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Die allgemeine Mesomeriemethode

Spinvalenzverfahren

von O. Klement
Institut für physikalische Chemie der Universität Fribourg

/. Einleitung
Die chemischen Konstitutionsformeln, deren Grundlagen schon vor

hundert Jahren ausgearbeitet worden sind, werden bekanntlich noch
heute in der Experimentalchemie in ihrer ursprünglichen Form
verwendet. Betrachtet man ihren Werdegang etwas näher, so kann man
die folgenden Entwicklungstadien der Strukturformel unterscheiden.

Zunächst handelte es sich um die Festlegung einer, man könnte

sagen, «Elementenformel»,die die chemischen Symbole der Elemente
ohne Index enthält, und deren Aufstellung experimentell
selbstverständlich auf die qualitative Analyse hinausläuft. In diesem
Stadium der Entwicklung sind z. B. alle Kohlenwasserstoffe durch
die Formel CH repräsentiert. Der nächste Schritt in der
Vervollständigung der chemischen Foimel war die AufStellung der noch heute
manchmal verwendeten Bruttoformel, mit deren Hilfe man bereits
in der Lage ist, die verschiedenen Kohlenwasserstoffe wie Paraffine,
Olefine usw. voneinander zu unterscheiden. Im dritten und letzten
Entwicklungsstadium hat man die Struktur- oder Konstitutions- oder
Valenzformel aufgestellt, und zwar in der Gestalt, in der sie noch heute

zur Anwendung kommt. Diese sind schon soweit entwickelt, daß
sie ermöglichen, beispielsweise die Existenz der Isomeren zu erklären.
Es ist übrigens allgemein bekannt, daß die großartige Entwicklung
der synthetischen organischen Chemie ohne die Valenzformeln völlig
undenkbar wäre.
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Aus dieser stufenweisen Vervollkommnung des Abbildes des Moleküls

geht hervor, daß in jedem Entwicklungstadium die chemische
Formel dem Chemiker neue Aspekte, neue Möglichkeiten, ja, man
möchte sagen, die Tür zumAusbau einer neuen Chemie eröffnet, wobei
die Kenntnis einer vollständigeren Formel eine Voraussetzung für die

Weiterentwicklung der Chemie ist.
Es ist nun in der Chemie eine gut bekannte Tatsache, daß die

Valenzformeln, so wie sie heute noch verwendet werden, trotz ihrer Vorzüge
häufig nur recht grob die wirklichen Verhältnisse darstellen. Aus den
zahlreichen Beispielen, wo die Strukturformel versagt, seien folgende
erwähnt :

1. Gemäß der Konstitutionsformel des Benzols sollten zwei
verschiedene ortho-Disubstitutionsprodukte auftreten. Denn die
Kohlenstoffatome, die die Substituenten tragen, können einmal durch
eine einfache Bindung (la), das zweite Mal durch eine
Doppelbindung (lb) miteinander verbunden sein. Man weiß aber, daß

experimentell eine derartige Isomerie nie beobachtet wurde.

(1)

2. Im Naphtalin, Anthracen, substituierten Benzol und in zahl¬

reichen anderen Verbindungen ist die Reaktionsfähigkeit eine
Funktion der Lage der verschiedenen Kohlenstoffatome. Aus der
Valenzformel geht diese Verschiedenheit nicht hervor, da alle
Kohlenstoffatome gleichwertig sind.

3. Aber nicht bloß chemische (und physikalische) Eigenschaften
werden durch die Strukturformel unvollkommen repräsentiert.
Noch unbefriedigender ist nämlich die Lage, wenn es sich um die

Deutung biologischer Eigenschaften handelt. Man weiß z. B., daß
der Kohlenwasserstoff (2a) ein Krebserreger ist, bei (2b) ist dieselbe

Eigenschaft weniger ausgeprägt und in (2c) ist sie völlig verloren

gegangen. Die Deutung dieser Eigenschaft auf Grund der Strukturformeln

ist noch viel hoffnungsloser als etwa die der Verschiedenheit
der Reaktionsfähigkeit des Naphtalins.
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(C)

(2)

(a) (b)

Angesichts dieser und ähnlicher Schwierigkeiten drängt sich nun
die Frage auf, ob es wohl möglich ist, eine vollkommenere chemische
Formel als die übliche Valenzformel aufzustellen. Die gewöhnlichen
Strukturformeln geben uns Auskunft über die Natur, Anzahl und
Lage der Atome innerhalb des Molekülverbandes. Damit sind alle
Kenntnisse, die man bezüglich des Aufbaus des Moleküls aus Atomen
als ganzes erhalten kann, erschöpft. Somit muß die Bestimmung einer
vollkommeneren chemischen Formel notwendigerweise auf die
Ermittlung der Elektronenverteilung der Atome innerhalb des Moleküls,
d. h. auf die Ermittlung einer chemischen Elektronenformel hinauslaufen.

Während der letzten circa 50 Jahre wurde auf verschiedenem Weg
versucht eine Elektronenverteilung chemischer insbesondere
organischer Moleküle zu ermitteln, von denen eine der wichtigsten
unzweifelhaft die sogenannte Mesomeriemethode ist, die den Gegenstand
folgender Ausführungen bilden soll.

Der Begriff der Mesomerie ist ursprünglich auf dem Boden der
experimentellen organischen Chemie entwickelt worden. Es ist ja
allgemein bekannt, daß schon Kekulé nach der Aufstellung der Benzolformel

gezwungen war, seine Oszillationshypothese einzuführen, um
gewisse Schwierigkeiten (z. B. die Frage der o-Disubstitutionsprodukte)
eliminieren zu können. Das Einführen zweier Valenzstrukturen zur
Erklärung der Eigenschaften des Benzols ist aber gleichbedeutend mit
der Verwendung des Mesomeriebegriffes wenigstens in einer impliziten
Form.

Erst viel später, etwa nach dem Jahre 1920, nimmt dieser Begriff in
der Experimentalchemie präzisere Form an. Den Grundgedanken kann
man wie folgt charakterisieren: Unter den verschiedenen Strukturformeln,

die man einem Molekül zuordnen kann, repräsentiert keine
die wirklichen Verhältnisse; das reelle Molekül entspricht einem
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Zustand, der im Verhältnis zu demjenigen der Valenzformeln einen
Zwischenzustand darstellt. Anders ausgedrückt stellt jede Strukturformel

der Chemie nur eine mehr oder weniger gute Approximation
der Realität dar. Diese Erkenntnis führt unmittelbar zu folgendem
Ergebnis : Da eine einzige Strukturformel das reelle Molekül nicht genau
repräsentiert, müssen zwei oder mehrere Valenzformeln herangezogen
werden, um die Eigenschaften des wirklichen Moleküls zu charakterisieren.

Obwohl diese Vorstellung der Mesomerie eindeutig ist und auch mit
der theoretischen Auffassung nicht im Widerspruch steht, hat sie im
Laufe der Jahre bei ihrer Anwendung in der Experimentalchernie
zu verschiedenen Schwierigkeiten, ja sogar Mißverständnissen, Anlaß
gegeben.

Aus dem obigen geht klar hervor, daß die Mesomerie im Gegensatz
z. B. zur Tautomerie nicht als ein Phänomen zu interpretieren ist.
Trotzdem hat man häufig den Strukturformeln in mehr oder weniger
expliziter Form eine Realität zugeordnet, als ob ein Molekül mit
verschiedenen den Strukturformeln entsprechenden
Elektronenverteilungen existieren könnte. Dementsprechend hätte man mit einer
ausgesprochenen Elektronenisomerie zu tun, was zu einer völlig
falschen Interpretation der Mesomerie führt. Die Frage der Existenz
einer Elektronenisomerie - also die Frage, ob z. B. zwei oder mehrere
Naphtalinmoleküle, die sich bloß durch ihre Elektronendichte
voneinander unterscheiden, existieren können oder nicht - berührt die
Mesomerie bei dem heutigen Stand ihrer Entwicklung überhaupt nicht.

Eine andere Schwierigkeit vom experimentellen Standpunkt aus
besteht in der Auswahl der Strukturformeln, die für eine Interpretation
des reellen Moleküls in Frage kommen können. Es gibt nämlich in
der Experimentalchemie überhaupt kein allgemeines Kriterium um
die Auswahl bei allen Molekülen einheitlich vorzunehmen. Schon beim
Benzol, wo die Situation von diesem Standpunkt aus noch am günstigsten

liegt, kann man sehr im Zweifel sein, ob die Claussche, die Kekulé-
schen, Dewarschen oder die Ladenburgschen Benzolformeln die
geeignetsten sind. Aber noch schlimmer ist die Lage bei anderen
Molekülen, wo die Anzahl der möglichen Strukturformeln noch viel
größer ist. Man kann wohl sagen, daß jedem der Weg offen steht,
solche Strukturformeln zu verwenden, die ihm für das betrachtete
Problem und zur Unterstützung seiner Ansicht gerade am geeignetsten
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erscheinen. Zum Glück bietet die Theorie einen Ausweg aus dieser
unerfreulichen Situation.

Vollständig unabhängig von der Experimentalchemie kommt man
nämlich auf die Mesomerie auch bei der quantenmechanischen
Ermittlung der Energie und der Elektronenverteilung chemischer Moleküle.

Ja man kann sogar behaupten, daß dieser Begriff eigentlich erst
im Rahmen der Quantenmechanik richtig erkannt wurde und daß

man ihn mit den Hilfsmitteln der klassischen Chemie gar nicht exakt
formulieren kann. Diesen Aspekt wollen wir noch präzisieren.

Während die Erklärung der Ionenbindung, die im wesentlichen
ein elektrostatisches Phänomen darstellt, noch auf Grund der klassischen

Mechanik möglich war, versagt diese vollständig im Fall der

Bindung zwischen neutralen Atomen. Im Rahmen der
Quantenmechanik gelingt es dagegen, durch Einführung der sogenannten
Austauschkräfte, die in der klassischen Mechanik nicht auftreten, das
Problem der nicht polaren oder homöopolaren Bindung in völlig
befriedigender Weise zu lösen.

Die grundlegende Arbeit in dieser Richtung, wie übrigens für die

ganze Quantenchemie, bildet die bekannte Lösung der homöopolaren
chemischen Bindung im Fall des Wasserstoffmoleküls durch Heitier
und London im Jahre 1927.

Die Austauschkräfte sind groß genug, um den überwiegenden Teil
der homöopolaren Bindung zu realisieren. Anderseits besitzen sie auch
den chemisch wichtigen Charakter der Absättigung. Nach Heitier-
London tritt eine Bindung zwischen zwei Atomen dann auf, wenn die
Spins der Elektronen zweier Atome verschieden sind und sich kompensieren

können. Die Spinabsättigung, auf die man so in der
Quantenmechanik geführt wird, ist das Analogon der Absättigung von Valenzen
in der klassischen Chemie.

Nachdem man für die homöopolare Bindung eine befriedigende
Lösung fand, entwickelt sich die Quantenchemie bei ihrer Anwendung
auf größere Moleküle in zwei Richtungen. Die erste entspricht einer
direkten Erweiterung des beim Wasserstoffmolekül angewendeten
Verfahrens, indem man annimmt, daß die Elektronen des Moleküls
den einzelnen Atomen angehören, aus denen das Molekül aufgebaut
ist. Bei der zweiten Richtung, dem sogenannten Hund-Mulliken
Verfahren, nimmt man an, daß die Elektronen innerhalb des Moleküls
nicht den einzelnen Atomen, sondern dem ganzen Molekül angehören.
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Aus dieser Arbeitsrichtung haben sich später die verschiedenen Varianten

der sogenannten Molekelbahnmethode (Molecular Orbital)
entwickelt.

