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Die allgemeine Mesomeriemethode

Spinvalenzverfahren

voN O. KLEMENT

Institut fiir physikalische Chemie der Universitit Fribourg

1. Ewnleitung

Die chemischen Konstitutionsformeln, deren Grundlagen schon vor
hundert Jahren ausgearbeitet worden sind, werden bekanntlich noch
heute in der Experimentalchemie in ihrer urspriinglichen Form ver-
wendet. Betrachtet man ithren Werdegang etwas nédher, so kann man
die folgenden Entwicklungstadien der Strukturformel unterscheiden.

Zunichst handelte es sich um die Festlegung einer, man koénnte
sagen, « Elementenformel», die die chemischen Symbole der Elemente
ohne Index enthilt, und deren Aufstellung experimentell selbst-
verstindlich auf die qualitative Analyse hinausliuft. In diesem
Stadium der Entwicklung sind z. B. alle Kohlenwasserstoffe durch
die Formel CH reprasentiert. Der nichste Schritt in der Vervoll-
standigung der chemischen Formel war die Aufstellung der noch heute
manchmal verwendeten Bruttoformel, mit deren Hilfe man bereits
in der Lage ist, die verschiedenen Kohlenwasserstoffe wie Paraffine,
Olefine usw. voneinander zu unterscheiden. Im dritten und letzten
Entwicklungsstadium hat man die Struktur- oder Konstitutions- oder
Valenzformel aufgestellt, und zwar in der Gestalt, in der sie noch heute
zur Anwendung kommt. Diese sind schon soweit entwickelt, daB3
sie ermoglichen, beispielsweise die Existenz der Isomeren zu erkldren.
Es 1st iibrigens allgemein bekannt, daBl die groBartige Entwicklung
der synthetischen organischen Chemie ohne die Valenzformeln vollig
undenkbar wire.
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Aus dieser stufenweisen Vervollkommnung des Abbildes des Mole-
kiils geht hervor, daBl in jedem Entwicklungstadium die chemische
Formel dem Chemiker neue Aspekte, neue Moglichkeiten, ja, man
mochte sagen, die Tiir zum Ausbau einer neuen Chemie eroffnet, wobei
die Kenntnis einer vollstindigeren FFormel eine Voraussetzung fiir die
Weiterentwicklung der Chemie ist.

Esist nun in der Chemie eine gut bekannte Tatsache, daB3 die Valenz-
formeln, so wie sie heute noch verwendet werden, trotz ithrer Vorziige
haufig nur recht grob die wirklichen Verhiltnisse darstellen. Aus den
zahlreichen Beispielen, wo die Strukturformel versagt, seien folgende
erwihnt:

1. GemaB der Konstitutionsformel des Benzols sollten zwei ver-
schiedene ortho-Disubstitutionsprodukte auftreten. Denn die Koh-
lenstoffatome, die die Substituenten tragen, kénnen einmal durch
eine einfache Bindung (la), das zweite Mal durch eine Doppel-
bindung (1b) miteinander verbunden sein. Man weil3 aber, daB
experimentell eine derartige Isomerie nie beobachtet wurde.

e R
I (1)
R VAR
(a) (b)

2. Im Naphtalin, Anthracen, substituierten Benzol und in zahl-
reichen anderen Verbindungen ist die Reaktionsfihigkeit eine
Funktion der Lage der verschiedenen Kohlenstoffatome. Aus der
Valenzformel geht diese Verschiedenheit nicht hervor, da alle
Kohlenstoffatome gleichwertig sind.

3. Aber nicht blo3 chemische (und physikalische) Eigenschaften
werden durch die Strukturformel unvollkommen reprisentiert.
Noch unbefriedigender ist ndmlich die Lage, wenn es sich um die
Deutung biologischer Eigenschaften handelt. Man weil} z. B., daB
der Kohlenwasserstoff (2a) ein Krebserreger ist, bei (2b) ist dieselbe
Eigenschaft weniger ausgeprdagt und in (2c) ist sie vollig verloren
gegangen. Die Deutung dieser Eigenschaft auf Grund der Struktur-
formeln ist noch viel hoffnungsloser als etwa die der Verschiedenheit
der Reaktionsfihigkeit des Naphtalins.
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Angesichts dieser und &dhnlicher Schwierigkeiten driangt sich nun
die Frage auf, ob es wohl moglich ist, eine vollkommenere chemische
Formel als die tbliche Valenzformel aufzustellen. Die gewdhnlichen
Strukturformeln geben uns Auskunft tber die Natur, Anzahl und
Lage der Atome innerhalb des Molekiilverbandes. Damit sind alle
Kenntnisse, die man beziiglich des Aufbaus des Molekiils aus Atomen
als ganzes erhalten kann, erschopft. Somit mul3 die Bestimmung einer
vollkommeneren chemischen Formel notwendigerweise auf die Er-
mittlung der Elektronenverteilung der Atome innerhalb des Molekiils,
d. h. auf die Ermittlung einer chemischen Elektronenformel hinaus-
laufen.

Wihrend der letzten circa 50 Jahre wurde auf verschiedenem Weg
versucht eine Elektronenverteilung chemischer insbesondere orga-
nischer Molekiile zu ermitteln, von denen eine der wichtigsten un-
zweifelhaft die sogenannte Mesomeriemethode ist, die den Gegenstand
folgender Ausfiihrungen bilden soll.

Der Begriff der Mesomerie ist urspriinglich auf dem Boden der
experimentellen organischen Chemie entwickelt worden. Es ist ja
allgemein bekannt, dall schon Kekulé nach der Aufstellung der Benzol-
formel gezwungen war, seine Oszillationshypothese einzufiihren, um
gewisse Schwierigkeiten (z. B. die Frage der o-Disubstitutionsprodukte)
eliminieren zu konnen. Das Einfiihren zweier Valenzstrukturen zur
Erklarung der Eigenschaften des Benzols ist aber gleichbedeutend mit
der Verwendung des Mesomeriebegriffes wenigstens in einer impliziten
Form.

Erst viel spiter, etwa nach dem Jahre 1920, nimmt dieser Begriff in
der Experimentalchemie prazisere Form an. Den Grundgedanken kann
man wie folgt charakterisieren: Unter den verschiedenen Struktur-
formeln, die man einem Molekiil zuordnen kann, reprisentiert keine
die wirklichen Verhiltnisse; das reelle Molekiil entspricht einem
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Zustand, der im Verhdltnis zu demjenigen der Valenzformeln einen
Zwischenzustand darstellt. Anders ausgedriickt stellt jede Struktur-
formel der Chemie nur eine mehr oder weniger gute Approximation
der Realitit dar. Diese Erkenntnis fithrt unmittelbar zu folgendem
Ergebnis: Da eine einzige Strukturformel das reelle Molekiil nicht genau
repriasentiert, miissen zwel oder mehrere Valenzformeln herangezogen
werden, um die Eigenschaften des wirklichen Molekiils zu charakteri-
sieren.

Obwohl diese Vorstellung der Mesomerie eindeutig ist und auch mit
der theoretischen Auffassung nicht im Widerspruch steht, hat sie im
Laufe der Jahre bei ihrer Anwendung in der Experimentalchemie
zu verschiedenen Schwierigkeiten, ja sogar MifBverstindnissen, Anlal}
gegeben.

Aus dem obigen geht klar hervor, dal3 die Mesomerie im Gegensatz
z. B. zur Tautomerie nicht als ein Phdnomen zu interpretieren ist.
Trotzdem hat man hédufig den Strukturformeln in mehr oder weniger
expliziter Form eine Realitit zugeordnet, als ob ein Molekiil mit
verschiedenen den Strukturformeln entsprechenden Elektronen-
verteilungen existieren konnte. Dementsprechend hitte man mit einer
ausgesprochenen Elektronenisomerie zu tun, was zu einer vollig
falschen Interpretation der Mesomerie fithrt. Die Frage der Existenz
einer Elektronenisomerie — also die Frage, ob z. B. zwel oder mehrere
Naphtalinmolekiile, die sich bloB durch ihre Elektronendichte von-
einander unterscheiden, existieren konnen oder nicht — bertihrt die
Mesomerie bei dem heutigen Stand ihrer Entwicklung iberhaupt nicht.

Eine andere Schwierigkeit vom experimentellen Standpunkt aus
besteht in der Auswahl der Strukturformeln, die fiir eine Interpretation
des reellen Molekiils in Frage kommen koénnen. Es gibt nidmlich in
der Experimentalchemie {iberhaupt kein allgemcines Kriterium um
die Auswahl bei1 allen Molekiilen einheitlich vorzunehmen. Schon beim
Benzol, wo die Situation von diesem Standpunkt aus noch am gtinstig-
sten liegt, kann man sehr im Zweifel sein, ob die Claussche, die Kekulé-
schen, Dewarschen oder die Ladenburgschen Benzolformeln die
geeignetsten sind. Aber noch schlimmer ist die Lage bei anderen
Molekiilen, wo die Anzahl der moglichen Strukturformeln noch viel
groBer 1st. Man kann wohl sagen, dal jedem der Weg offen steht,
solche Strukturformeln zu verwenden, die ithm fiir das betrachtete
Problem und zur Unterstiitzung seiner Ansicht gerade am geeignetsten
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erscheinen. Zum Gliick bietet die Theorie einen Ausweg aus dieser
unerfreulichen Situation.

Vollstindig unabhidngig von der Experimentalchemie kommt man
namlich auf die Mesomerie auch bei der quantenmechanischen Er-
mittlung der Energie und der Elektronenverteilung chemischer Mole-
kiille. Ja man kann sogar behaupten, dall dieser Begriff eigentlich erst
im Rahmen der Quantenmechanik richtig erkannt wurde und daf
man ihn mit den Hilfsmitteln der klassischen Chemie gar nicht exakt
formulieren kann. Diesen Aspekt wollen wir noch prizisieren.

Wihrend die Erklirung der Ionenbindung, die im wesentlichen
ein elektrostatisches Phinomen darstellt, noch auf Grund der klassi-
schen Mechanik moglich war, versagt diese vollstindig im Fall der
Bindung zwischen neutralen Atomen. Im Rahmen der Quanten-
mechanik gelingt es dagegen, durch Einfiithrung der sogenannten Aus-
tauschkrifte, die in der klassischen Mechanik nicht auftreten, das
Problem der nicht polaren oder homdéopolaren Bindung in véllig
befriedigender Weise zu l6sen.

Die grundlegende Arbeit in dieser Richtung, wie iibrigens fiir die
ganze Quantenchemie, bildet die bekannte Lésung der hom&opolaren
chemischen Bindung im Fall des Wasserstoffmolekiils durch Heitler
und London im Jahre 1927,

Die Austauschkrifte sind gro3 genug, um den iiberwiegenden Teil
der homoopolaren Bindung zu realisieren. Anderseits besitzen sie auch
den chemisch wichtigen Charakter der Absdttigung. Nach Heitler-
London tritt eine Bindung zwischen zwei Atomen dann auf, wenn die
Spins der Elektronen zweler Atome verschieden sind und sich kompen-
sieren konnen. Die Spinabsittigung, auf die man so in der Quanten-
mechanik gefiihrt wird, ist das Analogon der Absittigung von Valenzen
in der klassischen Chemie.

Nachdem man fiir die homdoopolare Bindung eine befriedigende
Losung fand, entwickelt sich die Quantenchemie bei ithrer Anwendung
auf groBere Molekiile in zweil Richtungen. Die erste entspricht einer
direkten Erweiterung des beim Wasserstoffmolekiil angewendeten
Verfahrens, indem man annimmt, dal3 die Elektronen des Molekiils
den einzelnen Atomen angehdren, aus denen das Molekiil aufgebaut
ist. Bel der zweiten Richtung, dem sogenannten Hund-Mulliken Ver-
fahren, nimmt man an, dall die Elektronen innerhalb des Molekiils
nicht den einzelnen Atomen, sondern dem ganzen Molekiil angehoren.
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Aus dieser Arbeitsrichtung haben sich spiter die verschiedenen Varian-
ten der sogenannten Molekelbahnmethode (Molecular Orbital) ent-
wickelt.

Mit der letzteren beschiftigen wir uns nicht, da sie schon sehr oft
von anderen Seiten diskutiert worden ist; wir interessieren uns hier
ausschlieBlich fur eine Variante der ersten Methode, die nach unserer
Uberzeugung der Chemie am nichsten liegt. Charakteristisch fiir alle
Varianten dieser Methode ist, dall sie mit den Valenzdispositionen in
direktem Zusammenhang stehen, indem man jede Valenzdisposition
des Molekiils durch eine sogenannte Eigenfunktion beschreibt. Die
Energie und die Elektronenverteilung des reellen Molekiils werden
dann auf Grund aller Valenzdispositionen, respektive aller Eigen-
funktionen ermittelt. In einer expliziteren Form kénnte man also den
Grundgedanken von der chemischen Seite her etwa so charakterisieren:
Da ein einziges Valenzbild nicht geniigt, um die Realitdt zu erfassen,
ordnen wir jeder Strukturformel eine Eigenfunktion ¢, {,, {3, ...
zu und kombinieren diese linear um die sogenannte Eigenfunktion
nullter Niherung ¢ zu erhalten, die der Realitit ndher liegt als
irgendeine der {;.

Um diese Auffassung zu konkretisieren, betrachten wir das Beispiel
des Benzols als ein Sechselektronensystem. In dieser Ndherung, die
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hdufig verwendet wurde, kann man insgesamt 15 Valenzdispositionen
konstruieren.

(Das Benzolskelett wurde nur der Anschaulichkeit halber hinzu-
gefuigt.) Die entsprechende Linearkombination lautet dann

$ = C P +CaY+CiPs+. .. +C 555

Das Problem, das sich im Rahmen dieser Methode stellt, ist also die
Ermittlung der Eigenfunktion nullter Ndherung {. Dazu miissen
selbstverstindlich die Funktionen {; und die Koefhizienten c¢; der
Linearkombination bekannt sein; die letztere erfordert {ibrigens die
Kenntnis der Energie. Ist { bekannt, so li3t sich daraus im Rahmen
der Quantenmechanik die Elektronenverteilung des Benzols ermitteln,
die zwar durch keine Strukturformel mehr repriasentierbar ist, der
Realitit aber ndher liegt als irgendeine der verwendeten Valenzdis-
positionen (3).

Wie man sieht, stof3t man in dieser Methode wiederum auf den
Begriff der Mesomerie, allerdings in einer etwas verschiedenen Form.
Die Mesomerie erscheint hier als ein ausgesprochenes Rechenver-
fahren. Daran wollen wir auch weiter festhalten. Unter Mesomerie-
methode verstehen wir also ein Rechenverfahren, das auf Grund der
Valenzdispositionen gestattet, die Eigenschaften und insbesondere die
Energie und Elektronenverteilung chemischer Molekiile zu ermitteln.
Es sei gleich bemerkt, da3 die Schwierigkeit, die bei der experimentellen
Interpretation beziiglich der Auswahl der Valenzdispositionen auf-
trat, jetzt von selbst hinfillig wird, da hier im Prinzip alle Valenz-
verteilungen in Betracht zu ziehen sind (mit einer Einschrankung rein
mathematischer Natur, auf die wir noch eingehen werden).

Auch in der Mesomeriemethode haben sich verschiedene Rich-
tungen entwickelt, die selbstverstiandlich alle auf der Verwendung
von Valenzdispositionen und auf die Heitler-Londonsche Arbeit
axiert sind. Eine erste Variante ist das sogenannte Heitler-London-
Slater-Pauling (HLSP)-Verfahren (auch Valence-bond Verfahren
genannt); es ist ein urspriinglich von Slater entwickeltes und von
Pauling und Wheland verallgemeinertes Verfahren. Den Valenzver-
teilungen entsprechende Molekiileigenfunktionen, wie z.B. ¢,
¢y, ... §;5 iIm Fall des Benzols, werden hier direkt aus Einelektron-
eigenfunktionen aufgebaut; es kommen dabei nur Doppelbindungs-
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elektronen in Betracht (sechs im Fall des Benzols), wihrend diejenigen
der einfachen Bindungen als lokalisierte Elektronen nicht in die
Rechnung eingehen. In dieser Approximationsform wurde das Ver-
fahren auf konjugierte Systeme angewendet. Da diese Variante auch
schon o6fters beschrieben wurde, gehen wir hier nicht ndher darauf ein.

Eine allgemeinere Form der Mesomeriemethode ist das sogenannte
Spinvalenzverfahren, das mit den Namen Heitler-Rumer-Weyl (HRW)
verbunden ist; damit wollen wir uns hier ausfiihrlich beschiftigen.
Fir das Folgende wird es niitzlich sein, schon jetzt einige seiner
charakteristischen Ziige festzuhalten.

Dieses Verfahren liegt unzweifelhaft unter allen in der Quanten-
chemie verwendeten der Auffassung des Experimentalchemikers
iber Molekiilbildung am néchsten. In dem Spinvalenzverfahren gehen
bei der Energieberechnung nicht nur die Doppelbindungselektronen,
sondern iiberhaupt alle Valenzelektronen in die Rechnungen ein, was
ja der Vorstellung des Chemikers entspricht. Charakteristisch ist ferner,
daB die Molekiileigenfunktionen, die man den Valenzbildern zuordnet,
aus Atomeigenfunktionen aufgebaut werden, was wiederum der chemi-
schen Ansicht parallel lauft. Es wurde bereits erwahnt, dall die
Bindung zwischen den Atomen durch die Bildung von sogenannten
«Spinpaaren» realisiert wird. Wesentlich fiir die Methode ist der
algebraische Ausdruck des Valenzstrichbildes, die sogenannte «Spin-
invariante». Dies wollen wir noch etwas prizisieren.

Schon in der zweiten Hilfte des letzten Jahrhunderts wurde von
verschiedener Seite auf die formale Ahnlichkeit zwischen der che-
mischen Valenzformel und dem rein algebraischen Gebiet der soge-
nannten bindren Invarianten hingewiesen. Im Rahmen des Heitler-
Rumer-Weylschen Verfahrens ist es nun mdoglich, eine eindeutige
Zuordnung zwischen dem Valenzstrich und der bindren Invarianten
aufzustellen, und auf diese Weise den geometrischen Valenzstrich
algebraisch direkt zu erfassen. Wir wissen aber, dal3 die Struktur-
formeln nur approximativ die Realitit darstellen und dal ihre ge-
nauere Anpassung an die Wirklichkeit in einer geometrischen Form
aussichtslos ist. Die obige Zuordnung bietet aber eine Mdglichkeit,
diese Vervollkommnung aus dem geometrischen in das algebraische
zu Uberwdlzen, und sie dort durch Bildung einer Kombination aller
mathematisch reprisentierten Strukturformeln vorzunehmen. Dabei
werden die von den Strukturformeln getragenen Aspekte der Wirklich-
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keit (la part de vérité) gleichfalls auf die so gebildete mathematische
GroBe tberwdlzt. Man kann somit erwarten, dal beispielsweise die
Ermittlung der Elektronenverteilung aus einer solchen Kombination
von Strukturformeln ein treueres Abbild der Wirklichkeit sein wird,
als irgendeine einzelne Valenzformel es sein konnte. Darin liegt fir
die Chemie ein groBer Vorteil der Mesomeriemethode und insbesondere
des Spinvalenzverfahrens gegeniiber anderen.

Ein weiterer Vorteil 1st beim Spinvalenzverfahren, dafl die Ergeb-
nisse an Hand der Erfahrung direkt gepriift werden konnen, weil ja
hier alle Valenzelektronen in die Rechnungen eingehen.

Trotz ihrer Vorziige fiir die Chemie wurde diese Arbeitsrichtung
bis heute nur relativ wenig verwendet, obwohl von verschiedener Seite
auf thre Nitzlichkeit hingewiesen worden ist. Einer der Griinde ist
wohl darin zu suchen, dall die urspriinglichen Arbeiten und die zu-
sammenfassenden Darstellungen ! iiber dieses Gebiet in einer fiir den
Chemiker recht knappen Form gehalten werden, wobei auch gruppen-
und invariantentheoretische Ansidtze auftreten, die dem Chemiker
selbstverstindlich ferner liegen. Anderseits wird die Anwendung auf
grolere Systeme, fiir die sich gerade der Organiker interessiert, durch
die Weitlaufigkeit der numerischen Rechnungen erschwert; diese sind
zwar teilweise schon gemildert, aber bis heute konnten sie nicht ganz
tiberwunden werden.

Im Folgenden soll nun versucht werden, das Verfahren moglichst
einfach und konkret darzustellen, indem wir die rechnerischen Aspekte
in den Vordergrund stellen, und die Methode an Hand von vollstindig
berechneten Beispielen illustrieren. Im weiteren soll auch die Ermitt-
lung der Elektronenverteilung organischer Molekiile angegeben werden.
Um die Rechnungen wenigstens teilweise zu erleichtern, geben wir in
einem Anhang auch die numerischen Werte der Skalarprodukte aller
Systeme, bestehend aus 4 und 5 Atomen, an. Im ersten Kapitel findet
man ferner diejenigen Angaben der Quantenchemie, die fiir uns von
Interesse sind.

1'W. HerTLER, Handbuch der Radiologie, Bd. VI/2, 2. Aufl. (1934), (im folgenden
mit (HRW) bezeichnet).
M. Born, Ergebnisse der exakten Naturwissenschaften, Bd. 10 (1931).
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I. Grundlagen der theoretischen Chemie
2. Die Schridingersche Wellengleichung

Der Zustand und das Verhalten eines molekularen Systems wird
im Rahmen der Wellenmechanik durch die Schrédingersche Wellen-
gleichung beschrieben. Wir wollen sie hier als etwas Gegebenes
betrachten. Fiir die Ableitung dieser Gleichung verweisen wir auf das
Literaturverzeichnis und insbesondere auf das leichtverstindliche
Biichlein iber «Elementare Wellenmechanik» von W. Heitler. Im
Fall eines Teilchens kann die zeitabhdngige Wellengleichung folgender-
mallen geschrieben werden:

h2

h ¢¥
( 8mm

A+Ep)¥ - —5m (1)
wo h die Plancksche Konstante, m die Masse des Teilchens, A den
Laplaceschen Operator, E, die potentielle Energie des Teilchens, V" die
Wellenfunktion, i die imaginidre Einheit und t die Zeit repréisentiert.
Den Klammerausdruck kann man als den sogenannten Hamilton-
Operator H auffassen, der auf die Funktion ¥ wirkt.

h é¥

HY =~ (12)

Wir erinnern daran, dal man unter einem Operator eine Rechenvor-
schrift versteht, um aus einer gegebenen Gréf3e eine andere abzuleiten.
Wichtiger ist fiir uns aber eine zweite, die zeitunabhingige Schro-
dinger-Gleichung. Diese entsteht aus (1), indem man die Wellen-
funktion in der Form eines Produktes
2mi

‘F(xyzt):q;(xyz)e_—lTEt @)

schreibt, wo E die Energie und ¢ eine nur von den Koordinaten ab-

hingige Funktion darstellt. Man erhilt auf diese Weise die Gleichung

Ay + T (E —Ep) ¢ =0 (3)
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oder unter Verwendung des Hamilton-Operators die vereinfachte Form
Hy=Ey (3a)

Von den Losungen ¢ dieser partiellen Differentialgleichung kommen
allerdings nicht alle in Betracht. Auf Grund der sogenannten Rand-
bedingungen kommen nur solche Funktionen ¢ als Losungen der
Schrédingerschen Gleichung in Betracht, die iiberall stetig, eindeutig
und endlich sind. Solche Funktionen existieren aber nur fiir ganz
bestimmte Werte der Energie E, nimlich fiir die sogenannten Eigen-
werte der Differentialgleichung. Die zu den Eigenwerten gehérenden
Funktionen nennt man Eigenfunktionen.

Es kann nun vorkommen, dall in einem Problem zu jedem Eigen-
wert nur eine Eigenfunktion gehort. In diesem Fall bezeichnet man
den Eigenwert als einfach und den Zustand als nicht entartet. Wenn
zu einem Eigenwert mehrere Eigenfunktionen gehéren, so sagt man,
daB das System entartet ist und der Eigenwert ein mehrfacher Eigen-
wert ist.

Die zeitunabhdngige Schrodinger-Gleichung bestimmt die statio-
naren Zustinde des Systems, d. h. die erlaubten Energiewerte E ent-
sprechen der Energie des Teilchens im stationdren Zustand.

Eine wichtige allgemeine Eigenschaft der Eigenfunktion ist ihre
Orthogonalitit: Zwei Eigenfunktionen {, und ¢, die zu verschiedenen
Eigenwerten gehoren, gentigen der folgenden Orthogonalititsrelation

f‘pn q’mdf =0 (4)

Hier ist vorausgesetzt, dall die Eigenfunktionen reell sind; fir uns
kommen nédmlich nur solche in Betracht. Die Eigenfunktionen der
Schrodinger-Gleichung sind nur bis auf eine Konstante bestimmt, tiber
die man frei verfiigen kann. Diese Konstante wird im allgemeinen so

gewdhlt, dall die folgende sogenannte Normierungsbedingung erfiillt
ist

[¢nzde =1 (5)

Die so bestimmte Eigenfunktion nennt man normiert.

Wichtiger als die Gleichungen (1) und (3) ist fiir unsere Zwecke die
verallgemeinerte Gleichung von Schréodinger, giiltig fir ein System
von n Massenpunkten. Sie lautet
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7
h2 ox 1 /62 92 52 )
ggz——(ﬁ+“3+‘y)wE~Em¢:o (6)

m; \6x;® Jyj? Iz;?

i=1

Hier bedeutet m; die Masse und x;, y;, z; die kartesischen Koordinaten
der i**" Partikel. E ist die totale Energie und E, die potentielle Energie
des Systems bestehend aus n Partikeln. Der Ausdruck

n n o2 9 9

XA ~J o o7\
2 Al LI" = 2 a > o= o ) &= o 2 ‘IJ
: oxi*  Oyi*  Ozi®
i=l1 =1

i

ist der Laplacesche Operator in einem 3n-dimensionalen Raum, wobei
die Eigenfunktion sich auf denselben Raum bezieht.
Auch die allgemeine Schrodinger-Gleichung (6) 1aBt sich durch die
vereinfachte Gleichung
Hy=-E (7)

ausdriicken, insofern der Hamilton-Operator, der Eigenwert und die
Eigenfunktion entsprechend verallgemeinert sind.

3. Lisung der Wellengleichung durch Separation der Variablen

Bekanntlich liuft die wellenmechanische Behandlung chemischer
Systeme auf die Bestimmung der Eigenwerte und Eigenfunktionen
des Systems aus. Wihrend die Wellengleichung (3) im Fall eines
Elektrons, wie es beim Wasserstoff vorliegt, noch streng losbar ist,
stoBt die Losung des Mehrkorperproblems in der Wellenmechanik
auf nicht zu iberwindende Schwierigkeiten. Das ist weiter gar nicht
erstaunlich, wenn man bedenkt, daB die exakte Behandlung des
allgemeinen n-Korperproblems auch in der klassischen Mechanik noch
heute ein ungelostes Problem darstellt. Man ist somit gezwungen, die
allgemeine Gleichung (6) durch Niherungsverfahren zu lésen.

Obwohl die allgemeine Gleichung (6) exakt nicht 16sbar ist, tritt
hiufig der Fall auf, daB die Schrodinger-Gleichung der einzelnen Teil-
chen des Systems bekannt ist, also daB3 die Eigenwerte und Eigen-
funktionen des einzelnen Teilchens bekannt sind. In solchen Fillen
verfahrt man so, dal man die Wechselwirkung der Teilchen zunichst
vernachlassigt. Die Losung der Schrodinger-Gleichung des verein-
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fachten — jetzt aus ungekoppelten Teilchen — bestehenden Systems,
1aBt sich dann als Losung der Wellengleichung der einzelnen Teilchen
betrachten. Die vernachlissigten Wechselwirkungen konnen dann
nachtriglich mit Hilfe der sogenannten Stérungsrechnung beriick-
sichtigt werden.

Betrachten wir also ein System bestehend aus mehreren Teilchen

n 2
Saihs ERE Ky ¢ -0 (62)
1=1

(z. B. aus mehreren Elektronen in einem Kernfeld). Vernachldssigen
wir die Wechselwirkung zwischen den Teilchen, so kann die poten-
tielle Energie der Gleichung (6a) als eine Summe von Funktionen
dargestellt werden, die nur von den Koordinaten je eines Teilchens
abhingen, d. h.

Ep=Ep (xiy121) + Ep2(X2¥222) + ... + Epn (Xn ¥n Zn) (8)

Die Schrédinger-Gleichung desaus ungekoppelten Teilchen bestehenden
Systems kann dann mit der Wellenfunktion

Y= (X1 ¥121) $2(X2¥222) -+« $n (Xn ¥n 2Zn) (9)

und mit der folgenden Zerlegung der Gesamtenergie befriedigt werden.

B =F b By b + By (10)

Fihren wir namlich die Ausdriicke (8), (9) und (10) in die Wellen-
gleichung (6a) ein und dividieren mit ¢, ¢, ... ¢, so erhilt man

(11)

[Ei+E;+.c .+ Eq—(Epi+Eps+...+Epp)] =0

A Ay, Apyn  8n’m
+ SR Lk £
b1 b2 $n h?
Diese Gleichung kann befriedigt werden, wenn die einzelnen Glei-

chungen

8mZm
Al‘pl + - h2 (E1 Epl) ‘;-'1 =0

8m2m (12)
AZQJZ + (Ez Epz) L#Z = O

..........................

gelten. Somit kann z. B. das Problem eines Atoms mit n Elektronen

4 49



auf n Einelektronenprobleme zuriickgefithrt werden. Die Funktion (9)
reprasentiert dann eine rohe Ndherung der Losung des betrachteten
Problems.

Als Illustration dieser Approximationsrechnung soll das Beispiel
des Heliumatoms erwiahnt werden. Gemaf Gleichung (6a) haben wir
im Falle des Heliumatoms bei Vernachldssigung der Kernbewegung,
d. h. also bei ruhendem Kern die Schrodinger-Gleichung

(13)
T T IO I +8n2m(E+g§+Zez e2)¢=0

ox,2  Oy,? 0z, 0x,* dy,2  0z,° a2 i ¥, Tiz

Hier sind also x,y,z, und x,v,z, die rechtwinkligen Koordinaten der
beiden Elektronen, m die Masse des Elektrons, e die positive Elementar-
ladung, E die Gesamtenergie des Atoms, Z die Kernladungszahl,
r, und r, sind die Abstinde der Elektronen vom Kern und r,, der
Abstand zwischen den beiden Elektronen. Die potentielle Energie ist

By — e et (14)

wobel —Ze?/r; die potentielle Energie des ersten und —Ze?/r, die des
zweiten Elektrons ist und e?/r;, die potentielle Energie der Wechsel-
wirkung der beiden Elektronen darstellt. In den beiden ersten Fillen
haben wir selbstverstindlich mit einer Anziehung, im letzten Fall mit
einer AbstoBung der Elektronen zu tun. Ausfiihrlicher geschrieben,
ergibt sich fiir die potentielle Energie des Heliumatoms, falls der Kern
im Ursprung eines rechtwinkligen kartesischen Koordinatensystems
liegt, der Ausdruck

2 2a2 2
Ep = —— Ze B e N e

VXIZ F W "fxzz +¥a? + 257 IVJ(XZ_X])E + (Vo—¥1) %+ (20—24)?

Die Kernladung Ze wurde oben in einer allgemeinen Form ge-
schrieben, so dal3 die Gleichung (13) auch fir heliumdhnliche Systeme
wie z. B. das einfach ionisierte Lithiumatom gelten wird.

Das Wechselwirkungsglied —e?/r;, der beiden Elektronen spielt in
Gleichung (13) die Rolle eines Storungsgliedes. Wird es namlich ver-
nachléssigt, so konnen die zwei Elektronen als unabhingig voneinander
betrachtet werden. Man erhilt also zunichst
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A1¢°+A2¢°+8ﬂ2m( Ze? Ze?

(B )= 0 (15)

wo A, und A, Laplacesche Operatoren darstellen, die sich auf das erste
und zweite Elektron beziehen und {° die ungestoérte Wellenfunktion
1st. Nach (9) kann die Losung dieser Gleichung in den Variablen des
ersten und zweiten Elektrons separiert werden, d. h.

(X V12X ¥22,) = W) (X V1 2)) 45 (X2 Y2 2)) (9a)
wo ¢ und ¢ die ungestérten Funktionen der Elektronen 1 und 2
sind. Fithrt man (9a) in die Gleichung (15) ein, so erhdlt man nach
Division mit ¢ ¢
Ay Ay 87%m

W TR

2 2

B 3 (16)

Zerlegt man ferner E° gemdf (10) in die Bestandteile E, 4+ E9, so
wird (16) durch die beiden Gleichungen

82 Ze?
At + 5 (B + 52} 4 - 0

h2
8mm Let
A + BYE (Eg + T) $3-=0
2

befriedigt. Diese sind aber die Gleichungen des Wasserstoffatoms, die
als bekannt betrachtet werden konnen. Der einzige Unterschied
besteht darin, da3 hier die Kernladungszahl Z gréBer ist. Die Eigen-
funktion des Wasserstoffatoms im Grundzustand ist gegeben durch
1‘2)#2423
| A ([
Y100 \-;c(al € ay
wo a, den ersten Bohrschen Radius reprisentiert. Fiir die nicht
gestorte Eigenfunktion des Heliumatoms erhalten wir also

N £ L (r+1y)
PO = 4 dh = € A

Die Gesamtenergie eines Elektrons des Heliumatoms im Grund-
zustand kann folgendermaBen ausgedriickt werden:

2n?metZ2
EY=E2= ——4112——i—RhCZ2
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wo R die Rydbergsche Konstante und ¢ die Lichtgeschwindigkeit
repriasentiert. Das Produkt —Rhc = — 13,6 eV entspricht der Energie
des Elektrons im Wasserstoffatom. Die Energie der beiden Elektronen
1m Heliumatom ist dementsprechend gleich —8.13,6 eV =-108,8 eV.
Der Experimentalwert der Energie, die notwendig ist, um die beiden
Elektronen des Heliumatoms zu entfernen, ist aber blof3 78,7 eV. Dieser
groBe Unterschied in den zwei Werten ist natiirlich auf die Vernach-
lassigung der AbstoBung der beiden Elektronen zuriickzufiihren.

