenden n Wurzeln

Egi, Eg2, Egn (35)

sind die Werte für die Störung erster Ordnung des k-ten Eigenwertes.
Diese sind reell in allen uns interessierenden Problemen.

Der k-te Eigenwert war ursprünglich entartet. Sind alle Wurzeln (35)
verschieden voneinander, so wird die Entartung durch die Störung
aufgehoben, weil jetzt n Eigenwerte vorhanden sind, nämlich

Eki Eg + Eg,
Ek2 Ek + Ek2 /jg\

Ekn - Eg + Egn

Führen wir einen Wert (35) in das Gleichungssystem (33) ein, so

können die c; bestimmt werden. Dadurch sind die Koeffizienten der
Eigenfunktion nullter Näherung (24) auch festgelegt. Wie man sieht,
gehört zu jedem Wert (35) ein Koeffizientensystem C; und
dementsprechend eine Eigenfunktion nullter Näherung cpk. Es sei schließlich
darauf hingewiesen, daß man aus (33) nur die Verhältnisse der c;
bestimmen kann; ein Koeffizient ist noch verfügbar. Dieser kann aber
durch die Normierung der Eigenfunktionen (24) festgelegt werden.

5. Austausch- und Spinentartung

Im Abschnitt 3 haben wir gesehen, daß die Schrödinger-Gleichung
eines aus n Teilchen bestehenden Systems ohne Schwierigkeit lösbar
ist, falls die Wechselwirkung zwischen den Teilchen vernachlässigt
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wird, also falls die Teilchen ungekoppelt sind. Die Lösung der
Schrödinger-Gleichung eines Atoms, bestehend aus n ungekoppelten
Elektronen, können wir also gemäß (9) in der Form

4», 4-a(l)<h,(2)<|»c(3) • • • Wn) (37)

schreiben. Hier haben wir die drei Ortskoordinaten jedes Elektrons
einfach mit der entsprechenden Zahl 1, 2, 3, n bezeichnet. Ferner
wurde der Quantenzustand der verschiedenen Elektronen mit a, b,

c, r repräsentiert, wobei diese Buchstaben an Stelle der drei
Quantenzahlen n, 1, im stehen.

Nun tritt aber bei diesem Problem wegen der Identität der Teilchen
d. h. der Elektronen eine Entartung auf. Die Energie des Atoms ist
nämlich symmetrisch in allen Elektronen, d. h. sie ist eine Funktion
von 1, 2, n, die sich nicht ändert, wenn man die Elektronen
permutiert. Somit ist die Eigenfunktion (37) nicht die einzige, die zum
selben Eigenwert gehört. Man erhält aus (37) noch weitere durch eine
Permutation der Elektronen. Z. B. ist

K K(2)K(1)K(3) - - - Wn) (37a)

auch eine Eigenfunktion zum selben Eigenwert. Es gibt also mehrere

Eigenfunktionen zum selben Eigenwert, weil die Elektronen voneinander

nicht unterscheidbar sind. Man spricht in solchen Fällen von
Austauschentartung.

Falls sich alle Elektronen in verschiedenen Quantenzuständen
a, b, befinden, gehören zu einem Eigenwert des Atoms n! linear
unabhängige Funktionen. Man sagt ferner, daß der betreffende Zustand
des Atoms (nl-l)-fach entartet ist. Wenn sich zwei oder mehrere
Elektronen im selben Quantenzustand befinden, so ist die Anzahl der

Eigenfunktionen auch entsprechend kleiner. Falls alle Elektronen im
selben Quantenzustand sind, z. B. im Zustand ipa. so ändert eine
Permutation an der Funktion (37) überhaupt nichts. In diesem Fall
gehört zu dem betreffenden Eigenwert nur eine Eigenfunktion.