Mit der letzteren beschäftigen wir uns nicht, da sie schon sehr oft
von anderen Seiten diskutiert worden ist; wir interessieren uns hier
ausschließlich für eine Variante der ersten Methode, die nach unserer
Überzeugung der Chemie am nächsten liegt. Charakteristisch für alle
Varianten dieser Methode ist, daß sie mit den Valenzdispositionen in
direktem Zusammenhang stehen, indem man jede Valenzdisposition
des Moleküls durch eine sogenannte Eigenfunktion beschreibt. Die
Energie und die Elektronenverteilung des reellen Moleküls werden
dann auf Grund aller Valenzdispositionen, respektive aller
Eigenfunktionen ermittelt. In einer expliziteren Form könnte man also den

Grundgedanken von der chemischen Seite her etwa so charakterisieren :

Da ein einziges Valenzbild nicht genügt, um die Realität zu erfassen,
ordnen wir jeder Strukturformel eine Eigenfunktion t];,, <\i2, <\i3, fyn

zu und kombinieren diese linear um die sogenannte Eigenfunktion
militer Näherung ^ zu erhalten, die der Realität näher liegt als

irgendeine der <]>;.

Um diese Auffassung zu konkretisieren, betrachten wir das Beispiel
des Benzols als ein Sechselektronensystem. In dieser Näherung, die

(3)

«-^N r^N

Y Y3

^N
Y,

Yö

tu

Y8

Yi

Yi

r«
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häufig verwendet wurde, kann man insgesamt 15 Valenzdispositionen
konstruieren.

(Das Benzolskelett wurde nur der Anschaulichkeit halber
hinzugefügt.) Die entsprechende Linearkombination lautet dann

ty C1cK+C24l2 + C3c]'3+ - - +C15cJj15

Das Problem, das sich im Rahmen dieser Methode stellt, ist also die

Ermittlung der Eigenfunktion nullter Näherung ty. Dazu müssen
selbstverständlich die Funktionen i^ und die Koeffizienten c; der
Linearkombination bekannt sein; die letztere erfordert übrigens die
Kenntnis der Energie. Ist <\i bekannt, so läßt sich daraus im Rahmen
der Quantenmechanik die Elektronenverteilung des Benzols ermitteln,
die zwar durch keine Strukturformel mehr repräsentierbar ist, der
Realität aber näher liegt als irgendeine der verwendeten Valenzdispositionen

(3).
Wie man sieht, stößt man in dieser Methode wiederum auf den

Begriff der Mesomerie, allerdings in einer etwas verschiedenen Form.
Die Mesomerie erscheint hier als ein ausgesprochenes Rechenverfahren.

Daran wollen wir auch weiter festhalten. Unter Mesomerie-
methode verstehen wir also ein Rechenverfahren, das auf Grund der

Valenzdispositionen gestattet, die Eigenschaften und insbesondere die

Energie und Elektronenverteilung chemischer Moleküle zu ermitteln.
Es sei gleich bemerkt, daß die Schwierigkeit, die bei der experimentellen
Interpretation bezüglich der Auswahl der Valenzdispositionen
auftrat, jetzt von selbst hinfällig wird, da hier im Prinzip alle
Valenzverteilungen in Betracht zu ziehen sind (mit einer Einschränkung rein
mathematischer Natur, auf die wir noch eingehen werden).

Auch in der Mesomeriemethode haben sich verschiedene
Richtungen entwickelt, die selbstverständlich alle auf der Verwendung
von Valenzdispositionen und auf die Heitler-Londonsche Arbeit
axiert sind. Eine erste Variante ist das sogenannte Heitler-London-
Slater-Pauling (HLSP)-Verfahren (auch Valence-bond Verfahren
genannt) ; es ist ein ursprünglich von Slater entwickeltes und von
Pauling und Wheland verallgemeinertes Verfahren. Den Valenzverteilungen

entsprechende Moleküleigenfunktionen, wie z. B. <\il,

t|*2> <|*15 im Fall des Benzols, werden hier direkt aus
Einelektroneigenfunktionen aufgebaut; es kommen dabei nur Doppelbindungs-
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elektronen in Betracht (sechs im Fall des Benzols), während diejenigen
der einfachen Bindungen als lokalisierte Elektronen nicht in die

Rechnung eingehen. In dieser Approximationsform wurde das
Verfahren auf konjugierte Systeme angewendet. Da diese Variante auch
schon öfters beschrieben wurde, gehen wir hier nicht näher darauf ein.

Eine allgemeinere Form der Mesomeriemethode ist das sogenannte
Spinvalenzverfahren, das mit den Namen Heitler-Rumer-Weyl (HRW)
verbunden ist; damit wollen wir uns hier ausführlich beschäftigen.
Für das Folgende wird es nützlich sein, schon jetzt einige seiner
charakteristischen Züge festzuhalten.

Dieses Verfahren liegt unzweifelhaft unter allen in der Quantenchemie

verwendeten der Auffassung des Experimentalchemikers
über Molekülbildung am nächsten. In dem Spinvalenzverfahren gehen
bei der Energieberechnung nicht nur die Doppelbindungselektronen,
sondern überhaupt alle Valenzelektronen in die Rechnungen ein, was
ja der Vorstellung des Chemikers entspricht. Charakteristisch ist ferner,
daß die Moleküleigenfunktionen, die man den Valenzbildern zuordnet,
aus Atomeigenfunktionen aufgebaut werden, was wiederum der chemischen

Ansicht parallel läuft. Es wurde bereits erwähnt, daß die
Bindung zwischen den Atomen durch die Bildung von sogenannten
«Spinpaaren» realisiert wird. Wesentlich für die Methode ist der
algebraische Ausdruck des Valenzstrichbildes, die sogenannte
«Spininvariante». Dies wollen wir noch etwas präzisieren.

Schon in der zweiten Hälfte des letzten Jahrhunderts wurde von
verschiedener Seite auf die formale Ähnlichkeit zwischen der
chemischen Valenzformel und dem rein algebraischen Gebiet der
sogenannten binären Invarianten hingewiesen. Im Rahmen des Heitler-
Rumer-Weylschen Verfahrens ist es nun möglich, eine eindeutige
Zuordnung zwischen dem Valenzstrich und der binären Invarianten
aufzustellen, und auf diese Weise den geometrischen Valenzstrich
algebraisch direkt zu erfassen. Wir wissen aber, daß die Strukturformeln

nur approximativ die Realität darstellen und daß ihre
genauere Anpassung an die Wirklichkeit in einer geometrischen Form
aussichtslos ist. Die obige Zuordnung bietet aber eine Möglichkeit,
diese Vervollkommnung aus dem geometrischen in das algebraische
zu überwälzen, und sie dort durch Bildung einer Kombination aller
mathematisch repräsentierten Strukturformeln vorzunehmen. Dabei
werden die von den Strukturformeln getragenen Aspekte der Wirklich-
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keit (la part de vérité) gleichfalls auf die so gebildete mathematische
Größe überwälzt. Man kann somit erwarten, daß beispielsweise die

Ermittlung der Elektronenverteilung aus einer solchen Kombination
von Strukturformeln ein treueres Abbild der Wirklichkeit sein wird,
als irgendeine einzelne Valenzformel es sein könnte. Darin liegt für
die Chemie ein großer Vorteil der Mesomeriemethode und insbesondere
des Spinvalenzverfahrens gegenüber anderen.

Ein weiterer Vorteil ist beim Spinvalenzverfahren, daß die Ergebnisse

an Hand der Erfahrung direkt geprüft werden können, weil ja
hier alle Valenzelektronen in die Rechnungen eingehen.

Trotz ihrer Vorzüge für die Chemie wurde diese Arbeitsrichtung
bis heute nur relativ wenig verwendet, obwohl von verschiedener Seite
auf ihre Nützlichkeit hingewiesen worden ist. Einer der Gründe ist
wohl darin zu suchen, daß die ursprünglichen Arbeiten und die
zusammenfassenden Darstellungen x über dieses Gebiet in einer für den
Chemiker recht knappen Form gehalten werden, wobei auch gruppen-
und invariantentheoretische Ansätze auftreten, die dem Chemiker
selbstverständlich ferner liegen. Anderseits wird die Anwendung auf
größere Systeme, für die sich gerade der Organiker interessiert, durch
die Weitläufigkeit der numerischen Rechnungen erschwert; diese sind

zwar teilweise schon gemildert, aber bis heute konnten sie nicht ganz
überwunden werden.

Im Folgenden soll nun versucht werden, das Verfahren möglichst
einfach und konkret darzustellen, indem wir die rechnerischen Aspekte
in den Vordergrund stellen, und die Methode an Hand von vollständig
berechneten Beispielen illustrieren. Im weiteren soll auch die Ermittlung

der Elektronenverteilung organischer Moleküle angegeben werden.
Um die Rechnungen wenigstens teilweise zu erleichtern, geben wir in
einem Anhang auch die numerischen Werte der Skalarprodukte aller
Systeme, bestehend aus 4 und 5 Atomen, an. Im ersten Kapitel findet
man ferner diejenigen Angaben der Quantenchemie, die für uns von
Interesse sind.

1 W. Heitler, Handbuch der Radiologie, Bd. VI/2, 2. Aufl. (1934), (im folgenden
mit (HRW) bezeichnet).

M. Born, Ergebnisse der exakten Naturwissenschaften, Bd. 10 (1931).
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I. Grundlagen der theoretischen Chemie

2. Die Schrödingersche Wellengleichung

Der Zustand und das Verhalten eines molekularen Systems wird
im Rahmen der Wellenmechanik durch die Schrödingersche
Wellengleichung beschrieben. Wir wollen sie hier als etwas Gegebenes
betrachten. Für die Ableitung dieser Gleichung verweisen wir auf das

Literaturverzeichnis und insbesondere auf das leichtverständliche
Büchlein über «Elementare Wellenmechanik» von W. Heitier. Im
Fall eines Teilchens kann die zeitabhängige Wellengleichung folgendermaßen

geschrieben werden:

h ".¦*--£.? «87t2m p 2ttì et

wo h die Plancksche Konstante, m die Masse des Teilchens, A den

Laplaceschen Operator, Ep die potentielle Energie des Teilchens, Y die
Wellenfunktion, i die imaginäre Einheit und t die Zeit repräsentiert.
Den Klammerausdruck kann man als den sogenannten Hamilton-
Operator H auffassen, der auf die Funktion Y wirkt.

/7C1 ot

Wir erinnern daran, daß man unter einem Operator eine Rechenvorschrift

versteht, um aus einer gegebenen Größe eine andere abzuleiten.
Wichtiger ist für uns aber eine zweite, die zeitunabhängige Schrö-

dinger-Gleichung. Diese entsteht aus (1), indem man die
Wellenfunktion in der Form eines Produktes

-—Ft (2)
T (x y z t) <], (x y z) e h v '

schreibt, wo E die Energie und <\i eine nur von den Koordinaten
abhängige Funktion darstellt. Man erhält auf diese Weise die Gleichung

A<1< + ^(E-EPH 0 (3)
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oder unter Verwendung des Hamilton-Operators die vereinfachte Form
H <]j E (Jj (3a)

Von den Lösungen <]; dieser partiellen Differentialgleichung kommen
allerdings nicht alle in Betracht. Auf Grund der sogenannten
Randbedingungen kommen nur solche Funktionen <\i als Lösungen der
Schrödingerschen Gleichung in Betracht, die überall stetig, eindeutig
und endlich sind. Solche Funktionen existieren aber nur für ganz
bestimmte Werte der Energie E, nämlich für die sogenannten Eigenwerte

der Differentialgleichung. Die zu den Eigenwerten gehörenden
Funktionen nennt man Eigenfunktionen.

Es kann nun vorkommen, daß in einem Problem zu jedem Eigenwert

nur eine Eigenfunktion gehört. In diesem Fall bezeichnet man
den Eigenwert als einfach und den Zustand als nicht entartet. Wenn
zu einem Eigenwert mehrere Eigenfunktionen gehören, so sagt man,
daß das System entartet ist und der Eigenwert ein mehrfacher Eigenwert

ist.
Die zeitunabhängige Schrödinger-Gleichung bestimmt die stationären

Zustände des Systems, d. h. die erlaubten Energiewerte E
entsprechen der Energie des Teilchens im stationären Zustand.