4. Storungsrechnung

Selbstverstdndlich ist der erhaltene Energiewert des Heliums noch
viel zu grob, und es fragt sich, wie man ihn noch verbessern koénnte.
Wie bereits erwihnt, ist die Schrédinger-Gleichung in den meisten
Fallen nicht exakt lésbar, so dal man gezwungen ist, die Energie auf
Grund von Ndherungsmethoden zu ermitteln. Ein solches Verfahren
ist die sogenannte Storungsrechnung, die wir hier angeben wollen,
soweit sie fiir uns in Frage kommt.

Es kann vorkommen, daB3 ein Problem zwar exakt nicht 16sbar ist,
aber nicht sehr verschieden ist von einem bereits gelésten. Wichtig
ist fir uns der Fall, dall das ungeloste Problem durch eine kleine Ab-
dnderung der potentiellen Energie, die man dann als Stérung be-
trachten kann, aus dem bekannten hervorgeht. In unserem Fall des
Heliumatoms z. B. ist die potentielle Energie (14) des zu lésenden
gestorten Systems

+ = = Ej + AE} (14a)

wo EY die ungestorte potentielle Energie des bekannten Problems,
E/ das Storungsglied der potentiellen Energie und X einen willkiirlichen
Hilfsparameter repriasentiert. Fiir & = o geht dieser Ausdruck in die
potentielle Energie des bekannten Problems iiber. Ist der Stérungs-
parameter hinreichend klein, so kann man zur Berechnung der Eigen-
werte und Eigenfunktionen eine Stérungsrechnung entwickeln.

Betrachten wir also die Schrédinger-Gleichung eines exakt nicht
losbaren Problems (z. B. das Heliumatom)

8m?m , ‘
Adg + Ve (Ex —Ep — AEp) ¢k =0 (17)
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Die entsprechende Gleichung im ungestorten Fall ist dann

8 2
Agg + T (Ef — ED) g = 0 (18)

deren Eigenwerte und Eigenfunktionen als bekannt vorausgesetzt
sind. Der Index o soll den ungestérten Zustand andeuten. Ferner
nehmen wir an, dal das System nicht entartet ist, d. h. zu jedem
Eigenwert gehort nur eine Eigenfunktion

0 0 0
ES ES, ..., E ...

bowa e

Da die Stérung der potentiellen Energie in (17) im Verhiltnis zur
urspriinglichen in (18) als klein vorausgesetzt ist, kann man annehmen,
daB sich die Eigenwerte und Eigenfunktionen von den entsprechenden
des nicht gestorten auch nur wenig unterscheiden werden. Es liegt
also nahe, die unbekannten Eigenwerte E, und Eigenfunktionen
nach steigenden Potenzen von A zu entwickeln. Wir schreiben folglich

Ex=E)+AE, + ME/ + ... (19)
G = g + A + A2+ .. (20)

wo E,, E., ... Storungsglieder der Energie und {y, by, ... diejenigen der
Eigenfunktionen von erster, zweiter usw. Ordnung sind. Wir werden
hier nur Glieder nullter und erster Ordnung in Betracht ziehen.

Fiihren wir nun (19) und (20) in die Gleichung (17) ein, so erhilt man

AYp + AAY, + TR (EY + AEL —Ep — AEp) (4 + Mf) = 0
Diese Gleichung muB nun fiir jeden Wert des Parameters 2 erfiillt sein,
was nur dann moglich ist, wenn die Koeffizienten der Potenzen von %
einzeln verschwinden. Sie zerfillt somit in die beiden Gleichungen
8 2
Ayp + T (B —Eg) 4 = 0

,  Sm’m ,  8m'm ,__, ,
Ady + Tt (Ex — Ep) i = ?(Ep —Ey) ¢

(21)

Die erste ist der Koeffizient von 2° und ist identisch mit der Schroé-
dinger-Gleichung des ungestorten Systems, die zweite entspricht 2!,
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wihrend der Koeffizient von 22 gemaf3 Voraussetzung vernachldssigt
1st.

Die Gleichung (21) ist eine inhomogene Differentialgleichung. Nach
der Theorie der Differentialgleichungen besitzt diese nur dann eine
Loésung, wenn die rechte Seite zur Losung der entsprechenden homoge-
nen Gleichung orthogonal ist. Gleichung (21) hat also nur dann eine
Losung, wenn ) zur rechten Seite von (21) orthogonal ist, d. h.

[(Bp — B 4g2de - 0

Wegen der Normierung der ungestorten Eigenfunktionen konnen wir
schlieBlich schreiben

Bj - [Epgirds (22)

Sind also die Eigenfunktionen nullter Ordnung ¢} sowie die Stérung
der potentiellen Energie des zu losenden Systems bekannt, so kann die
Storung erster Ordnung der Gesamtenergie E, durch eine Integration
gewonnen werden. Im Fall des Heliumatoms — um den Ausdruck zu
konkretisieren — entspricht E; der Wechselwirkung der beiden Elek-
tronen und {p*dr = Jp*dr,dr, reprasentiert die Wahrscheinlichkeit,
die Elektronen 1 und 2 bzw. in den Volumelementen dz, und dr, an-
zutreffen. Dementsprechend ist die Stérung der Gesamtenergie Elz
gleich dem mit dieser Verteilungsfunktion {9’d<x gebildeten Mittel-
wert des Storunspotentials E;.

Die angegebene Stérungsrechnung ist nicht ohne weiteres anwend-
bar, wenn das ungestorte System entartet ist, d. h. wenn zu einem
Eigenwert E; etwa n linear unabhingige Eigenfunktionen gehdren:

Eg: ki, Gz - dkis oo -0 Ykn (23)
Beim nicht entarteten Fall ist die Situation eindeutig: 148t man die
Storung der potentiellen Energie immer kleiner werden, so geht die
gestorte Eigenfunktion in die entsprechende nicht gestorte tiber. Im
entarteten Fall dagegen geht die gestorte Eigenfunktion ¢y zwar
auch in eine nicht gestorte tber mit dem Unterschied, dall wir zum
Voraus nicht wissen kénnen, in welche nicht gestorte Eigenfunktion
der Ubergang erfolgt; meistens geht ¢, gar nicht in eine bestimmte {9, ,
sondern in eine Kombination der Funktionen (23) tiber. Da die Schro-
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dinger-Gleichung eine homogene lineare Differentialgleichung ist,
bildet jede Linearkombination der Eigenfunktionen (23) auch eine
Losung der ungestorten Gleichung fiir denselben Eigenwert E,. Somit
konnen wir die einzelnen Funktionen (23) durch ihre Linearkombi-
nation der Form

Pk = C1YRy + CodR, + ... + Cnfn (24)

ersetzen, wobei die Koeffizienten zunidchst noch unbestimmt sind; es
wird sich aber zeigen, da3 die folgende Stérungsrechnung gleichzeitig
auch die Bestimmung der Koeffizienten ¢; in (24) ermdglicht. Wird nun
die Stérung immer kleiner, so geht die gestorte Eigenfunktion in die
entsprechende Linearkombination (24) tber. Die Eigenfunktionen
vom Typus (24) nennt man «Eigenfunktionen nullter Ndherung». Es
sel noch ausdriicklich darauf hingewiesen, daf3 die Eigenfunktionen
(23), die zum selben Eigenwert E, gehdren, im allgemeinen nicht
orthogonal sind, was wir auch hier annehmen wollen.

Nach dieser Vorbereitung kénnen wir die Uberlegungen des nicht
entarteten Falles auf den entarteten {ibertragen, um die Stérung des
Energiewertes zu bestimmen. Wir wollen aber diesmal die Entwicklung
wie das hiufig geschieht, mit der einfacheren Form der Schrodinger-
Gleichung (3a) durchfiihren. Schreiben wir also die Gleichung fiir ein
gestortes Problem in die Form

Hy—E¢=0 (25)

und die entsprechende Gleichung des nicht gestérten Systems

HO 0 — E° ¢ - 0 (26)
Wir nehmen ferner an, das der Hamilton-Operator H in der Form
H - Ho + AH' (27)

dargestellt werden kann. Fur den gestorten Eigenwert E, und die
gestorte Eigenfunktion {§, setzen wir analog (19) und (20) die Ent-
wicklungen an:

Ex =E2+ AE + ME{ + ... (28)
e R R (29)

Fihrt man nun die Ausdricke (27), (28) und (29) in die gestorte
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Schrodinger-Gleichung (25) und vernachldssigt die Glieder zweiter
und hoherer Ordnung, so erhidlt man die Gleichung

(H + AH') (px + M) — (Ex + AE) (o + My) = 0
(Hg — Egeg) + 2 (H'og + Hobi — Erop — Egdy) = 0

Da die Koeffizienten von 2° und ! einzeln verschwinden missen, ist
der erste Klammerausdruck identisch mit der ungestérten Schrodinger-
Gleichung, wihrend die zweite Klammer die zu (21) analoge Gleichung
ergibt.
(H® — Ey) ¢ = (Ex— H') og (30)
Der Satz iiber Differentialgleichungen, den wir beim nicht entarteten
Fall bereits verwendet haben, fithrt dann in der erweiterten Form zum
folgenden: Damit das Problem eine Losung besitzt, mul3 die rechte
Seite der Gleichung (30) zu allen LLosungen der homogenen Gleichung
orthogonal sein, d. h. mull folgendes Gleichungssystem erfillt sein:
¥k (B —Ej) gpdr - 0
J ke (Y —Ef) of dx = 0

----------------------

Fihren wir fiir ¢f den Ausdruck (24) ein, so erhidlt man

C;fnpﬂl (H' —E}) ¢ dr+ ... + cnf¢§1 (H' — E}) ¢ dr = 0
.................................................... (31)

Fiir die hier auftretenden Integrale fithren wir noch die folgende Be-

zeichnung ein:

Hip = [ H'$f de
(32)
Ay = f ki ki dv

bei denen wir den Index k weglassen. Das Gleichungssystem (31) kann
somit in der einfacheren Form geschrieben werden

(Hy —EgAp) ey + (Hy, —EAp) e+ ..o + (Hin —EgAn) ¢ =0
(Hay — ExAgy) ¢ + (Hpy — EfAgy) ¢+ .0 + (Hon — EfAgp) ¢p =0 (33)

----------------------------------------------------------
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Das 1st ein homogenes lineares Gleichungssystem fiir die c; als Unbe-
kannten. Dieses System hat nur dann eine von Null verschiedene
Losung, wenn die Determinante der Koeffizienten verschwindet

H]l—E]’{All HIZ_E;{AIZ ..... H]n‘;Ei‘Aln
H, — Eidy, Hy—EAp ... .. Hon — ExAon =0 (34)
H!’ll E;(Anl an = ELAHZ ..... Hnn == EkAnn

Die Ausrechnung der Determinante liefert eine Gleichung n-ten
Grades in E,. Die entsprechenden n Wurzeln

Ei(l» Ei(Z’ LR Ei{n (35)

sind die Werte fiir die Storung erster Ordnung des k-ten Eigenwertes.
Diese sind reell in allen uns interessierenden Problemen.

Der k-te Eigenwert war urspriinglich entartet. Sind alle Wurzeln (35)
verschieden voneinander, so wird die Entartung durch die Stérung
aufgehoben, weil jetzt n Eigenwerte vorhanden sind, nimlich

Eg; = EQ + Ek,
Ekz = 1(;) ¥ Ei(Z (36)

..............

Ekn = Efi + Ef;n

Fihren wir einen Wert (35) in das Gleichungssystem (33) ein, so
konnen die ¢; bestimmt werden. Dadurch sind die Koeffizienten der
Eigenfunktion nullter Niherung (24) auch festgelegt. Wie man sieht,
gehort zu jedem Wert (35) ein Koeffizientensystem ¢; und dement-
sprechend eine Eigenfunktion nullter Niherung ¢f. Es sei schliellich
darauf hingewiesen, dal man aus (33) nur die Verhiltnisse der c;
bestimmen kann; ein Koeffizient ist noch verfiigbar. Dieser kann aber
durch die Normierung der Eigenfunktionen (24) festgelegt werden.

5. Austausch- und Spinentartung
Im Abschnitt 3 haben wir gesehen, dal3 die Schrédinger-Gleichung
eines aus n Teilchen bestehenden Systems ohne Schwierigkeit 16sbar

ist, falls die Wechselwirkung zwischen den Teilchen vernachlassigt
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wird, also talls die Teilchen ungekoppelt sind. Die Losung der Schro-
dinger-Gleichung eines Atoms, bestehend aus n ungekoppelten Elek-
tronen, kénnen wir also gemaf3 (9) in der Form

Y1 = Ya()dp(2)9c(3) - -+ dr(n) (37)

schreiben. Hier haben wir die drei Ortskoordinaten jedes Elektrons
einfach mit der entsprechenden Zahl 1, 2, 3, ..., n bezeichnet. Ferner
wurde der Quantenzustand der verschiedenen Elektronen mit a, b,
c, .., r repriasentiert, wobei diese Buchstaben an Stelle der drei
Quantenzahlen n, 1, m, stehen.

Nun tritt aber bei diesem Problem wegen der Identitit der Teilchen
d. h. der Elektronen eine Entartung auf. Die Energie des Atoms ist
namlich symmetrisch in allen Elektronen, d. h. sie ist eine Funktion
von 1, 2, ..., n, die sich nicht dndert, wenn man die Elektronen per-
mutiert. Somit ist die Eigenfunktion (37) nicht die einzige, die zum
selben Eigenwert gehort. Man erhilt aus (37) noch weitere durch eine
Permutation der Elektronen. Z. B. ist

b2 = al2)ep(1)9e(3) - - Pr(n) (37a)

auch eine Eigenfunktion zum selben Eigenwert. Es gibt also mehrere
Eigenfunktionen zum selben Eigenwert, weil die Elektronen vonein-
ander nicht unterscheidbar sind. Man spricht in solchen Fillen von
Austauschentartung.

Falls sich alle Elektronen in verschiedenen Quantenzustinden
a, b, ... befinden, gehdren zu einem Eigenwert des Atoms n! linear
unabhingige Funktionen. Man sagt ferner, dal3 der betreffende Zustand
des Atoms (n!-1)-fach entartet ist. Wenn sich zwei oder mehrere
Elektronen im selben Quantenzustand befinden, so ist die Anzahl der
Eigenfunktionen auch entsprechend kleiner. Falls alle Elektronen im
selben Quantenzustand sind, z. B. im Zustand {,, so dndert eine Per-
mutation an der Funktion (37) tberhaupt nichts. In diesem Fall
gehort zu dem betreffenden Eigenwert nur eine Eigenfunktion.

Sind alle Elektronen in verschiedenen Quantenzustianden, so haben
wir also im ganzen n! Eigenfunktionen zum selben Eigenwert. Die
allgemeine Losung erhidlt man durch Linearkombination aller Partial-
eigenfunktionen, ndmlich

¢ =ciy + oy +Cads + L. (38)
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Die Koeffizienten ¢; kénnen im Rahmen der Stérungsrechnung
entarteter Systeme festgelegt werden. Das fithrt zundchst auf ver-
schiedene Kombinationen vom Typus (38) mit verschiedenen Koeffi-
zientensitzen. Die Erfahrung zeigt, dal fiir ein System von n gleichen
Teilchen unter allen Eigenfunktionen (38) nur zwei in Frage kommen
konnen: eine in allen Elektronen symmetrische und eine in allen
Elektronen antisymmetrische Eigenfunktion. Im ersten Fall sind alle
Koeffizienten gleich 1, wir haben also

vs = 2 P 9a(l)p(2)9e(3) - . . (39)

wobei die Summe tber alle Permutationen P zu erstrecken ist; beim
zweiten ist der Koeffizient gleich + 1 fur die geraden Permutationen
und — 1 fiir die ungeraden. Dies 146t sich in die Determinantenform

Ya(l) Ya(2) ... da(n)
a o | WO 92) o b -

schreiben. Bei der Vertauschung zweier Elektronen, bleibt die symme-
trische Funktion unverindert, wihrend die antisymmetrische blof ihr
Vorzeichen wechselt. Die anderen Eigenfunktionen vom Typus (38)
sind vom gemischten Symmetriecharakter, denn sie verhalten sich bei
Vertauschung gewisser Elektronen symmetrisch, bei anderen anti-
symmetrisch. Diese kommen fiir uns nicht in Betracht.

Bei einem System von zwei Elektronen kommen also erfahrungs-
miBig nur die symmetrische

¥s = Ya(l)96(2) + Pa(2) (1) (39a)
und die antisymmetrische Funktion

‘%(1) Ya(2)
p(l)  Yu(2)

(40a)

ba = = ¥a(l)wp(2) — va(2)wu(1)

in Betracht. Dies ist iibrigens auch aus theoretischen Griinden zu
fordern.

Nach der Quantenmechanik reprasentiert nimlich ¢,dr = ¢,dr,dr,
im Fall zweier Elektronen die Wahrscheinlichkeit, dall man das Teil-
chen 1 im Volumelement dr; und das Teilchen 2 im Volumelement
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dr, gleichzeitig antrifft. Da die zwei Elektronen sich nicht unter-
scheiden lassen, mul notwendigerweise die Wahrscheinlichkeit, dal3
man die Elektronen 1 und 2 respektive in dr, und dr, simultan an-
trifft, gleich der Wahrscheinlichkeit sein, die Elektronen 2 und 1
beziehungsweise in dr, und dr, gleichzeitig anzutreffen. Eine Messung
ermoglicht ndmlich nur die Wahrscheinlichkeit zu bestimmen, dal3
ein Elektron in dr;, und das andere in dr, vorhanden ist; welches
Elektron im ersten und welches im zweiten Volumelement sich befindet,
kann aber physikalisch nicht festgestellt werden, weil ja die beiden
Teilchen sich nicht unterscheiden lassen. Es mul} also notwendiger-
welse

$?(1,2) = ¢2(2,1) (41)

sein, d. h. das Quadrat des Betrages der Eigenfunktion muf3 invariant
sein bei der Vertauschung der Elektronen. Diese Bedingung wird aber
nur von einer symmetrischen oder antisymmetiischen Eigenfunktion
erfilllt. Aus (41) folgt namlich

$(1,2) = ¢(2,1)
oder (42)

$(1,2) = —9(2,1),

was im Einklang mit den Funktionen (39a) und (40a) steht. Dieses
Ergebnis gilt auch allgemein: Wenn das System aus n Elektronen
besteht, mull die Aufenthaltswahrscheinlichkeit der Teilchen bei der
Vertauschung zweier Elektronen invariant bleiben. Diese Bedingung
wird aber auch im allgemeinen Fall nur von den symmetrischen und
antisymmetrischen Eigenfunktionen erfiillt.

Von den n! Eigenfunktionen, die wir urspriinglich unserem System,
aus n Elektronen bestehend, zugeordnet haben, bleiben also nur mehr
zwel brig. A priori ist es nicht moglich zu sagen, welche der beiden
Funktionen (39) oder (40) dem Problem besser entspricht. Um das zu
entscheiden, miissen wir auch den Spin des Elektrons beriicksichtigen.

Es wurde bisher angenommen, dal3 der Zustand des Elektrons durch
seine Koordinaten und die entsprechenden Impulse bzw. Quanten-
zahlen n, 1 und m, vollstindig beschrieben ist, d. h. daBl man das
Elektron als einen Massenpunkt ansehen darf. Die Erfahrung zeigt
aber, daB diese Vorstellung nicht zutreffend ist. Die Eigenschaften
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eines Elektronensystems kénnen nur dann ganz erfallt werden, wenn
man dem Elektron wie einem Kreisel eine Eigendrehung zuordnet.
Sein Rotationszustand ist durch die einzige Quantenzahl s = 14 fest-
gelegt. Der Eigendrehimpuls oder Spin des Elektrons hat den einzigen

2m gt
der Richtung der z-Achse orientiert sich der Elektronenkreisel zu

diesem Feld. Die entsprechende magnetische Quantenzahl hat aller-
dings nur die zwei Werte my = + 14. Die z-Komponente des Spindreh-

impulses ist -+ % 21—;
keiten um die Drehachse oder den zwei Einstellungsmoglichkeiten
der Drehachse. Haufig bezeichnet man s = + 15 und mg = + 14 selbst

Wert %3 (genauer Vs(s+1) E-)- Beim Vorhandensein eines Feldes in

. Diese entsprechen den zwei Drehungsmoglich-

als Spindrehimpuls bzw. z-Komponente des Spindrehimpulses (in 2%

Einheiten ausgedriickt).

Es ist oft niitzlich, den Spin des Elektrons durch eine Eigenfunktion
zu beschreiben. Einem Elektron kann man ja zwel Spinzustinde
zuordnen. Wir fithren deshalb zwei Funktionen « (w) und £ (w) ein,
die den Werten + 1, und — 14 der Spinkomponenten entsprechen.
Man kann also sagen, dal3 jede Eigenfunktion durch den Spin in zweil
Funktionen aufgespalten wird, nimlich

By = Y(xy 2). (o)
bs = (xy 2) . B(o) )

Die Spinvariable » kann die Orientierung des Elektrons reprdsen-
tieren, ihre Natur ist aber fiir unsere Zwecke belanglos. Wichtig ist
fir uns dagegen, da8 die Spinfunktionen orthogonal zueinander sind,
denn die beiden Zustinde entsprechen ja in einem Magnetfeld ver-
schiedenen Energien

[(e)Blo)do = 0 (44)
Wir nehmen ferner an, dal3 sie normiert sind
f a2(c)de = 1 f B2(w)de = 1 (45)

Nun sind wir soweit zu entscheiden, welche der Eigenfunktionen
(39) oder (40) fir uns in Frage kommt. Wir wollen diese Auswahl am
Beispiel von zwei Elektronen des Heliumatoms durchfithren. In diesem
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Fall erhilt man die vollstindigen Eigenfunktionen, die den Funktionen
(43) entsprechen, durch Kombination von (39a) und (40a) mit den im
niachsten Kapitel angegebenen Spinfunktionen, von denen (7d)
antisymmetrisch, die tibrigen symmetrisch sind. Durch das Auftreten
des Spins bekommt man somit insgesamt die 8 Eigenfunktionen (46)
statt zwei. Wir haben hier neben der gewohnlichen Austauschent-
artung noch mit einer sogenannten Spinentartung zu tun.

(1) (1]

[$a(1)¥b(2) + Ya(2)dp(1)] . B(1)B(2)

[Ga(1)Up(2) + Ya(@9p(1)] [x(1)B2) + 2(2)B(1)]

[9a(1)¥6(2) — Ya(@dp(1)] [2(1)B(2) — x(2)B(1)]

(46)

[a(1)¥6(2) + Ya(@)dp(1)] [2(1)B(2) — a(2)B(1)]

[a(1)¥6(2) — Ya(2)p(1)] x(1)x(2)

[$a(1) ¥6(2) — Ya(2)9p(1)] B(1)E(2)

[9a(1)¥6(2) — $a(@dp(1)] [=(L)(2) + «(2)B(1)]

Die ersten vier sind symmetrisch, die anderen antisymmetrisch.

Falls man die Wechselwirkung der Elektronen in Betracht zieht,
gehoren die Linearkombinationen (39a) und (40a) zu verschiedenen
Eigenwerten. Wegen der Spinstorung sollten ferner zu den g und Y,
je vier Einzelniveaus gehoren. Experimentell findet man aber keine
4-fachen Terme. Es i1st bekannt, dal3 das Termschema des Heliums
in ein Singulettsystem mit einfachen und ein Triplettsystem mit
dreifachen Termen auftritt. Diese Erfahrungstatsache 1i3t sich nur
so deuten, daB in der Natur entweder nur die symmetrischen oder nur
die antisymmetrischen Gesamteigenfunktionen (46) realisiert sind.
Eine explizite Rechnung zeigt nun, dal3 der zu g5 gehorige Term héher
liegt als derjenige von {, (durch die Spinstérung bedingter Unter-
schied kann hier vernachlissigt werden). Nach der Erfahrung liegen
aber die Singuletterme hoher als die Tripletterme. Daraus folgt bei
Beachtung von (46), dall in der Natur nur die antisymmetrische
Gesamteigenfunktion realisiert ist.

Dieses wichtige Resultat 146t sich aber verallgemeinern. Die Er-
fahrung zeigt, daB3 bei einem System bestehend aus mehreren Elektro-
nen nur solche Zustinde in der Natur realisiert sind, fir welche die
Orts-Spin-Eigenfunktion in allen Elektronen antisymmetrisch ist. Das
ist das bekannte Paulische AusschlieBungsprinzip. Die entsprechenden
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antisymmetrischen Eigenfunktionen koénnen in der Form (40) ge-
schriebenwerden, falls man dort in den a, b, c, ... auch die Spinquanten-
zahl einschlie(3t.

Von den wurspriinglich vorhandenen n! Eigenfunktionen des n-

Elektronensystems verbleibt eine einzige: die antisymmetrische Eigen-
funktion (40).

II. Darstellung der Valenzformeln durch Eigenfunktionen
6. Atomeigenfunkiionen

Wir sind nun soweit, die Konstruktion der Molekiileigenfunktionen,
die den Ausgangspunkt fiir die Ermittlung der Energie und Elektronen-
verteilung chemischer Molekitile bilden, in Angriff zu nehmen. Cha-
rakteristisch fiir die Spinvalenzvariante der Mesomeriemethode ist,
daB die Molekiile aus Atomen bzw. die Molekiileigenfunktionen aus
Atomeigenfunktionen aufgebaut werden. Unsere ndchste Aufgabe
ist also, Atomeigenfunktionen zu konstruieren.

Wie wir gesehen haben, kénnen die Eigenschaften eines Elektronen-
systems nur dann vollstindig erfallt werden, wenn man jedem Elektron
einen Spin zuordnet. Somit werden die Eigenfunktionen eines Systems
von n Elektronen auller den Koordinaten noch von den n Spinvariab-
len w,, o,, ..., 6, abhingig sein; d. h. die Eigenfunktion (9) ist in Wirk-
lichkeit, falls die Wechselwirkungen zwischen den Elektronen auf-
gehoben sind, von der allgemeineren Form

P(X,y1 2,05 - XnYn Zn©n) = Ya(X1 Y1 2y 01) - Yp(X, Y2 22 0,) 1)
----- br(Xn Yn Zn @n)

wo die Y (X;V;z ;) Funktionen der einzelnen Elektronen sind.
Die Buchstaben a, b, ¢, ... sind jetzt als Abktrzungen fir die vier
Quantenzahlen n, 1, m,, m, gedacht.

Fir die Konstruktion der Eigenfunktionen eines Atoms, bestehend
aus mehreren Elektronen, gibt es zwei Moglichkeiten. Bei der ersten
werden die Atomeigenfunktionen wie in (1) aus den vollstindigen
Einelektroneneigenfunktionen aufgebaut. Diese kommt fiir uns nicht
in Frage. Bei der zweiten Moglichkeit konstruiert man zunédchst die
nur von den Koordinaten der Elektronen abhingigen Atomeigen-
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funktionen und ergianzt sie mit den Spinfunktionen zu Gesamteigen-
funktionen, indem man beide Anteile miteinander multipliziert. Die
Aufspaltung der Gesamteigenfunktion des Atoms in zwei Faktoren
ist erlaubt, weil die entsprechenden magnetischen Wechselwirkungen,
die meistens sehr klein sind, vernachldssigt werden konnen. In der
Sprechweise des Bohrschen Modells bedeutet dies, daB3 die Koppelung
zwischen der Bahn der Elektronen und dem Spin vernachlissigt wird.
Man erhdlt also

(2)

Y(X1 Y1205 ...; XnYnZnwn) = WX, Y1 2y; X, V2225 -« -3 Xp Yn Zn) (01,0, - . .0p)

Wenn wir ferner von den magnetischen Wechselwirkungen, die die
Elektronen infolge ihres Spins aufeinander ausiiben, ebenfalls absehen,
so ist die Gesamtspinfunktion darstellbar als ein Produkt

¢ (01,0, - .., 0n) = (w)pa(w2) ... @nlwn) )

wo die ¢;(w;) den in (I. 43) eingefithrten Spinfunktionen «(w;) oder B(wy;)
entsprechen; fiir letztere werden wir auch die Bezeichnung «(i) und
B(1) verwenden, wobei1 - 1,2 3, ..., n die Elektronen repridsentieren.

Die Anzahl der Eigenfunktionen, die wir unserem n-Elektronen-
system im Abschnitt 5 zugeordnet haben, wurde zunichst von n! auf
zwel und be1 der Berticksichtigung des Pauliprinzips auf die einzige
antisymmetrische reduziert. Trotz dieser Vereinfachung kann man
aber durch Beriicksichtigung der verschiedenen Spinfunktionen des
Atoms mehrere antisymmetrische Eigenfunktionen bilden. Betrachten
wir als Beispiel ein Atom bestehend aus zwei Elektronen. Zur Bildung
einer antisymmetrischen Eigenfunktion bieten sich zunichst zwei
Moglichkeiten:

hi(1,2) = us(1,2) ga(1,2) "
$,(1,2) = ua(1,2) 9s(1,2) )

Das Pauliprinzip fordert ndmlich nur, dal die Gesamteigenfunktion
des Atoms antisymmetrisch sein soll. Das kann aber hier auf zwei
verschiedene Arten realisiert werden. Die Koordinateneigenfunktion
ug (1,2) kann symmetrisch sein und die Spinfunktion ¢, (1,2) antisym-
metrisch oder umgekehrt; in beiden Fillen ist die Gesamteigen-
funktion antisymmetrisch. Die Frage ist nur, welche der beiden Funk-
tionen unserem Fall entspricht; fiir uns kommen ndmlich nur solche
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antisymmetrische Atomeigenfunktionen in Betracht, die nach-
traglich zum Aufbau von Molekileigenfunktionen verwendet werden
konnen. Um diese Frage zu beantworten, erinnern wir zunichst an die
Veranschaulichung des Spins durch Vektoren und an die Vektoraddi-
tionsregeln.

Beim Vorhandensein von mehreren Elektronen in einem Atom kom-
biniert man die verschiedenen Spins zu einem Gesamtspin nach den

Vektoradditionsregeln: Den Spin eines Elektrons reprisentiert man

h
- - . Z—W - - .

Spinvektoren zweler Elektronen sind dann so zu kombinieren, dal} die

Betrige der resultierenden Vektoren ganzzahlig werden. Diese Vek-
toren konnen dann mit dem Spinvektor eines dritten Elektrons so
zusammengesetzt werden, dall die Betrage der resultierenden Vektoren
halbzahlig werden, usw. Man erkennt, da3 beil ungerader Anzahl von
Elektronen die Spinwerte ein ungerades Vielfaches von '/, sind, bei
gerader Zahl von Elektronen erhilt man dagegen O oder ein gerades
Vielfaches von !/,, d.h. S =1/,, 3/,,5/,,... bzw. 0, 1, 2, ... Zu jedem
Wert des Gesamtspins S gehéren ferner 2S+1 verschiedene Spinzu-
stinde. Diese entsprechen den Werten der Gesamtspinkomponente in
Richtung des Feldes

durch einen Vektor der Linge !/, (in .- Einheiten ausgedriickt). Die

Mg = —8, —[8—1), —EB—2), 59,0, 55, 8—L8—~1,8 (5)

Diese Werte erhilt man iibrigens auch als Summe der Spinkomponen-
ten der einzelnen Elektronen, d.h.

Mg = mg, + mg, + ... + Mgy (5a)

Ein durch S charakterisierter Term spaltet also maximal in 2S+1
Terme auf. Man bezeichnet Terme mit dem Spindrehimpuls oder
Spinmoment S =0, !/,, 1, 3/,, ... als Singulett-, Dublett-, Triplett-
usw. Terme. Allgemein nennt man 2S+1 die Multiplizitat.

Im Fall des Heliumatoms koénnen wir bei der Kombination der
Spinvektoren zwei Fille unterscheiden: entgegengesetzt gerichtete
Spins und parallel gerichtete Spins. Im ersten Fall ist die Spinsumme
S =0, im zweiten Fall ist sie S = 1. Es frigt sich nur, wie die Zuordnung
dieser Werte zu den Funktionen (4) vorzunehmen ist.

Beachten wir zu diesem Zweck, dafl der Spinvektor mit dem Ge-
samtspin S = 0 gemil der Vektoradditionsregeln nur eine Komponente
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Mg = 0 hat, wihrend zu dem Gesamtspin S =1 drei Komponenten
Mg - +1,0, —1 gehdren. Anderseits kommen aber fir die Spinfunk-
tionen eines Systems von zwei Elektronen die folgenden vier Méglich-
keiten in Betracht

I

(6)

Da die vollstindigen Eigenfunktionen antisymmetrisch sein miissen,
diirfen nach (4) nur symmetrische und antisymmetrische Spinfunk-
tionen auftreten. Die ersten zwel Funktionen (6) sind bereits symme-
trisch bei der Vertauschung von « und (, die anderen dagegen nicht;
man kann sie aber durch eine symmetrische und eine antisymmetrische
Linearkombination ersetzen. Wir erhalten somit statt (6) die folgenden
Ausdriicke:

(1)a(2) Ms=+1 (a)

«(1)B(2) + a(2)B(1) Ms =0 (b) (7)
B1B(2) Mg =—1 (c)

«(1)(2) —«(2)B(1) Ms =0 (d)

Bei der Einfithrung der Spinfunktionen (I. 43) haben wir gesehen,
daB jedem « ein Spin mit der z-Komponente mg =1/, und jedem f
ein Spin mit m, = —!/, entspricht. Zu jeder Spinfunktion (7) gehort
also eine Gesamtspinkomponente Mg in der z-Richtung, die man nach
(5a) durch Addition der einzelnen Komponenten erhilt. Diese sind
n (7) ebenfalls angegeben. Das sind aber die Werte, die wir schon oben
als Komponenten des Gesamtspins S =0 und S = 1 erhielten. Dem-
entsprechend koénnen wir auch die vier Spinfunktionen (7) zu den
Werten des Gesamtspins S = O und S = 1 zuordnen.