Sind alle Elektronen in verschiedenen Quantenzuständen, so haben
wir also im ganzen n! Eigenfunktionen zum selben Eigenwert. Die
allgemeine Lösung erhält man durch Linearkombination aller Partial-
eigenfunktionen, nämlich

<l> c1ty1 + c24*2 + c34j3 + (38)
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Die Koeffizienten q können im Rahmen der Störungsrechnung
entarteter Systeme festgelegt werden. Das führt zunächst auf
verschiedene Kombinationen vom Typus (38) mit verschiedenen
Koeffizientensätzen. Die Erfahrung zeigt, daß für ein System von n gleichen
Teilchen unter allen Eigenfunktionen (38) nur zwei in Frage kommen
können: eine in allen Elektronen symmetrische und eine in allen
Elektronen antisymmetrische Eigenfunktion. Im ersten Fall sind alle
Koeffizienten gleich 1, wir haben also

vs SPW%(2)W)
p (39)

wobei die Summe über alle Permutationen P zu erstrecken ist; beim
zweiten ist der Koeffizient gleich + 1 für die geraden Permutationen
und — 1 für die ungeraden. Dies läßt sich in die Determinantenform

VA
*b(l)

K(2)
+b(2)

<J*a(n)

+b(n)

WI) W2) Wn)

(40)

schreiben. Bei der Vertauschung zweier Elektronen, bleibt die symmetrische

Funktion unverändert, während die antisymmetrische bloß ihr
Vorzeichen wechselt. Die anderen Eigenfunktionen vom Typus (38)
sind vom gemischten Symmetriecharakter, denn sie verhalten sich bei

Vertauschung gewisser Elektronen symmetrisch, bei anderen
antisymmetrisch. Diese kommen für uns nicht in Betracht.

Bei einem System von zwei Elektronen kommen also erfahrungsmäßig

nur die symmetrische

vs K(i)K(2) + K(2)K(i) (39a)

und die antisymmetrische Funktion

•Va(l) K(2)

K(i) K(2)
yA <l*a(l)<l*b(2)-<|*a(2)<|*b(l)

(40a)

in Betracht. Dies ist übrigens auch aus theoretischen Gründen zu
fordern.

Nach der Quantenmechanik repräsentiert nämlich <\>2dz tj^d-^d-r^
im Fall zweier Elektronen die Wahrscheinlichkeit, daß man das Teilchen

1 im Volumelement dxx und das Teilchen 2 im Volumelement
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d-r2 gleichzeitig antrifft. Da die zwei Elektronen sich nicht
unterscheiden lassen, muß notwendigerweise die Wahrscheinlichkeit, daß

man die Elektronen 1 und 2 respektive in d-^ und d-r2 simultan
antrifft, gleich der Wahrscheinlichkeit sein, die Elektronen 2 und 1

beziehungsweise in d-t^ und d-r2 gleichzeitig anzutreffen. Eine Messung
ermöglicht nämlich nur die Wahrscheinlichkeit zu bestimmen, daß
ein Elektron in dxx und das andere in dx2 vorhanden ist; welches
Elektron im ersten und welches im zweiten Volumelement sich befindet,
kann aber physikalisch nicht festgestellt werden, weil ja die beiden
Teilchen sich nicht unterscheiden lassen. Es muß also notwendigerweise

42 (1,2) 4,2 (2,1) (41)

sein, d. h. das Quadrat des Betrages der Eigenfunktion muß invariant
sein bei der Vertauschung der Elektronen. Diese Bedingung wird aber

nur von einer symmetrischen oder antisymmetiischen Eigenfunktion
erfüllt. Aus (41) folgt nämlich

+(1.2) - +(2,1)
oder (42)

4,(1,2) =-Y(2,i),

was im Einklang mit den Funktionen (39a) und (40a) steht. Dieses

Ergebnis gilt auch allgemein: Wenn das System aus n Elektronen
besteht, muß die Aufenthaltswahrscheinlichkeit der Teilchen bei der

Vertauschung zweier Elektronen invariant bleiben. Diese Bedingung
wird aber auch im allgemeinen Fall nur von den symmetrischen und
antisymmetrischen Eigenfunktionen erfüllt.

Von den n! Eigenfunktionen, die wir ursprünglich unserem System,
aus n Elektronen bestehend, zugeordnet haben, bleiben also nur mehr
zwei übrig. A priori ist es nicht möglich zu sagen, welche der beiden
Funktionen (39) oder (40) dem Problem besser entspricht. Um das zu
entscheiden, müssen wir auch den Spin des Elektrons berücksichtigen.