Eine wichtige allgemeine Eigenschaft der Eigenfunktion ist ihre
Orthogonalität : Zwei Eigenfunktionen <\in und <\im, die zu verschiedenen

Eigenwerten gehören, genügen der folgenden Orthogonalitätsrelation

J>n +m dT 0 (4)

Hier ist vorausgesetzt, daß die Eigenfunktionen reell sind; für uns
kommen nämlich nur solche in Betracht. Die Eigenfunktionen der
Schrödinger-Gleichung sind nur bis auf eine Konstante bestimmt, über
die man frei verfügen kann. Diese Konstante wird im allgemeinen so

gewählt, daß die folgende sogenannte Normierungsbedingung erfüllt
ist

/•VdT-1 (5)

Die so bestimmte Eigenfunktion nennt man normiert.
Wichtiger als die Gleichungen (1) und (3) ist für unsere Zwecke die

verallgemeinerte Gleichung von Schrödinger, gültig für ein System
von n Massenpunkten. Sie lautet
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rfïHi(^ + 4 + riV + (E~Ep)*"0 (6)

i l

Hier bedeutet m; die Masse und x,, y;, z; die kartesischen Koordinaten
der iten Partikel. E ist die totale Energie und Ep die potentielle Energie
des Systems bestehend aus n Partikeln. Der Ausdruck

n n
V A. 6 - "S f— + — + —U^ lV ^ \cJxj2 eyi2 6z;2 / V

i=l i=l

ist der Laplacesche Operator in einem 3n-dimensionalen Raum, wobei
die Eigenfunktion sich auf denselben Raum bezieht.

Auch die allgemeine Schrödinger-Gleichung (6) läßt sich durch die
vereinfachte Gleichung

H(Jj - E<> (7)

ausdrücken, insofern der Hamilton-Operator, der Eigenwert und die

Eigenfunktion entsprechend verallgemeinert sind.

3. Lösung der Wellengleichung durch Separation der Variablen

Bekanntlich läuft die wellenmechanische Behandlung chemischer
Systeme auf die Bestimmung der Eigenwerte und Eigenfunktionen
des Systems aus. Während die Wellengleichung (3) im Fall eines

Elektrons, wie es beim Wasserstoff vorliegt, noch streng lösbar ist,
stößt die Lösung des Mehrkörperproblems in der Wellenmechanik
auf nicht zu überwindende Schwierigkeiten. Das ist weiter gar nicht
erstaunlich, wenn man bedenkt, daß die exakte Behandlung des

allgemeinen n-Körperproblems auch in der klassischen Mechanik noch
heute ein ungelöstes Problem darstellt. Man ist somit gezwungen, die
allgemeine Gleichung (6) durch Näherungsverfahren zu lösen.

Obwohl die allgemeine Gleichung (6) exakt nicht lösbar ist, tritt
häufig der Fall auf, daß die Schrödinger-Gleichung der einzelnen
Teilchen des Systems bekannt ist, also daß die Eigenwerte und
Eigenfunktionen des einzelnen Teilchens bekannt sind. In solchen Fällen
verfährt man so, daß man die Wechselwirkung der Teilchen zunächst
vernachlässigt. Die Lösung der Schrödinger-Gleichung des verein-
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fachten - jetzt aus ungekoppelten Teilchen - bestehenden Systems,
läßt sich dann als Lösung der Wellengleichung der einzelnen Teilchen
betrachten. Die vernachlässigten Wechselwirkungen können dann

nachträglich mit Hilfe der sogenannten Störungsrechnung berücksichtigt

werden.
Betrachten wir also ein System bestehend aus mehreren Teilchen

2Ai++^(E^Ep)+ 0 (6a)

i=l

(z. B. aus mehreren Elektronen in einem Kernfeld). Vernachlässigen
wir die Wechselwirkung zwischen den Teilchen, so kann die potentielle

Energie der Gleichung (6a) als eine Summe von Funktionen
dargestellt werden, die nur von den Koordinaten je eines Teilchens
abhängen, d. h.

Ep Epl (x, y, z,) + Ep2 (x2 y2 z2) + + Epn (xn yn zn) (8)

Die Schrödinger-Gleichung des aus ungekoppelten Teilchen bestehenden
Systems kann dann mit der Wellenfunktion

¦J* <l*i (xi yi zi) «1*2 (x2 Yz z2) • • • Ì>n (xn yn Zn) (9)

und mit der folgenden Zerlegung der Gesamtenergie befriedigt werden.

E Ei + E2 + + En (10)

Führen wir nämlich die Ausdrücke (8), (9) und (10) in die
Wellengleichung (6a) ein und dividieren mit <\>l ^2 J>n so erhält man

(11)
Al(k A2<Ji, An+n 87t2m
—i— + —r— + • • • + —r—- + -y-f- LEj + E2 + + En — (Kpl + Ep2 + + Epn)J 0

Yi Y2 yn n

Diese Gleichung kann befriedigt werden, wenn die einzelnen
Gleichungen

Ai+! + Tjr (E* - ep>) +* °

87r2m,„ _ n
(12>

A2 + 2 + -^T" (E2 ~ EP2) +2 0

gelten. Somit kann z. B. das Problem eines Atoms mit n Elektronen
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auf n Einelektronenprobleme zurückgeführt werden. Die Funktion (9)

repräsentiert dann eine rohe Näherung der Lösung des betrachteten
Problems.

Als Illustration dieser Approximationsrechnung soll das Beispiel
des Heliumatoms erwähnt werden. Gemäß Gleichung (6a) haben wir
im Falle des Heliumatoms bei Vernachlässigung der Kernbewegung,
d. h. also bei ruhendem Kern die Schrödinger-Gleichung

(13)
d2<l> d2i> c2<li d2^ e2^ 82<\> 87T2m / Ze2 Ze2 e2 \

FxF2
+

IfyF2
+ "ëz? + FF/ + 6yF + FtF2 +

h2 \
+ "r? +

~FF ~~~FF2) * ~

Hier sind also x^Zj und x2y2z2 die rechtwinkligen Koordinaten der
beiden Elektronen, m die Masse des Elektrons, e die positive Elementarladung,

E die Gesamtenergie des Atoms, Z die Kernladungszahl,
t1 und r2 sind die Abstände der Elektronen vom Kern und r12 der
Abstand zwischen den beiden Elektronen. Die potentielle Energie ist

7P2 7P2 p2E„=-— -±F + F- (14)P rl r2 r12

wobei -Ze2/rx die potentielle Energie des ersten und -Ze2/r2 die des

zweiten Elektrons ist und e2/r12 die potentielle Energie der Wechselwirkung

der beiden Elektronen darstellt. In den beiden ersten Fällen
haben wir selbstverständlich mit einer Anziehung, im letzten Fall mit
einer Abstoßung der Elektronen zu tun. Ausführlicher geschrieben,
ergibt sich für die potentielle Energie des Heliumatoms, falls der Kern
im Ursprung eines rechtwinkligen kartesischen Koordinatensystems
liegt, der Ausdruck

2e2 2e2 e2

ep-
V'x12 + y12 + z12 Vx22+y22 + z22 y'(x2-x1)2 + (y2~y1)2 + (z2-z1)2

Die Kernladung Ze wurde oben in einer allgemeinen Form
geschrieben, so daß die Gleichung (13) auch für heliumähnliche Systeme
wie z. B. das einfach ionisierte Lithiumatom gelten wird.

Das Wechselwirkungsglied -e2/r12 der beiden Elektronen spielt in
Gleichung (13) die Rolle eines Störungsgliedes. Wird es nämlich
vernachlässigt, so können die zwei Elektronen als unabhängig voneinander
betrachtet werden. Man erhält also zunächst
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A^ + A^o + ^^ + ^ + ^^O (15)

wo Ax und A2 Laplacesche Operatoren darstellen, die sich auf das erste
und zweite Elektron beziehen und <|i° die ungestörte Wellenfunktion
ist. Nach (9) kann die Lösung dieser Gleichung in den Variablen des

ersten und zweiten Elektrons separiert werden, d. h.

y10 (xi yi zi x2 y2 z2) <|*î (xi yi zi) <\>°2 (x2 y2 z2) (9a)

wo <p° un<i 'l'" ^e ungestörten Funktionen der Elektronen 1 und 2

sind. Führt man (9a) in die Gleichung (15) ein, so erhält man nach
Division mit ^ dy° :

¥+*tf+!Ê*(—"?£)-
Zerlegt man ferner E° gemäß (10) in die Bestandteile E, + E2, so

wird (16) durch die beiden Gleichungen

A^^^+f)^«

befriedigt. Diese sind aber die Gleichungen des Wasserstoffatoms, die
als bekannt betrachtet werden können. Der einzige Unterschied
besteht darin, daß hier die Kernladungszahl Z größer ist. Die
Eigenfunktion des Wasserstoffatoms im Grundzustand ist gegeben durch

wo al den ersten Bohrschen Radius repräsentiert. Für die nicht
gestörte Eigenfunktion des Heliumatoms erhalten wir also

Z3 _Z_(ri+r2)
ï \, a, j

Die Gesamtenergie eines Elektrons des Heliumatoms im
Grundzustand kann folgendermaßen ausgedrückt werden:

2-n:2me4Z2
E _

Z.1Z me z.
_ RhcZ2
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wo R die Rydbergsche Konstante und c die Lichtgeschwindigkeit
repräsentiert. Das Produkt -Rhc - 13,6 eV entspricht der Energie
des Elektrons im Wasserstoffatom. Die Energie der beiden Elektronen
im Heliumatom ist dementsprechend gleich -8. 13,6 eV - 108,8 eV.
Der Experimentalwert der Energie, die notwendig ist, um die beiden
Elektronen des Heliumatoms zu entfernen, ist aber bloß 78,7 eV. Dieser
große Unterschied in den zwei Werten ist natürlich auf die
Vernachlässigung der Abstoßung der beiden Elektronen zurückzuführen.

4. Störungsrechnung

Selbstverständlich ist der erhaltene Energiewert des Heliums noch
viel zu grob, und es fragt sich, wie man ihn noch verbessern könnte.
Wie bereits erwähnt, ist die Schrödinger-Gleichung in den meisten
Fällen nicht exakt lösbar, so daß man gezwungen ist, die Energie auf
Grund von Näherungsmethoden zu ermitteln. Ein solches Verfahren
ist die sogenannte Störungsrechnung, die wir hier angeben wollen,
soweit sie für uns in Frage kommt.

Es kann vorkommen, daß ein Problem zwar exakt nicht lösbar ist,
aber nicht sehr verschieden ist von einem bereits gelösten. Wichtig
ist für uns der Fall, daß das ungelöste Problem durch eine kleine
Abänderung der potentiellen Energie, die man dann als Störung
betrachten kann, aus dem bekannten hervorgeht. In unserem Fall des

Heliumatoms z. B. ist die potentielle Energie (14) des zu lösenden

gestörten Systems

Ep - (- Z-f - ^2) + FF
Ep + XEp (14a)

\ rl r2 / 'l2

wo Ep die ungestörte potentielle Energie des bekannten Problems,
Ep das Störungsglied der potentiellen Energie und X einen willkürlichen
Hilfsparameter repräsentiert. Für X o geht dieser Ausdruck in die
potentielle Energie des bekannten Problems über. Ist der
Störungsparameter hinreichend klein, so kann man zur Berechnung der Eigenwerte

und Eigenfunktionen eine Störungsrechnung entwickeln.
Betrachten wir also die Schrödinger-Gleichung eines exakt nicht

lösbaren Problems (z. B. das Heliumatom)

A*k + ~ (Ek - E»p - XEy fe 0 (17)
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Die entsprechende Gleichung im ungestörten Fall ist dann

87tfm
IFA« + ^T (EJ - Ep) «J4 0 (18)

deren Eigenwerte und Eigenfunktionen als bekannt vorausgesetzt
sind. Der Index o soll den ungestörten Zustand andeuten. Ferner
nehmen wir an, daß das System nicht entartet ist, d. h. zu jedem
Eigenwert gehört nur eine Eigenfunktion

E°, E°, ...,Eg,
*?. Vz *K. •¦¦

Da die Störung der potentiellen Energie in (17) im Verhältnis zur
ursprünglichen in (18) als klein vorausgesetzt ist, kann man annehmen,
daß sich die Eigenwerte und Eigenfunktionen von den entsprechenden
des nicht gestörten auch nur wenig unterscheiden werden. Es liegt
also nahe, die unbekannten Eigenwerte Ek und Eigenfunktionen <\ik

nach steigenden Potenzen von X zu entwickeln. Wir schreiben folglich

Ek Eg + XEi + X2Ey + (19)
+k « + Hi + ^k + • • • (20)

wo Ek, Ek, Störungsglieder der Energie und <]>k, <\>k, diejenigen der

Eigenfunktionen von erster, zweiter usw. Ordnung sind. Wir werden
hier nur Glieder nullter und erster Ordnung in Betracht ziehen.