Man sieht unmittelbar, daB die Funktionen (7a) und (7c) zu S = 1
gehoren. Von den beiden anderen kann man zunéichst nur sagen, dal
die eine zu S = 1, die andere zu S = 0 gehort. Um eine definitive Zu-
ordnung zu treffen, erinnern wir, dal die Funktionen, die zu S =1
und S =0 gehoren, verschiedenen Energien entsprechen (Bel zwei
Wasserstoffatomen z. B. entspricht S = 1 einer AbstoBung der Atome,
wiahrend S = 0 die Molekiilbildung charakterisiert). Die drei zu S =1
gehorigen Funktionen sind also entartet und man kann sie auch linear
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kombinieren, wobei alle Funktionen entweder symmetrisch oder anti-
symmetrisch in den beiden Elektronen sein miissen. Nun sind aber
(7a) und (7c) bereits symmetrisch. Damit die Linearkombinationen
symmetrisch bleiben, muf3 die dritte Funktion ebenfalls symmetrisch
sein. Daraus folgt, daB die drei ersten Funktionen (7) zu dem Gesamt-
spin S = 1 und (7d) zu S = 0 gehoren.

Nun sind wir in der Lage zu entscheiden, ob die Spinfunktion bei
dem Aufbau der Atomeigenfunktionen in (4) symmetrisch oder anti-
symmetrisch gewdhlt werden muBl. Die hier betrachtete Theorie der
Spinvalenz beruht namlich auf der Annahme, daBl eine Bindung zwi-
schen zwel Atomen dann erfolgt, wenn ein Elektron des einen Atoms
mit einem Elektron des anderen Atoms ein Spinpaar bildet. Mole-
kilbildung zwischen zwei Wasserstoffatomen z. B. tritt dement-
sprechend dann auf, wenn die Spins der beiden Elektronen sich ab-
sattigen, d.h. sich so kombinieren, daBl der Gesamtspin dem Zu-
stand S = 0 entspricht. Diese Paarbildung der Elektronen entspricht
ibrigens genau der Lewisschen Anschauung tiber die Bildung einer
homdopolaren Bindung, was wiederum den engen Zusammenhang
zwischen dem HRW-Verfahren und der in der organischen Chemie
herrschenden Auffassung der Bindungsverhidltnisse besonders deut-
lich zum Ausdruck bringt.

Es ist nun klar, welche Funktionen (4) fiir unsere Zwecke in Frage
kommen. Wir brauchen Atomeigenfunktionen, deren Spins im freien
Atom noch ungesittigt sind. Nach den oben gesagten kann das aber
nur von parallel gerichteten Spins gewidhrleistet werden, das heil3t
von den symmetrischen Spinfunktionen.

Analoges gilt fiir Atome mit mehr als zwei Elektronen. Fir die
Bildung der antisymmetrischen Eigenfunktionen eines Atoms mit
mehreren Elektronen kommen nur symmetrische Spinfunktionen,
deren Spins parallel gerichtet sind, in Betracht. Elektronen deren Spins
abgesattigt sind, wie z. B. im Kohlenstoffatom die Spins der beiden
Elektronen der K-Schale, werden einfach weggelassen. Man bertick-
sichtigt also nur die Valenzelektronen des Atoms. Die antisymmetrische
Atomeigenfunktion eines Atoms mit mehreren Elektronen besteht also
auch im allgemeineren Fall aus dem Produkt einer antisymmetrischen
Koordinateneigenfunktion und einer symmetrischen Spinfunktion.

$(1,2, ...,n) =uu(l,2, ...,n)es (1,2, ..., n)
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Die Anzahl der symmetrischen Spinfunktionen eines Systems von
n Elektronen ist gleich n +1. Die Gesamtzahl der Spinfunktionen fiir n
Elektronen ist zundchst namlich gleich 2", Nun gehoren aber diejenigen
Kombinationen, die die gleiche Zahl von « und § Werte haben, zur
selben Spinsumme. Wihlt man von jeder einen Reprisentanten aus,
so bleiben n+1 Funktionen tbrig. Im Fall von drei Elektronen z. B.
haben wir zunidchst acht Spinfunktionen

Wenn wir von diesen jeweils einen Repridsentanten mit der gleichen
Anzahl von zund  Werten auswihlen, bleiben bloB die n +1 Funktionen
der ersten Kolonne tbrig. Im allgemeinen Fall kénnen wir also einem
Atom mit n gleichgerichteten Spins n +1 symmetrische Spinfunktionen
zuordnen. Allerdings sind diese teilweise Linearkombinationen von
Spinfunktionen, die die gleiche Zahl von « und § Werte haben. Die
endgiiltigen Ausdriicke der symmetrischen Spinfunktionen koénnen
in der Form

.................................

.................................

geschrieben werden. Wie bereits bemerkt, beschreibt « einen Spin
mit der z-Komponente m, = +*/, und § einen Spin mit der Komponente
m, = —!/,. Somit ist ¢, eine Funktion bestehend aus lauter positiven
Spinwerten und ¢, aus lauter negativen. Das Zeichen sym bedeutet,
daB die Funktion symmetrisiert werden soll durch Vertauschung der
Argumente und Bildung von Linearkombinationen der Spinfunktionen;

i . : ;
—— ist ein Normierungsfaktor.
V(T

Gemdll der Theorie der Spinvalenz wollen wir im folgenden an-
nehmen, dal3 sich jedes Atom in einem sogenannten S-Zustand be-
findet, d. h. das Bahnmoment L - 0 ist. Damit wird gleich ange-
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nommen, dall 1m Grundzustand des Atoms nur eine Eigenfunktion
vorhanden ist. Bei den Zustinden P, D, ... die den Bahnmomenten
L =1, 2... entsprechen, wiirde noch eine weitere Entartung, die
sogenannte Richtungsentartung, auftreten. Diese wollen wir, wie das
in der urspriinglichen Form der HRW-Theorie geschehen ist, bei-
seite lassen. Die Berticksichtigung dieser Entartung wirde niamlich
das ganze Bindungsproblem vom rechnerischen Standpunkt nur noch
komplizieren und den Zusammenhang der quantenmechanischen und
klassischen Valenztheorie nur verwischen. Nun liegt aber, wie bereits
erwahnt, einer der groBen Vorteile des Spinvalenzverfahrens gegen-
tiber der Molekiillbahnmethode z. B. gerade darin, dal der Grund-
gedanke der klassischen Valenzchemie hier besonders gut zum Aus-
druck kommt. Deshalb wird die vereinfachte Annahme gemacht, dalB
auller der Spinentartung keine anderen Entartungen vorliegen.

In Bezug auf das Kohlenstoffatom sei noch daran erinnert, dal3
sein Grundzustand ein P-Zustand ist mit vier s-Elektronen und zwei
p-Elektronen, genauer gesagt 1s22s?2p?. Die vier s-Elektronen bilden
zwel Spinpaare mit abgesittigten Spins, wihrend die zwei p-Elektronen
noch ledig sind. Das Atom besitzt also nur zwei Elektronen mit freien
Spins, d. h. das Kohlenstoffatom ist im Grundzustand nur zwei-
wertig. Da dieses Atom in den organischen Verbindungen fast durch-
wegs als vierwertig erscheint, wird man annehmen miissen, dal} es in
Verbindungen im angeregten Zustand auftritt. Eines der s-Elektronen
geht dabei in ein p-Elektron iber (1 =0 geht in 1=1) und ferner
erfolgt eine Umklappung des Spins eines Elektrons, der Gesamtspin
wichst dabel von S =1 auf S = 2; das Atom ist nun im Zustand 3S
mit vier ledigen Elektronen. Die Anregungsenergie des >S-Zustands
ist tibrigens bekannt, V = 96 kcal/mol.

7. Molekiileigenfunktionen

Nun sind wir in der Lage, den Autbau des Molekiils aus Atomen
niaher zu diskutieren. Um die Wechselwirkungsenergie mehrerer
Atome in einem Molekiil zu ermitteln, betrachten wir eine Reihe von
Atomen, die wir mit A, B, C, ..., H bezeichnen wollen. Die Atomkerne
sollen unendlich schwer angesehen, d.h. im Raum fixiert gedacht
werden. Die Anzahl der Elektronen wird respektive durch n,, ny ... ny
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reprasentiert; ihre Gesamtzahl ist gleich n,+ny+...+n, =n. Die
Elektronen der abgeschlossenen Schalen werden hier nicht bertick-
sichtigt, ithre Spins sind ja abgesittigt. Die entsprechenden spinlosen
Eigenfunktionen sind dann

By Wl 50y By
B: up(ng +1,n, +2, ..., ng+nyp) (9)
H: Gg(ng + gt ..+ Wyt by oo By + 054 ... 4 Hy + Hp)

Die Elektronen sind hier durchgehend numeriert. Die Zahlen stehen
als Abkirzungen fir die drei Ortskoordinaten der betreffenden
Elektronen.

Die Koordinatenfunktionen (9) miissen noch mit den symmetrischen
Spinfunktionen (8) erginzt werden. Die vollstindige Eigenfunktion
eines Atoms erscheint dann als Produkt der Koordinaten- und Spin-
funktionen (die magnetischen Wechselwirkungen wurden ja vernach-
lassigt).

ua(1,2, i G .,I‘la) . Cpra (10)

Es gibt natiirlich im ganzen n,+1 solche Produkte, weil das Atom
A ja n, +1 symmetrische Spinfunktionen besitzt; analoges gilt fir die
Eigenfunktionen der Atome B, C, ..., H, die Zahl ihrer Eigenfunktionen
vom Typus (10) ist respektive ny+1, ..., n,+1.

Unser Zweck ist jetzt die Energie und die Eigenfunktionen des aus
Atomen aufgebauten Molekiils zu ermitteln. Wir sollten also eigentlich
die Schrodinger-Gleichung lésen, die diesem Molekiil entspricht. Die
exakte Berechnung ist natiirlich undurchfithrbar. Im Abschnitt 3
haben wir gesehen, dal3 die Schrédinger-Gleichung eines Systems, be-
stehend aus mehreren Teilchen, 16sbar ist, wenn die Wechselwirkungen
zwischen den Teilchen vernachlissigt werden. Die Eigenfunktion der
so vereinfachten Gleichung ist dann gemal (I.9) gegeben durch das
Produkt der Eigenfunktionen der einzelnen Teilchen und die Energie
ist nach (I. 10) gleich der Summe der Energien der einzelnen Teilchen.

Im gegenwertigen Fall kénnen aber die Atomeigenfunktionen als
bekannt angesehen werden. Dann kann man die Gesamtheit A, B, ...,
H als ein einziges System betrachten, deren Atome in solchen Ab-
stinden voneinander sind, daB3 sich die Elektronen der verschiedenen
Atome praktisch nicht beeinflussen. Damit haben wir ein System vor
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uns, dessen Schrodinger-Gleichung nach den im Abschnitt 3 gemachten
Angaben l6sbar ist oder besser gesagt,dessen Losung bereits bekannt
1st; nach Gleichung (I. 9) ist sie durch das Produkt der Atomeigen-
funktionen (10) selbst gegeben

uaq)ra . ubq)rb s uh‘?rh (11)

oder beispielsweise
(11a)
Ua(1,2, ..., 0a) 0n(1,2, ..., ng) . up(na+1, ..., ng+np) pp(ng+1, ..., ny+np)
vooup(Ng+. .. 4ng+l, L., Da+. . 4+0p) Qu(Dg+. . +0g+], L., Dyt . 4Dy)

In (11a) haben wir der Einfachheit halber iiberall die Spinfunktionen
mit lauter positiven Spinwerten eingesetzt. Da das Atom A aber n, +1,
das Atom B ny+1 usw. das Atom H ny, +1 Spinfunktionen besitzt, gibt
es mehrere Eigenfunktionen (11) des ungekoppelten Systems; ins-
gesamt gibt es

g = (ng +1) (np + 1)...(np+1) (12)

Funktionen vom Typus (11).

Nun ist zwar (11) eine gendherte Funktion unseres Systems, be-
stehend aus ungekoppelten Atomen, doch geniigt sie dem Pauliprinzip
noch nicht, denn sie ist nicht antisymmetrisch in allen Elektronen.
Sie ist zwar antisymmetrisch in Bezug auf die Vertauschung zweier
Elektronen des Atoms A, ferner fiir die Elektronen des Atoms B usw.
nicht aber beziiglich der Vertauschung zweier Elektronen zwischen
verschiedenen Atomen. Eine antisymmetrische Funktion in Bezug auf
die Vertauschung aller Elektronen erhilt man sehr leicht in folgender
Weise:

Im Abschnitt 5 haben wir bei der Besprechung der Austausch-
entartung gesehen, daBl die Eigenfunktion (I.37) nicht die einzige
Losung des aus n ungekoppelten Elektronen bestehenden Systems
ist. Wir erhielten durch Permutation mehrere Eigenfunktionen zum
selben Eigenwert, insgesamt n! Eigenfunktionen. Durch eine Linear-
kombination aller dieser Partialeigenfunktionen, versehen mit den
Koeffizienten +1 und —1, je nachdem ob die Permutation gerade oder
ungerade ist, bekamen wir die antisymmetrische Gesamteigenfunktion.

Im Falle (11) entstehen die anderen Partialeigenfunktionen durch
Permutation der Elektronen der verschiedenen Atome; diejenigen
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Permutationen, die sich zwischen den Elektronen der einzelnen Atome

abspielen, sind bereits durchgefithrt. Die Permutationen, die nur

Elektronen verschiedener Atome vertauschen, nennen wir Q. Thre Zahl
n!

Ila! Ilb! v Dy

des ganzen Systems darstellt. »q ist gleich +1 wenn Q eine gerade

Permutation ist, im anderen Fall —1.

Mit diesen Bezeichnungen kann die antisymmetrische Eigenfunk-
tion, bestehend aus der Linearkombination aller Partialfunktionen (11)
(mit einem bestimmten Produkt von Spinfunktionen), in der Form (13)
geschrieben werden

ist gegeben durch wo n die Gesamtzahl der Elektronen

ng! np! ... np!
b rb,...:\/ !l B! S g Qua e U Brry By (13)

Der Faktor vor der Summation ist der Normierungsfaktor. Im Fall
eines Systems z. B. von zwel viervalentigen und zwei zweivalentigen
Atomen, unter Heranziehung der symmetrischen Spinfunktionen g,
fir alle Atome, d. h. unter der Annahme, dal3 simtliche Spins positive
Werte haben, erhalten wir fir (13) den Ausdruck

41412121
G, u,2,2 = \/T N 10 Q ua(1,2,3,4) up(5,6,7,8) u(9,10) (14)
14(11,12) 0,(1,2,3,4) 9,(5,6,7,8) 9,(9,10) 0,(11,12)

Die Zahl der antisymmetrischen Eigenfunktionen (13) ist dieselbe wie
diejenige der Funktionen (11), d. h. gleich (12). Damit sind die Losun-
gen der Schrodinger-Gleichung des ungekoppelten Atomsystems
bekannt. Die Energie des ganzen Systems ist nach (I .10) gleich der
Summe der Energien der einzelnen Atome.

Beim Heliumatom haben wir gesehen, dall die Energie in dieser
Approximation noch viel zu grob ist. Das gleiche gilt selbstverstandlich
auch hier. Um eine Verbesserung des Energiewertes zu erzielen, wird
man die Stérungsrechnung des entarteten Falles auch hier anwenden
miissen. Die Eigenfunktion nullter Niherung erhidlt man durch Linear-
kombination der g Funktionen (11). Die Sédkulargleichung ist vom
Grad g. Wie man sieht, wird man auf diese Weise auf ein ziemlich
hochgradiges Problem gefiihrt. Im Fall des Benzols z. B. hitte man
gemdl (12) ein Gleichungssystem bestehend aus

g=“#+1)4+1)4+)4+1) ¢ +H4+1) 1+ (1+1) (1 +1) (1+1) (1 +1) (1 +1) = 109
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linearen Gleichungen. Es ist selbstverstindlich, daB die rechnerische
Behandlung derartiger Probleme auch mit den modernsten Hilfs-
mitteln vollig ausgeschlossen ist. Zum Gliick kann dieses Problem noch
weitgehend reduziert werden. Es ist dabel bemerkenswert und von
groBer praktischer Wichtigkeit, dal die Ausreduktion des Problems
vor der Aufstellung der Sikulargleichung erfolgen kann.

Um die Diskussion dieser Reduktion moglichst einfach zu gestalten,
soll sie an Systemen von einvalentigen Atomen verfolgt werden. Die
Verallgemeinerung auf mehrelektronige Atome bietet dann keine
Schwierigkeiten mehr.

Es sei nochmals betont, da vom Standpunkt des Koordinaten-
anteils in (13) ein System von n Atomen nur eine antisymmetrische
Funktion besitzt, die Entartung in (13) stammt ausschlieBlich vom
Spinanteil. Bereits fir zweil einvalentige Atome haben wir die vier
Moglichkeiten

b = 5 SnaQuall) us(2) «(1) (2
bio = % N0 Qua(1) up(2) o(1) B(2)
bot = V% N0 Q ua(1) up(2) B(1)2(2)

s = 5—5 SnqQua(l) up(2) B(1) B(2)

Um die Energiestérung und die Eigenfunktion nullter Niherung zu
ermitteln, mull hier eine 4-rethige Determinante (I.34) berechnet
werden. Bel einem System von vier einvalentigen Atomen haben wir
schon 16 Funktionen vom Typus (13) und demnach eine 16-reihige
Siakulardeterminante (I. 34). Die Zahl dieser Funktionen steigt auch
bei einvalentigen Atomen sehr rapid an. Nach den Angaben der zweiten
Kolonne in der Tabelle 2 kann man sich von der Gré8e dieses Anstieges
Rechenschaft geben. Wie man sieht, ist das Problem bereits bei 8
Elektronen praktisch unldsbar.

Um weiter zu kommen, betrachten wir das System von vier Atomen
mit je einem Elektron. Die Funktionen (13) sind von der Form

5y

"[)1, Ty Lyd T Nﬂ

ET}Q Qua(l) up(2) ue(3) ug(4) . a(l) ee(2) o(3) cx(4) (15)
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Die Spinanteile der 16 Funktionen sind in der Tabelle 1 angegeben,
wobel A das erste Atom mit dem Elektron 1, B das zweite Atom mit
dem Elektron 2 usw. repriasentieren. In der zweiten Kolonne findet
man die Spinverteilungen, die den 16 Molekiilfunktionen (13) ent-
sprechen und in der letzten ist die zugehdrige Summe der Spinkompo-
nenten angegeben.

Die Sikulardeterminante dieses Systems ist nach (I. 34) von der
Form

HII_EAII HIZ_EAIZ ..... Hl 16"_“EA1 16
H, — EAy Hy, —EA; oo H; 16— EAj 16

...........................................

-0 (16)

In den H; und A; haben wir nach (I.32) die Eigenfunktionen (15)
mit den verschiedenen Spinanteilen der Tab. 1 einzufiihren.

Jeder Wurzel von (16) entspricht nach der Stérungsrechnung eine
Eigenfunktion, die eine Linearkombination der 16 Funktionen (15)
darstellt. Die Wurzeln von (16) entsprechen den Wechselwirkungs-
energien zwischen den Atomen, die bis jetzt vernachlassigt wurden.
Wenn die vier einvalentigen Atome ein gemeinsames System bilden,
so unterscheiden sich die verschiedenen Zustinde des Systems durch
die Wechselwirkungsenergie und durch den resultierenden Spin. Zu
jedem Spinwert S gehoren im allgemeinen mehrere Wechselwirkungs-
energien und mehrere Eigenfunktionen.

Bei der Berechnung der Determinante (16) tritt eine Vereinfachung
wegen der Orthogonalitat (I. 44) der Spinfunktionen ein. Dies lauft
praktisch darauf hinaus, daB alle Elemente der Determinante (16)
verschwinden, welche in H;; und A;; zwei Eigenfunktionen enthalten,
deren Gesamtspinkomponenten Mg verschieden sind. Es entsteht
somit aus (16) — bei Beachtung der Tab. 1 — die Determinante (17),
wo alle Elemente auBerhalb der Quadrate verschwinden. Es entstehen
also zwei einreihige, zwel vierreihige Teildeterminanten und eine sechs-
reihige. Die urspriingliche Gleichung (16) erhilt man dann aus (17)
durch Multiplikation der Teildeterminanten, die entlang der Diagonalen
situiert sind. Um die Wurzeln von (16) zu berechnen, setzt man die
einzelnen Teildeterminanten gleich Null. Durch diese Operation wird
die Bestimmung der Energie der urspriinglichen Gleichung (16) auf
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eine Reihe von Gleichungen niedrigeren Grades zurtickgefiihrt, was
natiirlich eine wesentliche Vereinfachung der Rechnungen darstellt.

Aber noch eine weitere Vereinfachung kann erzielt werden. Wir
wissen niamlich, dal eine Bindung zwischen zwei Atomen dann auf-

Tabelle 1. Spinfunktionen des Systems von 4 Atomen wmit je eimem Elektron

A B C D Mg
P1111 o o o o +2
Pii10 o o o B +1
P1101 o o B o +1
Pio11 o & o o .
Por11 B o o & il
P1 = P1100 o &% B B 0
P2 = Pio10 ox B o B 0
P3 = Po11o B & « B 0
P4 = Pioo01 o B8 B8 o 0
Ps = Qo101 B o B o 0
@6 = Qoo11 B B o o 0
P1o00 o B B B =l
Po1o0 ¢ o B B =l
Pooto £ G o B =1
Pooo1 B e e o =
Poooo B B B B —2
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tritt, wenn die Spins der Elektronen beider Atome verschieden sind
und sich kompensieren um ein Spinpaar zu bilden. Dementsprechend
kommen fiir die Bindungen nur die Funktionen (15) mit den Spin-
anteilen

D1, Pz, P3, P4, Ps, Po (18)

der Tab. 1 in Betracht, welche die gleiche Anzahl von Spinfunktionen
« und § enthalten, d. h. fiir welche Mg = 0 1st. Fiir die Chemie ist dieser
Fall der wichtigste, die anderen kdénnen zunichst ganz weggelassen
werden. Bei der Energieberechnung unseres Systems geniigt es also,
die sechsreihige Teildeterminante von (17) zu verwenden. In der dritten
Kolonne der Tab. 2 findet man die Zahl der Eigenfunktionen, die bei
groleren einvalentigen Systemen nach dieser Reduktion noch iibrig
bleiben.

8. Die Spininvarianten

Obwohl die erzielte Vereinfachung im Abschnitt 7 betrichtlich ist,
bleiben die Rechnungen doch sehr weitldufig; nach der Tab. 2 mul
man fir 8 Elektronen noch immer eine Determinante vom Grad 70
berechnen. Es wire sehr vorteilhaft, wenn eine Reduktion noch vor
der Aufstellung der Sikulardeterminante erzielt werden koénnte. Dies
ist nun tatsichlich moéglich. Das Verfahren lduft im wesentlichen auf
die Bildung von geeignet gewihlten Linearkombinationen von Eigen-
funktionen des Typus (18) aus, indem man eine Zuordnung zwischen
Valenzdispositionen der Chemie und Eigenfunktionen errichtet. In
der zusammenfassenden Darstellung (HRW) wird dieses Problem
sowie die Frage der Reduktion der Zahl der Eigenfunktionen, die im
Abschnitt 7 erzielt wurde, auf Grund von gruppen- und invarianten-
theoretischen Uberlegungen durchgefiihrt. Die Kenntnis dieser Zweige
der Algebra kann hier aber nicht vorausgesetzt werden. Wir wollen
deshalb die Zuordnung auf elementare Weise vornehmen, und begniigen
uns nachtréaglich, die Einfiithrung des Begriffs der Spininvarianten
nach der genaueren Theorie kurz anzudeuten.

Wir kniipfen wieder an das obige System von vier Atomen mit je
einem Valenzelektron an. Die Verbindung der Atome durch Valenz-
striche fithrt auf die drei Valenzverteilungen (19), wo jeder Valenz-
strich aus spiter ersichtlichen Griinden mit einem Pfeil versehen ist.
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Die Richtung des Pfeiles ist an und fiir sich willkiirlich, vorausgesetzt,
dal3 die einmal gewidhlten Richtungen fiir alle Operationen beibehalten
werden.

(19)

C B C B C B
Y‘l \'VZ \IJ3

Andere Valenzverteilungen gibt es hier selbstverstidndlich nicht.
Wir haben also einerseits drei Valenzdispositionen und anderseits die
sechs Eigenfunktionen vom Typus (18), zwischen denen eine ein-
deutige Zuordnung zu konstruieren ist.

Vergleichen wir zu diesem Zweck die Valenzdisposition ¢, mit den «
und @ Verteilungen der Funktionen (18) in Tab. 1 und insbesondere
die Situation des Atompaars A und B. In ¢, sind die zwei Atome mit
einem Valenzstrich verbunden. Nach dem Spinvalenzverfahren tritt
eine Bindung dann auf, wenn die Spins der entsprechenden Elektronen
verschieden sind. Von den sechs Funktionen erfiillen fiir das Atom-
paar A und B nur ¢,, 9;, ¢,, ¢, diese Bedingung. Nur bel diesen konnen
sich dem Valenzstrich entsprechende Spinpaare bilden. Bei denselben
Funktionen kénnen auch die Elektronen der Atome C und D ein Spin-
paar bilden, das dem Valenzstrich zwischen diesen Atomen entspricht.
Einen algebraischen Reprisentanten der Valenzdisposition ¢, erhdlt
man, wenn der Koordinatenanteil zunichst weggelassen wird, durch
Kombination der vier Spinfunktionen o,, ¢;, @, o, mit geeignet ge-
wiahlten Koeffizienten, d. h.

@ = Axpy + azPz + Ay Pyt A5Ps (20)

Bei dem Zweielektronensystem in (7) gehoren die drei symmetrischen
Spinfunktionen zu dem Gesamtspin S = 1 und die antisymmetrische
zu S = 0. Eine dhnliche Situation haben wir hier bei den Spinpaar-
bildungen zwischen A, B und C, D. Die Linearkombination (20) muBl
antisymmetrisch sein und ihr Vorzeichen dndern bei der Vertauschung
der Spinfunktionen « und p. Vertauschen wir diese zundchst bei den
Atomen A und B. Die Funktion ¢, geht in ¢, Giber und umgekehrt,
ferner geht ¢, in ¢4 tiber und umgekehrt. Man erhélt also

44



@ = —QyP3; — A3Py — A4P5 — AsPy

Vertauschen wir anderseits die Spinfunktionen der Atome C und D,
so entsteht analog

© = — AxPy — A3Qs — 4Py — A5P3

Aus den Ausdriicken folgt, dall a, = a; = —a; = —a, sein mul}. Die
Kombination (20) kann unter diesen Bedingungen auch in der Form
(20a) geschrieben werden

@ =@ —P3— Py + Ps (20a)

Wir sind jetzt soweit, die vollstindige Linearkombination der
Funktionen 4,050, Yo1100 Y1001, Yo101 (mit dem Koordinatenanteil
inbegriffen) und damit den mathematischen Repriasentanten (21) der
Valenzdisposition {; anzugeben.

=3 [i/% S 10 Q u(1) 1p(2) ue(3) ug(4) . a(1)B(2)(3)8(4)
= v; S 10 Qua(1) up(2) 1e(3) ua(®) . B(1) a(2) «(3) B(4)

| (21)
= v_tﬁ S 10 Q (1) ub(2) ue(3) ug(#) . (1) B(2) B3) a(4)

+ Vlﬁ > 1 Qua(l) up(2) uc(3) ug(4) . B(1) (2) £(3) cx(4)]

Durch analoge Uberlegungen erhilt man auch die Molekiileigen-
funktionen, die den Valenzdispositionen {, und {; entsprechen. In (22)
sind diese in einer einfacheren Form mit den ausfithrlich geschriebenen
Indizes der {Yr, 1y, - angegeben.

‘-P1 - % [‘l’wlo - '-pmlo - ‘~IJ1001 + 4’0101]
Y, = % [$1100 — Y1010 — Vo101 + Poo11] (22)
4’3 - % Hﬁom - Ll-’oou - LL’uoo + ‘-lv‘ouo]

Nach Heitler-Rumer-Weyl wird aber noch eine andere, die In-
varianten Schreibweise, verwendet. Auf Grund von (21) kénnen wir
auch diese ohne Schwierigkeit einfithren. In den Spinfunktionen (21)
sind die Elektronen durch Zahlen, die positiven und negativen Spin-
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werte mit « und p bezeichnet. Statt der Nummern 1, 2, ... der Elektronen
fihrt man jetzt fir jedes Elektron das Symbol des entsprechenden
Atoms ein, wobel die positiven und negativen Spinwerte mit den
Indizes 1 und 2 bezeichnet werden. Wenn z. B. das Elektron 3 mit
einem positiven Spinwert zum Atom A gehort, so wird man statt
« (3) einfach A, schreiben; die Elektronennummer tritt also explizite
gar nicht auf.

Mit dieser Bezeichnung lassen sich die sechs Spinfunktionen der
Tab. 1 so schreiben

: A;BC:D, : A,B,C,D,
cp2 A,B.C,D, cpsABCD
;. A,B,C,D, 9s: A,B,C,D,

Fir die Molekiileigenfunktion (21) erhdlt man damit die einfachere
Form

by = \E > 1Q Q ua(1)up(2) uc(3) ug(4). (A B,—A,B))(C,D,—C,D,) (23)

Wenn man schlieBlich die Abkiirzungen

[AB] = —=(A;B; — A;B)) = —[BA]

L3
V2
il
[CD] \/2( ) [DC]

(24)

einfithrt, so kann man die drei mathematischen Reprisentanten der
Valenzformeln (19) in ihre definitive Form bringen

iy i ZVJQQua(l) up(2) uc(3) uq(4) .[AB] [CD]

Ve
b= Ty Q@ ua(h) (@) ued) ua(4) (D] (BC (25)
b= 7 S 10 Q1) u6(2) vel3) ug(4).[AC) DB

Wie man sieht, unterscheiden sich die drei Molekiileigenfunktionen
(25) nur in ihren Spinanteilen. Man kann diese als die direkten Repri-
sentanten der Valenzbilder betrachten, wobei jedem Valenzstrich
ein Klammerausdruck [AB], [BC] ... entspricht. [AB] bedeutet also
einen Valenzstrich zwischen den Atomen A und B. Es sei aber darauf
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hingewiesen, dall die Zuordnung hier nicht bloB formaler Natur ist,
wie das etwa noch am Anfang dieses Jahrhunderts in dhnlich ge-
richteten Zuordnungen der Fall war. Nach (24) entspricht namlich
jedem mathematischen Repriasentanten des Valenzstriches zwischen
den Atomen A und B ein Elektronenpaar mit verschiedenen Spins.
Die rechte Seite (24) ist nimlich eine antisymmetrische Linearkombi-
nation von entgegengesetzt gerichteten Spins. Den Ausdruck [AB]
oder das Produkt solcher Ausdriicke nennt man Spininvariante.

Dieses Ergebnis 146t sich auch auf den allgemeinen Fall tibertragen,
so daBl man fir die Molekileigenfunktionen eines Systems von ein-
und mehrelektronigen Atomen schreiben kann

ng! np! ...~ p p
Yoab Phe ---=\/———a nb! S noQuguy. . .[AB] b [BC) be (26)
Hier reprisentieren p,,, Pue --- die Anzahl Valenzstriche zwischen

den Atomen A und B, B und C usw. Die Bedeutung der iibrigen Sym-
bole ist analog dem Ausdruck (13).

Zum SchluBl soll die Zuordnung zwischen Valenzbild und Spin-
funktion auch vom Standpunkt der urspriinglichen Entwicklung nach
(HRW) wenigstens kurz angedeutet werden.

Betrachte man zu diesem Zweck zwei orthogonale Vektoren vom
gleichen Betrag mit den Komponenten x, y, zund X, Y, Z, so dal3

x2+y2+22=X2+Y2+722=1, xX+yY+zZ =0

ist. Bilde man anderseits einen komplexen Vektor mit den Kompo-
nenten

X=x+4+1X, Y =y +1Y¥Y, Z'=z+1iZ
die der Relation X" + Y’ + Z’? = 0 geniigt. Wenn man nun die Aus-
dricke
A, = VX' +iY A, =V=X +iY’
konstruiert, so kann man zeigen, dall die zwei GroBen A, und A, die
Komponenten eines zweidimensionalen komplexen Vektors sind, die

sich bei einer Drehung des Koordinatensystems linear transformieren
nach
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Al =aj A +a,A,
Al =anA; + apA,

wo die Transformation orthogonal im komplexen Sinne ist mit der
Determinante aa,, —a;,a, = 1.

Anderseits kann man auch zeigen, dal3 die verwendeten Spinfunk-
tionen o und B bei der Drehung des Koordinatensystems gerade der-
selben Transformation unterworfen sind. Es besteht somit folgende

Zuordnung
avA; B A,

d. h. o transformiert sich wie A; usw.

Betrachten wir unter diesen Voraussetzungen die symmetrischen
Spinfunktionen (8). Wenn fiir jedes Elektron « und 8 sich wie A, und
A, transformieren, so werden sich die Spinfunktionen wie die Produkte

Pn ™ A fa

..................

transformieren. Die Spinfunktionen kénnen dann, insofern man ihr
Verhalten bei der Rotation betrachtet, durch die GréBen

N

ersetzt werden.

Wenn die Spinfunktion eines Atoms durch einen Vektor reprisen-
tiert werden soll, so mufl man nach (13) fiir jedes Atom einen Vektor
einfithren. Fiir das zweite Atom hat man dann B,, B,, die sich so trans-
formieren wie A, und A,. Die Spinfunktionen des Atoms B sind durch

n -
N

zu ersetzen. Somit transformiert sich die ganze Funktion (13) wie das
Produkt ¢ ¢ ..., d. h.

‘pra’ rb’. - . (-\-) A.lra A—Zna_ ra.Blrb anb_ rb‘ . .