Es wurde bisher angenommen, daß der Zustand des Elektrons durch
seine Koordinaten und die entsprechenden Impulse bzw. Quantenzahlen

n, 1 und m1 vollständig beschrieben ist, d. h. daß man das

Elektron als einen Massenpunkt ansehen darf. Die Erfahrung zeigt
aber, daß diese Vorstellung nicht zutreffend ist. Die Eigenschaften
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eines Elektronensystems können nur dann ganz erfaßt werden, wenn
man dem Elektron wie einem Kreisel eine Eigendrehung zuordnet.
Sein Rotationszustand ist durch die einzige Quantenzahl s %
festgelegt. Der Eigendrehimpuls oder Spin des Elektrons hat den einzigen

Wert 2jT (genauer 1/S(s+ 1)5-¦)• Beim Vorhandensein eines Feldes in
der Richtung der z-Achse orientiert sich der Elektronenkreisel zu
diesem Feld. Die entsprechende magnetische Quantenzahl hat
allerdings nur die zwei Werte ms + y2. Die z-Komponente des Spindrehimpulses

ist + 2 2~ ¦ Diese entsprechen den zwei Drehungsmöglichkeiten

um die Drehachse oder den zwei Einstellungsmöglichkeiten
der Drehachse. Häufig bezeichnet man s + % und ms + % selbst

als Spindrehimpuls bzw. z-Komponente des Spindrehimpulses (in j-
Einheiten ausgedrückt).

Es ist oft nützlich, den Spin des Elektrons durch eine Eigenfunktion
zu beschreiben. Einem Elektron kann man ja zwei Spinzustände
zuordnen. Wir führen deshalb zwei Funktionen a (co) und ß (co) ein,
die den Werten + % und — % der Spinkomponenten entsprechen.
Man kann also sagen, daß jede Eigenfunktion durch den Spin in zwei
Funktionen aufgespalten wird, nämlich

4-! 4-(xyz).<x(co)
+2 <Kxyz).ßH * >

Die Spinvariable co kann die Orientierung des Elektrons repräsentieren,

ihre Natur ist aber für unsere Zwecke belanglos. Wichtig ist
für uns dagegen, daß die Spinfunktionen orthogonal zueinander sind,
denn die beiden Zustände entsprechen ja in einem Magnetfeld
verschiedenen Energien

fa(co)ß(co)dco 0 (44)

Wir nehmen ferner an, daß sie normiert sind

fa2(co)dco 1 Jß2(to)dco 1 (45)

Nun sind wir soweit zu entscheiden, welche der Eigenfunktionen
(39) oder (40) für uns in Frage kommt. Wir wollen diese Auswahl am
Beispiel von zwei Elektronen des Heliumatoms durchführen. In diesem
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Fall erhält man die vollständigen Eigenfunktionen, die den Funktionen
(43) entsprechen, durch Kombination von (39a) und (40a) mit den im
nächsten Kapitel angegebenen Spinfunktionen, von denen (7d)

antisymmetrisch, die übrigen symmetrisch sind. Durch das Auftreten
des Spins bekommt man somit insgesamt die 8 Eigenfunktionen (46)

statt zwei. Wir haben hier neben der gewöhnlichen Austauschentartung

noch mit einer sogenannten Spinentartung zu tun.

[4a(i)K(2) + K(2)K(i)] • «(i)«(2)
N*a(l)<l<b(2) + <M2)+b(l)] • ß(l)P(2)
M*a(l)<l*b(2) + 4*a(2)4*b(l)] [«(l)ß(2) + a(2)ß(l)]
[*»(l)«h,(2) - +a(2)*Yb(l)] [«(l)ß(2) - a(2)ß(l)]

(46)

[^(1)^(2) + +a(2)4b(l)] [a(l)ß(2) -a(2)ß(l)]
:+«(l)+b(2) -*ra(2)*Yb(l)]a(l)«(2)
[+.(l)*b(2)-+a(2)+b(l)]ß(l)ß(2)
[+a(l)K(2) - 4a(2)K(l)] [a(l)ß(2) + a(2)ß(l)]