Führen wir nun (19) und (20) in die Gleichung (17) ein, so erhält man

A<K + XA44 +^ (Eg + XEk - E» - XEp) (« + X<|4) - 0

Diese Gleichung muß nun für jeden Wert des Parameters X erfüllt sein,

was nur dann möglich ist, wenn die Koeffizienten der Potenzen von X

einzeln verschwinden. Sie zerfällt somit in die beiden Gleichungen

"*7t2m

37t2m 8K2m
A44 + -j-r (E£ - Ep) 44 -j^- (Ep

87t2m/T,„ „„, 87T*m,
*21'

Die erste ist der Koeffizient von X° und ist identisch mit der
Schrödinger-Gleichung des ungestörten Systems, die zweite entspricht X1,
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während der Koeffizient von X2 gemäß Voraussetzung vernachlässigt
ist.

Die Gleichung (21) ist eine inhomogene Differentialgleichung. Nach
der Theorie der Differentialgleichungen besitzt diese nur dann eine

Lösung, wenn die rechte Seite zur Lösung der entsprechenden homogenen

Gleichung orthogonal ist. Gleichung (21) hat also nur dann eine

Lösung, wenn ijik zur rechten Seite von (21) orthogonal ist, d. h.

/(EP-Ek) 44^ 0

Wegen der Normierung der ungestörten Eigenfunktionen können wir
schließlich schreiben

Ei-/EM4*dT (22)

Sind also die Eigenfunktionen nullter Ordnung <]£ sowie die Störung
der potentiellen Energie des zu lösenden Systems bekannt, so kann die

Störung erster Ordnung der Gesamtenergie Ek durch eine Integration
gewonnen werden. Im Fall des Heliumatoms - um den Ausdruck zu
konkretisieren - entspricht Ep der Wechselwirkung der beiden
Elektronen und i|k2dT i];^2dT1dT2 repräsentiert die Wahrscheinlichkeit,
die Elektronen 1 und 2 bzw. in den Volumelementen dzl und dx2

anzutreffen. Dementsprechend ist die Störung der Gesamtenergie Ek
gleich dem mit dieser Verteilungsfunktion ^k2dr gebildeten Mittelwert

des Störunspotentials Ep.
Die angegebene Störungsrechnung ist nicht ohne weiteres anwendbar,

wenn das ungestörte System entartet ist, d. h. wenn zu einem

Eigenwert Ek etwa n linear unabhängige Eigenfunktionen gehören:

E£: <|&.«2. ••- Hi Wn (23)

Beim nicht entarteten Fall ist die Situation eindeutig: läßt man die

Störung der potentiellen Energie immer kleiner werden, so geht die

gestörte Eigenfunktion in die entsprechende nicht gestörte über. Im
entarteten Fall dagegen geht die gestörte Eigenfunktion i}k zwar
auch in eine nicht gestörte über mit dem Unterschied, daß wir zum
Voraus nicht wissen können, in welche nicht gestörte Eigenfunktion
der Übergang erfolgt ; meistens geht <\>k gar nicht in eine bestimmte <Jiki,

sondern in eine Kombination der Funktionen (23) über. Da die Schrö-
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dinger-Gleichung eine homogene lineare Differentialgleichung ist,
bildet jede Linearkombination der Eigenfunktionen (23) auch eine

Lösung der ungestörten Gleichung für denselben Eigenwert Ek. Somit
können wir die einzelnen Funktionen (23) durch ihre Linearkombination

der Form

<Pk cMi + c2Yi2 + + cnYin (24)

ersetzen, wobei die Koeffizienten zunächst noch unbestimmt sind; es

wird sich aber zeigen, daß die folgende Störungsrechnung gleichzeitig
auch die Bestimmung der Koeffizienten c; in (24) ermöglicht. Wird nun
die Störung immer kleiner, so geht die gestörte Eigenfunktion in die

entsprechende Linearkombination (24) über. Die Eigenfunktionen
vom Typus (24) nennt man «Eigenfunktionen nullter Näherung». Es
sei noch ausdrücklich darauf hingewiesen, daß die Eigenfunktionen
(23), die zum selben Eigenwert Ek gehören, im allgemeinen nicht
orthogonal sind, was wir auch hier annehmen wollen.

Nach dieser Vorbereitung können wir die Überlegungen des nicht
entarteten Falles auf den entarteten übertragen, um die Störung des

Energiewertes zu bestimmen. Wir wollen aber diesmal die Entwicklung
wie das häufig geschieht, mit der einfacheren Form der Schrödinger-
Gleichung (3a) durchführen. Schreiben wir also die Gleichung für ein

gestörtes Problem in die Form

H <\, - E <Jj 0 (25)

und die entsprechende Gleichung des nicht gestörten Systems

Ho 4,0 _ Eo ^0 0 (26)

Wir nehmen ferner an, das der Hamilton-Operator H in der Form

H H° + XH' (27)

dargestellt werden kann. Für den gestörten Eigenwert Ek und die

gestörte Eigenfunktion <\ik setzen wir analog (19) und (20) die
Entwicklungen an :

Ek Eg + XEg + X2Eg' + (28)

+k <Pk + Hk + *2+k' + ¦ • ¦ (29)

Führt man nun die Ausdrücke (27), (28) und (29) in die gestörte
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Schrödinger-Gleichung (25) und vernachlässigt die Glieder zweiter
und höherer Ordnung, so erhält man die Gleichung

(H° + XH') (cpg + XYg) - (Eg + XEg) (9» + 14,') 0

(H°9g - Egçg) + X (H>g + H°44 - Eg9g - Eg+g) 0

Da die Koeffizienten von X° und X1 einzeln verschwinden müssen, ist
der erste Klammerausdruck identisch mit der ungestörten Schrödinger-
Gleichung, während die zweite Klammer die zu (21) analoge Gleichung
ergibt.

(H- - Eg) 44 (Eg - H') 9g (30)

Der Satz über Differentialgleichungen, den wir beim nicht entarteten
Fall bereits verwendet haben, führt dann in der erweiterten Form zum
folgenden: Damit das Problem eine Lösung besitzt, muß die rechte
Seite der Gleichung (30) zu allen Lösungen der homogenen Gleichung
orthogonal sein, d. h. muß folgendes Gleichungssystem erfüllt sein :

J"<Ki (H' -Eg)9k»dx 0

/*K2 (H' - Eg) 9g dx 0

(31)

jKn(H'-Eg)9gdx 0

Führen wir für <p£ den Ausdruck (24) ein, so erhält man

Cl_f>£i (H' - Eg) «|& dx + + c^g, (H' - Eg) <K„ dr 0

C1/-J&, (H' - Eg) Kn dx + + cnjWn (H' - Eg) «n dx 0

Für die hier auftretenden Integrale führen wir noch die folgende
Bezeichnung ein:

Ha fKi H'Kl dx
F (32)

Ail =JKiKldT

bei denen wir den Index k weglassen. Das Gleichungssystem (31) kann
somit in der einfacheren Form geschrieben werden

(H„ - EgA„) c, + (H12 - EgA12) c2 + + (Hln - EgAln) cn 0

(H21 - EgA21) c, + (H22 - EgA22) c2 + + (H2n - EgA2n) cn 0

(Hm - EgAnl) c, + (Hn2 - EgAn2) c2 + + (Hnn - EgAnn) cn 0
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Das ist ein homogenes lineares Gleichungssystem für die c; als
Unbekannten. Dieses System hat nur dann eine von Null verschiedene
Lösung, wenn die Determinante der Koeffizienten verschwindet

Hu —EgAn H,2 —EgA12 Hln —EgAln
H2i — EgA21 H22 — EgA22 H2n — EgA2n

Hm — EgAnl Hn2 — EgAn2 Hnn — EgAnn

0 (34)

Die Ausrechnung der Determinante liefert eine Gleichung n-ten
Grades in Ek. Die entsprechenden n Wurzeln

Egi, Eg2, Egn (35)

sind die Werte für die Störung erster Ordnung des k-ten Eigenwertes.
Diese sind reell in allen uns interessierenden Problemen.

Der k-te Eigenwert war ursprünglich entartet. Sind alle Wurzeln (35)
verschieden voneinander, so wird die Entartung durch die Störung
aufgehoben, weil jetzt n Eigenwerte vorhanden sind, nämlich

Eki Eg + Eg,
Ek2 Ek + Ek2 /jg\

Ekn - Eg + Egn

Führen wir einen Wert (35) in das Gleichungssystem (33) ein, so

können die c; bestimmt werden. Dadurch sind die Koeffizienten der
Eigenfunktion nullter Näherung (24) auch festgelegt. Wie man sieht,
gehört zu jedem Wert (35) ein Koeffizientensystem C; und
dementsprechend eine Eigenfunktion nullter Näherung cpk. Es sei schließlich
darauf hingewiesen, daß man aus (33) nur die Verhältnisse der c;
bestimmen kann; ein Koeffizient ist noch verfügbar. Dieser kann aber
durch die Normierung der Eigenfunktionen (24) festgelegt werden.

5. Austausch- und Spinentartung

Im Abschnitt 3 haben wir gesehen, daß die Schrödinger-Gleichung
eines aus n Teilchen bestehenden Systems ohne Schwierigkeit lösbar
ist, falls die Wechselwirkung zwischen den Teilchen vernachlässigt
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wird, also falls die Teilchen ungekoppelt sind. Die Lösung der
Schrödinger-Gleichung eines Atoms, bestehend aus n ungekoppelten
Elektronen, können wir also gemäß (9) in der Form

4», 4-a(l)<h,(2)<|»c(3) • • • Wn) (37)

schreiben. Hier haben wir die drei Ortskoordinaten jedes Elektrons
einfach mit der entsprechenden Zahl 1, 2, 3, n bezeichnet. Ferner
wurde der Quantenzustand der verschiedenen Elektronen mit a, b,

c, r repräsentiert, wobei diese Buchstaben an Stelle der drei
Quantenzahlen n, 1, im stehen.

Nun tritt aber bei diesem Problem wegen der Identität der Teilchen
d. h. der Elektronen eine Entartung auf. Die Energie des Atoms ist
nämlich symmetrisch in allen Elektronen, d. h. sie ist eine Funktion
von 1, 2, n, die sich nicht ändert, wenn man die Elektronen
permutiert. Somit ist die Eigenfunktion (37) nicht die einzige, die zum
selben Eigenwert gehört. Man erhält aus (37) noch weitere durch eine
Permutation der Elektronen. Z. B. ist

K K(2)K(1)K(3) - - - Wn) (37a)

auch eine Eigenfunktion zum selben Eigenwert. Es gibt also mehrere

Eigenfunktionen zum selben Eigenwert, weil die Elektronen voneinander

nicht unterscheidbar sind. Man spricht in solchen Fällen von
Austauschentartung.

Falls sich alle Elektronen in verschiedenen Quantenzuständen
a, b, befinden, gehören zu einem Eigenwert des Atoms n! linear
unabhängige Funktionen. Man sagt ferner, daß der betreffende Zustand
des Atoms (nl-l)-fach entartet ist. Wenn sich zwei oder mehrere
Elektronen im selben Quantenzustand befinden, so ist die Anzahl der

Eigenfunktionen auch entsprechend kleiner. Falls alle Elektronen im
selben Quantenzustand sind, z. B. im Zustand ipa. so ändert eine
Permutation an der Funktion (37) überhaupt nichts. In diesem Fall
gehört zu dem betreffenden Eigenwert nur eine Eigenfunktion.