Die Eigenfunktionen (13) gehoéren, wie wir bereits wissen, zu ver-
schiedenen Spinwerten. Fiir die Chemie sind die zu S = 0 gehérenden
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am wichtigsten. Die Funktionen, die dem Gesamtspin S =0 ent-
sprechen, bleiben aber gegeniiber Spindrehung unverdndert, d. h. sie
sind Invarianten der Rotation. Um Funktionen zu bilden, fiir welche
S = 01ist, mull man also Linearkombinationen von solchen Funktionen
wihlen, die invariant sind.

Welche sind aber die Invarianten der Rotation? Falls man zwel
komplexe Vektoren A und B betrachtet, erhilt man eine Invariante
durch Bildung der Determinante [AB] = A;B, — A,B, = —[BA].
Dieser Ausdruck ist eine Invariante, weil die Determinante der Trans-
formationsmatrix gleich 1 ist. Um Linearkombinationen zu erhalten,
mull man mehrere Invarianten von diesem Typus miteinander multi-
plizieren. Damit kommt man wieder zum Ausdruck (26). Die Spin-
invarianten sind also Kombinationen von Spinfunktionen, die bei der
Drehung des Koordinatensystems unverdndert bleiben.

Nun sind wir soweit, dall wir jede chemische Formel oder Valenz-
verteilung durch eine Eigenfunktion charakterisieren koénnen, wobei
jedem Valenzstrich zwischen zwei Atomen A und B ein Klammer-
ausdruck [AB] zugeordnet ist. Sind mehrere Valenzstriche zwischen
zwel Atomen, so wird dies durch den Wert des Exponenten p,y, ... zum
Ausdruck gebracht [AB] Pab, Die Exponenten in (26) miissen natiirlich
die Bedingungen

Pab + Pac + Pad + ... =113
Pab + Pbc + Pbd + -+ . = Ip (27)

------------------------

erfiillen.

Im allgemeinen gibt es fiir jedes System bestehend aus mehreren
Atomen eine Reihe von Molekiileigenfunktionen (26). Aus den vorher-
gehenden Diskussionen folgt eindeutig, daBl ihre Zahl gleich der Zahl
der Valenzformeln ist, die man erhilt, wenn die Valenzstriche auf allen
moglichen Arten zwischen den Atomen des Molekiils verteilt werden.
Natitirlich werden hier auch Valenzformeln vorkommen, die fiir den
Chemiker zunichst fremd erscheinen. Es sind grundsitzlich aber zu-
nichst alle Valenzdispositionen des Molekiils in Betracht zu ziehen.

Die Eigenfunktionen (26) beziehen sich noch immer auf ein System
von ungekoppelten Atomen. Sie sollten also den Ausgangspunkt fiir
die Storungsrechnung bilden, um die Wechselwirkungsenergien zwi-
schen den Atomen des Molekiils zu berechnen. Bei vier einvalen-
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tigen Atomen, wo nur die drei Valenzverteilungen (19) méglich sind,
wird man auf ein Sikularproblem (I.33) dritten Grades gefiihrt.
Gegeniiber (18), wo eine sechsreihige Determinante zu berechnen war,
bedeutet die Einfithrung der Valenzdispositionen eine interessante
Vereinfachung. Geht man aber zu gréBeren Systemen tiber, so stellt
man fest, dal} die erzielte Reduktion zunichst aufgehoben wird und
schon bei 8 Elektronensystem ist der Grad der Sikulardeterminante
groBer als vor der Einfiihrung der Valenzdispositionen.

Mit dem Ubergang von (18) zu (26) haben wir somit das chemisch
wichtige Ergebnis der Reprisentierbarkeit von Valenzformeln durch
mathematische Ausdriicke zwar realisiert, eine Vereinfachung der
Rechnungen konnte aber dabei nicht erzielt werden, sie sind im
Gegenteil noch komplizierter geworden. Die Tabelle 2 illustriert diese
Situation. In der vierten Kolonne findet man die Anzahl der Valenz-
dispositionen bzw. der Eigenfunktionen (26) eines Systems von ein-
valentigen Atomen. Zum Gliick bietet hier die Invariantentheorie
einen Ausweg, um das Problem rechnerisch weiter zu vereinfachen.

Bereits im einfachsten Fall von vier einelektronigen Atomen kann
man zeigen, dal3 die drei Eigenfunktionen (25) nicht linear unabhangig
sind. Zwischen den entsprechenden Spininvarianten besteht namlich
die lineare Beziehung

[AB] [CD] + [AC] [DB] + [AD] [BC] = 0 (28)

Man iiberzeugt sich leicht von der Richtigkeit dieser Relation durch
Einfihren aller Ausdriicke vom Typus (24) in (28) und Multiplikation.
Von den drei Spininvarianten (28) sind nur zwel unabhingig. Ein
Fundamentalsatz der Invariantentheorie besagt ferner, dall alle
linearen Abhédngigkeiten der Invarianten sich auf die einzige Gleichung
(28) zurtickfiihren lassen. Somit kann man auf Grund dieser einzigen
Gleichung aus der Gesamtheit aller Valenzdispositionen eines Systems
diejenigen auswiihlen, die linear unabhingig sind.

Die letzte Kolonne der Tab. 2 gibt die Anzahl von linear unabhingi-
gen Eigenfunktionen bzw. Valenzdispositionen fiir den Fall von einva-
lentigen Atomen an. Wie man sieht, erreicht man auf diese Weise
eine sehr weitgehende Reduktion der Anzahl Funktionen, die fir die
Rechnungen in Frage kommen miissen. Bei 8 Elektronen z. B. kann
man insgesamt 105 Valenzdispositionen konstruieren, von denen
aber fiir die Rechnungen nur 14 notwendig sind.
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Tabelle 2. Anzahl der Molekiileigenfunktionen eines Systems von n Atomen
mit je einem Elektron

Zahl der Linear unabhangige

Elektronenzahl | Von der Form (13) Vom Typus (18) Valenzdispositionen Valenzdispositionen
2 4 2 1 1
+ 16 6 3 2
6 64 20 15 5
8 256 70 105 14
10 1 024 252 945 42
12 4 096 924 10 395 132
14 16 384 3432 135135 429
16 65 536 12 870 2 027 025 1430
18 262 144 48 620 34 459 425 4 862

Die Gesamtheit der linear unabhingigen Funktionen nennt man
eine unabhingige Basis von Eigenfunktionen oder einfach unab-
hingige Basis. Wir werden auch von einer unabhingigen Basis von
Valenzdispositionen sprechen, obwohl diese Ausdrucksweise nicht ganz
richtig ist. Algebraisch betrachtet besteht namlich nach (28) eine
Abhingigkeit zwischen den drei Invarianten. Man kann also auch
schreiben

[AB][CD] + [AD] [BC] = [AC] [BD] (29)
Die entsprechende Gleichung in Valenzformeln ausgedriickt lautet

D A D A D A
%

+ (29a)

” B L B - B

Diese Gleichung kann nur dahin interpretiert werden, dall eine ge-
kreuzte Disposition in zwel kreuzungslosen aufgelost werden kann.
Zwischen den Atomen A und B z. B. tritt aber auf der linken Seite
ein Valenzstrich auf, rechts dagegen tiberhaupt keiner. In diesem Sinne
sind die drei Valenzdispositionen linear gar nicht abhingig. Diese
Bemerkung ist notwendig, weil man in der Mesomeriemethode bei
der Berechnung der Elektronenverteilung die beiden Ausdriicke (29)
hiufig als vollig gleichwertig behandelt hat.

Die Auswahl einer unabhangigen Basis auf Grund der Gleichung (28)
ist im Prinzip immer moglich. Thre praktische Anwendung auf Systeme
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von mehr als 6 einvalentigen Atomen fiihrt aber zu duBerst weit-
laufigen, um nicht zu sagen, undurchfiihrbaren Operationen. Zum
Glick existiert eine auf die Relation (28) axierte Regel von Rumer,
die in sehr einfacher Weise die Auswahl einer unabhingigen Basis
gestattet. Man bringe zu diesem Zweck die Atome des Molekiils in
einer willkiirlichen Reihenfolge auf einem Kreis und bilde alle Valenz-
dispositionen, bei denen sich keine Valenzstriche kreuzen. Die so
erhaltene Gesamtheit von Valenzdispositionen entspricht einer
unabhidngigen Basis von Spininvarianten oder Eigenfunktionen (26).

Beziiglich der Auswahl einer unabhingigen Basis sei ausdriicklich
bemerkt, daf3 die Reihenfolge der Atome auf dem Kreis tatsichlich
belanglos ist; die Atome miissen also nicht in der natiirlichen Anord-
nun disponiert werden. Daraus folgt aber, dall die verschiedenen
Rethenfolgen der Atome auf dem Kreis zu verschiedenen unabhin-
gigen Basen fithren. Wenn wir die zweil Kohlenstoffatome A und B
und die vier Wasserstoffatome C, D, E, F z. B. in zwel verschiedenen
Reihenfolgen auf einen Kreis bringen, so bekommt man die zwei
unabhingigen Basen (30) des Athylens. Es muB3 aber betont werden,
daB die so erhaltenen zwel Basen wie tbrigens alle anderen unab-

(30a)

I”
I

N/

|
.
o

{ >
w

b

R\
=<7 — T <7

hingigen Basen gleichwertig sind in dem Sinne, dal3 die Berechnung
der Energie auf Grund jeder unabhingigen Basis zum selben Resultat
fithren muf3. Dasselbe muf3 auch fiir die Berechnung der Elektronen-
verteillung gelten.
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9. Anzahl der Valenzdispositionen einer unabhingigen Basis

Der Ausgangspunkt fiir die Berechnung der Energie im Rahmen
der Storungsrechnung ist also nach obiger Reduktion durch die Eigen-
funktionen bzw. Valenzdispositionen der unabhingigen Basis gegeben.
Natitirlich kann die Zahl der Valenzdispositionen der Basis immer
durch direkte Konstruktion festgelegt werden. Fiir die Beurteilung
der Komplexitit des Problems ist es aber von Vorteil, die Anzahl der
Dispositionen im Voraus zu kennen, abgesehen davon, dall man bei
der praktischen Durchfiithrung der Konstruktion der Dispositionen
eines groferen Systems immer zweifeln kann, ob die Basis vollstindig
ist oder nicht. Wir wollen deshalb einen Weg angeben, der erlaubt,
diese Zahl fiir ein beliebiges Molekiil festzulegen.

Wir gehen von folgender Bemerkung Heitlers (HRW) aus: die Zahl
der unabhingigen Invarianten (also auch der Valenzdispositionen)
stimmt mit der Zahl der Terme tiberein, die nach dem Vektormodell
mit einem Gesamtspin S = 0 entstehen.

Um das zu verstehen, nehmen wir an, die Atome A und B haben
respektive n, und n, parallele Spins. Das Gesamtspinmoment des
Atoms A ist dann S, = n,/2 und dasjenige von B ist Sy = ny/2. Wenn
die zwel Atome reagieren, so findet eine Koppelung der beiden Spins
S, und Sy statt. Das Vektoradditionsmodell zeigt uns, wie die Kopplung
im einzelnen erfolgen wird.

Wir wissen bereits (Abschnitt 6), daBl der Spin eines Elektrons
durch einen Vektor der Lange 1/2 repriasentiert werden kann und daf3
der Gesamtspin eines Systems von mehreren Elektronen durch Kom-
bination der zu den verschiedenen Elektronen gehorenden Vektoren
ermittelt werden kann. Es ist also in unserem Fall zundchst moglich,
dal} der Vektor S, der verschiedenen Elektronen des Atoms A und der
Vektor Sy der Elektronen des Atoms B die gleiche Richtung haben,
dann wird die Spinresultante der beiden Atome S = S, +Sy sein. Der
Vektor Sy kann aber auch andere erlaubte Richtungen annehmen
und zwar solche, fiir die die Resultante S,+S, einen um eine oder
mehrere Einheiten kleineren Wert annimmt, bis der Vektor S, eine
zum Vektor S, entgegengesetzte Richtung aufweist. Falls S, >S5, ist,
wird das GGesamtspinmoment also folgende Werte annehmen

S =8a2+Sp, Sa+Sp—1, Sa+Sp—2, ..., Sa—Sp (31)
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Diese Sachlage kann man auch so interpretieren: wenn p die Anzahl
Elektronenpaare mit antiparallelen Spins reprisentiert, ist der resultie-
rende Spin S = S, +Sy;—p, wo p die Wertep =0, 1, 2, ..., n, annimmt

Sind mehr als zwel Atome zusammenzusetzen, so kann man zu-
nichst zwei Atome kombinieren und dann das Resultat mit dem
dritten Atom zusammensetzen. Die resultierenden Terme sind un-
abhingig von der Reihenfolge der Zusammensetzung. Hierbei kommt
haufig vor, dal3 mehr als ein Term die gleiche Multiplizitit hat.

Zwel Beispiele sollen zur Illustrierung dieser Sachlage dienen. Statt
des resultierenden Spins wollen wir aber in diesem Abschnitt die Anzahl
der Elektronen mit nicht kompensiertem Spin verwenden, d. h.
n, = 25, Ny = 255,

Als erstes Beispiel betrachten wir ein Atom A mit drei Valenz-
elektronen, also n, = 3 und ein Atom B mit zwei Valenzelektronen
n, = 2. Man hat dann drei Kombinationsméglichkeiten: Die Elektronen
beider Atome haben alle parallelen Spins, somit ist n,+n, = 3+2 = 5.
Ein Elektron von A und ein Elektron von B sind antiparallel, die Zahl
der parallelen Spins sinkt um zweil Einheiten und hat den Wert 3. Im
dritten Fall stellen sich zwei Elektronen von A und zwei Elektronen
von B antiparallel, die Zahl der Elektronen mit nicht kompensiertem
Spin ist gleich 1. Man kann auch sagen, dal3 die drei Fille durch vek-
torielle Addition entstehen.

Erweitern wir das obige System von zwei Atomen mit einem dritten
einvalentigen, so erhilt man durch Kombination der Werte 5, 3, 1
mit dem dritten Atom:

aus dem Wert 5 bekommt man 6, 4

aus dem Wert 3 bekommt man 4, 2
aus dem Wert 1 bekommt man 2, 0.

Die Anzahl der Elektronen mit nicht kompensiertem Spin sind also 6,
4, 2und 0. Diese Werte treten hier aber mit verschiedenen Haufigkeiten
auf, die respektive 1, 2, 2, 1 sind. Es sei besonders darauf hingewiesen,
dall der Wert O nur einmal auftritt und daBl die Anzahl der Valenz-
dispositionen mit nicht gekreuzten Valenzstrichen ebenfalls gleich
eins ist: C—A =B.

Als zweites Beispiel nehmen wir den Fall von vier Atomen mit den
Wertigkeiten 2,2,22. Durch Zusammensetzung der beiden ersten

Atome erhalten wir fiir die Anzahl der Elektronen mit parallelen Spins

4,2,0 (1)
mit den Haufigkeiten 1, 1.1
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Tabelle 3. Linear unabhdngige Valenzdispositionen bei I' )P

I'?2 =I+T%

' = Dy+20

T =T 430,321,

'S =T',+4I';+5T,

I'¢ =TI¢+51,+91,+5T,

') =T';+6I5+141',+141,

I'® = Iy+7T+201",+28T",+14T",

') =T'+8I';+27T5+481';+42T",

' =T, +93+ 35 +75T ,+901",+42T",

'yt =T, +10T+441",+110I's+165I"5+132I",

I'12 =T, +1110 5+ 54 +1541°+ 2751, +2971",+ 1321,

' =T,,+12I",, +651'4+208I", +4291's+ 572I'; +429T",

L4 =T1,,+13I',,+771,,+273'3+637';+1001I", +10011",+ 429",

It =T5+141";+90I",,+3501T°,+910I",+ 163815 +2002I";+ 14 301",

I'j1% =T',,+15I',+1041",,+440I",,+ 126013+ 25481, + 36401", +
+3432T°,+1430T",

Durch Addition des dritten Atoms zu (I) bekommt man

aus 4 6, 4, 2
aus 2 4,2,0
aus 0 2 (IT)

Das Ergebnis ist also 6,4, 2,0
mit den Haufigkeiten 1, 2, 3, 1.

’

SchlieBlich ergibt die Addition des vierten Atoms zu (II):

6 ergibt 8, 6, 4
4 ergibt 6, 4
4 ergibt 6, 4
2 ergibt 4
4
4

)

-

RN NN

2 ergibt
2 ergibt
0 ergibt
Die Kombinationsmoglickheiten sind also 8, 6, 4, 2, 0
mit den Hiufigkeiten 1,.3,6.6 3

-

’

(IT1)

o O O

-

)

Dieses Beispiel, absichtlich so ausfiihrlich dargestellt, fithrt uns
zu einem Ausdruck, der die Anzahl der unabhingigen Spininvarianten
zu berechnen gestattet. Bezeichnen wir nimlich ein Atom mit zwei
parallelen Spins mit I', und die vektorielle Addition zweier derartiger
Systeme mit I',xI",, so kann das Ergebnis(I) auch so formuliert werden

I',xI', = 1I',+11',+11°,
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Tabelle 4. Linear unabhdngige Valenzdispositionen bei I',)n

T2 =TT+

I =TI'¢+2I',+30,+T,

I', =TIg+3+6I',+6I',+3T,

T, =T',,+43+10I'+15T",+15T",+61°,

I, =TI',+5I',,+15I'3+29T"c+40T",+ 361",+151",

I',7 =T',+6I';,+211",,+491's + 841", +1051", +91T",+ 361,

'8 =1, +70,+280,+761",,+154I'y + 2381+ 280I", + 2321",+ 91",

I')° =T'3+81"4+361",,+1111",,+2581",, +4681';+ 6721+ 7501",+ 6031, +
+232T°;

I, = T'yq+9I",3+451",,+1551",, +405T",+ 8371, ,+ 13981, + 18901 +

+2025I",+1585I',+603T°,

I',,+101,,+ 551", +2091",,+ 605", +13971",,+ 2640I", , +

+4215I';+53131+5500I", +42131I",4+1585T,

I',12 =T1,,+11T,,+661",,+ 27413+ 8691, s +22111",,+46421",,+ 8162I", , +
+12078T3+14938I',+15026T",+11298T,+4213T,

I‘oll

Il

d. h. durch Kombination von zwei Atomen mit je zwei parallelen
Spins (linke Seite) entstehen drei Zusammensetzungen: mit vier (I',),
zwel (I',) und null (I')) parallelen Spins, deren Hédufigkeiten durch die
Koeffizienten zum Ausdruck kommen. Analog koénnen wir das Er-
gebnis (II) durch folgende Beziehung zum Ausdruck bringen

R (VS S |y (RE; Ly Y, )

und schlieBlich bekommt man fiir (I11I)

I',xI',xI',xI', = 1T+ 31 +61",+61',+ 31,

D. h.,wenn man vier zweielektronige Atome kombiniert, so bekommt
man eine Zusammensetzung mit 8 parallelen Spins, drei Zusammen-
setzungen mit 6 parallelen Spins usw. und schlieBlich drei Zusammen-
setzungen mit durchwegs gesittigten Spins. Das letzte Glied gibt
gleichzeitig die Anzahl der unabhingigen Spininvarianten oder der
entsprechenden Valenzdispositionen der unabhédngigen Basis an.

Das, was hier durch Vektoraddition in einem Spezialfall erreicht
wurde, kann verallgemeinert werden. Der entsprechende allgemeine
Ausdruck lautet

Pa X Pb = I‘a+b + 1’a+b4_2 + Pa+b_4 4= e s + ].—‘|a,_b| (32)
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Tabelle 5. Linear unabhdngige Valenzdispositionen bei I' )

2 =+ I+1,+T,

3 = Tg+2I',+ 35 +4;+ 2T,

V=T, +30,+603+10:+111", + 91", +4TI",

5 =T s+413+101°,,+200'4+30I",+ 361"+ 341", + 201",

6 = I g+504+151",,+351",,+64I",,+961'3+1201",+120I",+90I",+ 341",

;7 =1, +61,+211",,+ 561", 5+1191",;+2101";, +3151"y +4001", +4 261" s+
+3641';,+210I',

U8 =1,,+71,,+281,,+841 3+ 2021, +4061",+ 7001, ,+ 10441, + 135113 +
+15051";+14001",+10001",+ 3641,

'y =TI,,+80,5+36I',;+1201",,+3211",,+720T",,+1392T",5+2352T" 5+
+35011";,+46001'y+5300I";+ 52561 ; +42691"; + 2400T",

510 = I3 +91,5+451 56+ 1651,,+4851°,,+ 11971 ,0+ 25531 ;s +47851" 4+

+7965I',+11845I",,+157531",,+ 1865713+ 194251+ 172251 ,+

+11925I',+4269T",

ry
|
Iy
Iy
I
.

Diese Formel, die in der Gruppentheorie fiir die Ausreduzierung von
Produktdarstellungen der Drehgruppe Verwendung findet, ist die
sogenannte Clebsch-Gordansche Formel.

Als Beispiel fiir die Anwendung dieser Formel nehmen wir ein

System von vier einvalentigen Atomen. Die Kombination der beiden
ersten Atome gibt
Tl = T+ T,

Die Zusammensetzung von drei Atomen fiihrt auf

T Tyx T, = (T Tiyoely = DonDdiDal, = D421,

SchlieBlich ergibt die Gesamtheit aller vier Atome

[ xI'y xI'y xI'y = (T'3+21,) xI'y = (T3x<Iy) +2(, xI'y)
= (T'y+1'y)+2 (T',+T,) = I'y+3T,+2T,

Den vier einvalentigen Atomen entsprechen somit zwel unabhingige
Valenzdispositionen, was wir in (28) bereits festgestellt haben.

Fir die praktische Berechnung der Anzahl von Spininvarianten
bzw. Valenzdispositionen der unabhingigen Basis eines beliebigen
Molekiils stellt man am besten Tabellen auf fir Partialsysteme be-
stehend aus lauter Atomen mit 1, 2, 3 und 4 parallelen Spins; diese
sind in den Tabellen 3, 4, 5 und 6 angegeben. Zur Abkirzung der
Schreibweise haben wir dort die Anzahl der Atome mit der gleichen
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Tabelle 6. Linear unabhdngige Valenzdispositionen bei I',P

'y = D+ + 1 +1,+17,

I'2 = T'3+2I0+30 3 +41+ 51" 4+ 3, + T’

' =T +30,,+61,,+10T,,+15T"+17T"+161",+121",+ 5T,

'y = I'pg+413+100 4+ 2007 ,+ 3517, + 511,y + 6415+ 701+ 651", + 451", +
+161°,

'8 =T, +51,,+15T ), +35T" 3+ 70T, +120T",,+180T" ,+ 2401, ,+ 2851 +
+295T"+260I',+1801",+651",

I'y7 = Ty +6I'56+211,4,+ 561", +1261 5+ 245113 +4201 4 +645T" 1, + 8951, +
+1120I';,+1260I's+1260I'¢+1085I',+735I",+ 2601,

I8 =T34+ 703,+ 281 5 +841 4+ 2101, + 4541, + 868I 5o+ 14921 5 +
+2331T",4+3325I',,+4340I";,+ 5180I';, + 562015+ 5460 +4600T" , +
+3080I",+1085I

Zahl nicht kompensierter Spins im Exponent zum Ausdruck gebracht,
also z. B. statt I', «I', xI'; xI'; xI'; einfach I',% oder statt I';x 'y xI';x[';,
I',* geschrieben.

Aus der Tabelle 3 entnimmt man beispielsweise, dall ein System,
bestehend aus 14 Atomen mit je einem Elektron, 429 unabhingige
Valenzdispositionen hat; das ist der Koeffizient von I'; in I';**. Ander-
seits entnimmt man aus Tabelle 6, da3 die Zahl der Valenzdispositionen
eines aus 6 vierwertigen Atomen bestehenden Systems 65 ist.

Die Tabellen konnen selbstverstindlich, wenn nétig, sehr leicht
noch erweitert werden auf Grund der allgemeinen Gleichung (32) bei
gleichzeitiger Beachtung der bereits bekannten Ausdriicke.

Im allgemeinen Fall, d. h. fiir ein Molekiil bestehend aus a, ein-
wertigen, a, zweiwertigen, a;dreiwertigen und a, vierwertigen Atomen,
erhdlt man den Koeffizienten von I'j durch schrittweise Ausrechnung
von

I'at x I',3z2 x I';a3 x I",a4 (33)

auf Grund von (32). Man ermittelt also z. B. zunichst I'}*1 xI",*2 dann
(I'y*1<I",*2) x I';% und schlieBlich (33) unter Verwendung der Angaben
der vier Tabellen.

Als Beispiel betrachte man die Berechnung der Anzahl Valenzbilder
des Athylens, das aus zwei Kohlenstoffatomen und vier Wasserstoff-
atomen besteht. Die Zusammensetzung von I';* und I';?, deren einzelne
Ausdriicke aus den Tabellen 6 und 3 zu entnehmen sind, ergibt
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T2 x 't =(Cg+le+T,+1,4T,) x (T'y+3T,+2T)
=TI, +I'}, +I's +I'y +I,
+I'y, +Ty +I +I'y +I',
+I'y +I'y +I'y +I', +I,
+I'y  +I'y  +1',
+I',
+3I';, +3I'y +3I7
+3I'y +3I'g +30°,
+3I'¢ +3I', +3I,
+3I', +3I',+3I0,
+3I°,
+2T°y +2T°; +21', +2I',+20,

I'2 x T'j# = T';,+5T4+110+ 15 +16T",+14T,+ 6T,

(34)

Die unabhingige Basis des Athylens besteht also aus 6 Valenzbildern,
was wir in (30) bereits durch die direkte Konstruktion festgestellt
haben. Die weitere Ergidnzung (33) durch zwei und dreiwertige Atome
erfolgt ganz analog.

Man kann aber noch einen Schritt weiter gehen,um die Rechnungen
zu vereinfachen. Liegen ndmlich zwel Teilausdriicke vor, wie z. B.
die oben verwendeten I',? und I'\*, so ist der Koeffizient I'; in der
Komposition (33) gegeben durch die Summe

2 oy (35)

wo o, und B, die Koeffizienten von demselben I', in den beiden Teil-
ausdriicken bedeutet. Denn eine Zusammensetzung I',x I, enthilt
dann — und nur dann - ein Glied I',, wenn a = b ist. Man hat also be1
der Bildung der Kompositionen I'y xI'y alle I, zu beachten, die in
beiden Teilausdriicken auftreten. Bildet man die Produkte aller sol-
chen Koeffizienten und summiert sie, so erhilt man die Summe (35),
die den Koeffizienten von I'; reprdsentiert.

Im obigen Beispiel des Athylens sind nur I',, I',, I’y beiden Klammer-
ausdriicken (34) gemeinsam. Multiplizieren wir die entsprechenden
Koeffizienten, so erhilt man

Z avBV =1+34+2 =6

Betrachte man noch das Beispiel des Benzols. In den Tabellen
3 und 6 findet man unter I''* und I, daB ', I",, T',, I', gemeinsam
sind.
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2 ayPy = 1.295+5.260+9.180+5.65 = 3540

In dieser Form stellt die Berechnung der Anzahl von Spininvarianten
oder Valenzdispositionen keine Schwierigkeiten mehr.

III. Die Energieberechnung

Durch die Auswahl einer unabhidngigen Basis von Valenzformeln
aus der Gesamtheit aller Valenzdispositionen ist das Problem soweit
reduziert, wie es iiberhaupt bei dem heutigen Stand der Theorie
moglich 1st. Wir denken hier an Reduktionen allgemeiner Natur, die
vor der Aufstellung des Sdkularproblems durchfiihrbar sind. Es wird
sich ndmlich zeigen, daBl in gewissen Féallen auch eine Vereinfachung
der Sikulardeterminante moglich ist, die aber von Fall zu Fall ver-
schieden sein wird.

Die Eigenfunktionen (II.26) der unabhdngigen Basis, die dem
Pauli-Prinzip gentigen und zu einem Spinmoment S = 0 gehoren,
bilden den Ausgangspunkt unseres Storungsproblems. Es interessieren
uns hier hauptsichlich zwel Fragen: Die Berechnung der Storungs-
energie erster Ordnung auf Grund des Gleichungssystems (1. 33)

f
2, (Hik“SAik) Ck:() 1=1,2, ,..1
k=1

(1)

mit

Hik:fllJiHlled'r Aik:f%'JJde

und die Ermittlung der Eigenfunktion nullter Ndherung
Y =Ciy + Copp + -+ CpYf (2)

In diesem Kapitel beschiftigen wir uns ausschlieBlich mit der Berech-
nung der Energie. Auf die zweite Frage kommen wir im nédchsten
Kapitel zu sprechen.

10. Sikulargleichung eines Systems von Atomen wmat je eimem Elektron

Da die numerische Berechnung der Energie bei groBen Molekilen
oft sehr weitlaufig wird, ist man in solchen Fillen gezwungen, sich mit
einer radikalen Approximation zu begniigen, indem man das Molekiil
durch ein System von Atomen mit je einem Elektron approximiert.
Selbstverstandlich erfihrt auf diese Weise das Sidkularproblem eine
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sehr weitgehende Reduktion. Wir wollen zunichst diesen einfacheren
Fall besprechen.

Um die Berechnung der Elemente der Sikulardeterminante kon-
kreter zu gestalten, soll die Diskussion an Hand eines Spezialfalles,
namlich eines Systems von vier Elektronen, durchgefiihrt werden.
Der Ubergang zu einem System von n Elektronen bietet dann keine
Schwierigkeiten mehr.

Von den drei Valenzdispositionen, die wir dem Vierelektronen-
system in (II.19) zugeordnet haben, sind blo zwel unabhingig.
Welche beiden Dispositionen gewdhlt werden, ist in diesem Spezial-
fall belanglos, jedes Paar bildet eine unabhingige Basis. Am zweck-
miligsten ist die Verwendung der Basis mit nicht gekreuzten Valenz-
strichen, also

D A D A
.

e
C B C B

Beziiglich der Festlegung der Richtung der Valenzstriche gibt es
keine Vorschrift, man kann sie beliebig wihlen. Die einzige Ein-
schrankung besteht darin, da3 die einmal festgelegten Richtungen fir
alle Rechnungen beizubehalten sind. Trotzdem wollen wir sie aus
ZweckmiBigkeitsgriinden definitiv festlegen. Uberall, wo nicht aus-
driicklich anders verfiigt wird, soll die lexikographische Anordnung
der Valenzstriche gewihlt werden, d. h. wenn der Buchstabe A als der
niedrigste und Z als der hochste des Alphabets betrachtet wird, so
soll der Valenzstrich jeweils von dem niedrigeren zum hoéheren gerich-
tet sein.

Den Valenzverteilungen dieser Basis entsprechen die zwei Eigen-
funktionen

| | (4)
i = \—}; ~ 10 Q ug(1) up(2) ue(3) ug(4) .[AD] [BC]

Die Eigenfunktion nullter Niherung ist dann
Y= Cy + Cay (5)

wo die Koeffizienten ¢, und c, noch zu bestimmen sind.
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Das homogene Gleichungssystem (1) besteht hier aus den zwei
Gleichungen
[ [ $iHbuds —c [ gpudr]e, + [ [ 9iHydr —¢ [ggdr]c, = 0

Iif Y. Hdr —¢ f q’z‘l’ld'f] Cy + [f %H‘Pzd‘f — € f %%d‘r] c; =0 @

und die entsprechende Sikulardeterminante ist

[eHgds —< [ggdr [ Hgde—e [gidde

=0 (7)

| bHYdr —¢ [bapidr [ bHds — < [ §ypode

Es sei zundchst bemerkt, daB man in jedem Summanden von ¢

diejenige Funktion fiir H einzusetzen hat, die fiir diesen Teil die

Storung bedeutet. Es gentigt hier wohl, an die Wechselwirkung von
zwel

28y

Atomen mit je einem Elektron zu erinnern. Die potentielle Energie
ist in diesem Fall gegeben durch

82 eZ eZ (32 eZ e?.
Ep = — S B o (8)
TAB Ti2 TA; TB: TA; TIB;
und das Storungsglied der potentiellen Energie ist
2 2 2 52
= (AP, O S, -l (9)

Die Buchstaben A und B bezeichnen hier die beiden Kerne, 1 und 2
die beiden Elektronen; ry, reprisentiert dann die Entfernung des
Elektrons 1 vom Kern A usw. Bei unserem System von vier Elektronen
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hat man natiirlich eine entsprechende Verallgemeinerung vorzunehmen
Dieser Aspekt des Problems interessiert uns aber hier nicht. Bei dem
heutigen Stand der Theorie ist man namlich gezwungen, die Integrale
auf Grund von thermochemischen Daten festzulegen.

Sind die Integrale bekannt, so kann die Energie ¢ berechnet werden.
Die Determinante liefert hier eine Gleichung zweiten Grades mit zwei
Wurzeln, die die Storungen erster Ordnung des betrachteten Eigen-
wertes darstellen. Durch Einfithren der Energie in das Gleichungs-
system, konnen die c¢; berechnet und somit auch die Eigenfunktion
nullter Ndherung erhalten werden.

Es handelt sich nun zunichst darum, die Elemente der Sikulardeter-
minante zu ermitteln. Betrachten wir zu diesem Zweck etwas ausfiihrli-
cher das erste Integral

Hy, = [ ¢ H, ds (10)

Die Spininvariante der Eigenfunktion ¢,

[AB][CD] = % (AB; — A;B)) (C,D, —C,D,) (11)

kann durch die entsprechende Spinfunktion ersetzt werden

%[a(1)8(2) —2(2)8(1)] [x(3)B(4) — a(4)B(3)] = (11a)

= %[a(l)@(2)a(3)ﬁ(4) — B(1)a(2)a(3)B(4) — x(1)B(2)B(3)(4) + B(1)(2)B(3)ex(4)]

Bezeichnen wir ferner das Produkt des Koordinatenanteils der Funk-
tion ¢, mit den vier Spinprodukten der Reihe nach mit §,, 43, 4c, p
also z. B.

bA = % > 1QQ ua(l)up(2)uc(3)ug(4) . «(1)B(2)x(3)(4) (12)
so kann das Integral (10) auch in der Form (13) geschrieben werden.