Die ersten vier sind symmetrisch, die anderen antisymmetrisch.
Falls man die Wechselwirkung der Elektronen in Betracht zieht,

gehören die Linearkombinationen (39a) und (40a) zu verschiedenen

Eigenwerten. Wegen der Spinstörung sollten ferner zu den <]>s und <\iA

je vier Einzelniveaus gehören. Experimentell findet man aber keine
4-fachen Terme. Es ist bekannt, daß das Termschema des Heliums
in ein Singulettsystem mit einfachen und ein Triplettsystem mit
dreifachen Termen auftritt. Diese Erfahrungstatsache läßt sich nur
so deuten, daß in der Natur entweder nur die symmetrischen oder nur
die antisymmetrischen Gesamteigenfunktionen (46) realisiert sind.
Eine explizite Rechnung zeigt nun, daß der zu <\>s gehörige Term höher
liegt als derjenige von <\)A (durch die Spinstörung bedingter Unterschied

kann hier vernachlässigt werden). Nach der Erfahrung liegen
aber die Singuletterme höher als die Tripletterme. Daraus folgt bei
Beachtung von (46), daß in der Natur nur die antisymmetrische
Gesamteigenfunktion realisiert ist.

Dieses wichtige Resultat läßt sich aber verallgemeinern. Die
Erfahrung zeigt, daß bei einem System bestehend aus mehreren Elektronen

nur solche Zustände in der Natur realisiert sind, für welche die

Orts-Spin-Eigenfunktion in allen Elektronen antisymmetrisch ist. Das
ist das bekannte Paulische Ausschließungsprinzip. Die entsprechenden
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antisymmetrischen Eigenfunktionen können in der Form (40)
geschrieben werden, falls man dort in den a, b, c,... auch die Spinquantenzahl

einschließt.
Von den ursprünglich vorhandenen n! Eigenfunktionen des n-

Elektronensystems verbleibt eine einzige : die antisymmetrische
Eigenfunktion (40).

II. Darstellung der Valenzformeln durch Eigenfunktionen

6. Atomeigenfunktionen

Wir sind nun soweit, die Konstruktion der Moleküleigenfunktionen,
die den Ausgangspunkt für die Ermittlung der Energie und Elektronenverteilung

chemischer Moleküle bilden, in Angriff zu nehmen.
Charakteristisch für die Spinvalenzvariante der Mesomeriemethode ist,
daß die Moleküle aus Atomen bzw. die Moleküleigenfunktionen aus

Atomeigenfunktionen aufgebaut werden. Unsere nächste Aufgabe
ist also, Atomeigenfunktionen zu konstruieren.

Wie wir gesehen haben, können die Eigenschaften eines Elektronensystems

nur dann vollständig erfaßt werden, wenn man jedem Elektron
einen Spin zuordnet. Somit werden die Eigenfunktionen eines Systems
von n Elektronen außer den Koordinaten noch von den n Spinvariablen

co1; co2, con abhängig sein; d. h. die Eigenfunktion (9) ist in
Wirklichkeit, falls die Wechselwirkungen zwischen den Elektronen
aufgehoben sind, von der allgemeineren Form

Wx, y. Zi Wi ; - - • xn yn zn un) ijjafx, y! z, Wl). +b(x2y2z2«2) /jn
Wxn yn Zn "n)

wo die c|;k(xi y, Zj coj) Funktionen der einzelnen Elektronen sind.
Die Buchstaben a, b, c, sind jetzt als Abkürzungen für die vier
Quantenzahlen n, 1, m1, ms gedacht.

Für die Konstruktion der Eigenfunktionen eines Atoms, bestehend

aus mehreren Elektronen, gibt es zwei Möglichkeiten. Bei der ersten
werden die Atomeigenfunktionen wie in (1) aus den vollständigen
Einelektroneneigenfunktionen aufgebaut. Diese kommt für uns nicht
in Frage. Bei der zweiten Möglichkeit konstruiert man zunächst die

nur von den Koordinaten der Elektronen abhängigen Atomeigen-
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