Sind alle Elektronen in verschiedenen Quantenzuständen, so haben
wir also im ganzen n! Eigenfunktionen zum selben Eigenwert. Die
allgemeine Lösung erhält man durch Linearkombination aller Partial-
eigenfunktionen, nämlich

<l> c1ty1 + c24*2 + c34j3 + (38)
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Die Koeffizienten q können im Rahmen der Störungsrechnung
entarteter Systeme festgelegt werden. Das führt zunächst auf
verschiedene Kombinationen vom Typus (38) mit verschiedenen
Koeffizientensätzen. Die Erfahrung zeigt, daß für ein System von n gleichen
Teilchen unter allen Eigenfunktionen (38) nur zwei in Frage kommen
können: eine in allen Elektronen symmetrische und eine in allen
Elektronen antisymmetrische Eigenfunktion. Im ersten Fall sind alle
Koeffizienten gleich 1, wir haben also

vs SPW%(2)W)
p (39)

wobei die Summe über alle Permutationen P zu erstrecken ist; beim
zweiten ist der Koeffizient gleich + 1 für die geraden Permutationen
und — 1 für die ungeraden. Dies läßt sich in die Determinantenform

VA
*b(l)

K(2)
+b(2)

<J*a(n)

+b(n)

WI) W2) Wn)

(40)

schreiben. Bei der Vertauschung zweier Elektronen, bleibt die symmetrische

Funktion unverändert, während die antisymmetrische bloß ihr
Vorzeichen wechselt. Die anderen Eigenfunktionen vom Typus (38)
sind vom gemischten Symmetriecharakter, denn sie verhalten sich bei

Vertauschung gewisser Elektronen symmetrisch, bei anderen
antisymmetrisch. Diese kommen für uns nicht in Betracht.

Bei einem System von zwei Elektronen kommen also erfahrungsmäßig

nur die symmetrische

vs K(i)K(2) + K(2)K(i) (39a)

und die antisymmetrische Funktion

•Va(l) K(2)

K(i) K(2)
yA <l*a(l)<l*b(2)-<|*a(2)<|*b(l)

(40a)

in Betracht. Dies ist übrigens auch aus theoretischen Gründen zu
fordern.

Nach der Quantenmechanik repräsentiert nämlich <\>2dz tj^d-^d-r^
im Fall zweier Elektronen die Wahrscheinlichkeit, daß man das Teilchen

1 im Volumelement dxx und das Teilchen 2 im Volumelement
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d-r2 gleichzeitig antrifft. Da die zwei Elektronen sich nicht
unterscheiden lassen, muß notwendigerweise die Wahrscheinlichkeit, daß

man die Elektronen 1 und 2 respektive in d-^ und d-r2 simultan
antrifft, gleich der Wahrscheinlichkeit sein, die Elektronen 2 und 1

beziehungsweise in d-t^ und d-r2 gleichzeitig anzutreffen. Eine Messung
ermöglicht nämlich nur die Wahrscheinlichkeit zu bestimmen, daß
ein Elektron in dxx und das andere in dx2 vorhanden ist; welches
Elektron im ersten und welches im zweiten Volumelement sich befindet,
kann aber physikalisch nicht festgestellt werden, weil ja die beiden
Teilchen sich nicht unterscheiden lassen. Es muß also notwendigerweise

42 (1,2) 4,2 (2,1) (41)

sein, d. h. das Quadrat des Betrages der Eigenfunktion muß invariant
sein bei der Vertauschung der Elektronen. Diese Bedingung wird aber

nur von einer symmetrischen oder antisymmetiischen Eigenfunktion
erfüllt. Aus (41) folgt nämlich

+(1.2) - +(2,1)
oder (42)

4,(1,2) =-Y(2,i),

was im Einklang mit den Funktionen (39a) und (40a) steht. Dieses

Ergebnis gilt auch allgemein: Wenn das System aus n Elektronen
besteht, muß die Aufenthaltswahrscheinlichkeit der Teilchen bei der

Vertauschung zweier Elektronen invariant bleiben. Diese Bedingung
wird aber auch im allgemeinen Fall nur von den symmetrischen und
antisymmetrischen Eigenfunktionen erfüllt.

Von den n! Eigenfunktionen, die wir ursprünglich unserem System,
aus n Elektronen bestehend, zugeordnet haben, bleiben also nur mehr
zwei übrig. A priori ist es nicht möglich zu sagen, welche der beiden
Funktionen (39) oder (40) dem Problem besser entspricht. Um das zu
entscheiden, müssen wir auch den Spin des Elektrons berücksichtigen.

Es wurde bisher angenommen, daß der Zustand des Elektrons durch
seine Koordinaten und die entsprechenden Impulse bzw. Quantenzahlen

n, 1 und m1 vollständig beschrieben ist, d. h. daß man das

Elektron als einen Massenpunkt ansehen darf. Die Erfahrung zeigt
aber, daß diese Vorstellung nicht zutreffend ist. Die Eigenschaften
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eines Elektronensystems können nur dann ganz erfaßt werden, wenn
man dem Elektron wie einem Kreisel eine Eigendrehung zuordnet.
Sein Rotationszustand ist durch die einzige Quantenzahl s %
festgelegt. Der Eigendrehimpuls oder Spin des Elektrons hat den einzigen

Wert 2jT (genauer 1/S(s+ 1)5-¦)• Beim Vorhandensein eines Feldes in
der Richtung der z-Achse orientiert sich der Elektronenkreisel zu
diesem Feld. Die entsprechende magnetische Quantenzahl hat
allerdings nur die zwei Werte ms + y2. Die z-Komponente des Spindrehimpulses

ist + 2 2~ ¦ Diese entsprechen den zwei Drehungsmöglichkeiten

um die Drehachse oder den zwei Einstellungsmöglichkeiten
der Drehachse. Häufig bezeichnet man s + % und ms + % selbst

als Spindrehimpuls bzw. z-Komponente des Spindrehimpulses (in j-
Einheiten ausgedrückt).

Es ist oft nützlich, den Spin des Elektrons durch eine Eigenfunktion
zu beschreiben. Einem Elektron kann man ja zwei Spinzustände
zuordnen. Wir führen deshalb zwei Funktionen a (co) und ß (co) ein,
die den Werten + % und — % der Spinkomponenten entsprechen.
Man kann also sagen, daß jede Eigenfunktion durch den Spin in zwei
Funktionen aufgespalten wird, nämlich

4-! 4-(xyz).<x(co)
+2 <Kxyz).ßH * >

Die Spinvariable co kann die Orientierung des Elektrons repräsentieren,

ihre Natur ist aber für unsere Zwecke belanglos. Wichtig ist
für uns dagegen, daß die Spinfunktionen orthogonal zueinander sind,
denn die beiden Zustände entsprechen ja in einem Magnetfeld
verschiedenen Energien

fa(co)ß(co)dco 0 (44)

Wir nehmen ferner an, daß sie normiert sind

fa2(co)dco 1 Jß2(to)dco 1 (45)

Nun sind wir soweit zu entscheiden, welche der Eigenfunktionen
(39) oder (40) für uns in Frage kommt. Wir wollen diese Auswahl am
Beispiel von zwei Elektronen des Heliumatoms durchführen. In diesem
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Fall erhält man die vollständigen Eigenfunktionen, die den Funktionen
(43) entsprechen, durch Kombination von (39a) und (40a) mit den im
nächsten Kapitel angegebenen Spinfunktionen, von denen (7d)

antisymmetrisch, die übrigen symmetrisch sind. Durch das Auftreten
des Spins bekommt man somit insgesamt die 8 Eigenfunktionen (46)

statt zwei. Wir haben hier neben der gewöhnlichen Austauschentartung

noch mit einer sogenannten Spinentartung zu tun.

[4a(i)K(2) + K(2)K(i)] • «(i)«(2)
N*a(l)<l<b(2) + <M2)+b(l)] • ß(l)P(2)
M*a(l)<l*b(2) + 4*a(2)4*b(l)] [«(l)ß(2) + a(2)ß(l)]
[*»(l)«h,(2) - +a(2)*Yb(l)] [«(l)ß(2) - a(2)ß(l)]

(46)

[^(1)^(2) + +a(2)4b(l)] [a(l)ß(2) -a(2)ß(l)]
:+«(l)+b(2) -*ra(2)*Yb(l)]a(l)«(2)
[+.(l)*b(2)-+a(2)+b(l)]ß(l)ß(2)
[+a(l)K(2) - 4a(2)K(l)] [a(l)ß(2) + a(2)ß(l)]

Die ersten vier sind symmetrisch, die anderen antisymmetrisch.
Falls man die Wechselwirkung der Elektronen in Betracht zieht,

gehören die Linearkombinationen (39a) und (40a) zu verschiedenen

Eigenwerten. Wegen der Spinstörung sollten ferner zu den <]>s und <\iA

je vier Einzelniveaus gehören. Experimentell findet man aber keine
4-fachen Terme. Es ist bekannt, daß das Termschema des Heliums
in ein Singulettsystem mit einfachen und ein Triplettsystem mit
dreifachen Termen auftritt. Diese Erfahrungstatsache läßt sich nur
so deuten, daß in der Natur entweder nur die symmetrischen oder nur
die antisymmetrischen Gesamteigenfunktionen (46) realisiert sind.
Eine explizite Rechnung zeigt nun, daß der zu <\>s gehörige Term höher
liegt als derjenige von <\)A (durch die Spinstörung bedingter Unterschied

kann hier vernachlässigt werden). Nach der Erfahrung liegen
aber die Singuletterme höher als die Tripletterme. Daraus folgt bei
Beachtung von (46), daß in der Natur nur die antisymmetrische
Gesamteigenfunktion realisiert ist.

Dieses wichtige Resultat läßt sich aber verallgemeinern. Die
Erfahrung zeigt, daß bei einem System bestehend aus mehreren Elektronen

nur solche Zustände in der Natur realisiert sind, für welche die

Orts-Spin-Eigenfunktion in allen Elektronen antisymmetrisch ist. Das
ist das bekannte Paulische Ausschließungsprinzip. Die entsprechenden
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antisymmetrischen Eigenfunktionen können in der Form (40)
geschrieben werden, falls man dort in den a, b, c,... auch die Spinquantenzahl

einschließt.
Von den ursprünglich vorhandenen n! Eigenfunktionen des n-

Elektronensystems verbleibt eine einzige : die antisymmetrische
Eigenfunktion (40).

II. Darstellung der Valenzformeln durch Eigenfunktionen

6. Atomeigenfunktionen

Wir sind nun soweit, die Konstruktion der Moleküleigenfunktionen,
die den Ausgangspunkt für die Ermittlung der Energie und Elektronenverteilung

chemischer Moleküle bilden, in Angriff zu nehmen.
Charakteristisch für die Spinvalenzvariante der Mesomeriemethode ist,
daß die Moleküle aus Atomen bzw. die Moleküleigenfunktionen aus

Atomeigenfunktionen aufgebaut werden. Unsere nächste Aufgabe
ist also, Atomeigenfunktionen zu konstruieren.

Wie wir gesehen haben, können die Eigenschaften eines Elektronensystems

nur dann vollständig erfaßt werden, wenn man jedem Elektron
einen Spin zuordnet. Somit werden die Eigenfunktionen eines Systems
von n Elektronen außer den Koordinaten noch von den n Spinvariablen

co1; co2, con abhängig sein; d. h. die Eigenfunktion (9) ist in
Wirklichkeit, falls die Wechselwirkungen zwischen den Elektronen
aufgehoben sind, von der allgemeineren Form

Wx, y. Zi Wi ; - - • xn yn zn un) ijjafx, y! z, Wl). +b(x2y2z2«2) /jn
Wxn yn Zn "n)

wo die c|;k(xi y, Zj coj) Funktionen der einzelnen Elektronen sind.
Die Buchstaben a, b, c, sind jetzt als Abkürzungen für die vier
Quantenzahlen n, 1, m1, ms gedacht.