Hy, =, [(a— B —bc + 4p) H (44— dB — dc + 4p) d= (13)

Im Folgenden wollen wir diese 16 Integrale niher untersuchen.
Ausfiihrlicher geschrieben ergibt das erste
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(14)
D0 Q' ua(1)up(2)uc(3)ug(#)a(1)B(2)x(3)B(4).

al

4
V4!

H % > 1QQua(l)up(2)uc(3)ug(#)e(1)p(2)x(3)p(4)d=

Haa = f YaAHpadT =

Die doppelte Summation kann hier durch eine einfachere ersetzt
werden, wobel gleichzeitig der Fakultitsfaktor sich weghebt. Dies
wird durch folgenden Kunstgriff erreicht. Da tber alle Elektronen
integriert wird, sind die Integrale gegen eine Umbenennung der
Elektronen unempfindlich, vorausgesetzt, dal3 die Variablen aller Funk-
tionen in den verschiedenen Integralen in der gleichen Weise veriandert
werden. Dadurch erreicht man aber, daf3 dieselben Integrale mehrmals
vorkommen, d. h., so oft der Fakultitsfaktor es angibt. Somit hebt
sich dieser einfach weg.

Um zu zeigen wie das gemeint ist, nehmen wir fiir einen Augen-
blick an, dafl das Integral (14) statt auf vier sich nur auf zwei Elek-
tronen bezieht und setzen zur Abktrzung ®,(1) - u,(1)e(l). Anstatt
(14) erhdlt man (15a)

1 S0 00,002 H \12, S 10 Q Ba(1) Bp(2)d (15)
[0 @(2) B2 y(1)] H [@a1)0b(2) - @2)0p(1)1d=  (15D)

- =1 f(Da(l)q)b(Z) H @y (1) Dp(2)d + f‘Da(Z)‘Db(l)H D4(2) Pp(1)dr
(15¢)
~f®a(2)®b(1)H‘Da(l)(Db(Z)d'f—f‘Da(l)@b(Z)H@a(Z)q’b(l)dT]

LaBt man eine beliebige Permutation Q" auf (15¢) einwirken, so bleibt
der ganze Ausdruck unveridndert. Falls man Q" so wihlt, daB fir alle
Integrale in den linken Produkten die urspriingliche Ordnung her-
gestellt wird, d. h., so daBl Q" gleich der inversen Permutation zu Q’
wird, also Q” = Q"?, dann entsteht folgende Situation: Die Permu-
tation Q! ergibt in den Produkten der linken Seite aller Integrale
die identische Permutation und in den Produkten der rechten Seite
ergibt sich dasselbe wie vorher, nur in einer anderen Reihenfolge.
Man erhilt also statt (15c¢)
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[ a0 @u(2) H@y(1) @p(2)dx + [ @4(1) @p(2) HD,(1) @p(2)dr

— [ ®a(1) @b(2) H 0g(2) Dp(1)dx — [ @4(1) Dy(2) H 0y(2) Dy (1) x|
oder
fcp ) Dp(2) H @y (1) Oy (2)de —fcpau ) D (2) HD,(2) Op(1)de

Das Integral (14) 148t sich jetzt so schreiben

Haa = [ $aH$ads = [ua(1)up(2)uc(3)ug(®)x(1)(2)x(3)B(4)

16
H X1 Qua(l)up(2)uc(3)ua(4)a(1)B(2)x(3)B(4)ds =

Dieses besteht aus einer Summe von 24 Teilintegralen, von denen
wir explizite die beiden ersten angeben, indem wir gleichzeitig tiber
den Spinanteil separat integrieren

fua(l)ub(Z)uc(3)Ud(4) H u,(1)up(2)uc(3)ug(4)de

.fa(l)oa(l)dcofB(Z)B(Z)dwfoc(S)oc(3)dme(4)B(4)dm

— [ua(1)up(@)uc(3)ua(#) H ua(l)up(2)uc(#)ua(3)ds (17)

.fau)a(l)dmf@( dmfa(i’» dmfﬂ(/!,@

.............................................

Das erste hat ein positives Vorzeichen, weil auf der rechten Seite
das Produkt der identischen Permutation entspricht. Fir das zweite
ist das Vorzeichen negativ, weil die Permutation der Elektronen
ungerade ist. Alle anderen Integrale vom Typus (17) sind mit einem
positiven oder negativen Vorzeichen versehen, je nachdem die Per-
mutation in (16) gerade oder ungerade ist.

Beachten wir ferner, daf3 die Spinfunktionen « und § nach (I. 44 und
45) orthogonal und normiert sind, d. h.

foa(i)B(i)dm -0 foc(i)oc(i)dm = fg(i)g(l)dm =

Auf Grund dieser Eigenschaft ergibt der Spinanteil bel einigen Aus-
driicken (17) den Wert 1 bei anderen 0. Man kann sich leicht tber-
zeugen, dall unter den 24 Summanden (17) nur vier von null ver-

chieden sind, denen in (16) folgende Spinprodukte entsprechen
o(1)B(2)a(3)B(#) - «(1)B(2)x(3)B(4)
a(1)B(2)x(3)B(4) . «(1)B(H)a(3)B(2)
x(1)B(2)x(3)B(4) . «(3)B(2)(1)B(4)
«(1)B(2)x(3)B(4) . «(3)E(H)x(1)B(2)
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Im ersten Produkt kommt die identische Permutation vor, beim
zwelten und dritten treten einfache Permutationen oder sogenannte
Transpositionen auf, bei denen nur zwei Elektronen gleichzeitig ver-
tauscht werden. Das vierte Produkt, wo vier Elektronen vertauscht
sind, entspricht einer sogenannten héheren Permutation. Am wichtig-
sten sind fir uns die identische und die einfachen Permutationen, nur
diese wollen wir beriicksichtigen; die anderen sollen vernachlissigt
werden.

Wir bezeichnen das der identischen Permutation entsprechende
Integral mit C und das den Transpositionen entsprechende durch
Angabe der zwei Atome (AB), (AC), ..., (BC),..., zwischen denen die
Permutation stattfindet, d. h.

G fua(l)Ub(Z)Uc(3)Ud(4) H uy(1)up(2)uc(3)uq(4)d=

(AB) = fua(l)ub(f%)uc@)ud(“) H u,(2)up(1)uc(3)ug(4)ds

...............................................

(18)

Aus (16) ergibt sich auf diese Weise

Haa - [$aHyads - C — (BD) — (AC)

Damit haben wir (16) in der erwiinschten Form. Die hier auftretenden
Integrale sind charakteristisch fiir die ganze Theorie. C heiBt das
Coulombintegral und (AB), (BC), ... sind die sogenannten Austausch-
integrale.
Eine analoge Rechnung ergibt fiir die anderen Bestandteile von (13)
folgende Ausdriicke
Hap = —(AB)  Hpp = C—(AD) —(BC)  Hcc - C—(BC) —(AD)
Hac = —(CD)  Hpc =0 Hep = — (AB)
Hap =0 Hpp = —(CD) Hpp = C —(AC) — (BD)

Damit haben wir fiir den ersten Summanden (13) des Elementes M, der
Sakulardeterminante das Ergebnis

iy = %[4(: + 4(AB) + 4(CD) — 2(AC) — 2(AD) — 2(BC) — 2(BD)]
Ahnlich kénnen auch die anderen Bestandteile der Sikulardeter-
minante berechnet werden. Auf die Frage der numerischen Berechnung
der Coulomb- und Austauschintegrale wollen wir hier nicht eingehen.
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Damit haben wir also einen Weg, um die Elemente der Sikular-
determinante eines Systems von Atomen mit je einem Elektron zu
ermitteln. Obwohl die einzelnen Operationen an und fir sich einfach
sind, kann selbstverstindlich eine direkte Anwendung dieses Ver-
fahrens nicht in Frage kommen. Wir wollen im Folgenden einen
einfacheren Weg kennen lernen, der ibrigens den Vorteil hat, den
charakteristischen Zug der Mesomeriemethode, nimlich die Verwen-
dung von Valenzdispositionen, besser zum Ausdruck zu bringen.
Bei der Diskussion der Energie von Molekiilen, bestehend aus Atomen
mit mehreren Elektronen, wird eine direkte Ableitung dieser Be-
rechnung notwendig sein. Trotzdem erscheint es uns angebracht,
einen Ubergang zwischen beiden Verfahren im ecinfachen Fall wenig-
stens zu skizzieren.

Betrachten wir zu diesem Zweck den ersten Bestandteil H,, (13)
des Determinantenelementes M,,. Dieses besteht zunidchst aus 16
Integralen H;g, wobei aber jedes H;x 24 Summanden enthdlt. Wenn
die Integration tiber die Spinanteile nicht durchgefiihrt wird, so
sind in H,, insgesamt 24 .16 - 384 Integrale zu berticksichtigen. Doch
haben wir in (16) unter den Permutationen nur die identische und die
Transpositionen von nur zwei Elektronen in Betracht gezogen, alle
anderen wurden vernachlissigt. Die gleiche Vereinfachung soll auch
hier vorgenommen werden. Beil jedem Hpg tritt einmal die identische
Permutation und sechs Transpositionen auf, denen ein Coulomb und
die sechs Austauschintegrale (AB), (AC), (AD), (BC), (BD) und (CD)
entsprechen. Die Zahl der in H,; auftretenden Integrale wird somit
von 384 auf 16 Coulombintegrale, 16 Austauschintegrale (AB) usw.
insgesamt auf 7-16 = 112 Integrale reduziert.

Im weiteren wollen wir die in diesen 112 Integralen auftretenden
Spinfunktionen nach den Coulomb- und Austauschintegralen ordnen.
Zu den verschiedenen C, (AB), ... gehorige Spinfunktionen koénnen
aus (11a) ohne weiteres abgelesen werden, z. B.
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.....................................

Addieren wir alle Spinanteile, die zum Coulombintegral C gehdren,
anderseits alle zum Austauschintegral (AB) gehorigen Anteile usw.,
indem man gleichzeitig « und @ durch die Bezeichnung A, und A,
respektive B, und B, usw. ersetzt, so bekommt man z. B. fiir C als
Koeffizient

}r (A’BXC?D? — A\A,B,B,C?D? — A’BXC,C,D,D, + A,A,B,B,C,C,D,D,

— AA,B,B,C?D? + A2BC2D? + A,A,B,B,C,C,D,D, - A’BC,C,D,D,

2 11
— A’BXC,C,D,D, + A,A,B,B,C,C,D,D, + A2BXC2D? — A,A,B,B,C3D?

22721

211

G :

Dies kann man aber einfacher auch so schreiben

% (AIBZCIDZ — “X?_B]_C]_DZ o I& 1B2C2D] + AZBICZD].) .
! ‘
"5 (A,B,C,D, — A,B,C,D, — A,B,C,D; + A,B,C,D,))

G

oder auch in der Form

1 1 .
\_z (AB, — A,B,) . \_é (C,D, —C,D,)
1 1
. ﬁ (A,B,—A,B)) . \‘/22 (C,D; — C,D,)

Das sind aber einfach die algebraischen Ausdriicke der Valenzstriche
zwischen den Atomen A, B und C, D. Bei Beachtung von (I1.24) kann
der Koeffizient von C schlieflich durch Spininvarianten dargestellt
werden.

C: [AB][CD] . [AB][CD]

Ahnlich kénnen auch die Koeffizienten der iibrigen Integrale durch
Spininvarianten ausgedriickt werden:

(AB) : +[AB][CD] . [AB][CD]
(AC) : —[ABJ][CD] . [CB][AD]
(AD) : —[AB][CD] . [DB][CA]
(BC) : —[AB][CD] . [DB][CA]
(BD) : —[AB][CD] . [CBJ[AD]

(CD) : +[ABJ[CD] . [AB][CD]
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Unter Verwendung dieser Ausdriicke kann der ganze erste Bestand-
teil des Elementes M, durch die einfachere Form

H,, - ([ABJ[CD] . [ABJ[CD]) C —[— ([ABJ[CD] . [ABJ[CD])(AB) +
+ ([AB][CD] . [CB][AD])(AC) + ([AB][CD] . [DB]J[CA(AD) + (19)
+ ([ABJ[CD] . [DBJ[CAJ)(BC) + ([ABJ[CD] . [CBI[AD])(BD) —
—([ABJ(CD] . [AB][CD])(CD)]

repriasentiert werden. Vom Standpunkt der Spininvarianten ist aber
dieser Ausdruck nicht einheitlich: Die unabhidngige Basis unseres
Vierelektronensystems besteht ndmlich nur aus zwel unabhingigen
Spininvarianten, (19) dagegen enthélt auch solche, die gar nicht zu
unserer Basis gehoren, z. B. der Koeffizient von (AD). Um dies zu
vermeiden, fiihren wir einen sogenannten Austauschoperator ein, der
die Vertauschung zweier Elektronen verschiedener Atome bewirken
soll. Wird der Austausch der Elektronen zwischen den Atomen A und
B stattfinden, so bezeichnet man den Operator mit t,,, fiir die Ver-
tauschung zwischen B und C schreibt man t,. usw. Dementsprechend
bedeutet der Ausdruck t,. [AB] [CD]: die Elektronen der Atome B
und C sollen miteinander vertauscht werden, d.h. aber, dall die
Valenzstriche, die vor der Austauschoperation zwischen den Atomen
A, Bund C, D liegen, nach dem Austausch zwischen A und C respektive
B und D liegen werden. Es gilt ferner [AB] = — [BA].

Durch Einfithrung der Austauschoperatoren konnen die Koeffi-
zienten der Austauschintegrale in (19) so dargestellt werden:

[ABJCD] . (— 1)[ABJ[CD] - [ABJ[CD] . tu[ABJ[CD]
[AB][CD] . [CB][AD] = [AB][CD] . t,J[AB][CD]
[AB][CD] . [DB][CA] = [AB][CD] . t,q[AB][CD]
[AB][CD] . [DB][CA] = [AB][CD] . tp[AB][CD]
[AB][CD] . [CB[AD] = [AB][CD] . tpq[AB][CD]

[ABJ][CD] . (— 1)[ABJ[CD] - [ABJ[CD] . tc[ABJ[CD]

Rechts von den Austauschoperatoren bekommt man also dieselbe
Spininvariante, die zur unabhingigen Basis gehort. Bezeichnen wir
den Spinanteil der ersten Valenzdisposition (3) mit ¢, so konnen die
rechts stehenden Produkte auch so geschrieben werden

(@1 tab 1) (@1 the ®1)
(P1 tac ¢1) (@1 tod @1)
(@1 tad 1) (¢1 ted @1)
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Mit dieser Bezeichnung erhilt man schlieBlich

(20)
H,; = (9:91) C —[(pitab 91) (AB) + (@1tac ¢1) (AC) + (9, taq @1) (AD) +
+ (91 toe P1) (BC) + (91 tod 1) (BD) + (91 ted 91) (CD)]

Das ist aber noch nicht das vollstindige Element M,, der Sdkular-

determinante. Den zweiten Teil ¢ f ¢;¢,dr erhdlt man aber durch
eine dhnliche Uberlegung. Die den Austauschintegralen entsprechenden
Ausdriicke bezeichnet man mit

Aap = fua(l)ub(z)uc(3)ud(4) “Ua(2)up(l)uc(3)ug(4)de

............................................

Diese Integrale sind ebenso wie C und (AB) Funktionen, die vom
Abstand der Atome abhidngen. Die Relation, die der Gleichung (20)
entspricht, ist hier

5[(‘?1‘?1) - {(‘Pltab‘Pi) Agp + (CPltaCCPl) Agc + (CPltad(Pl) Apg + (22)
+ (P1tocP1) Abe + (P1tbde:) Abd + (@itede:) Acd‘[]

Durch Zusammenfassung von (20) und (22) bekommt man schlieB3-
lich einen Ausdruck, der die Berechnung des Elementes M,, gestattet.

M, = [(@1“101) i — Eb(cpltab‘;ol) (AB)] — € [(@1‘?1) - Zb(CP1tabCP1) Aab:| (23)
a, a,

Die Summation ist gemaB (20) auf alle Atompaare zu erstrecken.

Genau dieselbe Uberlegung ist auch fiir die anderen Elemente der
Siakulardeterminante zu machen, so da (23) auch in eine allgemeinere
Form geschrieben werden kann

Mk =[(piek) C — Zb(ﬂPitabCPk) (AB)] — e [(piok) — 2 (pitabPk) Aab] (24)

a,b

Im Fall des Vierelektronensystems nehmen 1 und k nur die zwei
Werte 1 und 2 an. Wenn das System statt 4 aus 6,8, ... Elektronen
besteht, dndert sich formal an (24) iiberhaupt nichts. Somit kann sie
als eine allgemeine Formel fir die Berechnung der Elemente der
Sakulardeterminante eines Systems von Atomen mit je einem Elektron
betrachtet werden. Es ist aber selbstverstindlich, dall etwa beim
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Sechselektronensystem die unabhidngige Basis aus mehr als zwel
Valenzdispositionen, nimlich aus finf, besteht, und dementsprechend
werden die Indizes von 1 bis 5 laufen. Auch die Anzahl der Wechsel-
wirkungsintegrale und der Austauschoperatoren ist groBer, ndmlich
15. Allerdings pflegt man, wie wir noch sehen werden, bei der expli-
ziten Berechnung der Energie nicht alle Wechselwirkungsintegrale
in Betracht zu ziehen. Die Berechnung der Spinprodukte (¢; ¢,) sowie
der Austauschoperationen (g; t,, o) erfolgt natiirlich nicht auf dem
hier angegebenen Weg, sondern wird nach geeigneteren Methoden
durchgefiihrt.

Es sei noch darauf hingewiesen, dall bei der Anwendung der Formel
(24) normalerweise ein System von einer geraden Anzahl von Atomen
beriicksichtigt wird; hat man eine ungerade Zahl von Atomen, so
nimmt man noch ein weiteres Atom hinzu, das man ins Unendliche
verlegt.

11. Sakulargleichung eines Systems von Atomen
mit einem und mehveren Valenzelektronen

Die Uberlegungen sollen auch hier an Hand eines Beispiels durch-
gefithrt werden. Betrachten wir zu diesem Zweck das Athylen, be-
stehend aus zwei mit A und B bezeichneten Kohlenstoffatomen und
aus vier mit C, D, E, F bezeichneten Wasserstoffatomen. Die Elek-
tronen der abgeschlossenen Schalen werden nicht berticksichtigt.
Somit ist das System aus 12 Elektronen gebildet.

Die Ausgangsfunktionen sind die in (II. 26) gegebenen. Aus dieser
Gesamtheit wihlt man natiirlich eine unabhingige Basis aus, die
hier aus sechs Eigenfunktionen bzw. sechs Valenzdispositionen besteht.
In (II. 30) sind wir bereits zwei unabhingigen Basen des Athylens
begegnet. Damit die Analogie der Valenzdispositionen der unab-
hingigen Basis des Athylens mit denjenigen des Propans, Butans usw.
ausgeprigter wird, wihlen wir die Basis (II. 30a). Selbstverstandlich
konnten wir aber auch die andere oder eine weitere wiahlen. Die ent-
sprechenden Eigenfunktionen sind die folgenden, wobei die Valenz-
striche wiederum lexikographisch gewihlt sind:

ATA
- \/ Tar S 10Qua(l234)u(5.67,8)ucOua(0)uc(11)ur(12). 0
. [AB]* [CD] [EF] '
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414

b -\ 1 N 1QQ uaupucugueus. [AB]Y[CF][DE]
' 414 o 3 -
$s =\ a1 2 1Q Q uaupucugueus. [AB[AF][BC][DE]
114 o AT 25
b=\ S5 > 1q Q uaupucugueur. [AB[AF][BE][CD] (25)

\/41’241' 2 1nQ Q uaupucugueur. [ABP[AD][BCJ[EF]

\/ 411241 ! S nQQ uaupucuguer. [ABIBCIBDJ[AE]AF]

Die sechs Funktionen unterscheiden sich also nur in den Spininva-
rianten.

Das homogene Gleichungssystem (I. 33) besteht aus sechs Glei-
chungen und die Sikulardeterminante wird vom Grad 6 sein

.............................................. =0 (26)

Es handelt sich zundchst wieder um die Berechnung dieser Inte-
grale. Betrachten wir z. B.

4141 <o ) .
f‘l)lHqudT J \/ 12! an’Q Uaupucugueus. [ABCD]EF] @)
Qf

« \ 12 r ‘(_,TJQ Quzupucugueur. [ABY[CD][EF]d~
das man etwas einfacher auch so schreiben kann:

= 414! [
J\yll-ILI)ld‘r =137 l = 1Q' 1Q(Q uaupucugueupr H. 28
J &4 (28)

-Quaupucugueuy) (Q'e, . Qp,)dr

wo die Spininvariante, die zur Eigenfunktion ¢, gehdrt mit ¢, be-
zeichnet ist.

Wie bei den einwertigen Atomen wird man auch hier die doppelte
Summation durch eine einfache ersetzen, wobei der Fakultitsfaktor
wiederum wegfillt.
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f‘le%dT = f):. nQ (Uaupucugueuy HQuaupucugueuy) (9,Q¢,) dv (29)

Wiirde man das aus 12 Valenzelektronen bestehende Athylen wie
im Abschnitt 10 als ein einelektroniges System behandeln — was an
und fir sich moglich ist — so hidtte man Spininvarianten, bestehend
aus einem Produkt von sechs Linearfaktoren: [AB] [CD] [EF] [GH]
[IK] [LM]. Ausmultipliziert ergibt das nach (11) einen Ausdruck von
64 Summanden. Dementsprechend sind 64 Funktionen vom Typus (12)
zu beriicksichtigen, die nach (13) 64-64 - 4096 Integrale (14) ergeben,
wobei die Permutationen der Elektronen noch nicht berticksichtigt
sind. Hier zeigt sich einer der Vorteile des Spinvalenzverfahrens. In
unserem Iall 1st

o1 = [AB]'[CD](EF]

b

|

(A,B;, — A,B,)*(C,D, — C,D,) (E, F, — E,F))

Ol = oo

(A‘B! — 4A3B3A,B, + 6A2B?A’B? — 4A B,A’B? + A!BY)

1772772

(

@

DEF, —C,D,E\F, — C,D,E,F, + C,D,E,F,)

das sind nur mehr 20 statt 64 Summanden. Dadurch ist die Zahl der
Teilintegrale (14) von 4096 auf 400 reduziert. Zwar liegen die Ver-
hiltnisse nicht immer so giinstig, aber in jedem Fall sind sie glinstiger
als bel Systemen aus einelektronigen Atomen mit der gleichen Gesamt-
elektronenzahl.

Betrachten wir eines der 400 Integrale

fE (uaupucugqueur H71q Q uzupucugqueur)
© (31)
(A:B;ClDzEleY]QQAiB;ClDZEIFZ)dT

Fir jedes Integral von diesem Typus waren zundchst 12! Permu-
tationen zu bertlicksichtigen. Allerdings kommen davon nur 12!/414!
in Betracht, denn wir interessieren uns blo3 fur Permutationen zwi-
schen verschiedenen Atomen. Selbstverstdndlich ist man gezwungen,
nur die wichtigsten von ihnen zu betrachten. Das sind die identische
Permutation E und die Permutation von nur zwei Elektronen zwi-
schen verschiedenen Atomen, d. h. die Transpositionen. Alle anderen
sollen als weniger wichtig vernachldssigt werden.
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Ein erster Bestandteil von (31) ist das der identischen Permutation
entsprechende Integral, das auch hier als Coulombintegral C bezeichnet
wird

C = [ ua(1,2,3,4)up(5,6,7.8)uc(9)ua(10)uc(11)ur(12).

Huy,(1,2,3,4)up(5,6,7,8)uc(9)ug(10)ue(11)ug(12)dr (32

Fir O = E ist = +1 weil ja die Permutation eine gerade Permuta-
tion ist.

Den Transpositionen zweier Elektronen entsprechen die Austausch-
integrale. Sind in (31) zwel Elektronen zwischen den Atomen A und B
vertauscht, so erhilt man

(AB) = fua(l,2,3,4)ub(5,6,7,8)uc(9)ud(IO)ue(l1)ug(12)
Huy(5,2,3,4)up(1,6,7,8)uc(9)ug(10)ue(11)ug(12)dx

(33)

Fir alle anderen Atompaare gibt es ein Austauschintegral vom selben
Typus. Beim Athylen sind im ganzen 15 Moglichkeiten zu beriick-
sichtigen: (AB), (AC), ..., (AF), (BC), ..., (BF), ..., (EF). Da die Per-
mutation eine ungerade ist, so wird n; = —1 sein.

Es ist nun aber zu bemerken, dafl die Transposition zweier Elek-
tronen zwischen zwel mehrelektronigen Atomen wie z. B. A und B
beim Athylen auf verschiedene Weise realisiert werden kann. Man
kann z. B. das Elektron 1 von A mit dem Elektron 5 von B oder das
Elektron 1 von A mit dem Elektron 6 von B vertauschen usw. Jeder
dieser Transpositionen entspricht aber ein Austauschintegral (33).
Allgemeiner: wenn die Anzahl der Elektronen des Atoms A gleich n,,
diejenige von B gleich ny ist, so ist die Zahl der Transpositionen zwi-
schen den Atomen A und B gleich n,n,. Ebenso grof3 ist die Anzahl der
Bildungsmoglichkeiten des Austauschintegrals (33). Fir das Spin-
valenzverfahren ist nun charakteristisch, dal einem Atompaar nur
ein Austauschintegral entspricht, unabhingig davon welche zwel
Elektronen zwischen diesen Atomen vertauscht worden sind. Um
diese Unabhingigkeit des Austauschintegrals von den vertauschten
Elektronen auch formal zum Ausdruck zu bringen, kann man (33)
auch so schreiben

(AB) = fuanucl,IdueUfH Tapuzupucugqueupde (34)

107



T,, bedeutet hier: ein Elektron des Atoms A soll mit einem Elektron
des Atoms B vertauscht werden.

Selbstverstindlich werden durch die Permutationen der Elek-
tronen in (31) nicht nur die Koordinatenfunktionen, sondern auch der
Spinanteil bertihrt.

Ist QO = E, so bleibt der zweite Klammerausdruck in (31) unver-
indert. Fir die Transposition eines Elektrons von A mit einem Elek-
tron von B, O = T,, erhdlt man dagegen

(35)

A'BIC,D,E,F,. T,  A'BIC,D,E,F, = A'BIC,D,E,F,. A’A,B,BXC,D,E F,

D. h. ein Elektron mit der Spinfunktion « (hier A,) des Atoms A wird
vertauscht mit einem Elektron mit der Spinfunktion @ (hier B,)
des Atoms B. Ahnlich verfihrt man mit den anderen Transpositionen
QO = T, Tag, -, Ty, ... Hohere Permutationen bleiben auch hier
unberticksichtigt. Was hier beziiglich der Permutationen der Elektronen
des Integrals (31) gesagt wurde, gilt auch fiir die Permutationen in
allen anderen Integralen von Typus (31).

Um diese Ergebnisse in einem einzigen der Relation (29) entspre-
chenden Ausdruck zusammen zu fassen, beachte man, dall in dem
Spinprodukt (¢, ¢,) alle Spinanteile der 400 Integralen (31) beriick-
sichtigt sind. Somit koénnen die Permutationen direkt, sowie sie
bereits in (29) angedeutet sind, an der Spinfunktion ¢, durchgefithrt
werden.

Ist also in (29) O die identische Permutation, so erhilt man einfach

C (91 94) (36)

Fir die Vertauschung zweier Elektronen zwischen den Atomen A
und B kann man schreiben

— (AB) (9; Tap 1) (37)

T,y ¢, bedeutet hier, dall ein Elektron des Atoms A mit einem Elek-
tron des Atoms B in allen 20 Summanden (30) zu vertauschen ist.
Nach (37) soll das Resultat noch mit ¢, multipliziert werden. Das
entspricht der Vertauschung zweler Elektronen in den erwédhnten
Integralen.

Wir haben oben festgestellt, daBl bei der Vertauschung zweier
Elektronen zwischen zwei mehrwertigen Atomen n,n, Transpositio-
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nen zu berticksichtigen sind. Anderseits bezieht sich aber T,, nur auf
eine Vertauschung von zwel Elektronen. Um alle Transpositionen
zwischen A und B zu berticksichtigen, mull man (¢, T,y 9,) durch

(38)

(¢ Ty, ng+1 1) + (¢1 Ty, ng +1 ¢1) + oo+ (s Tna, ny 4 np P1) :TE (91 Tab 1)
ab

ersetzen, wobeil das erste Glied die Vertauschung des ersten Elektrons
des Atoms A mit dem (n,+ 1)-ten Elektron des Atoms B zum Ausdruck
bringt. Das letzte Glied repréisentiert die Vertauschung des n,-ten
Elektrons des Atoms A mit dem (n, +ny)-ten Elektron des Atoms B.
Statt (37) erhidlt man dann

—(AB) ¥ (¢, Tap @) (39)

~

]ab

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
gleichwertig sind, kann man zur Vereinfachung von (39) die Summe
aller Transpositionen mit t,;, bezeichnen, also

tab = pH Tab 40
i ( )

setzen. Statt (39) kann man auch

— (AB) (9, tab 91) (41)

schreiben.
Berticksichtigt man schliefllich die Vertauschungen zwischen den 14
anderen Atompaaren des Athylens, so erhilt man

(42)
—[(AB) (¢, tabg1) + (AC) (i tac ) +. . . + (EF) (@1 ter))] = — Eb(AB) (@1 taby)
a,
Die Summe ist also tiber alle Atompaare zu erstrecken.
Den ersten Bestandteil des Elementes M,, der Siakulardeterminante
erhilt man somit aus (36) und (42)

J¥1Hdw = C(@i9) — 2 (AB) (01 tan ) (43)

a,b

Um den zweiten Summanden des Elementes M,, zu ermitteln, kann
die gleiche Uberlegung gemacht werden. Statt der Austauschintegrale
bekommt man hier die A-Integrale

109



Aap = fuaubucudueuf~Tabuaubucudueufd'r» (+4)

wo T,y die gleiche Bedeutung hat wie vorher. Auch hier sind im Fall
des Athylens den 15 Atompaaren 15 entsprechende A zu beriick-
sichtigen.

Fir das vollstindige Element M,, der Sikulardeterminante erhilt
man schlieflich

M, = [C (p1p1) (p1tab@i) (AB)] — e [(191) — 2 (@1 tab 1) Aabl (45)

a,b a,b

Genau dieselbe Ableitung kann aber auch mit den anderen Matrix-
elementen gemacht werden. Die Anzahl der Integrale (31) kann
natiirlich verschieden sein von der vorherigen, aber diese Zahl tritt
in (45) in expliziter Form noch gar nicht auf, sondern wird erst nach-
traglich ermittelt werden. Formal dndert sich an dem Ausdruck nichts,
wenn man ein beliebiges Molekiil betrachtet. Somit kann man ganz
allgemein fir ein Element M;, der Sikulardeterminante schreiben

Mik =[C (¢iex) — X (pitabek) (AB)] — ¢ [(pirk) — 2 (@itabok) Dab]  (46)
a,b a,b
Selbstverstandlich mul3 die Summation tiber alle Atompaare erstreckt
werden.

12. Austauschoperationen und Skalarprodukte

In (46) haben wir zwar eine allgemeine Formel zur Berechnung der
Matrixelemente der Sikulargleichung erhalten, jedoch sind die nume-
rischen Werte der Integrale sowie ihrer Koeffizienten noch unbekannt.
Es soll zundchst die Wirkung der Austauschoperatoren auf die ver-
schiedenen IFunktionen ¢ berechnet werden. Wie die Wirkung von
T,, auf ein Spinprodukt zu ermitteln ist, haben wir bereits in (35)
gesehen. Ahnlich sollte man auch die iibrigen Elektronenvertau-
schungen zwischen den Atomen A und B berechnen, denn t,, = X T,
reprasentiert ja die Summe aller Vertauschungen von zwei Elektronen
zwischen A und B. Diese Operationen sind gliedweise an den aus-
multiplizierten Invarianten (30) durchzufiihren. Das ist aber ein sehr
umstdndliches Verfahren. Zum Glick kann die Wirkung der Aus-
tauschoperatoren viel einfacher dargestellt werden.
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Nach Heitler wird die Austauschoperation t,, direkt an den Spinin-
varianten vorgenommen nach folgender Regel: Je ein Valenzstrich,
der von A ausgeht (oder dort endigt), vertauscht seinen Endpunkt
(Ausgangspunkt) mit je einem Valenzstrich, der von B ausgeht (oder
dort endigt). Der auf A und B bezogene Richtungssinn bleibt dabei
unverdandert. Ein Valenzstrich zwischen A und B vertauscht nur seine
Richtung.

Algebraisch 1468t sich diese Regel so formulieren

AY][BX
tab® = — Pab?® JFX?YPabey‘P . %X—X-%—IF-B?—]]- (47)

Hier ist ¢ eine der Spininvarianten, auf die der Operator t,,
wirken soll. p, 1st die Anzahl Valensztriche in ¢ zwischen den Atomen
A und B. X und Y sind andere in ¢ auftretende Atome, mit denen A
und B durch Valenzstriche verbunden sind. p,, und py, reprasentieren
die Anzahl dieser Valenzstriche. Die Summation ist iiber alle Atome
X und Y zu erstrecken mit Ausnahme von A und B.

Wegen der Wichtigkeit dieser Operationen fiir die ganze Energie-
berechnung sollen hier an zwei Beispielen die Rechnungen durch-
gefiihrt werden. Das erste ist ein System von sechs einelektronigen
Atomen, das in der Mesomeriemethode auch zur Approximation der
Energie des Benzols verwendet wird. Als zweites Beispiel sollen die
Austauschoperationen des Athylens angegeben werden.

Sechselektronensystem. Die unabhidngige Basis besteht aus finf
Valenzdispositionen

(45)
A A A A A
FoooNB F ‘B F‘ ’B F//B F\\B
el _c En_ 't E c &7 _c E~_ >C
D D D D D

\ﬂ \Fz \'PS \PL, \Ps

Die Valenzstriche sind lexikographisch geordnet. Im ganzen sind
15 Wechselwirkungsintegrale und dementsprechend ebensoviele Aus-
tauschoperatoren zu beriicksichtigen. Doch sollen hier nur die Wechsel-
wirkungen zwischen Nachbaratomen (als Approximation des Benzols
gedacht) berticksichtigt werden. Dann bleiben blofl die Operatoren tg;,
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the, teds tdger ter, tra Ubrig. Thre Wirkung auf die erste Valenzdispo-
sition ¢, ergibt

ab ((AB] [CD] [EF]) = [B ‘\] [CD] [EF] = —[AB] [CD] [EF] = — o,
tbc ([AB] [CD] [EF]) = [DB] [CA] [EF] = +¢4, = @1+Ps
cd ([AB] [CD] [EF]) = [AB1 [DC] [EF] = — [AB] [CD] [EF] = — ¢, 49)
tde([AB [CD] [EF]) = [AB] [FD] [EC] = +o; = Q1ts
ter ((AB] [CD] [EF]) = [AB] [CD] [FE] = — [AB] [CD] [EF] = — ¢,
tra ((AB] [CD] [EF]) = [AE] [CD] [BF] = +o, = @ity

Die Anwendung der obigen Regel, sel es in der geometrischen oder
algebraischen Form, ist hier dullerst einfach. Die Wirkung des Aus-
tauschoperators ty. auf ¢, besteht darin, dall die zwei Atome, die mit
B und C verbunden sind, einfach ihre Pliatze vertauschen: A nimmt
den Platz von D ein und D kommt an Stelle von A. Wenn die zwei
Atome auf die sich der Operator bezieht in der selben Klammer sind,
wie z. B. in t,,[AB][CD][EF], so werden A und B ihre Plitze einfach
vertauschen. Hier wurde tibrigens von der Eigenschaft [AB] = — [BA]
Gebrauch gemacht

Mit den Operatoren ty., tqe, tp erhdlt man aus g, Spininvarianten
oder Valenzdispositionen g,,, 9., ¢z die gar nicht zur unabhingigen
Basis gehoren. Diese miissen auf Grund der Relation (II. 28) auf die
unabhingige Basis zuriickgefiihrt werden

A A A
F, SSB F B F B
T + T i + T =[] (50a)
E / C E C E &
D D D
[AB] [CD] [EF] + [AD] [BC] [EF] + [AC] [DB] [EF] = 0 (50D)
P+ @3 — =10 (SOC)

Es sei noch bemerkt, daB man hédufig die Entkreuzungsoperationen
(50) mehrmals anwenden muf, um alle bei den Austauschoperationen
erhaltenen Invarianten auf die unabhingige Basis zuriickzufiithren.

Bei1 den anderen vier Valenzdispositionen sind die Austausch-
operationen ebenso einfach wie oben. Es geniigt also, wenn wir die
Ergebnisse hier einfach zusammenstellen.
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tabp: = — @ tab®: = @2 +@s

tabes = @1 + @3

the®1 = @1 + @3 theP2 = — @2 thePs = — @3
tedpr = — ¢4 tedPz: = 92 + @4 tedps = @1 + 93
tdep: = @1 + P5 tdep2 = — @2 tde®s = P2 + @3
terpr =— @, tef®z = 92 + @3 tef@s = — @3
tra®: = @1 + @4 tra®: = — @2 tra®s = P2 + 93 (51)
tabPs = @1 + P4 tab®s = — s
thePs = @2 + @4 the®s = @2 + @5
tedPs = — P4 ted®s = @1 + @5
tdePs = P2 + @4 tde®s = — @5
tefps = @1 + @4 terps = @1 + @5
tra®s = — P4 tra®s = P2 + @5

Im zweiten Beispiel des Athylens sind insgesamt auch 15 Wechsel-
wirkungen, von denen wir nur diejenigen, die sich auf Nachbaratome
beziehen, beriicksichtigen wollen, also t,, tie tar toe, toa, ted, ter
Die den sechs Valenzdispositionen entsprechenden Invarianten der
unabhéingigen Basis sind in (25) bereits angegeben. Berechnen wir die
Wirkung der sieben Operatoren auf die erste Funktion

(52)
ab ([ABJ*[CD] [EF])
ae ([AB]*[CD] [EF))
af ( )

4[AB]3[BA] [CD] [EF] = — 4¢,
4[AB][AF] [CD] [EB] = — 4q,

[AB]*[CD] [EF]) = 4[AB][AE] [BF] [CD] = —4qs = + 4(p, + 94)
tbc ([AB]*[CD] [EF]) = 4[AB]’[DB] [CA] [EF] = —4¢; = + 4 (¢, + ¢5)
tpa ((ABJY[CD] [EF]) = 4[ABJ[CB] [AD] [EF] = — 4o,
tea ((ABJY[CD] [EF]) = [AB]*[DC] [EF] = — o,
ter (ABJY[CD] [EF]) = [ABI[CD] [FE] = — g,

Fir die Wirkung von t,, erhdlt man ein analoges Resultat wie beim
ersten Beispiel, mit dem Unterschied, dafl hier das Austauschergebnis
mit 4 multipliziert erscheint, weil in g, vier Valenzstriche zwischen
A und B liegen. Bei der Wirkung von ty,. wo die zwei Atome B und C
in verschiedenen Klammern sind, kann man dhnlich verfahren wie
bei einwertigen Atomen. Schreibt man ¢, in der Form [AB] [AB] [AB]
[AB] [CD] [EF], so wird das mit B verbundene Atom A der ersten
Klammer mit dem mit C verbundenen Atom D der fiinften Klammer
vertauscht werden, dann wird A der zweiten Klammer mit D der
finften Klammer vertauscht werden usw., im ganzen also sind vier
Vertauschungsmoglichkeiten zu beachten, was zu oben angegebenem
Resultat fithrt. Auf diese Weise koénnen alle Austauschoperationen
sehr einfach durchgefiihrt werden. Die Austauschoperationen der
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anderen fiinf Valenzdispositionen bieten auch keine Schwierigkeiten,
nur miissen gewisse Entkreuzungen ofters vorgenommen werden.
Wir geben fiir die anderen nur das Resultat an.

tanp, = — 49, tab®s = @2 — 2¢; (53)
tacpz = H@1+P2+Q3+@+9s) taePs = 393 — @s+304

tare: = 4(P2+@s) tafrps = — 93

tbcpz = 4(92+¢;) theps = — Ps

thdpz = (@1 +P2+P3+Q4+P5) tbdPs = 393 — @4+ 39,

ted®: = @179 tedps = @3 1+@,4

ter®z = @1+ tef@s = @3+¢s

tabPs = @120, tab®s = P1—29; tabPs = @1 +49;+20,+2¢05+ 20,
taePs = — @1+ 39, tae®s = — 49339 taePs = — 96

tarPs = — @4 tar@s = 43 +495+39s tarps = — @

tocPs = 4@3+49,+305 toc@s = — Ps thePs = — %6

thdes = — 4ps—3 thd®s = — @1+39s thd®s = — Po

tedPs = — @4 ted®ps = ¢119s tedPs = + 96

terps = @11+Qy4 terps = — s tefPs = -+ P

Wie wir soeben gesehen haben, erhdlt man bei der Berechnung der
Austauschoperationen durchwegs lineare Ausdriicke von Spininva-
rianten. In der Formel (46) wird also in jeder Klammer (g; t,, @) das
tap ok ebenfalls durch einen linearen Ausdruck ersetzt, der selbstver-
stindlich noch mit ¢; zu multiplizieren ist. D. h. nach der Berechnung
der Austauschoperationen sind die Koeffizienten aller Integrale in
(46) durch Skalarprodukte der Form (¢; ¢,) gegeben, deren numerische
Werte nun zu berechnen sind.

Betrachten wir zu diesem Zweck wiederum die vorigen zwei Bel-
spiele. Beim Sechselektronensystem sind die Produkte der Funktionen
©1, 9y, 93 @4, @5 zu ermitteln. Der direkteste Weg besteht darin, die
Produktbildung gliedweise an den ausmultiplizierten Invarianten
vorzunehmen bei gleichzeitiger Beachtung der Orthogonalitits-
relationen der Spinfunktionen. Die den Valenzbildern (48) entsprechen-
den ausmultiplizierten Spininvarianten sind

(54)

oy = V}é & B, D ER, A B0 R —ABLDER+ ABLDER
—A,B,C,D,E,F,+A,B,C,D,E,F, 1 A,B,C,D,E,F,— A,B,C,D,E,F,]

©, = {1§ [A,B,C,D,E,F,—A,B,C,D,E,F,— A,B,C,D,E,F, + A,B,C,D,E,F,
_ A,B,C,D,E,F,+A,B,C,D,E,F, +A,B,C,D,E,F,—A,B,C,D,E,F,]
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P3= Lg (A,B.C,D.EF,— A,B,C,D,E\F,—A,B,C,D,E\F, + A,B,C,D,EF,

- ‘AlBICZDZE;’.Fl +A2B1C2D1E2Fl +‘AIBZCIDZEZFlH‘AZBzch1E2FI]

1
P+ = = [A,B,C,D,E,F,—A,B,C,DE,F,— A B,C,D,EF, + A,B,C,D,E,F,

(PS = ,\’1_8 [AlechlEze = IﬁzBICID]Eze_A1B2C2D1E2F1 + ‘AZBICZDlEZFl
4‘AlechzEle+A2B1C1D2EiF2‘4'AA1B2C2D2E1F1‘;A2B1C2D2EIF]J

Den ersten Ausdruck z. B. erhidlt man durch Ausmultiplizieren von

1 1 1
= AB CD EF = = AAIBZ_A‘AQBI [ e CIDQ—CEDI = EIF _EZFI
o - [ABJ[CD(EF] = )5 ) S (EFaEaE)

Bei der Bildung des Produktes (¢, ,) auf Grund von (54) ergeben
alle gemischten Teilprodukte Null wegen der Orthogonalitit der
Spinfunktionen, und die iibrigen acht ergeben die Einheit. Das Gleiche
gilt auch fir ¢2 93 ¢ ¢ Bei der Bildung des Produktes (¢, ¢,)
um noch ein weiteres Beispiel zu nennen, sind nur zwei Teilprodukte
gleich der Einheit, namlich A} B3 C2 D, E? F% und A? B? C2 D? E2 F%;
alle anderen sind gleich Null. Man erhilt fir die numerischen Werte
der verschiedenen Skalarprodukte dementsprechend

Pi=¢i=pi=9i=¢3=1 .
P1P3 = 1P+ = P1Ps = P2P3 = PaPs = P2Ps & 3 (55)

1
P1P2 = P3Ps = P3Ps5 = P4Ps T 4

Wie bei den Austauschoperationen ist auch hier diese direkte
Berechnung der Skalarprodukte viel zu umstidndlich und kann bei
grofleren Systemen nicht in Frage kommen. Einfacher ist folgender
Weg:

Oben erhielten wir fiir das Quadrat der Spininvarianten durchwegs
die Einheit. Das Gleiche gilt aber auch fiir groBere Systeme bestehend
aus Atomen mit je einem Elektron: alle ¢f sind gleich der Einheit.
Die anderen erhilt man auf Grund der Relation (50); indem man sie
der Reihe nach mit ¢, ¢, ¢,, multipliziert, bekommt man die drei
Gleichungen

(1¢1) ?3%1) — (P1op1) =0

4
(@195) + (Ps95) — (Pr0®s) = O (56)
(@1910) + (P3P10) — (@10P10) = O
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Relationen von diesem Typus sind aber in gentigender Anzahl vor-
handen, um alle Skalarprodukte zu bestimmen, falls die ¢ schon
bekannt sind.

Im allgemeinen Fall, d. h. bel Systemen von Atomen mit mehreren
Elektronen reichen die Relationen (56) nicht aus, um alle numerischen
Werte der Skalarprodukte zu ermitteln. Aus den Austauschoperationen
kann man aber in geniigender Zahl weitere Relationen gewinnen, wenn
man den hermitischen Charakter der Austauschoperatoren in Be-
tracht zieht. Es gelten dann folgende weitere Beziehungen

¢i tab Pk = Pk tab Pi
@i the Pk = Pk tbe @i (57)

.................

Bei Verwendung solcher Relationen kann man die Skalarprodukte
auch 1in den etwas komplizierteren Fillen ermitteln. Es mul} aller-
dings gleich bemerkt werden, dal3 die Rechnungen be1 groBeren Mole-
kiilen so weitldufig und unitibersichtlich werden, dall die Ermittlung
der (g; ¢)) praktisch wieder unmoglich wird.

Bei kleineren Molekiilen, wie in unserem vorher behandelten zweiten
Beispiel des Athylens, deren unabhingige Basis nur aus 6 Valenz-
dispositionen besteht, ist die numerische Berechnung der Skalar-
produkte autf diesem Weg ohne Schwierigkeit durchfithrbar. Zu diesem
Zweck nehmen wir zunédchst an, daB (¢; ¢,) auf 1 normiert ist. Die
zweite Valenzdisposition ¢, unterscheidet sich von ¢, nur durch eine
andere Verteilung der Valenzstriche zwischen den vier einvalentigen
Atomen. Beil Systemen von Atomen mit je einem Elektron sind aber
alle (o; ©;) = 1, d. h. sie sind unabhingig von der Verteilung der Valenz-
striche. Das Gleiche gilt auch hier, beziiglich der Valenzstriche, die
ausschlieBlich zwischen einelektronigen Atomen disponiert sind;
somit ist auch (¢, ¢,) = 1. Aus Symmetriegriinden haben wir ferner

2

9F = 03, (P194) = (9:2s),  (P204) = (P20s),  (@304) = (P395),  (P4Pe) = (P5P6)

Die tibrigen Werte werden nach (57) ermittelt:

(58)
(¢stabPi) = (@1tabps) : — 4(@4p1) = (@191) — 2(91p4),  (P1%4) = *% = (9195)
(Pstabpz) = (Patabes): — 4(ps92) = (292) — 2(293),  (Paps) = _;
(Pstac?i) = (itacPs): — 4pups) = — (@101) + 3(P194)s (Pups) = é = (ps0s)

oo
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(stares) = (“Pztacha)3 4((P3<P2) + 4(‘?3‘?3) = —(‘PzCPs)v (CPacPs) = g
i
(@steap:) = (CPltcchz): — 2(p,9) = (CPl(Pl) £a (CP1<P2): (‘P1CP2) )
(Psteads) = (iteaps):  —(9591) = (2193) + (2:194),  (1%s) = %
(pstedpz) = (PatedPs): (Papi) + (P392) = (9203) + (P294), (P2ps) = %:(@z%)
(ostears) = (osteaps):  (0u7a) + (0424) = — (oa7a),  (020) = —2 = (9329
(Psted®s) = (Patcdes): — (psPs) = (@401) + (2495), (sps) = %
(PstbdP1) = (@itbdps) 1 — H(@4s) = — H@193) — 3(9196), (Pi9s) = O
(Potac?1) = (@1taePs): — HpsPs) = — (P196)s (Ps26) = 0 = (@590)
(potab®z) = (pztabPe):  — HeePz) = (@201) + H(p2ps) + 1
+ 2(p2ps) +2(0295) +2(92P6), (‘Pz‘?a) = 4
(‘Pstafq’s) = (pstares): ““(‘?5‘?3):4(@3(?3)+4(@3‘P5)+3(‘P§Ph)x (<P3CP6) = _156
(PotbdPs) = (PatbdPe) i — HPeP3) — 3(PePs) = — (P4Ps)s  (P6Ps) = 152

Nach dem die Berechnung der Austauschoperationen und der Skalar-
produkte bekannt ist, sollten auch die verschiedenen Integrale C,
(AB) und A,, ermittelt werden. Damit wiirden alle Bestandteile der
allgemeinen Formel explizite verfiigbar sein. Eine direkte Berechnung
dieser GroBen ist bei dem heutigen Stand der Theorie nicht moglich.
Man ist gezwungen, sie auf Grund von thermochemischen Daten fest-
zulegen. Wir geben hier die Werte der Coulomb- und Austausch-
integrale, die von Heitler! fiir die Berechnung der Energie von Kohlen-
wasserstoffen verwendet wurden

i (AB) C + (AB)
o -G 44 88
C —H 77 63

11.5

Die Buchstaben der ersten Kolonne sind chemische Symbole. Alle
Werte sind in kcal/mol ausgedriickt. Im Fall der H-H Wechselwir-
kung ist nur die Summe der Coulomb- und Austauschintegrale bekannt.
Es sei noch bemerkt, daB3 diese Werte sich auf eine Verdampfungs-

1 W. HEITLER, Helv. 38, 5 (1955).
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wiarme des Diamanten von 170 kecal beziehen. Die A — Integrale werden
bei der Energieberechnung meistens vernachlissigt.

13. Aufstellung der Sikular- und Bindungsgleichung

Die Energieberechnung ist nun soweit vorbereitet, dal die Sikular-
determinante aufgestellt werden kann. Betrachten wir den Fall
des Sechselektronensystems.

Wie bereits erwihnt, werden Systeme von Atomen mit je einem
Elektron in der Mesomeriemethode hdufig zur Approximation der
Energie konjugierter Molekiile verwendet. Durch diese radikale
Vereinfachung des Problems wird erreicht, daBl auch die Energie-
berechnung gréBerer Molekiile, wie z. B. Benzol, Naphtalin usw., der
Rechnung zuginglich wird. Selbstverstandlich konnen die so erhaltenen
Energien nur als Relativwerte eine Bedeutung haben, die man nicht
ohne weiteres mit den experimentell erhaltenen Bildungsenergien
vergleichen kann. Trotzdem koénnen solche Rechnungen von Interesse
sein, z. B. fiir die Beurteilung der Bestdndigkeit der betreffenden Mole-
kiile.

In dieser Approximation wird also die Energie des Benzols mit
einem System von sechs einelektronigen Atomen berechnet. Um das
Problem aber noch weiter zu vereinfachen, vernachlissigt man auch
die verschiedenen A — Integrale, die in (46) vorkommen. Eine weitere
Vereinfachung besteht darin, dal man statt der 15 theoretisch mog-
lichen Wechselwirkungen nur diejenigen zwischen Nachbaratomen
betrachtet; die anderen sind als weniger wichtig vernachliassigt. Es
bleiben also nur die sechs Austauschintegrale (AB), (BC), (CD), (DE),
(EF) und (FA) tbrig. Unter dieser Voraussetzung haben wir nach der
Storungsrechnung folgendes Gleichungssystem zu losen:

M,,c;, + M,;c;, + M;c; + M, ¢y + M;5¢5 =0
M,,c, + M,,c, + M,sc; + M,cy + Myscs =0 (59)

.....................................

Die entsprechende Sikulardeterminante lautet

My; Mg ..o.oncc... M,;
M, M, ........ Mys | _ (60)
Mo Mo rwivssuns M
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Die Elemente M;, der Sikulardeterminante werden nach (46) be-
rechnet. Unter Beachtung der obigen Voraussetzungen sind sie durch
Ausdriicke der Form (61) gegeben.

M, = (‘Pl%Q ) C —[(pi1tabe:) (AB) + (0.1tpep:) (BC) + (@iteap,) (CD) +
+ (@1tde®)) (DE) + (@iterpy) (EF) + (Cpltfacpl) (FA)] — e (@:91)

M,, = (thp) —[(¢:tabe2) (AB) + (CPltbcCPz)( + (@1tedgs) (CD) +  (61)
+ (p1tdeps) (DE) + (pitere.) (E (<P1tfacpz) (FA)] — e (p192)

........................................................

Fihrt man hier zunichst die Ergebnisse der Austauschoperationen (51)
ein, so entstehen Ausdriicke, in denen alle Koeffizienten der Integrale
durch Skalarprodukte reprdsentiert sind:
(62)
M, = (p:91)C — {_ (9191) (AB) + [(@:191) + (p193)] (BC) — (9.194) (CD)
+[(@191) + (195)] (DE) — (:9:1) (EF) + [(@101) + (@194)] (FA) | —e(p191)
M,; = (9:9,)C _1[(@1@2) + (9:195)] (AB) — (192) (BC) + [(CPNP ) + (@.94)] (CD)
—(@192) (DE) + [(p192) + (193] (EF) — (9192) (FA)} — € (9:192)

..............................................................

Die Einfithrung der numerischen Werte der Skalarprodukte (55)
ergibt die Elemente der Sikulardeterminante, in denen neben & nur
noch die Integrale unbestimmt sind.

M,, = C +(AB)— 1(BC) +(CD)— %(DE) +(EF)— %(FA)—e (63)
M,, = 14C+ 14(AB) + J4(BC) + J4(CD) + 14(DE) + 4 (EF) + J4(FA)— Ve
M,; = —1C—12(AB)—15(BC)—15(CD) + 14 (DE

)— %(EF)+ J4(FA) + Yse
M, = —1C—%(AB) + J4(BC)— 12(CD) + J4(DE)— 1 (EF)— 1 (FA) + Ve
M5 = —%C—1(AB) + 14(BC)— % (CD)— 1(DE)— 1 (EF) + % (FA) + Yae
M,, = C—1%(AB)+(BC)— %(CD) +(DE)— %(EF) +(IFA)—e
M,; = —15C+ V4(AB)— 15(BC) + 14(CD)— 15(DE)— ) (EF)— 15(FA) + e
M, = —%C+ J4(AB)— 1% (BC)— % (CD)— 1(DE) + 4 (EF)— 15(FA) + Vs
M,s = — 1C— Vz(AB)— Y2(BC) + 14(CD)— % (DE) + %4 (EF)— 15(FA) + e
M;; = C—14(AB) +(BC)—12(CD)—J4(DE) +(EF)— J5(FA)—

M, = 14C+ 1(AB) + 14(BC) + J4(CD) + 14 (DE) + 14 (EF) + 14 (FA)— e
M;; = Y4C+ 14(AB)+ 14(BC) + 14(CD) + 14(DE) + % (EF) + 14 (FA)— Ve
My, = C—1%(AB)—14(BC) +(CD)—14(DE)— 15 (EF) +(FA) —¢
M5 = %4C+ V4(AB)+ 14 (BC) + Y4(CD) + Y%(DE) + 4 (EF) + 14 (FA)— Y4e
M;;s = C+(AB)— 15(BC)— 1%(CD) +(DE)— 1 (EF)— J5(FA)—¢

Die Sikulardeterminante (60) ist symmetrisch in Bezug auf die Haupt-
diagonale. In (63) sind somit nur Elemente der Hauptdiagonale und
die von ihr rechts stehenden Elemente angegeben.
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Die Atomabstinde zwischen Nachbaratomen des Benzols sind iiber-
all gleich groB. Anderseits sind die Austauschintegrale Funktionen
der Atomabstdnde, die somit gleichgesetzt werden konnen (AB) -

C—sg

(BC) = (CD) - (DE) - (EF) - (FA) = A. Setzen wir ferner X - ——,
so kann die Determinante (60) in der Form (60a) geschrieben werden.
<} ol dnd el ey

Die Ausrechnung der Determinante ergibt eine Gleichung fiinften
Grades mit finf Wurzeln. Im Fall von Systemen von einelektronigen
Atomen konnen die Wurzeln berechnet werden, ohne dal3 die numeri-
schen Werte der Integrale bekannt sind.

Die Berechnung der Determinante erfolgt am besten mit Rechen-
maschinen. Im obigen Fall kann man zwar durch einige Umformungen
(60a) in einfachere tberfithren, wie wir das bei der sogenannten
Bindungsdeterminante noch zeigen werden. Doch sind solche Um-
formungen bei groeren Systemen viel zu kompliziert, um praktisch
von Bedeutung zu sein.

Nach der Gleichung (46) kénnen also die Elemente der Sikulardeter-
minante berechnet werden, insofern man die Austauschoperationen,
die Skalarprodukte sowie die Coulomb- und Austauschintegrale kennt;
die A — Integrale werden ja meistens bei der Energieberechnung
vernachlissigt. Falls man sich allein fiir die Energie des Molekiils
interessiert und die Berechnung der Elektronenverteilung zur Seite
1aBt, ist es vorteilhaft, die Sdkulargleichung (59) durch ein ihr dquiva-
lentes Gleichungssystem, die sogenannte Bindungsgleichung zu er-
setzen, deren Handhabung bedeutend einfacher wird, ohne die Werte
der Storungsenergie zu verdndern.

Die Bindungsgleichung hat den groBen Vorteil, dal3 zu ihrer Auf-
stellung nur die Berechnung der Austauschoperationen und die Kennt-
nis der Integrale vorausgesetzt werden miissen; die Skalarprodukte
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treten in ihr dberhaupt nicht auf. Die Determinante der Bindungs-
gleichung ist zwar im Gegensatz zur Sikulardeterminante nicht
symmetrisch; sie hat aber den weiteren Vorteil, dal3 die iiberwiegende
Zahlihrer Elemente — vor allem bei gréBeren Systemen — verschwinden,
was vom rechnerischen Standpunkt selbstverstindlich eine grof3e
Vereinfachung darstellt.

Zur Aufstellung der Bindungsgleichung geht man wieder von einer
unabhingigen Basis der Eigenfunktionen (II. 26) aus. Um die Uber-
legungen moglichst einfach zu gestalten, betrachten wir wieder das
Beispiel des Systems von vier Atomen mit je einem Valenzelektron.

Im ersten Bestandteil des Gleichungssystems (6), d. h. in

[ H Y ds (10)

reprasentiert die Funktion ¢, rechts und links von H eine vollstindige
Molekiileigenfunktion (II.26) mit den 24 Permutationen der Elek-
tronen und mit den vier Spinfunktionen (11a), die der Valenzdispo-
sition in (3) entsprechen. Statt ¢, fithren wir links von H die Partial-
l6sung des Vierelektronensystems

ua(1) up(2) uc(3) ug(4) (64)

ein, was tbrigens schon in (16) durchgefiihrt ist, mit dem Unterschied,
daB jetzt auch die Spinfunktion «(1)B(2)x(3)E(4) wegfillt. Die Rolle
der Spinfunktion war ja eigentlich die Beriicksichtigung der Nicht-
unterscheidbarkeit der Elektronen im Zusammenhang mit dem Pauli-
prinzip, was hier aber bereits erfillt ist, so da3 eine Multiplikation
mit der Spinlosen Funktion erlaubt wird. Statt (13) erhdlt man somit
den Ausdruck

fua(l)ub(Z)uc(3)ud(4) H (ya—¢B—tdc + ¥p) d= (13a)
oder vier Integrale vom Typus

[ wa(l)up(2)ue(3)ua(®) H \—% S 1QQua(1)up(2)uc(3)ua()a(1)B(2)a(3)B(#)dx

mit den verschiedenen Spinanteilen (11a).

Durchliuft man die Reihe der entsprechenden Uberlegungen bis
Gleichung (23), so erhidlt man fiir den vollstindigen Koeffizienten von
c, der ersten Gleichung (6) statt (23) den Ausdruck

121



(65)
?,C —[(AB)tapp, + (AC)tacep; + (AD)tage; + (BC)tpep; + (BD)tpap, +
+ (CD)tedp:] — ele, — {Aabtab@l + Aactac®: + Aadtade: + Apctbep: +
+ ApdtbdP: + Acatedps)]

Eine analoge Uberlegung ergibt fiir den Koeffizienten von c, derselben
Gleichung (6)
(66)
0,C —[(AB)tapp, + (AC)tace, + (AD)tage, + (BC)tpep: + (BD)tpap,+
+ (CD)tede,] —ele, — {Aabtab@z + Agctacp: + Aadtade: + Apctbep: +
+ ApdtbdPz+Acdteap: |]

Indem wir die A — Integrale vernachlissigen und nur Wechselwir-
kungen zwischen Nachbaratomen betrachten, erhilt man fir die erste
Gleichung (6)

{(C—¢e)o, —[(AB)tapp, + (BC)thep: + (CD)tege, + (DA)tgae.]jc; + (67)
+ {(C — e)gp; —[(AB)tapp: + (BC)tpep: + (CD)teap, + (DA)tgag,llc, = 0

Die zweite Gleichung (6) liefert dieselbe Relation.
Diese konnen wir jetzt nach ¢, und ¢, ordnen, nachdem die Aus-
tauschoperationen berechnet sind. Das ergibt
(68)
{{(C —¢) + (AB) — (BC) + (CD) — (DA)]c, + [— (AB) — (CD)]c,)e, +
+ {{— (BC) — (DA)]c, + [(C—¢) —(AB) + (BC) —(CD) + (DA)]c,Je, = 0

Die Spinfunktionen ¢, und g, sind linear unabhingig. Das heillt aber,
daB eine Relation a, ¢, + a,9, =0, wo a, und a, irgendwelche Kon-
stanten sind, nur dann erfiillt ist, wenn die a; verschwinden. Aus (68)
erhalten wir somit ein System von zwel Gleichungen fiir die Unbekann-
ten ¢, und c,.
[(C—¢) + (AB) —(BC) + (CD) — (DA)le, + [~ (AB) —(CD)Je, = 0 o,
[— (BC) — (DA)]e, + [(C —¢) — (AB) + (BC) — (CD) + (DA)]c, = 0
Dieses System von homogenen linearen Gleichungen ist aber nur dann
erfillt, wenn die Determinante der Koeffizienten verschwindet. Durch
Nullsetzen dieser Determinante erhdlt man dieselben e-Werte wie
aus der Sikulardeterminante.
Die gesuchte Energie kann aber auch dann noch berechnet werden,
wenn man statt ¢, und c, die ¢, und ¢, als Unbekannte betrachtet.
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Die Gleichung (67) ist nidmlich auch dann befriedigt, wenn folgende
Gleichungen erfiillt sind.

(C —e)p —[(AB)tapp: + (BC)thep, + (CD)teap; + (DA)tdgag,] = 0 (70)

(C —2)e. — [(AB)tapp: + (BC)tpep, + (CD)teqp: + (DA)tgag.] = 0
Dies sind die sogenannten Bindungsgleichungen im einfachsten Fall
von vier einvalentigen Atomen.

Was wir hier fiir vier Elektronen erhalten haben, kann auch im
allgemeinen Fall verwendet werden. Die allgemeine Form der Bindungs-
gleichung, gultig fiir Systeme von ein- und mehrvalentigen Atomen,
schreiben wir nach (HRW) in der Form

(1 — X Agptan) ¢k = (C — X (AB)tap) ok (71)
a,b a,b

Das ist ein System von f linearen Gleichungen fiir die f Unbekannten
ox, wo f die Anzahl Valenzdispositionen reprisentiert. Sind die Aus-
tauschoperationen berechnet, so erhdlt man aus (71) die Bindungs-
determinante, deren Nullsetzen die Energie liefert.

Wir wollen die Niitzlichkeit von (71) durch ein Beispiel illustrieren *.
Betrachten wir zu diesem Zweck das Sechselektronensystem mit
seinen Wechselwirkungen zwischen den Nachbaratomen, indem wir
die A -Integrale vernachldssigen. Aus (71) erhdlt man bei Beachtung
von (51) die fiinf Gleichungen

(C —<)p, + (AB)p, — (BC) (91+93) + (CD)o, — (DE) (¢, + @5)
+ (EF)p, — (FA) (¢, + 94 = 0
(C —e)p. — (AB) (g2 + @5) + (BC)p, — (CD) (92 + @4) + (DE)p,
— (EF) (92 + @3) + (FA)p, = 0
(C —e)p; — (AB) (9, + @3) + (BC)ey — (CD) (¢, + @3) — (DE) (9, + ¢3) (72)
+ (EF)p; — (FA) (p2 + 93) = 0
(C —€)ps — (AB) (p1 + 94) — (BC) (@2 + 94) + (CD)p, — (DE) (9, + @,)
— (EF) (@, + @4) + (FA)p, =0
(C —e)ps — (AB)os — (BC)(92 + @5) — (CD) (@, + @5) + (DE)es
— (EF) (9, + @5) — (FA) (g2 +95) =0

Da alle Austauschintegrale gleich sind, kénnen wir sie mit A bezeichnen
und wie bei der Sikulargleichung (C—<¢)/A =X setzen.

1 Vgl. auch G. W, WHELAND, Journal of Chemical Physics, 3, 230 (1935).
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X +0  —o; —P4 —Ps =0

0+ Xo, — o3 —P4 —Ps =0
—20; — 20, + (X—2)p; + 0 + 0 =0 (73)
—20, — 29, + 0 +(X—2)p, + 0 =
—2¢, —2¢, +0 + 0 + (X—2)p5; =0

Die entsprechende Bindungsdeterminante ist durch (74) gegeben

X 8 -4 -4 -4
0 X -1 -1 -1
9 -2 X2 D O - (74)
2 -2 0 X-2 0
-4 -2 0 0 X3

Diese Determinante kann durch einige einfache Umformungen direkt
berechnet werden. Addiert man z. B. die zweite Zeile mit negativem
Vorzeichen zu der ersten, so erhdlt man (75). Addition der ersten
Kolonne (75) zur zweiten ergibt (76).

X-X 0 0 @ X 0 0 0 o0
0 X —1 -1 —1 0 X —1 -1 —1

(75) 23 X2 0 0 |=|-F-4K2 0 0 |=0 76
2-2 0 X-20 2 4 0 X-2 0
—2-F 0 06 X2 3 -4 B 0 X2

Durch analoge Umformungen erhilt man schlieBlich die fiinf Wurzeln

X=2 X=2 X=0, X=1+%13 X=1-V13 (77)

oder die fiinf gesuchten Energiewerte (I. 35) (hier mit ¢ bezeichnet)
fur die Stoérung erster Ordnung.

e, = C + 2,6055A g, = C—2A
e, =C+0 es = C —4,6055A (77a)
83 = C — ZA

Die Bindungsdeterminante des Athylens, um noch ein zweites
Beispiel zu erwihnen, la3t sich ohne weiteres mit den Angaben (52)
und (53) konstruieren. Falls man nur die Wechselwirkungen zwischen
den Kohlenstoffatomen und diejenigen zwischen Kohlenstoff- und
Wasserstoffatomen betrachtet, erhilt man die Determinante (79). Wie
man sieht, zerfillt diese in drei einreihige und eine dreireihige Deter-
minante. Bemerkenswert an diesem System ist, dall die Wurzeln der
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dreireihigen Determinante auch aus dem einfacheren System von zwei
viervalentigen und zwel zweivalentigen Atomen berechnet werden
kénnen. Man kann also das urspriingliche Modell des Athylens (78a)
durch (78b)

(78a) =g B=A=B=0 (78b)

ersetzen. Von dieser Vereinfachung werden wir bei der Berechnung
der Elektronenverteilung im Abschnitt 15 Gebrauch machen.