Für die Konstruktion der Eigenfunktionen eines Atoms, bestehend

aus mehreren Elektronen, gibt es zwei Möglichkeiten. Bei der ersten
werden die Atomeigenfunktionen wie in (1) aus den vollständigen
Einelektroneneigenfunktionen aufgebaut. Diese kommt für uns nicht
in Frage. Bei der zweiten Möglichkeit konstruiert man zunächst die

nur von den Koordinaten der Elektronen abhängigen Atomeigen-
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funktionen und ergänzt sie mit den Spinfunktionen zu Gesamteigenfunktionen,

indem man beide Anteile miteinander multipliziert. Die
Aufspaltung der Gesamteigenfunktion des Atoms in zwei Faktoren
ist erlaubt, weil die entsprechenden magnetischen Wechselwirkungen,
die meistens sehr klein sind, vernachlässigt werden können. In der
Sprechweise des Bohrschen Modells bedeutet dies, daß die Koppelung
zwischen der Bahn der Elektronen und dem Spin vernachlässigt wird.
Man erhält also

(2)
4i(x, y, z, co,; .; xnynzncon) u(x, y, z,; x2y2z2; .; xn yn zn) tp(co„co2, .con)

Wenn wir ferner von den magnetischen Wechselwirkungen, die die
Elektronen infolge ihres Spins aufeinander ausüben, ebenfalls absehen,
so ist die Gesamtspinfunktion darstellbar als ein Produkt

<p (co,,co2, con) 9,(co,)92(co2) 9n(con) (3)

wo die cpi(coi) den in (I. 43) eingeführten Spinfunktionen a(coj) oder ß(co;)

entsprechen; für letztere werden wir auch die Bezeichnung <x(i) und
ß(i) verwenden, wobei i 1,2,3, n die Elektronen repräsentieren.

Die Anzahl der Eigenfunktionen, die wir unserem n-Elektronen-
system im Abschnitt 5 zugeordnet haben, wurde zunächst von n! auf
zwei und bei der Berücksichtigung des Pauliprinzips auf die einzige
antisymmetrische reduziert. Trotz dieser Vereinfachung kann man
aber durch Berücksichtigung der verschiedenen Spinfunktionen des

Atoms mehrere antisymmetrische Eigenfunktionen bilden. Betrachten
wir als Beispiel ein Atom bestehend aus zwei Elektronen. Zur Bildung
einer antisymmetrischen Eigenfunktion bieten sich zunächst zwei

Möglichkeiten:

¦+-i(1.2) us(l,2) 9A(1,2)
«MU) uA(l,2) <ps(l,2) ™

Das Pauliprinzip fordert nämlich nur, daß die Gesamteigenfunktion
des Atoms antisymmetrisch sein soll. Das kann aber hier auf zwei
verschiedene Arten realisiert werden. Die Koordinateneigenfunktion
us (1,2) kann symmetrisch sein und die Spinfunktion <pA (1,2) antisymmetrisch

oder umgekehrt; in beiden Fällen ist die Gesamteigenfunktion

antisymmetrisch. Die Frage ist nur, welche der beiden
Funktionen unserem Fall entspricht; für uns kommen nämlich nur solche

64



antisymmetrische Atomeigenfunktionen in Betracht, die
nachträglich zum Aufbau von Moleküleigenfunktionen verwendet werden
können. Um diese Frage zu beantworten, erinnern wir zunächst an die

Veranschaulichung des Spins durch Vektoren und an die Vektoradditionsregeln.

Beim Vorhandensein von mehreren Elektronen in einem Atom
kombiniert man die verschiedenen Spins zu einem Gesamtspin nach den

Vektoradditionsregeln: Den Spin eines Elektrons repräsentiert man
durch einen Vektor der Länge 1/2 (in — Einheiten ausgedrückt). Die

Spinvektoren zweier Elektronen sind dann so zu kombinieren, daß die

Beträge der resultierenden Vektoren ganzzahlig werden. Diese
Vektoren können dann mit dem Spinvektor eines dritten Elektrons so

zusammengesetzt werden, daß die Beträge der resultierenden Vektoren
halbzahlig werden, usw. Man erkennt, daß bei ungerader Anzahl von
Elektronen die Spinwerte ein ungerades Vielfaches von 1/2 sind, bei

gerader Zahl von Elektronen erhält man dagegen 0 oder ein gerades
Vielfaches von 1/2, d.h. S 1j2, 3/2,5/2,... bzw. 0, 1, 2, Zu jedem
Wert des Gesamtspins S gehören ferner 2S+1 verschiedene Spinzustände.

Diese entsprechen den Werten der Gesamtspinkomponente in
Richtung des Feldes

Ms - S, - (S - 1), - (S - 2), 0 S - 2, S - 1, S (5)

Diese Werte erhält man übrigens auch als Summe der Spinkomponenten
der einzelnen Elektronen, d.h.

Ms msl + ms2 + + msn (5a)

Ein durch S charakterisierter Term spaltet also maximal in 2S+1
Terme auf. Man bezeichnet Terme mit dem Spindrehimpuls oder

Spinmoment S 0, 1/2, 1, 3/2, als Singulett-, Dublett-, Triplett-
usw. Terme. Allgemein nennt man 2S+1 die Multiplizität.

Im Fall des Heliumatoms können wir bei der Kombination der

Spinvektoren zwei Fälle unterscheiden: entgegengesetzt gerichtete
Spins und parallel gerichtete Spins. Im ersten Fall ist die Spinsumme
S 0, im zweiten Fall ist sie S 1. Es fragt sich nur, wie die Zuordnung
dieser Werte zu den Funktionen (4) vorzunehmen ist.

Beachten wir zu diesem Zweck, daß der Spinvektor mit dem
Gesamtspin S 0 gemäß der Vektoradditionsregeln nur eine Komponente
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Ms 0 hat, während zu dem Gesamtspin S 1 drei Komponenten
Ms +1, 0, —1 gehören. Anderseits kommen aber für die Spinfunktionen

eines Systems von zwei Elektronen die folgenden vier Möglichkeiten

in Betracht

a(l)a(2)
ß(l)ß(2)
a(l)ß(2)

[0>

ß(l)a(2)

Da die vollständigen Eigenfunktionen antisymmetrisch sein müssen,
dürfen nach (4) nur symmetrische und antisymmetrische Spinfunktionen

auftreten. Die ersten zwei Funktionen (6) sind bereits symmetrisch

bei der Vertauschung von a und ß, die anderen dagegen nicht;
man kann sie aber durch eine symmetrische und eine antisymmetrische
Linearkombination ersetzen. Wir erhalten somit statt (6) die folgenden
Ausdrücke :

(7)

Bei der Einführung der Spinfunktionen (I. 43) haben wir gesehen,
daß jedem a ein Spin mit der z-Komponente ms 1/2 und jedem ß

ein Spin mit ms —1/2 entspricht. Zu jeder Spinfunktion (7) gehört
also eine Gesamtspinkomponente Ms in der z-Richtung, die man nach
(5a) durch Addition der einzelnen Komponenten erhält. Diese sind
in (7) ebenfalls angegeben. Das sind aber die Werte, die wir schon oben
als Komponenten des Gesamtspins S 0 und S 1 erhielten.
Dementsprechend können wir auch die vier Spinfunktionen (7) zu den

Werten des Gesamtspins S 0 und S 1 zuordnen.
Man sieht unmittelbar, daß die Funktionen (7a) und (7c) zu S 1

gehören. Von den beiden anderen kann man zunächst nur sagen, daß
die eine zu S 1, die andere zu S 0 gehört. Um eine definitive
Zuordnung zu treffen, erinnern wir, daß die Funktionen, die zu S 1

und S 0 gehören, verschiedenen Energien entsprechen (Bei zwei
Wasserstoffatomen z. B. entspricht S 1 einer Abstoßung der Atome,
während S 0 die Molekülbildung charakterisiert). Die drei zu S 1

gehörigen Funktionen sind also entartet und man kann sie auch linear
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kombinieren, wobei alle Funktionen entweder symmetrisch oder
antisymmetrisch in den beiden Elektronen sein müssen. Nun sind aber
(7a) und (7c) bereits symmetrisch. Damit die Linearkombinationen
symmetrisch bleiben, muß die dritte Funktion ebenfalls symmetrisch
sein. Daraus folgt, daß die drei ersten Funktionen (7) zu dem Gesamtspin

S 1 und (7d) zu S 0 gehören.
Nun sind wir in der Lage zu entscheiden, ob die Spinfunktion bei

dem Aufbau der Atomeigenfunktionen in (4) symmetrisch oder
antisymmetrisch gewählt werden muß. Die hier betrachtete Theorie der
Spinvalenz beruht nämlich auf der Annahme, daß eine Bindung
zwischen zwei Atomen dann erfolgt, wenn ein Elektron des einen Atoms
mit einem Elektron des anderen Atoms ein Spinpaar bildet.
Molekülbildung zwischen zwei Wasserstoffatomen z. B. tritt
dementsprechend dann auf, wenn die Spins der beiden Elektronen sich
absättigen, d. h. sich so kombinieren, daß der Gesamtspin dem
Zustand S 0 entspricht. Diese Paarbildung der Elektronen entspricht
übrigens genau der Lewisschen Anschauung über die Bildung einer
homöopolaren Bindung, was wiederum den engen Zusammenhang
zwischen dem HRW-Verfahren und der in der organischen Chemie
herrschenden Auffassung der Bindungsverhältnisse besonders deutlich

zum Ausdruck bringt.
Es ist nun klar, welche Funktionen (4) für unsere Zwecke in Frage

kommen. Wir brauchen Atomeigenfunktionen, deren Spins im freien
Atom noch ungesättigt sind. Nach den oben gesagten kann das aber

nur von parallel gerichteten Spins gewährleistet werden, das heißt
von den symmetrischen Spinfunktionen.

Analoges gilt für Atome mit mehr als zwei Elektronen. Für die
Bildung der antisymmetrischen Eigenfunktionen eines Atoms mit
mehreren Elektronen kommen nur symmetrische Spinfunktionen,
deren Spins parallel gerichtet sind, in Betracht. Elektronen deren Spins
abgesättigt sind, wie z. B. im Kohlenstoffatom die Spins der beiden
Elektronen der K-Schale, werden einfach weggelassen. Man berücksichtigt

also nur die Valenzelektronen des Atoms. Die antisymmetrische
Atomeigenfunktion eines Atoms mit mehreren Elektronen besteht also
auch im allgemeineren Fall aus dem Produkt einer antisymmetrischen
Koordinateneigenfunktion und einer symmetrischen Spinfunktion.

+(1,2 n) uA(l,2 n) 9S (1,2 n)
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Die Anzahl der symmetrischen Spinfunktionen eines Systems von
n Elektronen ist gleich n-t 1. Die Gesamtzahl der Spinfunktionen für n
Elektronen ist zunächst nämlich gleich 2n. Nun gehören aber diejenigen
Kombinationen, die die gleiche Zahl von a und ß Werte haben, zur
selben Spinsumme. Wählt man von jeder einen Repräsentanten aus,
so bleiben n+1 Funktionen übrig. Im Fall von drei Elektronen z. B.
haben wir zunächst acht Spinfunktionen

oc(l)a(2)a(3)
a(l)a(2)ß(3) <*(l)ß(2)a(3) ß(l)a(2)a(3)
a(l)ß(2)ß(3) ß(l)a(2)ß(3) ß(l)ß(2)a(3)
ß(l)ß(2)ß(3)

Wenn wir von diesen jeweils einen Repräsentanten mit der gleichen
Anzahl von a und ß Werten auswählen, bleiben bloß die n+1 Funktionen
der ersten Kolonne übrig. Im allgemeinen Fall können wir also einem
Atom mit n gleichgerichteten Spins n+1 symmetrische Spinfunktionen
zuordnen. Allerdings sind diese teilweise Linearkombinationen von
Spinfunktionen, die die gleiche Zahl von a und ß Werte haben. Die
endgültigen Ausdrücke der symmetrischen Spinfunktionen können
in der Form

9n a(l)a(2) a(n)

9r sym -= a(l) a(r)ß(r + 1) ß(n)

\'(?)
(F

9o ß(l)ß(2) ß(n)

geschrieben werden. Wie bereits bemerkt, beschreibt a einen Spin
mit der z-Komponente ms +1/2 und ß einen Spin mit der Komponente
ms —1\2. Somit ist <pn eine Funktion bestehend aus lauter positiven
Spinwerten und <p0 aus lauter negativen. Das Zeichen sym bedeutet,
daß die Funktion symmetrisiert werden soll durch Vertauschung der

Argumente und Bildung von Linearkombinationen der Spinfunktionen ;

—= ist ein Normierungsfaktor.