X 14C—8B 0 0 0 0 0 (79)
8B X+4C—16B —16B -8B _8B 0
0 _C X4+2C4B B B <
B-C 0 0 X+2C—6B 0 0 =0
B-C 0 0 0 X+2C-6B 0
¢ 0 —4C —2C —2C X—2C+4B

X ist hier die Differenz zwischen dem Coulombintegral und der Energie
e, wihrend C und B Austauschintegrale zwischen den Kohlenstoff-
atomen bzw. zwischen Kohlenstoff- und Wasserstoffatomen repra-
sentieren.

IV. Berechnung der Elektronenverteilung

14. Elektronenverteilung eines Systems von Atomen

mit je einem Valenzelektron 1

Die grundlegende Beziehung der Quantenmechanik zur Berechnung
der Elektronenverteilung in stationdrem Zustand ist gegeben durch

vy * de (1)

Hier ist ¢ eine von den Koordinaten abhdngige und ¢* die zu ¢
konjugiert-komplexe Funktion. Da wir ausschlieBlich mit reellen
Funktionen zu tun haben, kann man statt (1) auch

Ydr = dddr,de,de, ... (2)

1 0O. KLEMENT, Helv. Chim. Acta, 34, 1368, 2230 (1951).
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schreiben. Das ergibt die Wahrscheinlichkeit, daB sich das erste
Teilchen im Volumelement dz,, das zweite im Volumelement dt, usw.
befindet. Bildet man das Integral

d'rlfn}ﬂd":zd'r3 ... dr, (3)

so summiert man alle Wahrscheinlichkeiten, dal3 das erste Teilchen im
Volumelement d=x, ist, gleichgiiltig, wo die anderen liegen. Ahnliches
gilt fir alle anderen Teilchen. Summiert man alle Wahrscheinlich-
keiten, so mull die Einheit entstehen, da alle Teilchen des Systems
irgendwo im Raum mit Bestimmtheit vorzufinden sind. Es gilt also
folgende Normierung

fL;ﬂdfl dr, ... dty =1 4)

Auf Grund der Beziehung (2) war es moglich, die Elektronendichte-
vertellung des Wasserstoffatoms und des Wasserstoffmolekiils in
befriedigender Weise zu ermitteln. Deshalb soll auch hier die Elek-
tronenverteilung organischer Molekiile nach der Gleichung (2) be-
rechnet werden.

Um die Uberlegungen konkreter zu gestalten, sollen sie an Hand
eines Beispieles durchgefithrt werden. Zu diesem Zweck wihlen wir
wiederum das System von sechs Elektronen, das wir bei der Energie-
berechnung zur Approximation des Benzols verwendet haben.

Wihlen wir aus der Gesamtheit der 15 moglichen Valenzdisposi-
tionen (Einleitung (3)) eine unabhidngige Basis aus, z. B. die Basis
(ITI. 48). Den fiinf Valenzverteilungen entsprechende vollstindige
Molekiileigenfunktionen sind

|

b = —— N 10 Qua(1)up(2)uc(3)ua(4)ue(5)u¢(6) .[AB[CDIEF]

V6!
b - % S 10 Q ua(1)up(2)uc(3)ua(#)ue(5)ur(6) . [AF [BC] DE]
by - \% S 10 Q ua(1)up(2)uc(3)ug(4)ue(5)ur(6) [ADJBCIEF, (5)
by - v%_!2noQuamub(2>uc(3)ud(4>ue(S)uf(6) [AF)[BEJ[CD)
¥s = = 3 10 Qua(1)up(@)uc(3)ug(#)ue(5)ur(6) [ABJCF]DE;

V6!
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Die Linearkombination der fiinf Funktionen gibt die Eigenfunktion
nullter Niherung

Y = Ci{y + Codp + C3;5 + Cuy + Css (6)

Zur Bestimmung der Koeffizienten ¢, wird man in der Stérungs-
rechnung auf das System von fiinf homogenen Gleichungen (I. 33) mit
den c,, ¢,, c;, ¢y, s als Unbekannten gefithrt. Ist die Energie bekannt,
so wird man die c; durch Auflésung des homogenen Gleichungs-
systems berechnen konnen.

Dem Gleichungssystem (III. 59) entsprechende Sikulardeterminante
(I1I. 60a) ergibt fir die kleinste Wurzel den Wert X = —2,6055. Sie
ist in (III. 77) auf Grund eines der Sakulargleichung &dquivalenten
Gleichungssystems explizite berechnet. Fiihren wir diesen Wert in
(ITI. 60a) bzw. 1in (IIL. 59) ein, so erhdlt man dem Grundzustand ent-
sprechende Koeffizienten der Linearkombination (6) mit den nume-
rischen Werten ¢, = ¢, =1 und c¢; = ¢, = ¢; = —0,4343. Hierbei wurden
die urspriinglich erhaltenen c¢; durch c, dividiert, was bei einem homo-
genen Gleichungssystem erlaubt ist. Man erhdlt also fiir die Eigen-
funktion nullter Ndherung den Ausdruck

g =4, + ¢, —0,4343 ({5 + $y + s5) (7)

Zur Berechnung der Elektronenverteilung bildet man gemil (2)
das Quadrat der Eigenfunktion nullter Niherung (7). Da die Eigen-
funktionen ¢, ¢,, ¥;, ¢, Y5 nicht orthogonal sind, werden auch die
gemischten Produkte von Null verschieden sein, d. h.

$, = ¢F + ¢F + 0,1886 (p3+¢5 + ¢F) + 24,4, |
— 0,8686 (43 + G4y +Pis + $ods + dathy + $ots) (8)
+0,3772 (Ysthy + Ysds + Qus)

Fir die weitere Rechnung sollen zunichst die einzelnen Glieder
¢; by auf eine handlichere Form gebracht werden. Betrachten wir zu
diesem Zweck ausfithrlicher das Produkt ¢, {,

1 , _
bt = 2 e Q dauucugueur (ABJCD][EF]

1
ﬁ E nQ Quaupucugqueur. [AB][CD][EF]
das man einfacher auch so schreiben kann
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1 ; /
$iy = 61 2 nQ' 1Q(Q  uaupucugueur. Quaupucugueur) (Q'e; Qo) (10)

Genau wie bel der Energieberechnung in (I11. 15) kann die doppelte
Summation durch eine einfachere ersetzt werden und gleichzeitig
hebt sich der Fakultiatsfaktor weg, so dal man (10) in der einfacheren
Form

¢, =2 nQ (uaupucugueur QQ uzupucugueur) (@, Q o)) (11)

schreiben kann.

Von der Gesamtheit aller Permutationen sind bei der Energie-
berechnung nur die identische Permutation und die Transpositionen,
d. h. die einfachen Permutationen, die nur zwei Elektronen zwischen
zwel Atomen vertauschen, betrachtet worden. Alle hoheren Permu-
tationen wurden vernachlissigt. Die gleiche Vereinfachung soll auch
hier verwendet werden. Somit bleiben von (11) nur die folgenden tibrig

(12)
@7 = ua(1)up(2)uc(3)ug(4)ue(d)urp(6) . ua(l)up(2)uc(3)ug(4)ue(5)ue(6) (9191
— ua(1)up(2)uc(3)ug(4)ue(5)ue(6) . ua(2)up(l)uc(3)ug(4)ue(5)us(6) (@ tabe:)
— Ua(l)up(2)uc(3)ug(4)ue(S)ur(6) . ua(3)up(2)uc(l)ug(4)ue(5)ur(6) (@ tace:)

.............................................................

=

Es folgen noch 13 analoge Summanden mit den tbrigen Trans-
positionen. Der erste Summand in (12) ist positiv, weilnq deridentischen
Permutation entspricht, fiir alle anderen Permutationen ist die An-
zahl von Inversionen ungerade und somit n - —1.

Bezeichnen wir den Koordinatenanteil im ersten Summanden mit

K = uf(1)ud(2)ud(3)ui(4)ui(5)uf(6) (13)

Ferner soll der Koordinatenanteil des zweiten Summanden, wo ein
Elektron des Atoms A mit einem Elektron des Atoms B vertauscht
ist, mit §,,, im dritten Summanden, wo die Elektronen der Atome A
und C vertauscht sind, mit 3,. usw. bezeichnet werden, d. h.

Bab = Ua(1)up(2)uc(3)ug(4)ue(5)ur(6) . ua(2)up(1)uc(3)ug(4)ue(5)ur(6)
Sac = Ua(1)up(2)uc(3)ug(4)ue(5)ur(6) . ua(3)up(2)uc(l)ua()ue(5)ur(6)

.........................................................

Damit nimmt (12) die Form (15)
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(15)
V% = (.0) K —[(p:tab®1)8ab + (P1tacPi)Bac + (@1tad®:)Bad+ (@itae®:)Bae +
+ (pitarpi)8ar + (@itoc?i)Bbe + (P1tbdP1)Obd + (Pitbe?:)Bbe + (Pitbre.)dbe
+ (pitcapi)Bed + (Pitee®1)8ce + (Piter®i)der + (Prtde®:)8de + (Pitare:)dar

+ (Piter®i)def]
oder (16) an.

b= (1) K -a’Zb (®1tabPi)Bab (16)

Die Summation ist hier tiber alle Atompaare zu erstrecken.

Genau dieselben Uberlegungen konnen aber mit allen anderen Pro-
dukten (8) durchgefiihrt werden. Bei allen wird zunichst die doppelte
Summation durch eine einfache ersetzt und von den Permutationen
sind nur die identische und die Transpositionen zu beriicksichtigen.
In jedem Produkt bleibt eine Koordinatenfunktion K und 15 Aus-
tauschfunktionen 8,y 8, ..., 8¢ Ubrig. Fir jedes Produkt erhédlt man
also einen Ausdruck der Form (16), den man somit in der allgemeineren
tir alle §; . giltigen Form (17)

Yivk = (9igk) K — Zb (#itab?k)ab (17)

schreiben kann.

Im weiteren wollen wir zur Vereinfachung, — wie das bereits bei der
Energieberechnung geschehen ist —, nur die Wechselwirkungen zwischen
Nachbaratomen beriicksichtigen, indem wir voraussetzen, dal} die
sechs FElektronen des betrachteten Systems zur Approximation der
Elektronenverteilung des Benzols dienen soll. Von (17), wo die
Summation sich auf alle Atompaare erstreckt, bleibt (18) tibrig.

didk = (igkx) K —[(eitabek)Bab + (PitocPk)dbe + (PitedPk)ded + (18)
+ (pitdevk)Bde + (Piterek)der + (@itraPk)dfal

Einfithren von (18) in (8) ergibt nun

¢? = {(p191) K —[(@1tabp:)Bab + (@1tbc®1)dbe + (Pitcd®i)8ed + (19)
+ (@1tde®1)8de + (Piter®1)er + (P1tfa®:)dfal}
+ {(p292) K —[(pstan®2)ab + (@2toe®2)dbe + (Poted®2)dca +
+ (@2tde®2)8de + (Poter@2)er + (Patra®:)Sral)
+ 0,1886 {(¢s¢3) K —[(@stab®s)8ab + (stbe®s)Bbe + (@stedes)ded +
+ (patdeps)dde + (Pster®s)der + (@straps)dral)

.......................................................

Die Austauschoperationen sind aber schon von der Energieberechnung
(ITI. 51) her bekannt; dasselbe gilt fir die Skalarprodukte (III. 55).
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Man kennt somit alle in (19) vorkommenden Koeffizienten, deren
numerische Werte aus (III. 63) abgelesen werden kénnen.

Bezeichnen wir allgemein die Summe der Koeffizienten von K mit
a,, die Summe der Koeffizienten von 3,, mit a, usw., so erhdlt man

¢2:anK7318ab+a28bc+...+aj8ikf... (ZO)
oder 1in unserem Fall

LI)Z = 5,9535 K + 2,5854 (Bab = Sbc + Scd + Sde + Sef—Sfa) (21)

Die Verteilung des i-ten Elektrons des Systems (20) erhidlt man nun,
indem man die Koordinaten des fraglichen Teilchens festhilt und tiber
die Koordinaten aller iibrigen Elektronen integriert. Auf Grund von
(21) erhalten wir also die Verteilung des urspriinglich zum Atom A ge-
hoérenden ersten Elektrons p(1), indem wir in Gleichung (21) die Koor-
dinaten des ersten Elektrons festhalten und tiber die Koordinaten des

zweiten, dritten, ..., sechsten Elektrons integrieren.
(22)

o(1) = 5,9535 [ud(1) f ud(2)dr, f u2(3)d, f uj(4)dr, f ud(5)d, j'uzf(@)drﬁ]
+2,5854 [ua (1)up(1) f U (2)up (2)dr, f uZ(3)dr, f ui(4)de, f ug(5) de; ud(6) drg

3]
+ (1) [up(2)uc(2)de, [up (3)uc(3)d=, [ud(4)d=, [ud(5) d=s [ui(6) d=,

+ui(1) [u(2)dr, [ud(3) drs [u§(#)dw, [ue(S)ur(5)dz; [ ue(6)ur (6)d=,

+ up(1)ua (1) [uh(2)d=, [ul(3)d, [ud(4)dr, [ud(5) d, [ur(6)ua (6)d= |
Auf analoge Weise bekommt man die Verteilung des urspriinglich zum
Atom B gehorenden zweiten Elektrons, indem man in (20) die Koor-

dinaten des zweiten Elektrons festhdlt und tber alle tibrigen Elek-

tronen integriert.
(23)
0(2) = 59535 f u(1)dr, . ug(2) f ui(3) dr, [u3(4)dr, f u§(5)d¢5~{ uf(6) dr, |

42,5854 [fua(l)ub(l)d'rl.ua(Z)ub (Z)fu§(3) d‘r3fué(4)d'r4fu§(5) dfsfuf-(e) dr,
+ fu§(1)d-:.-, . ub(2)uc(2)fub(3)uc(3)d'r3fu(21(4)d'r4fu§(5) d’rsb"u%(6)d'rﬁ

+ [Wi1)dr, . ug(2) [ue(3)ua(3)d7, [ue(#)ua(4) dz, [ud(5)d, [uf(6) dr,
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+ [ui(t)ydz, . ub(2) [v3(3) dr, [ug($)ue (#)d=, [ug(5)ue(5) d=, [ub(6
+f ui(1)dr, . u "(2)’ (3)dT3fU(21(4)dT4fue(5) £(5)d J e(6)ug (6)dr,
+ fua( Jug(l)dz, . u (Z)IU(‘;(?’)dT3foi(4)dT4fue2(5)deJua(6)UF(6)d76]

Entsprechend miissen die Integrationen der anderen vier Elektronen,
die urspriinglich zu den Atomen C, D, E und F gehoren, durchgefiihrt
werden. Wie man ohne weiteres feststellen kann, erhilt man die erste
Zeile von (22) durch Integration des ersten Summanden in (21), die
zweite Zeile von (22) durch Integration des zweiten Summanden
in (21) usw.; dieselbe Bemerkung gilt auch fiir (23).

Die einvalentigen Atomeigenfunktionen u,(1), uu(2), u.(3), uy(4),
u.(5), up(6) konnen als normiert vorausgesetzt werden, dann sind alle

Integrale vom Typus f uj(k)dry gleich der Einheit. Die iibrigen Inte-
grale sollen wie bei der Energleberechnung mit

Aab = [ ua(l)up(1)ds, [ ua(2)up(2)ds,
Ape = [ up(2)uc(2)ds, [ up(3)uc(3)ds; 24)

.................................

bezeichnet werden. Damit bekommt man aus (22), (23) und gemil
den entsprechenden Ergebnissen der Elektronen 3, 4, 5, 6 einen Aus-
druck p(r), der die Elektronenverteilung unseres Benzolmodells
repriasentiert, wobei die Numerierung der Elektronen weggelassen ist.

o(r) = 5,9535(ug + up + ug + ug + ug + uf)
+ 2,5854 (2uaup VA, + uzlab + ugAab + uzlap + ufAab
+ uaDEe + 2ukii V Abc + udAbc + uiApbe +ufApe
+ uaAcd + UpAcd + 2ucug VA g + UdAcd + ufAcd (25)
+ ugAde + upAde + UiAge + 2ugue YAy, + UfAde
+ UaAef + UpAef + UAer + UGAer + 2ueur | Agp

+ 2uauf VA r +uplar + uiAar + uiAar + uilar)

Um die endgiiltige Elektronenverteilung po(r) zu erhalten, mul} p(r)
allerdings noch mit dem Normierungsfaktor 1/N und der Anzahl
Elektronen 6 multipliziert werden, d. h.

131



o(r) = (1) (26)

Zur Ermittlung von N = f o(r) dr, ist noch eine Integration von g(r)
iber den Raum erforderlich, indem man gleichzeitig die Normierung
der uZ, ui, ... und die Ausdriicke (24) berticksichtigt. Fiir N erhilt man
N = 6[5,9535 + 2,5854 (Agh + Apc + Acd + Ade + Aef + Afa)] (27)

Die auf diese Weise erhaltene Elektronendichte p(r) repridsentiert
die kontinuierliche Elektronenverteilung des auf sechs einvalentige
Atome reduzierten Benzols. Man kdnnte damit ein dem Rontgendia-
gramm dhnliches Hohenschichtlinienbild aufstellen. Doch ist die
numerische Berechnung der kontinuierlichen Verteilung angesichts
der zahlreichen Vernachlissigungen, die gemacht worden sind,
nicht von groBem Interesse. Niitzlicher erscheint vom Standpunkt
der Chemie die Berechnung einer diskreten Elektronenformel.

Diese kann aus der kontinuierlichen Verteilung (26) respektive (25)
erhalten werden. In (25) ist u, ndamlich 1im wesentlichen nur an der
“Stelle vom Atom A von Null verschieden, u, ist ebenfalls haupt-
siachlich an der Stelle des Atoms B von Null verschieden usw. Ander-
seits stellt u,uy, eine Austauschladung zwischen den Atomen A und B
dar, uyu, eine Austauschladung zwischen den Atomen B und C usw.,
die fur die Bindung dieser Atome verantwortlich sind. Wir kénnen
somit grob eine Elektronenverteilung angeben, indem wir (26) bzw.
(25) iber den Raum integrieren und die dabei von uj herriithrenden
Anteile mit p(A) bezeichnen und die Elektronenzahl am Atom A
nennen. Analog erhidlt man die Elektronenzahlen p(B), p(C) ... der
anderen Atome B, C, ... aus uj uZ ... Der von u, u, herrithrende
Teil p(AB) wird die Austauschladung zwischen A und B sein, dement-
sprechend man aus u, u, die Austauschladung (BC) zwischen B und C
usw. erhilt. Auf diese Weise entstehen zwei Arten von Indizes: der
Atomindex ¢(I) und der Bindungsindex p(IK). Aus (26) erhidlt man
somit fiir das Benzol als Sechselektronensystem betrachtet

p(A) = % [5,9535 + 2,5854 (Ape + Acd + Ade + Aer)]

6
o (B) = o [5,9535 + 2,5854 (Acd + Ade + Aer + Ary)]
............................................. (28)

e (AB) = - 2. 2,5854 Ay

o (BC) = —- 2. 2,5854 Ape

=
™NT

1z
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Nun sind aber die Integrale A;, Funktionen der Atomabstinde,
die in unserem Benzolmodell gleich groB sind. Dementsprechend haben
wir

Aap = Ape = Acd = Ade = Aer = Afa (29)

Mit (29) kann (27) jetzt einfacher auch so geschrieben werden

N = 6[5,9535 + 15,5124 A] (27a)

Die Atom- und Bindungsindizes des Benzols (28) nehmen dann eben-
falls die einfachere Form (28a) an.

50535 + 10,3416 A 1+ 1,737 A
pia) = 59535 1 15,5124 A 1+ 26064 ~ 08>

59535 + 10,3416 A 1 + 1,737 A
°B) =39535 7155124 A 126064 - 0%
............................................ (28a)

5.1708 A 0,869 A

e(AB) = 59535 - 155124 A ~ 1+ 26064 — 2140
o (BO) 51708 A 0,869 A 01

T 50535 + 155124 A 1 + 2,606 A

............................................

Selbstverstdndlich sind alle Atomindizes einerseits und alle Bin-
dungsindizes anderseits gleich gro. Ferner mul} die Summe der
Bindungs- und Atomindizes gleich der Gesamtzahl der Elektronen
des betrachteten Systems sein, d. h.

e (A) +p(B) +p(C) + (D) + p(E) + o(F) (30)
+ p(AB) + p(BC) + p(CD) + p(DE) + p(EF) + p(FA) =6
Das 1st 1n (28a) tatsdchlich der Fall.

Es sei ferner bemerkt, dal das in den Ausdriicken (28a) vorkom-
mende A unbekannt ist. Sein Wert liegt zwischen 0 und 1. Falls man
A unbedingt numerisch ausdriicken will, so kann z. B. A = 0,3 ge-
setzt werden, was uns ein verninftiger Wert erscheint. Doch spielt
diese Unbestimmtheit weiter gar keine groBe Rolle, weil A nur auf
den Absolutwert, nicht aber auf die Relativwerte der Indizes einen
EinfluB hat. Fir die Chemie sind aber die Relativwerte von Wichtig-
keit, wie z. B. bei der inneren Energie in der Thermodynamik.

Aus der obigen Ermittlung der Elektronenverteilung des Sechs-
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elektronensystems sieht man ohne weiteres, wie die Rechnungen im
allgemeineren Fall eines Systems von n einvalentigen Atomen ge-
fithrt werden miissen. Die Verallgemeinerung bei den Relationen (9)
bis (20) bietet nichts Neues, falls man in (19) die entsprechende Zahl
der Valenzdispositionen der unabhdngigen Basis berticksichtigt. In
(20) miissen nattrlich alle Wechselwirkungen eingefiihrt werden, die
fir das betreffende System von Interesse sind. Man wird hier natirlich
nur Wechselwirkungen zwischen Nachbaratomen beriicksichtigen,
denn die Approximation eines Molekiils durch einvalentige Atome
ist eine sehr rohe Approximation. Die ao a, a, ... reprdsentieren in
(20) respektive die Summe aller Koeffizienten von K, 8, 8y, ...

Aus (20) erhilt man die Verteilung des ersten Elektrons des Systems
durch eine der (22) analogen Integration iber alle Elektronen mit
Ausnahme des Elektrons 1, dessen Koordinaten festgehalten werden.
Ahnlich verfihrt man mit allen anderen Elektronen. Die Summe aller
dieser Partialergebnisse gibt die Elektronenverteilung des Systems

n 2
p(r) = [Bo(ua+ up+ ...+ up)
+ a, (2uaub)/A,p + UzAab + UghAab + ... + UAALD
+ a; (uéo'Abc + 2Zubug \/A—t; + uéAbc + ww s F uf,Abc (31)
+ a3 (UgAcd + upAcd + 2ucud YVAgg + - - - + upled)
+ aj (uzAmn + upAin + AL + ... + 2uup)/AL,)]

n ist hier gleich der Anzahl aller Elektronen. Ferner ist

N=n(a,+2a,Azp +a,8pc+ ... +31Ap) (32)

Die verschiedenen A; sind die in (24) angegebenen A-Integrale. Aus
(31) erhdlt man durch Integration die allgemeinen Ausdriicke fiir
Atom- und Bindungsindizes.

n
e (A) = N (ag + a2Apc + 23Acq + - - - + 31A1)
n
e (B) = N (g + a3Acd + a4Ade + ... + ajAn) (33)

n
P (C) = N“ (aao -+ alAab <+ a4Ade + e F alAln)

.......................................
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15. Elektronenverteilung eines Systems von Atomen

mit einem und mehrveren Elekivonen !

Die im vorigen Abschnitt erhaltene Elektronenverteilung auf Grund
eines Systems von einvalentigen Atomen kann selbstverstindlich
nur als eine erste Approximation der wirklichen Elektronendichte
betrachtet werden. Die vollstindige Berechnung mit allen Elektronen
ist allerdings meistens recht kompliziert. Will man aber eine Elek-
tronendichte erhalten, die als Grundlage fiir die Interpretation der
Eigenschaften chemischer Molekiile dienen soll, so ist man gezwungen,
trotz rechnerischer Komplikationen die Verteilung auf Grund aller
Valenzelektronen zu ermitteln. Wir wollen deshalb die Berechnung
der Elektronenverteilung auch fiir den allgemeinen Fall, also fiir den
Fall von Systemen, bestehend aus ein- und mehrelektronigen Atomen,
entwickeln.

Die Uberlegungen sollen auch hier an Hand eines Beispiels, nimlich
des Athans, durchgefiihrt werden. Dieses Molekiil, bestehend aus sechs
Wasserstoffatomen und zwei Kohlenstoffatomen, kann wie das Athylen
im Abschnitt 14 durch das einfachere System von zwei viervalentigen
Atomen A,B und zwei dreivalentigen Atomen C,D (34) ersetzt werden.

H—C-C—H D=A-B=C (34)
H \H

Die Rechnungen werden dadurch wesentlich einfacher. Wihrend
nidmlich die urspriingliche Basis des Athans aus 20 Valenzdispositionen
besteht, enthilt die neue Basis nur 4 Valenzdispositionen.

Die den vier Atomen A B,C,D entsprechenden Koordinateneigen-
funktionen bezeichnen wir mit

1 O. KLEMENT, Helv. Chim. Acta, 36, 691 (1953), 42, 1332 (1959).
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s ugll;2,3.4)
: up(5,6,7,8) -
© 1e(9,10,11) (33)
© ug(12,13,14)

QOowr

Die Zahlen sind Abkiirzungen fir die drei Ortskoordinaten der
betreffenden Elektronen.

Die Atomeigenfunktionen (35) sind antisymmetrisch in allen ihren
Elektronen. Aus ZweckmiBigkeitsgriinden wollen wir sie in der
bekannten Determinantenform (I. 40) schreiben.

W) V@) W@ v
v v@ v v

DTV [ H) w0 vE) v -
V4(1) Ve(2) vi(3)  vi4)

Die Atomeigenfunktion u, (1,2,3,4) wurde hier aus Einelektron-
eigenfunktionen v;(i) aufgebaut. Diese seien orthogonal und normiert.
Die Zahlen in den Klammern bedeuten wiederum die drei Orts-
koordinaten, wihrend die Indizes 1, 2, 3, 4 als Abkiirzungen fir die
drei Quantenzahlen des betreffenden Quantenzustandes zu betrachten

: L . ; x
sind. VA 1st der Normierungsfaktor. Entsprechende Determinanten-

ausdriicke gelten fiir die anderen Atomeigenfunktionen (35).

Die Molekiileigenfunktionen (37), die den vier Valenzdispositionen
entsprechen, werden aus diesen antisymmetrischen Atomeigenfunk-
tionen aufgebaut, indem man sie mit den entsprechenden Spinfunk-
tionen erganzt, ihr Produkt bildet und das Ganze in die vom Pauli-
prinzip geforderte antisymmetrische Form (II. 26) bringt.

(37)
by = iﬁi%i’ S gQua(1,2,3,4)up(5,6,7,8)u(9,10,11)ug (12,13,14)
' . [AB] [AD]*[CB]?

1

b, = ‘L‘*jﬁ N 1qQua(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)
| . [AB]?*[AD]?[CB]?*[CD]
/41 41 31 31
s = \/iil# S 10Qua(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)
. [AB]’[AD] [CB] [CD]?
by = /441313 S g Qua(l,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)

141
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Die entsprechende Eigenfunktion nullter Niherung lautet
$ = Cydy + Cops + Cads + Cuthy (38)
Wie bei einvalentigen Atomen bildet man dann

2 = cidi + 2e,c, s + .o (39)

Betrachten wir im einzelnen eines dieser Produkte, z. B. {2. Man
erhdlt hier zunichst einen dem (9) analogen Ausdruck, wo die doppelte
Summation durch eine einfache ersetzt wird und gleichzeitig sich der
Fakultiatsfaktor weg hebt. Es bleibt somit eine Beziehung tibrig, die
formell der Relation (11) entspricht, ndmlich

Gigy = X nQ (uaupucuy. Quaupucug) (9,Qepy) (40)

Von den Permutationen sollen auch hier nur die Identitit und die
Transpositionen beriicksichtigt werden. Dann bleiben von (40)
folgende Anteile tbrig:

ua(1,2,3,4)up(5,6,7,8)uc (9,10,11)uq (12,13,14) .
ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq (12,13,14)
g = ua(l 2,3,4)up(5,6,7,8)uc(9,10,11)ugq(12,13,14)
Tab ta(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq(12,13,14)
Sad = ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq(12,13,14)
Tad ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)
Sbe = Ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq(12,13,14)
Toe 1a(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)

(41)

Die T,y T,4 Ty reprasentieren hier Transpositionen von nur zwei
Elektronen zwischen den Atomen A und B, A und D, B und C. Im
ganzen gibt es 4.4 Transpositionen, die ein Elektron des Atoms A mit
einem Elektron des Atoms B vertauschen, ferner sind 3.4 Transposi-
tionen zwischen A und D und ebensoviele zwischen den Atomen B
und C moglich. Wie bei der Energieberechnung ist es auch hier gleich-
gultig, welche Transposition fiir ein bestimmtes Atompaar gewdhlt
wird. Deshalb kann der Koordinatenanteil, der sich in (40) auf die
Vertauschung zweier Elektronen zwischen den Atomen A und B
bezieht, wie beil einvalentigen Atomen (14) einfach mit §,, bezeichnet
werden. Analoges gilt fir die anderen Koordinatenanteile. Der der
identischen Permutation entsprechende Koordinatenanteil ist auch
hier mit K bezeichnet.
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Die Produkte der zweiten Klammer in (40), d. h. die Koeffizienten
von K, 3,5 8,4, 8, miissen noch auf mehrvalentige Atome erweitert
werden. Fir die Identitat, d. h. fir QO = I, erhdlt man einfach ein
Produkt der Spinfunktionen (g,9,).

Fiur die Vertauschung eines Elektrons des Atoms A mit einem
Elektron des Atoms B, also fiir Q =T,,, konnen wir (¢, T,y ¢,) schreiben.
Im Fall des Atompaars A und B sind aber 4.4 solche Koeffizienten zu
beriicksichtigen, namlich

(@1 T1591) + (@1 T1621) + (@1 T1791) + (@1 T1spy) + - .. (42)

eoo + (1 Tyspq) + (@1 T4ep1) + (@1 T4r01) + (91T 4sP1) ZTE (P1 Tabe1)
ab

wobei das erste Glied die Vertauschung des ersten Elektrons des Atoms
A mit dem Elektron 5 des Atoms B zum Ausdruck bringt. Das letzte
Glied reprisentiert die Vertauschung des Elektrons 4 vom Atom A mit
dem Elektron 8 vom Atom B.

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
wiederum gleichwertig sind, kann man zur Vereinfachung von (42) die
Summe aller dieser Vertauschungen mit t,, bezeichnen, also t,,, = £ T,
setzen. Dann wird der Koeffizient von §,, einfach (g, t,, ¢,) sein.
Entsprechendes gilt natiirlich auch fir die Atompaare A und D, B
und C.

Fassen wir nun alle Teilergebnisse zusammen, so erhdlt man fir
(40) den Ausdruck

$1¥; = (1p1) K —[(p:tab®i) 8ab + (Pitad®i) 8ad + (@1tbe?1) Bbcl (43)

Die hier vorkommenden (¢,9,), (9, tap ¢1). ... sind identisch mit den-
jenigen, welche bei der Energieberechnung auftreten. Sie werden somit
nach dem dort angegebenen Verfahren berechnet. Ganz dhnlich er-
folgt die Berechnung der anderen Produkte ; ¢ in (39).

Fihrt man die so erhaltenen Ergebnisse in (39) ein, so erhilt man

g% = i [K(9:91) — {Bab (¢:1tab®:) + Bad (CPltachl) + Obc (‘Pltbc@l)}] (44)
+ 2¢,¢, [K(9192) — {Bab (P1tab®2) + 8ad (PitadPz) + Sbe (@1tbe®2))]

.......................................................

bzw.

4)2 =aK + a,8,3p + a‘.2813(: + a38ad (45)
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Der Koeffizient a, umfal3t somit alle Skalarprodukte von K, multipli-
ziert mit den entsprechenden Koeffizienten (39), und ahnlich enthélt a,
alle (¢; tap, o), multipliziert mit den zugehorigen Koeffizienten (39) usw.

Wenden wir nun auf J? die in (1) — (4) angegebenen Beziehungen der
Quantenmechanik an, so miissen Ausdriicke vom folgenden Typus
berechnet werden:

K: [u3(1,2,3,4)u(5,6,7,8)ud(9,10,11)uj(12,13,14) dr,d=,. . .dry,
[(0i(1,2,3,4)u§(5,6,7,8)ud(9,10,11)u3(12,13,14) dr,dr;. . .d7,,

---------------------------------------------------

d. h. im ersten Integral soll das erste Elektron festgehalten und iiber
alle anderen Elektronen integriert, im zweiten Integral ist das zweite
Elektron festgehalten, im letzten das Elektron 14, wihrend man tber
alle anderen Elektronen integriert.

Fir den Austausch zweler Elektronen zwischen den Atomen A und
B erhalten wir

Sab: [ Ua(1,2,3,4)up(5,6,7,8)u4(5,2,3,4)up(1,6,7,8) (47a)
u3(9,10,11)uj(12,13,14) dr,dr;. . .d<,,
[ 1a(1,2,3,4)u5(5,6,7,8)ua(5,2,3,4)up (1,6,7,8)
u2(9,10,11)u3(12,13,14) dz,d=,dx,. . .d=,, (47b)

.....................................

fua(1,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(1,6,7,8)
u(9,10,11)u3(12,13,14) d=,d,. . .dr,,dt,,

Im ersten Integral wird das Elektron 1 festgehalten, im zweiten das
Elektron 2 und im letzten Integral das Elektron 14, wihrend man
tiber die anderen integriert. Analog verfihrt man mit 3,4 und 3.

Bad: [1a(1,2,3,4)uq(12,13,14)u,(12,2,3,4)ug(1,13,14) (48)
u$(5,6,7,8)ui(9,10,11)dr,dx;. . .dx,,

........................................

1,2,3,4)uq(12,13,14)u, (12,2,3,4)uq(1,13,14)

5,6,7,8)u2(9,10,11) dr,dr,. . .dr,s

5,6,7,8)uc(9,10,11)up (9,6,7,8)uc (5,10,11) (49)
)

C
1,2,3,4)uj(12,13,14) dt,dr,. . .dt,,

f up(5,6,7,8)u¢(9,10,11)up (9,6,7,8)uc(5,10,11)
u2(1,2,3,4)u4(12,13,14) dr,ds,. . .d<,,

AN~ A~ —
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Zur Berechnung dieser Integrale empfiehlt es sich, die Atomeigen-
funktionen in die Determinantenform zu schreiben. Auf diese Weise
werden die u, (1,2,3,4), ... auf Einelektroneigenfunktionen v, (1),
v,(2), ... zurickgefiihrt, die man leicht integrieren kann. Der Deter-
minantenausdruck des Atoms A ist in (36) schon angegeben.
vs(7)  vs(8)

vs(3) Vs

up(5,6,7,8) = (50)

—
-~
>

1}“
¥

(
(5 ) ve(8)
(5 ) v4(8)
(5 ) Vs(8)

(51)

1 Vo Ve (10)  vq (11)
va }

(9
g(9,10,11) = —— | v,(9) vy(10) v,e(11)
(9

uy(12,13,14) = T vi3(12)  v5(13)  vy5(14)

— 52
LEL vis(12) v (13) vi(14) =

_T]___ vi2(12) vi2(13) V12(14) |

Hier sind nicht bloB die Elektronen, sondern auch die Elektronen-
zustinde durchgehend numeriert.

Wir verwenden nun folgenden Determinantensatz: Wenn man einen
Minor dritter Ordnung von (36) mit sich selbst multipliziert und iiber
alle seine Elektronen integriert, so erhdlt man 3!. Falls man aber diesen
Minor mit einem anderen multipliziert und integriert, so erhdlt man
Null. Es handelt sich hier nattirlich um Minoren, die aus derselben
Kolonne von (36) gebildet sind. Dieser Satz gilt hier wegen der Ortho-
gonalitit der Einelektroneigenfunktionen v;.

Auf Grund von (36) und (50) - (52) schreiben wir nun (46) in der
Form (53):

1 .
o | DAL = va(1)Ag, + V(1) Az — vi(1)A,,)? ug(5,6,7.8)

ué(9,10,11)uj(12,13,14) dr,dr;. . .dr,

1 L

& ﬂf[— Vi(2)A s+ va(2)Ags — Vvi(2) Az + Vi(2)A,,)? up(5,6,7,8)
ue(9,10,11)ug(12,13,14) dr,drs. . .d7y,

..........................................................

.......................................................

1 2
+ 37 [ V(9 A0 — Vio(9)Are + Vir(9A1,5)% U5 (1,2,3,4)
u(5,6,7,8)u3(12,13,14)dr, . . .drdz,,. . .d7,,

.......................................................
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1 v
TR ‘I ["’12(12)1"\12,12 — V13(12)A13,12 =t V14(12)A14,12]2 u§(1,2,3,4)
u§(5,6,7,8)uf(9,10,11) d=,. . .dr v dry,

......................................................

Im ersten Integral, wo das Elektron 1 festgehalten ist, wurde die
Determinante (36) der Atomeigenfunktion u, nach der ersten Kolonne
entwickelt. Auf diese Weise enthalten die Adjunkten A;, das erste
Elektron tberhaupt nicht, und man kann iiber ihre Elektronen
integrieren. So ergibt sich nach dem oben angegebenen Determinanten-
satz der Faktor 3!. Die iibrigen Funktionen u§ u? uj werden als
normiert vorausgesetzt und ergeben die Einheit. Das Ergebnis der
Integrationen tber die Elektronen 2 bis 14 ist der erste Klammer-
ausdruck in (54). Im zweiten Integral (52) wird das Elektron 2 fest-
gehalten und dementsprechend ist die Determinante (36) von u, nach
der zweiten Kolonne entwickelt worden. Die Integration tber die
Elektronen 1,3,4 ergibt den Faktor 3!. Das Ergebnis beim Festhalten
des Elektrons 2 ist in (54) durch den zweiten Klammerausdruck
gegeben. Analoge Uberlegungen gelten beim Festhalten der anderen
Elektronen.

Somit erhilt man fiir K als Resultat der verschiedenen Integrationen
beim Festhalten der einzelnen Elektronen 1,2, ...,14

%[V;’(l) + vi(1) + vi(1) + vi(1)] + % [v3(2) + vi(2) + v3(2) + vi(2)]
+ 3TV + VIG) + vIB) + IO+ 1 [vIA) + Vi) + VA4) + V)]
£ 3 1V205) + V5) + V(5) + VA(3))+ 1 [vE(6) + vE(6) + vi(6) + vi(6)]
b3 VAT + V) + VAT + VAT S IVEE) + VE®) + VES) + VIS (54)
+ ;[\;(9) + VIO(Q) + v5,(9)] = [Vg(l()) + vi,(10) + fl(IO)]
+3 VAT + V3, (1) + v2,(1)]  + % v2,(12) + v2,(12) + v2,(12)]
3 IVE13) + VE(13) + VA(13)] + 1 [VE(14) + vE,(14) + vE,(14)]

Mit Hilfe des obigen Determinantensatzes soll jetzt noch die Be-
rechnung des Austausches §,,, durchgefithrt werden. Zu diesem Zweck
verwenden wir die vier ersten Faktoren von (47a) in der Determinanten-
form,indem man gleichzeitig jeden nach der ersten Kolonne entwickelt.
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1
7771 ] WAL = va(DAL, + vi(DA,, = V(1A
[Vi(5)A;s— Vz(s)Az,s + Va(S)A3,5 — V4(5)Ay,s]
[Vs(5)As, 5 — V6(5)A6,5 F V?(S)A7,5 == Vs(s)As,sj (55)
(vs(1)As,, — v )As,l - vy (1)A;, — Vs(l)f\s,ﬂ
1

Die Integrationen tber die Elektronen 9 bis 14 sind ohne weiteres
durchfiithrbar, da u2 und uj ja die Einheit ergeben. Mit Ausnahme des
ersten, das wir ja festhalten miissen, und des fiinften Elektrons kénnen
wir ohne Schwierigkeit auch iiber die iibrigen integrieren, falls man
beachtet, dal die Adjunkten der ersten und zweiten Klammer einer-
seits und diejenigen der dritten und vierten anderseits Funktionen
derselben Koordinaten sind. In beiden Fillen erhidlt man als Resultat
3!. Somit 1Bt sich (55) folgendermaBen umforment:

g
;ﬁﬂf[vl(l)vn@) + Va(1)va(5) + v5(1)vs(5) + vi(1)vy(5)] (56)
[vs(5)vs(1) + ve(3)ve(1) + vo(S) V(1) + v(5)ve(l)]dr;

Wenn wir nun das Integral tiber das Elektron 5 in (56) mit

VA = [Vils)vi(5)ds

bezeichnen, so entsteht fiir den Austausch des ersten und funften
Elektrons zwischen den Atomen A und B beim Festhalten des ersten
Elektrons der Ausdruck

1 P — e
4.4 [Vivs VAs + Vovs VA + Vv VA + vivs VA
+ V Vg \E; + V,Vg \E + v3ve 'V 3_3: + vyve ¥ A_w
+vivea VA, + vov, VA + Vv, VA, + vev, VA,

+ VvV, Vg \""Als + ViV \"'.Azs + Vavg VAzg + Vv VAl (57)

i

T4 4.
10

8
> vil)vi(1)VAik
k-5

NV ES

1

Der nichste Schritt betrifft die Berechnung von (47b) beim Fest-
halten des zweiten Elektrons. Dazu entwickelt man die Determinanten-
ausdriicke des ersten und dritten Faktors nach der ersten und zweiten
Spalte, wiahrend der zweite und vierte Faktor wie vorher nach der
ersten Spalte entwickelt werden.
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Diese konnen wir auch einfacher in der Summenform (60) schreiben



Bezeichnen wir die Integrale iiber die Elektronen 1 und 5 mit
A = [ vi(L)vi(1)vi(5)v(5)ddr,

61
A= [ vi(@)vi(1)vk(5)vj(5)dr,d, i

so erhdlt man schlieBlich fir die Integration von (47b) beim Fest-
halten des zweiten Elektrons

3 4 8

1 . e

i.43 El == 3iE) VA V85 2 -
b=k — VA VAg vi(2)vi(2) + Axjvi(2)

Die Berechnung von (47) beim Festhalten des dritten und vierten
Elektrons erfolgt genau nach dem Schema des zweiten, und als Resultat
erhilt man fir jedes Elektron einen Ausdruck (62), d. h. (63a) und (63b)
Es gentigt namlich, die Determinanten anstatt nach der ersten und
zwelten, nach der ersten und dritten bzw. nach der ersten und vierten
Kolonne zu entwickeln. Dabei dndert sich hochstens das Vorzeichen,
was aber fiir das Endergebnis belanglos ist.

3 - 8
1 L
73 2 2 2 Ajvk(3) —VAgG VA vil3)vk(3)
i=1k-2j=5 (63a)
i<k —VAjj VAgjvk(3)vi(3) + Agjvi(3)
3 4 8
1 o - 2 = | S —
4 4.3 2 Ajjvk(4) — V Ak VAjj vi(4) v (4)
i=1k=2j=5 (63b)
i<k — VA VAxv#)vi[4) + Agvi(4)

Die Integrationen von 3,, fiihren beim Festhalten der Eiektronen
5,6,7,8 des Atoms B zu Resultaten vom Typus (57) und (62). Wird
namlich das Elektron 5 festgehalten, so entsteht eine dem Ausdruck
(57) entsprechende Relation (64). Fiir die anderen Elektronen 6,7, 8
des Atoms B bekommt man dagegen Ausdricke vom Typus (62),
namlich

1 -+ 8
4.4 > = vil5) vk(3)VAik o3
1=1k=25
., 7 8 4
> = Ayvk(6) — VA VA vi(6)vk(6
T8 B, 2 2 Akl B i -
i<k —VAjj VA vi(6)vi(6) + Agjvi (6)

...............................................
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Eine dritte Art von Ergebnis (67) bekommt man aus (47) beim Fest-
halten des 9-ten und bei allen tbrigen Elektronen, da in allen diesen
FFdllen das betrachtete Elektron zu einem Atom gehort, das von dem
Austausch der Elektronen 1 und 5 tiberhaupt nicht beriithrt wird.

1 _
314131 f Vi) A — Va(1)Ag,y + vi(1)As, — vi(1)A, ]
[Vl(s)Al,s — V3(5)A,s + v3(5 )A —V4(5)A 4,5)
[Vs(s}As,s ve(5)A 6,5 T V(5 )A — vg(5)A ] (66)
[Vs(1)As, — ve(1)Ag, + vo(1)A vs(1)Ag, J
[Vg(g)Ag 9 V10(9)A10 9 T Vu(g) 11,9]2
ug(12,13,14) drv,dry. . - drgdrig. » AT

Die Adjunkten der ersten und zweiten Reihe umfassen die Elek-
tronen 2, 3, 4, die Integration tiber diese ergibt 3!, diejenige der dritten
und vierten Klammer ergibt ebenfalls 3!. In der finften Reihe kann
man iiber die Elektronen 10 und 11 integrieren, was zu 2! fihrt,
wihrend die Atomeigenfunktion uj (12, 13, 14) die Einheit ergibt. Die
Integration tber das erste und fiinfte Elektron wird durch Ausdriicke
vom Typus (61) reprisentiert. (47) ergibt somit beim Festhalten des
Elektrons 9

-+ 8§ 11

1
—— 2 > A (67)
| kV]
4'4'3i=1k:51: 1

Es folgen noch finf analoge Resultate fiir die Integration von (47) beim
Festhalten der Elektronen 10, 11, 12, 13, 14.

Auf diese Weise ist 3,, durch (57), (62), (63), (64), (65) und (67) voll-
standig bestimmt. Die zwel anderen Austauschfunktionen 8y, 8.4
sind aber vom gleichen Typus wie §,, es wird ja jedesmal von der
Gesamtheit aller Elektronen nur der Austausch von je einem Elektron
der betreffenden Atome in Betracht gezogen. Somit kénnen wir fir
alle Austausche das Resultat der Integrationen mit Hilfe der Aus-
dricke vom Typus (57), (62) und (67) zusammenstellen.

Wir erhalten somit aus (45) fir die Elektronenverteilung g(r) unseres
Systems bestehend aus zwel viervalentigen und zwei dreivalentigen
Atomen die Beziehung (68).
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4
> i) + vi(2) + vi(3) + vi(4)]

8
: 135 [V(5) + Vi) + v(7) + V)]
111
+ 5 > [vi(9) +vi(10) + vi(11)]
3119
, 1 1 (68)
+,§ N {vf(lZ)-+ Vf(13)-+ V?(14)] +
i=12 I
5 I 4 8 -
+ LSS i) VAR
4'41i=1k=5
[ 3 4 8
133 3 S ([a5E@ - 2VAG VA vi@vi(@) + digvi(2)]
i=1k=2j=5 _
i<k o+ [AvE3) = 2VAG VA vi3)vi(3) + Agvi(3) ]
+[Agve @) = 2VAG VEgvi@)vic®) + Agvi@) ])*
4 8
+ > vil5)vk(5) VA +
i=1k=5
X 8 @
+3 3 S 3 ([avk(6) = 2VAG VAvi(6)vk(6) + Aivi(6)]
i=5k=6j=1 “
i<k 4| Agvk(7) = 2VAG VAGVI(T)vi(7) + Agvi(T)]
+ [ Agvk (8) — 2VAg VAZ vi(8)vi(8) + Agvi(s) ] )+
8 11
4.% S 3 S AulviO)+ vi(10) + vi(11)] +
i=1k=51=9
1 4 8 14 ]
i3 D S S A (2)+ vi13) + vi14)
i=1k=51=12 I
5 [1 8 11 4
$0 TS S S A Vi) + vi@) + Vi) + i)+
' l i=5k=91=1
8 11
+ N vi(5)vi (5)VAjx +
i=5k=9
1 7 8 11
+3 3 S S ([AivEO) - 2V VA vi6)vk(6) + Aigvi©)]
i=bk=06]=59
i<k



+ | Avi(7) = 2VAG VA vi(T)vi(7) + Agvi(7) |

+[Agvk (8) — 2VA G VA vi®)vi(®) + Agvi®) ] ) +
8

+2 EV, \rAlk

1—5k 9

+— E 2 Z(IAI,Vk (10) — 2/ Ay VAgvi (10)vic (10) + A vi(10) |

i Yo 10j =5
i<k +[Aijvlz((ll)—ZX'%\,Kijvi(ll)Vk(ll)+Aiji2(11)])+
y In 14 l
+§2 3N A vi(12) + vi(13) +vi(14)]
fe 5 I =10 112 l
. I4 14
+ : E > vi()vk (1) VA +
* 311:11{:12
3 4 14
I3 S S (k@ - 2vag VA i@k + AgviR)] ¢
i=1k=2j=12
i<k o [agvi(3) — 2VAg VA viBIvi(3) + Agvi3)] +
3 lAiij 4) = 2V A VAjjvi(4) v (4) + Aijiz(“*)]) +
A L.
oy S S A Vi(5) + vi(6) + vi(7) + vi(8)] +
i=1k=121=5
L4 oo
i > N Ajk [Vi(9) + vi(10) (11)] (68)
i—1k=-121=9
4 1 -
+ X D vi(12)v(12) VA +
i—1k 12

+5 Z 2 2 ([Al,vk (13) =2/ Ay VA vi(13)vi(13) + Ajvi(13) |
1 12 k=13 =1
1\1{

+ [ Ajvk (14) =2V ARGV A vi (14) vic (14) + /_\.k,-x,r%(ldr)])I

Der Ausdruck (68), in dem alle Elektronen in verschiedenen Zu-
stinden vorkommen, ist fiir unsere Zwecke recht kompliziert, kann
aber noch weitgehend vereinfacht werden. Eine erste Vereinfachung
wird auftreten, wenn wir annehmen, dal3 die Atome nur in S-Zustianden

147



sind. Ferner haben wir in (41) fiir jedes Atompaar eine einzige Aus-
tauschfunktion 8,4, 8y 8,4 angenommen, und dementsprechend werden
wir in (68) auch fiir jedes Atompaar ein einziges A -Integral haben,
unabhingig davon, wie gro3 die Zahl der Valenzelektronen ist.

Aber noch eine weitgehende Vereinfachung kann erzielt werden,
weil wir ja gar nicht die kontinuierliche Verteilung suchen, sondern
uns mit einer groberen Elektronenverteillung wie im Abschnitt 14 be-
gniigen wollen. Ebenso wie dort sind auch hier die v;* im wesentlichen
nur an der Stelle der betreffenden Atome von Null verschieden,
wihrend die v;v, eine Austauschladung, die zwischen zwei Atomen
herrscht, darstellen. Dementsprechend wollen wir die Elektronen-
verteilung wie im Abschnitt 14 durch zwei Arten von Elektronenzahlen:
den Atomindex p(I) und den Bindungsindex p(IK) definieren. Der
erste wird aus (68) dadurch erhalten, daB3 die aus v;? durch Integration
hervorgehenden Bestandteile fiir jedes Atom zusammengefal3t werden.
Bei dieser Operation erhilt man aber aus jeder v;? die Einheit unab-
hingig davon, in welchem Zustand sich das Elektron befindet, was
eine weitgehende Vereinfachung der Beziehung (68) darstellt. Ent-
sprechend wird der Bindungsindex durch Integration der Austausch-
funktion v;v, erhalten, insofern i und k sich auf verschiedene Atome
beziehen. Dabel entsteht, wie oben erwdhnt wurde, fir jedes Atom-
paar nur ein A -Integral. In allen Ausdriicken (68) der Form —27/Ay;.
1/Ay; Vi v beziehen sich die i und k auf dasselbe Atom und dement-
sprechend verschwinden sie bei der Integration zufolge der Orthogo-
nalitit der Einelektroneigenfunktionen.

Unter diesen Voraussetzungen erfolgt die Verteilung der ver-
schiedenen Summanden von (68) auf die Atom- und Bindungsindizes
o(A). ... o(AB) ... ohne Schwierigkeit, wenn man die urspriingliche
Numerierung der Elektronen in den vier Atomfunktionen (35) und
die der Elektronenzustinde in (36), (50), (51) und (52) beachtet. In
der ersten Zeile von (68) erhdlt man z. B. durch Integration von
vi2(1), vi3(2), v;*(3), v;*(4) tberall die Einheit. Der Summationsindex
lauft aber von 1 bis 4. Dementsprechend ergibt die erste Zeile einen
Beitrag a, . ¥4 . 16 = 4a, zur Elektronenzahl g(A) des Atoms A. Eine
analoge Situation findet man bei der zweiten Zeile. Die dritte Zeile
ergibt einen Beitrag 3a, zur Elektronenzahl ¢(C). In der fiinften Zeile
entsprechen i und k den Atomen A bzw. B. Der Ausdruck v;(1) vy(1)
repriasentiert eine Austauschladung zwischen A und B, die fiir die
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Bindung verantwortlich ist. Durch Integration erhilt man daraus |/A;y,
das wir auf die Atome A und B beziehen kénnen, indem wir 1/A,p
schreiben. Die fiinfte Zeile ergibt somit einen Beitrag a, A,, zur
Elektronenzahl p(AB). Die folgenden drei Zeilen in (68) ergeben einen
Beitrag 3a, A,, zum Atomindex p(A), wo wir statt A;, und Ay; einfach
A,y schreiben. Analog verteilt man die tibrigen Bestandteile von (68).
Die vollstandigen Atom- und Bindungsindizes unseres Systems be-
stehend aus zwel vierelektronigen und zwei dreielektronigen Atomen
sind in (69) angegeben.

p(A) = % (4a, + 3a,Azp + 4a,Ape + 32;A,4)

n
p(B) = N (42, + 3a,A5p + 32,Apc + 4a;A,4)

Z|= =

o(C) =2 (3ay + 3a,A0p + 22,Apc + 325849) (69)
n
e(D) = N (3a, + 3a,Aap + 32,Apc + 2a34;4)

n n n
e(AB) = N 2a,Map o(BC) = N 2a,Apc e(AD) = N 2a,Ma4

Hier reprasentiert n=(n, +ny+n.+ny) =4+4+3+3 =14 die Anzahl aller
Elektronen, wiahrend N den Normierungsfaktor darstellt, den man
aus (68) auf Grund von (4) erhilt.

N =n(ag + a;Aap + a,Apc + a30a4) (70)
Die A,y Ape A,q sind Funktionen der Atomabstinde von der Form

Aab = f“a(1v2J3,4)Ub(5,6,7,8)ua (5,2,3,4)up(1,6,7,8) dr, dr, (71)

Selbstverstindlich ist auch hier

e(A) + p(B) + ¢(C) + p(D) + p(AB) + g(BC) + p(AD) = n (72)

Nach (69) kénnen wir schlieBlich die Elektronenzahlen auch im
allgemeinen Fall angeben. Bezeichnen wir respektive mit n, ny ...
..., n, die Anzahl von Valenzelektronen der Atome A,B, ..., H, die
eine offene Kette bilden, so erhidlt man fiir die Atom- und Bindungs-
indizes die Ausdriicke (73)
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(73)

n
p(A) = N (agna + a;(ng — 1) Agp + anaApe + asngAcg + ... + ajnaAghp)

n
p(B) = 5 (@onb + a;(Mb—1)Aap + a,(nb—1)Abc + asnpAcq + ... + ajnpAgh)

+ ajncAgh)
n n
o(AB) = — . 2a,Azp o(BC) = — 2a,Ap,,
N N
Der Normierungsfaktor ist hier
N = n(ao +a,Ap + 2a,Ape + ... + ajAgh) (74)

Da die Atomindizes in (73) fiir eine offene Kette von Atomen gelten,
kommt der Faktor (n,—1) in p(A) nur einmal vor, wahrend man in
o(B) und p(C) die entsprechenden (n,—1) bzw. (n.—1) je zweimal vor-
findet. Wollte man die Kette auf das Atom A schlieBen, so wiirden in
(68) weitere Zeilen hinzukommen, die dem Austausch 8;, entsprechen
und damit wiirde auch in p(A) ein zweiter Faktor (n,—1) auftreten.
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ANHANG

Skalarprodukte aller Systeme bestehend aus vier und fiinf Atomen.

Bei der Berechnung der Skalarprodukte des Athylens auf S. 116
wurde darauf hingewiesen, daBl die dort verwendete Methode bei
groBeren Molekiilen sehr uniibersichtlich wird und daB sie praktisch
kaum mehr verwendbar ist. In einer neueren Arbeit ! gelang es nun
diese Rechnungen in einer systematischeren Form zu bringen. Voraus-
setzung fir die Anwendbarkeit dieses Verfahrens ist allerdings die
Kenntnis der Skalarprodukte von Systemen mit einer kleineren An-
zahl von Atomen. Um die Rechnungen zu erleichtern sind in den
folgenden Tabellen die Skalarprodukte aller Systeme bestehend aus
4 und 5 Atomen angegeben worden.

Aus typographischen Griinden sind die Tabellen nicht systematisch
angeordnet. Das folgende Register erlaubt aber, das gesuchte Molekiil
ohne Schwierigkeit aufzufinden. Jede Zahl in den Klammern reprisen-
tiert die Anzahl Elektronen eines Atoms im betrachteten System. So
z. B. entspricht (4, 4, 4, 2) einem System von drei1 vierelektronigen und
einem zweielektronigen Atom. Die zugehérigen Skalarprodukte sind
auf S. 155 angegeben. Oberhalb jeder Tabelle findet man die Valenz-
formeln der entsprechenden unabhidngigen Basis. Selbstverstandlich
sind in den Endpunkten der Valenzstriche die Atome etwa mit A, B,
C, D respektive mit A, B, C, D, E zu bezeichnen, die man sich auf einem
Kreis angeordnet zu denken hat, indem man die Buchstaben im Sinne
des Uhrzeigers folgen 1af3t. Auch sind die Valenzstriche mit einer
Richtung zu versehen. Die angegebenen Vorzeichen der Skalar-
produkte entsprechen der lexikographischen Vorzeichensetzung.

Die Skalarprodukte auf S. 153 bis 178 wurden mir freundlicherweise
von Herrn Dr. O. Mdader zur Verfiigung gestellt. Die vereinfachte
Berechnung der Anzahl Valenzdispositionen (Kap. II) einer unab-
hiangigen Basis stammt ebenfalls von ithm. Die Valenzverteilungen
sind von Herrn F. Rigamonti gezeichnet. Er hatte auch die Freund-
lichkeit die numerischen Rechnungen zu wiederholen und die Korrek-

I O. MApER und O. KLEMENT, Helv. Chim. Acta, 42, 2688 (1959); O. MADER, Bull.
Soc. Frib. Sc. Nat., Vol. 53, S. 145.
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turen zu lesen. Beiden Helfern mochte ich an dieser Stelle herzlich
danken. Mein Dank gilt auch dem Redaktor des Bulletin Herrn
Dr. O. Biichi fiir das Entgegenkommen, das der Verlag meinen Wiin-
schen gegentiber bewies.

4,4,4,4
4,4,4,2
4,4,3,3
4,4,3,1
4,4,2,2
441,1
4,3,4,3

w W
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w

— T e e v e v

4,4,4,4,4
4,4,4,4,2

44343
(4,4,3,4,1

(4,4,3,2,3
(4,4,3,2,1
(4,4,3,1,2
(4,4,2,4,2
(4,4,2,3,1
(4,4,2,2,2
(4,4,2,1,1
(4,4,1,4,1

S. 159 sind die Elemente M, ,
S. 164 ist das Element M, ,, —

152

nww

. 153
= 155
. 1583
. 133
« 135

154

=158

) S. 178
) S. 159
3) S. 169
1) S. 170
2) S. 176
) S. 158
) S. 168
) S. 171

(4,4,3,3,2) S.
L
)'S
)'S
) S
) S
)'S
)'S
)'S

161

. 160
x 189
. 161
. 176
. 160
- 172
o b
. 158

Systeme mit vier Atomen

153
155
155
154
154
155
154

nwwnnumunum

Systeme mit fiinf Atomen

4,4,1,21
04,32

4 3,3,2,2
4,3,3,1,3

m3232
(4,3,2,2,3
(4,3,2,2,1
(4,3,2,1,2
(4,3,1,4,2
(4,3,1,3,1
(4,3,1,2,2

) S
=
1) S
2) D
8] B
1) &
) &
1S
4.3,3.1.1) 8.
1) S
1 8
) S
) S
) S
)5
) S
1S

157 (4,3,1,1,3) S
.162 (43,1,1,1) S
.162 (4,24,2,2) S
163 (4,2,41,1) S
.164  (4,2,3,3,2) S
170 (4,2,3,2,1) S
172 (4.2,31,2) S
. I (4,2,2,3,1) S
158  (4,2,2,2,2) S
. 164 4,2,21,1) S
. 175 (4,2,1,41) S
173 (4.2,1,2,1) S
166 (4,2,1,1,2) S
166 (4,1,3,3,1) S
.163  (4,1,3,1,1) S.
J156 (41,22,1) S
.166  (3,3,3,3,2) S.
ERRATA
= Mg,? = NI?,H =
— 36 statt 36.

. 154
. 154
. 154
. 154
135
. 154
y F

. 158
. 166
173
. 157
. 174
. 167
w 187
. 167
. 158
. 166
o
. 167
. 167
. 156

166

. 167

| i

(3,3,3,2,1)
(3,3,2,3,1)
(3,3,2,2,2) ¢
(3,3,2,1,1) S
(3,3,1,2,1) S
(3,2,3,2,2) S
(3,2,3,1,1
(32821
(3,2,2,1,2
(

(3,2,1,1,1
(3,1,2,1,1
(2,2,2,2,2) S
(
(
(

)
)
)
3,2,1,3,1)
) §
)

2,1,1)

2,2
2,2,1,2,1)
2,1,1,1,1) ¢

P—‘ I

M,, , = 50 statt 25.

wwewn
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. 154

154
154
155
154
154
153

. 165
. 165
. 174
. 156
. 156
. 175
. 156
. 168
. 169
. 156
. 163
. 169

177
157
157
165



Systeme mit 4 Atomen

— a
1= z: .’:B 4‘m:m 5|
480 | -240 160 | -120 96
~240 210 | -170 141 | -120
160 | -170 176 | -170 160
-120 141 | -170 210 | -240
9% | -120 160 | -240 480
= ZE i.‘ 4"’_"}
1 48 -24 16 -12
g -24 22 -18 15
3 16 -18 20 20
¢ | -12 15 20 30

N

7 30 -10 5 -3
2 -10 10 -7 3
3 5 -7 10 -10
4 -3 5 -10 30
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—

.
6 -3
-3 4
1jf§§;; zr§§\\J
1 4 -1
2 -1 4

7 108 -54 36 27
2 -54 52 —43 36
2 36 —43 52 54
4 27 36 -54 108
1& zN 4§ 2m
5 -1 1 -3
2 -1  J 2 -3 5
NN NN
8 -2 7 2 -1
i, -1

3 -1
| 2
7 2 l \
4 2
_2 3

(8%}

to

9 -6

-6 S
ffié;:] 3[ ]I

2 -1

-1 2

4[iijjj -2”

3 -2

-2 3
1?555; Zr\\\J

3 -1

-1 3




381

3N

2
24 -8 4
-8 11 -8
4 -8 24

3 -0 3
-6 ) -5
3 -5 10

20 -5 #
-5 8 -5
2 -5 20

[N}

¥ A
12 6 4
-6 7 -6
4 -6 12
— 1]
36 18 12
-18 18 15
12 15 20

-12 9

-12 13 -12
9 -12 18
36 -18 12
-18 19 -16
12 -16 24
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Systeme mit 5 Atomen

2% %Y

2 3 %
12 —4 f 2
-4 8 1 il
-3 1 12 -3
2 —4 -3 12
N
P
12 —4 i 0
—4 S -4 -3
2 —4 12 0
0 -5 0 10
)
A
8 -4 ~4 3
—4 L2 2 -9
—4 2 12 -9
3 -9 -9 18

16 —4 —4 2
—4 10 1 =D
—-4 1 10 -5
2 -5 -3 10
7 &
10 -5 -0 2
-5 10 3 —4
-6 3 18 -12
2 -4 =12 16
P N x
18 -9 6 0
-9 12 —3 =5
6 — 12 0
0 -5 0 10
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[aN]

[

&
12 -6 0
-6 9 -6 —4
+ -6 12 0
0 —+ 0 S
O\
# 3 4«\
9 -3 -3 2
-3 9 il -6
-3 1 9 )
2 -6 -6 12
Effjj& =
7 _3\ %
40 -30 0 24
=30 45 -18 -36
0 -18 36 0
24 -36 0 72

(38

25 -15 -15 12
-15 45 9 -36
=15 9 45 -36

12 -36 -36 72

W%
2/ 3\

40 =10 4 0
=10 25 -10 -18

4 -10 40 0

0 —18 0 36

N
7 2 3 4

40 -10 -30 6
=10 25 3 -15
-30 3 45 -9

6 ~15 -9 45
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12 0 0 -6 0 -4
0 4 0 2 2 2
0 0 12 0 6 4
-6 -2 0 7 1 -6
0 -2 -6 1 7 -6
4 2 4 -6 -6 12
_
N N
o) ’ 3\ N
30 -15 9 0 18 -6 3 0
-15 25 -15 -14 -6 10 -5 -6
9 _15 30 0 3 -5 10 0
0 -14 0 28 0 -6 0 12
— <
A . ; P j 3; ™
25 -10 -10 6 18 -12 9 0
-10 25 -+ -15 -12 16 -12 -6
-10 -+ 25 -15 9 -12 18 0
6 -15 -15 30 0 -6 0 12
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160

MWD 2
S

J ]

7 & 9 70
S10 | =270 | =270 0 180 0 0 |[-135 0 108
=270 450 90 0] =300 180 0 225 |-108 [|-180
=270 90 450 180 | —300 0 |-108 225 0 |-180
0 0 180 360 | =240 144 | -216 72 -36 0
180 | =300 | =300 | —240 460 | -240 144 |-318 144 240
0 180 0 144 | 240 360 -36 72 |-216 0
0 0] -108 ] -216 144 -36 432 |-144 72 0
-135 225 225 72 | =318 72 | -144 378 |-144 |-360
0] -108 0 -36 144 | =216 72 | -144 432 0
108 | =180 ] =180 0 240 0 0 | =360 0 720
\ YRR

7 2 3 % 5 c\/

50 -25 -20 15 15 -12

2 =25 35 10 -30 -21 24

3 -20 10 SO -6 -60 48

4 15 -30 -6 90 18 72

5 15 =21 —-60 18 72 =72

6 =13 24 48 3 52 144
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4 £
g\§ Y A 3 N
7 2 3 4 5 ) 7 & 9 70
720 -240| -180 120 120 0 0 -90 0 72
-240 280 60 | =200 | —140 60 0 150 -36 |-120
—-130 60 450 -30 | =300 0 |-162 225 0 |-180
120 =200 -30 400 100 —48 0 |-=-300 180 240
120} =140 | =300 100 340 | =120 216 |-318 72 240
0 60 0 —48 | =120 360 |-108 144 |-216 0
0 0] -162 0 216 | —-108 648 |-324 216 0
-90 150 2251 =300 | -318 144 |-324 522 |-288 |-360
0 -36 0 180 72 | =216 216 |-288 432 0
721 -1201] -180 240 240 0 0 |-360 0 720
M A=
7 s 3 {«/} 6

7 90 -60 0 45 0 -36

2 | -60 80 30 60 18 48

3 0 =30 45 9 ~27 0

4 45 -60 9 72 -18 =72

5 0 18 ~27 -18 54 0

6 | -36 48 0 72 0 144
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