Gemäß der Theorie der Spinvalenz wollen wir im folgenden
annehmen, daß sich jedes Atom in einem sogenannten S-Zustand
befindet, d. h. das Bahnmoment L 0 ist. Damit wird gleich ange-
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nommen, daß im Grundzustand des Atoms nur eine Eigenfunktion
vorhanden ist. Bei den Zuständen P, D, die den Bahnmomenten
L 1, 2 entsprechen, würde noch eine weitere Entartung, die
sogenannte Richtungsentartung, auftreten. Diese wollen wir, wie das
in der ursprünglichen Form der HRW-Theorie geschehen ist,
beiseite lassen. Die Berücksichtigung dieser Entartung würde nämlich
das ganze Bindungsproblem vom rechnerischen Standpunkt nur noch

komplizieren und den Zusammenhang der quantenmechanischen und
klassischen Valenztheorie nur verwischen. Nun liegt aber, wie bereits
erwähnt, einer der großen Vorteile des Spinvalenzverfahrens gegenüber

der Molekülbahnmethode z. B. gerade darin, daß der
Grundgedanke der klassischen Valenzchemie hier besonders gut zum
Ausdruck kommt. Deshalb wird die vereinfachte Annahme gemacht, daß
außer der Spinentartung keine anderen Entartungen vorliegen.

In Bezug auf das Kohlenstoffatom sei noch daran erinnert, daß
sein Grundzustand ein P-Zustand ist mit vier s-Elektronen und zwei

p-Elektronen, genauer gesagt ls22s22p2. Die vier s-Elektronen bilden
zwei Spinpaare mit abgesättigten Spins, während die zwei p-Elektronen
noch ledig sind. Das Atom besitzt also nur zwei Elektronen mit freien
Spins, d. h. das Kohlenstoffatom ist im Grundzustand nur
zweiwertig. Da dieses Atom in den organischen Verbindungen fast durchwegs

als vierwertig erscheint, wird man annehmen müssen, daß es in
Verbindungen im angeregten Zustand auftritt. Eines der s-Elektronen
geht dabei in ein p-Elektron über (1=0 geht in 1 1) und ferner
erfolgt eine Umklappung des Spins eines Elektrons, der Gesamtspin
wächst dabei von S 1 auf S 2; das Atom ist nun im Zustand 5S

mit vier ledigen Elektronen. Die Anregungsenergie des 5S-Zustands
ist übrigens bekannt, V 96 kcal/mol.

7. Moleküleigenfunktionen

Nun sind wir in der Lage, den Aufbau des Moleküls aus Atomen
näher zu diskutieren. Um die Wechselwirkungsenergie mehrerer
Atome in einem Molekül zu ermitteln, betrachten wir eine Reihe von
Atomen, die wir mit A, B, C, H bezeichnen wollen. Die Atomkerne
sollen unendlich schwer angesehen, d. h. im Raum fixiert gedacht
werden. Die Anzahl der Elektronen wird respektive durch na, nb nh

69



repräsentiert; ihre Gesamtzahl ist gleich na+nb+... +nh n. Die
Elektronen der abgeschlossenen Schalen werden hier nicht
berücksichtigt, ihre Spins sind ja abgesättigt. Die entsprechenden spinlosen
Eigenfunktionen sind dann

A: ua(l,2, ...,na)
B: ub(na + 1, na + 2, ...,na + nb)

H: Uh(na + nb+. + ng + 1, na + nb + + ng + nj,)

Die Elektronen sind hier durchgehend numeriert. Die Zahlen stehen
als Abkürzungen für die drei Ortskoordinaten der betreffenden
Elektronen.

Die Koordinatenfunktionen (9) müssen noch mit den symmetrischen
Spinfunktionen (8) ergänzt werden. Die vollständige Eigenfunktion
eines Atoms erscheint dann als Produkt der Koordinaten- und
Spinfunktionen (die magnetischen Wechselwirkungen wurden ja vernachlässigt)

ua(l,2,...,na) 9ra (10)

Es gibt natürlich im ganzen na +1 solche Produkte, weil das Atom
A ja na+l symmetrische Spinfunktionen besitzt; analoges gilt für die
Eigenfunktionen der Atome B,C,..., H, die Zahl ihrer Eigenfunktionen
vom Typus (10) ist respektive nb + l, nh+l.

Unser Zweck ist jetzt die Energie und die Eigenfunktionen des aus
Atomen aufgebauten Moleküls zu ermitteln. Wir sollten also eigentlich
die Schrödinger-Gleichung lösen, die diesem Molekül entspricht. Die
exakte Berechnung ist natürlich undurchführbar. Im Abschnitt 3

haben wir gesehen, daß die Schrödinger-Gleichung eines Systems,
bestehend aus mehreren Teilchen, lösbar ist, wenn die Wechselwirkungen
zwischen den Teilchen vernachlässigt werden. Die Eigenfunktion der
so vereinfachten Gleichung ist dann gemäß (I. 9) gegeben durch das

Produkt der Eigenfunktionen der einzelnen Teilchen und die Energie
ist nach (I. 10) gleich der Summe der Energien der einzelnen Teilchen.

Im gegenwertigen Fall können aber die Atomeigenfunktionen als

bekannt angesehen werden. Dann kann man die Gesamtheit A, B,
H als ein einziges System betrachten, deren Atome in solchen
Abständen voneinander sind, daß sich die Elektronen der verschiedenen
Atome praktisch nicht beeinflussen. Damit haben wir ein System vor
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uns, dessen Schrödinger-Gleichung nach den im Abschnitt 3 gemachten
Angaben lösbar ist oder besser gesagt.dessen Lösung bereits bekannt
ist; nach Gleichung (I. 9) ist sie durch das Produkt der Atomeigenfunktionen

(10) selbst gegeben

ua?ra • Ub9rb • • • uh?rh (n)

oder beispielsweise
(Ha)

ua(l,2, na) <p„(l,2, na) ub(na + l, na+nb) 9n(na + l, na+nb)
• • • Uh(na+ ¦ • • +ng + l, na+ +nh) 9n(na+ +ng+l na+ +nh)

In (IIa) haben wir der Einfachheit halber überall die Spinfunktionen
mit lauter positiven Spinwerten eingesetzt. Da das Atom A aber na+l,
das Atom B nb+l usw. das Atom H nh+l Spinfunktionen besitzt, gibt
es mehrere Eigenfunktionen (11) des ungekoppelten Systems;
insgesamt gibt es

g K + l)(nb + l)...(nh+l) (12)

Funktionen vom Typus (11).
Nun ist zwar (11) eine genäherte Funktion unseres Systems,

bestehend aus ungekoppelten Atomen, doch genügt sie dem Pauliprinzip
noch nicht, denn sie ist nicht antisymmetrisch in allen Elektronen.
Sie ist zwar antisymmetrisch in Bezug auf die Vertauschung zweier
Elektronen des Atoms A, ferner für die Elektronen des Atoms B usw.
nicht aber bezüglich der Vertauschung zweier Elektronen zwischen
verschiedenen Atomen. Eine antisymmetrische Funktion in Bezug auf
die Vertauschung aller Elektronen erhält man sehr leicht in folgender
Weise :

Im Abschnitt 5 haben wir bei der Besprechung der Austauschentartung

gesehen, daß die Eigenfunktion (I. 37) nicht die einzige
Lösung des aus n ungekoppelten Elektronen bestehenden Systems
ist. Wir erhielten durch Permutation mehrere Eigenfunktionen zum
selben Eigenwert, insgesamt n! Eigenfunktionen. Durch eine
Linearkombination aller dieser Partialeigenfunktionen, versehen mit den
Koeffizienten +1 und —1, je nachdem ob die Permutation gerade oder
ungerade ist, bekamen wir die antisymmetrische Gesamteigenfunktion.

Im Falle (11) entstehen die anderen Partialeigenfunktionen durch
Permutation der Elektronen der verschiedenen Atome; diejenigen
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Permutationen, die sich zwischen den Elektronen der einzelnen Atome
abspielen, sind bereits durchgeführt. Die Permutationen, die nur
Elektronen verschiedener Atome vertauschen, nennen wir Q. Ihre Zahl

ist gegeben durch —:—-^ —-. wo n die Gesamtzahl der Elektronenb b na nb! nh!
des ganzen Systems darstellt, vjq ist gleich +1 wenn Q eine gerade
Permutation ist, im anderen Fall —1.

Mit diesen Bezeichnungen kann die antisymmetrische Eigenfunktion,

bestehend aus der Linearkombination aller Partialfunktionen (11)

(mit einem bestimmten Produkt von Spinfunktionen), in der Form (13)

geschrieben werden

+ra. rb, * ¦ ¦ - ^-^FFF-^F 2,QQUaUb. .nh.9ra9rb. .^ (13)

Der Faktor vor der Summation ist der Normierungsfaktor. Im Fall
eines Systems z. B. von zwei viervalentigen und zwei zweivalentigen
Atomen, unter Heranziehung der symmetrischen Spinfunktionen <pn

für alle Atome, d. h. unter der Annahme, daß sämtliche Spins positive
Werte haben, erhalten wir für (13) den Ausdruck

+4,4,2,2= y/ü^[2! 2 yjQQ,1.(1,2.3.4) Ub(5,6,7,8) uc(9,10) (14)

ud(ll,12) 9+(l,2,3,4) 94(5,6,7,8) <p2(9,10) 92(11,12)

Die Zahl der antisymmetrischen Eigenfunktionen (13) ist dieselbe wie
diejenige der Funktionen (11), d. h. gleich (12). Damit sind die Lösungen

der Schrödinger-Gleichung des ungekoppelten Atomsystems
bekannt. Die Energie des ganzen Systems ist nach (I .10) gleich der
Summe der Energien der einzelnen Atome.

Beim Heliumatom haben wir gesehen, daß die Energie in dieser

Approximation noch viel zu grob ist. Das gleiche gilt selbstverständlich
auch hier. Um eine Verbesserung des Energiewertes zu erzielen, wird
man die Störungsrechnung des entarteten Falles auch hier anwenden
müssen. Die Eigenfunktion nullter Näherung erhält man durch
Linearkombination der g Funktionen (11). Die Säkulargleichung ist vom
Grad g. Wie man sieht, wird man auf diese Weise auf ein ziemlich
hochgradiges Problem geführt. Im Fall des Benzols z. B. hätte man
gemäß (12) ein Gleichungssystem bestehend aus

g (4 + 1) (4 + 1) (4+1) (4 + 1) (4 + 1) (4 + 1) (1 + 1) (1 + 1) (1 + 1) (1 + 1) (1 + 1) (1 + 1) IO6
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linearen Gleichungen. Es ist selbstverständlich, daß die rechnerische

Behandlung derartiger Probleme auch mit den modernsten
Hilfsmitteln völlig ausgeschlossen ist. Zum Glück kann dieses Problem noch

weitgehend reduziert werden. Es ist dabei bemerkenswert und von
großer praktischer Wichtigkeit, daß die Ausreduktion des Problems
vor der Aufstellung der Säkulargleichung erfolgen kann.

Um die Diskussion dieser Reduktion möglichst einfach zu gestalten,
soll sie an Systemen von einvalentigen Atomen verfolgt werden. Die
Verallgemeinerung auf mehrelektronige Atome bietet dann keine

Schwierigkeiten mehr.
Es sei nochmals betont, daß vom Standpunkt des Koordinatenanteils

in (13) ein System von n Atomen nur eine antisymmetrische
Funktion besitzt, die Entartung in (13) stammt ausschließlich vom
Spinanteil. Bereits für zwei einvalentige Atome haben wir die vier
Möglichkeiten

Wi =427lQÖua(1)ub(2)a(l)a(2)
12

Wo 77= 2 IQ Q ua(l) ub(2) a(l) ß(2)
V £

¦kt =.-^2^QÖua(l)ub(2)ß(l)a(2)

Wo=-|2*lQQua(l)ub(2)ß(l)ß(2)

Um die Energiestörung und die Eigenfunktion nullter Näherung zu
ermitteln, muß hier eine 4-reihige Determinante (I. 34) berechnet
werden. Bei einem System von vier einvalentigen Atomen haben wir
schon 16 Funktionen vom Typus (13) und demnach eine 16-reihige
Säkulardeterminante (I. 34). Die Zahl dieser Funktionen steigt auch
bei einvalentigen Atomen sehr rapid an. Nach den Angaben der zweiten
Kolonne in der Tabelle 2 kann man sich von der Größe dieses Anstieges
Rechenschaft geben. Wie man sieht, ist das Problem bereits bei 8

Elektronen praktisch unlösbar.
Um weiter zu kommen, betrachten wir das System von vier Atomen

mit je einem Elektron. Die Funktionen (13) sind von der Form

Wi,i)1=7^27)QQua(l)ub(2)uc(3)ud(4) «(l)«(2)a(3)a(4) (15)
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Die Spinanteile der 16 Funktionen sind in der Tabelle 1 angegeben,
wobei A das erste Atom mit dem Elektron 1, B das zweite Atom mit
dem Elektron 2 usw. repräsentieren. In der zweiten Kolonne findet
man die Spinverteilungen, die den 16 Molekülfunktionen (13)
entsprechen und in der letzten ist die zugehörige Summe der Spinkomponenten

angegeben.
Die Säkulardeterminante dieses Systems ist nach (I. 34) von der

Form

Hn —EAU H12 — EA12 H116 — EA, 16

H2, — EA21 H22 — EA22 H216 —EA216

H161-EA161 HI62-EA162 H^je-EA, 6 16

0 (16)

In den H;i und An haben wir nach (I. 32) die Eigenfunktionen (15)

mit den verschiedenen Spinanteilen der Tab. 1 einzuführen.
Jeder Wurzel von (16) entspricht nach der Störungsrechnung eine

Eigenfunktion, die eine Linearkombination der 16 Funktionen (15)
darstellt. Die Wurzeln von (16) entsprechen den Wechselwirkungs-
energien zwischen den Atomen, die bis jetzt vernachlässigt wurden.
Wenn die vier einvalentigen Atome ein gemeinsames System bilden,
so unterscheiden sich die verschiedenen Zustände des Systems durch
die Wechselwirkungsenergie und durch den resultierenden Spin. Zu
jedem Spinwert S gehören im allgemeinen mehrere Wechselwirkungsenergien

und mehrere Eigenfunktionen.
Bei der Berechnung der Determinante (16) tritt eine Vereinfachung

wegen der Orthogonalität (I. 44) der Spinfunktionen ein. Dies läuft
praktisch darauf hinaus, daß alle Elemente der Determinante (16)

verschwinden, welche in Hü und An zwei Eigenfunktionen enthalten,
deren Gesamtspinkomponenten Ms verschieden sind. Es entsteht
somit aus (16) - bei Beachtung der Tab. 1 - die Determinante (17),

wo alle Elemente außerhalb der Quadrate verschwinden. Es entstehen
also zwei einreihige, zweivierreihige Teildeterminanten und eine sechs-

reihige. Die ursprüngliche Gleichung (16) erhält man dann aus (17)
durch Multiplikation der Teildeterminanten, die entlang der Diagonalen
situiert sind. Um die Wurzeln von (16) zu berechnen, setzt man die
einzelnen Teildeterminanten gleich Null. Durch diese Operation wird
die Bestimmung der Energie der ursprünglichen Gleichung (16) auf
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(17)

eine Reihe von Gleichungen niedrigeren Grades zurückgeführt, was
natürlich eine wesentliche Vereinfachung der Rechnungen darstellt.

Aber noch eine weitere Vereinfachung kann erzielt werden. Wir
wissen nämlich, daß eine Bindung zwischen zwei Atomen dann auf-

Tabelle 1. Spinfunktionen des Systems von 4 Atomen mit je einem Elektron

A B C D -Ms

9im a X cc a + 2

9lU0 a a X ß + 1

91101 a y. ß a + 1

<Pl011 a ß a a + 1

"Pom ß a a a + 1

<Pl " <Puoo a oc ß ß 0

<P2 9l010 a ß oc ß 0

93 9oiio ß a X ß 0

?4 91001 a ß ß a 0

95 9oioi ß a ß a 0

96 9oon ß ß a a 0

9l000 a ß ß ß -1
9oioo ß a ß ß -1
9ooio ß ß a ß -1
9oooi ß ß ß a -1
9oooo ß ß ß ß -2

75



tritt, wenn die Spins der Elektronen beider Atome verschieden sind
und sich kompensieren um ein Spinpaar zu bilden. Dementsprechend
kommen für die Bindungen nur die Funktionen (15) mit den
Spinanteilen

9i,92,93,94,95,96 (18)

der Tab. 1 in Betracht, welche die gleiche Anzahl von Spinfunktionen
a. und ß enthalten, d. h. für welche Ms 0 ist. Für die Chemie ist dieser
Fall der wichtigste, die anderen können zunächst ganz weggelassen
werden. Bei der Energieberechnung unseres Systems genügt es also,
die sechsreihige Teildeterminante von (17) zu verwenden. In der dritten
Kolonne der Tab. 2 findet man die Zahl der Eigenfunktionen, die bei
größeren einvalentigen Systemen nach dieser Reduktion noch übrig
bleiben.

8. Die Spininvarianten

Obwohl die erzielte Vereinfachung im Abschnitt 7 beträchtlich ist,
bleiben die Rechnungen doch sehr weitläufig; nach der Tab. 2 muß
man für 8 Elektronen noch immer eine Determinante vom Grad 70

berechnen. Es wäre sehr vorteilhaft, wenn eine Reduktion noch vor
der Aufstellung der Säkulardeterminante erzielt werden könnte. Dies
ist nun tatsächlich möglich. Das Verfahren läuft im wesentlichen auf
die Bildung von geeignet gewählten Linearkombinationen von
Eigenfunktionen des Typus (18) aus, indem man eine Zuordnung zwischen
Valenzdispositionen der Chemie und Eigenfunktionen errichtet. In
der zusammenfassenden Darstellung (HRW) wird dieses Problem
sowie die Frage der Reduktion der Zahl der Eigenfunktionen, die im
Abschnitt 7 erzielt wurde, auf Grund von gruppen- und
invariantentheoretischen Überlegungen durchgeführt. Die Kenntnis dieser Zweige
der Algebra kann hier aber nicht vorausgesetzt werden. Wir wollen
deshalb die Zuordnung auf elementare Weise vornehmen, und begnügen
uns nachträglich, die Einführung des Begriffs der Spininvarianten
nach der genaueren Theorie kurz anzudeuten.

Wir knüpfen wieder an das obige System von vier Atomen mit je
einem Valenzelektron an. Die Verbindung der Atome durch Valenzstriche

führt auf die drei Valenzverteilungen (19), wo jeder Valenzstrich

aus später ersichtlichen Gründen mit einem Pfeil versehen ist.
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Die Richtung des Pfeiles ist an und für sich willkürlich, vorausgesetzt,
daß die einmal gewählten Richtungen für alle Operationen beibehalten
werden.

D

/ V

A D
<-

A D A

\F
V f

B /\C B C

%
C B

^3

(19)

Andere Valenzverteilungen gibt es hier selbstverständlich nicht.
Wir haben also einerseits drei Valenzdispositionen und anderseits die
sechs Eigenfunktionen vom Typus (18), zwischen denen eine
eindeutige Zuordnung zu konstruieren ist.

Vergleichen wir zu diesem Zweck die Valenzdisposition <\i1 mit den a

und ß Verteilungen der Funktionen (18) in Tab. 1 und insbesondere
die Situation des Atompaars A und B. In <\i1 sind die zwei Atome mit
einem Valenzstrich verbunden. Nach dem Spinvalenzverfahren tritt
eine Bindung dann auf, wenn die Spins der entsprechenden Elektronen
verschieden sind. Von den sechs Funktionen erfüllen für das Atompaar

A und B nur <p2, <p3, cp4, cp, diese Bedingung. Nur bei diesen können
sich dem Valenzstrich entsprechende Spinpaare bilden. Bei denselben
Funktionen können auch die Elektronen der Atome C und D ein Spinpaar

bilden, das dem Valenzstrich zwischen diesen Atomen entspricht.
Einen algebraischen Repräsentanten der Valenzdisposition <\i1 erhält
man, wenn der Koordinatenanteil zunächst weggelassen wird, durch
Kombination der vier Spinfunktionen cp2, 93, <p4, <p5 mit geeignet
gewählten Koeffizienten, d. h.

9 a2cp2 + a3cp3 + a4 <p4+ a59s (20)

Bei dem Zweielektronensystem in (7) gehören die drei symmetrischen
Spinfunktionen zu dem Gesamtspin S 1 und die antisymmetrische
zu S 0. Eine ähnliche Situation haben wir hier bei den
Spinpaarbildungen zwischen A, B und C, D. Die Linearkombination (20) muß
antisymmetrisch sein und ihr Vorzeichen ändern bei der Vertauschung
der Spinfunktionen a und ß. Vertauschen wir diese zunächst bei den
Atomen A und B. Die Funktion 9-, geht in 93 über und umgekehrt,
ferner geht 9,, in 95 über und umgekehrt. Man erhält also
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a2<p3 — a3<p2 — a4cp5 — a5cp4

Vertauschen wir anderseits die Spinfunktionen der Atome C und D,
so entsteht analog

<p — a2<p4 — a395 — a4q>2 — a593

Aus den Ausdrücken folgt, daß a2 a5 —a3 —a4 sein muß. Die
Kombination (20) kann unter diesen Bedingungen auch in der Form
(20a) geschrieben werden

9 92 - 93 — 94 + 9s (20a)

Wir sind jetzt soweit, die vollständige Linearkombination der
Funktionen <\>1010, <\>ono, ^i00i» 'r'oioi (m^ dem Koordinatenanteil
inbegriffen) und damit den mathematischen Repräsentanten (21) der
Valenzdisposition i\i1 anzugeben.

^r^f2^QQua(l)ub(2)uc(3)ud(4).a(l)ß(2)a(3)ß(4)

2 IQ Q ua(!) ub(2) uc(3) ud(4). ß(l) a(2) «(3) ß(4)
1

(21)
V41

-•"7=7 2 IQQua(]) ub(2) uc(3) ud(4).«(1) ß(2) ß(3) a(4)
V4!

+ 7>Jy 2 IQ Q "at1) ub(2) uc(3) ud(4). ß(l) a(2) ß(3) «(4)1

Durch analoge Überlegungen erhält man auch die Moleküleigenfunktionen,

die den Valenzdispositionen <\i2 und ^3 entsprechen. In (22)
sind diese in einer einfacheren Form mit den ausführlich geschriebenen
Indizes der C\iTa Tb angegeben.

4*1
2

[^IOIO — 4*0110 — +1001 + +0101]

+2
2

t+1100 " +1010 ™ Voi *< +0011] (22)

+3=2 [+1001 ~ +0011 — +1100 + 4*oiio]

Nach Heitler-Rumer-Weyl wird aber noch eine andere, die
Invarianten Schreibweise, verwendet. Auf Grund von (21) können wir
auch diese ohne Schwierigkeit einführen. In den Spinfunktionen (21)
sind die Elektronen durch Zahlen, die positiven und negativen Spin-
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werte mit a und ß bezeichnet. Statt der Nummern 1,2,... der Elektronen
führt man jetzt für jedes Elektron das Symbol des entsprechenden
Atoms ein, wobei die positiven und negativen Spinwerte mit den
Indizes 1 und 2 bezeichnet werden. Wenn z. B. das Elektron 3 mit
einem positiven Spinwert zum Atom A gehört, so wird man statt
a (3) einfach Aj schreiben ; die Elektronennummer tritt also explizite
gar nicht auf.

Mit dieser Bezeichnung lassen sich die sechs Spinfunktionen der
Tab. 1 so schreiben

9l : A,B,C2D2 <p4: A,B2C2D,
cp2: A,B2C,D2 95 : A2B,C2D1
93 : AjB^D;, <p6 : A2B2C,D1

Für die Moleküleigenfunktion (21) erhält man damit die einfachere
Form

+i =-4=2i)QQua(l)ub(2)uc(3)ud(4).|(A1B2-A2B1)(C1D2-C2D1) (23)
\A z

Wenn man schließlich die Abkürzungen

[AB] 4= (AiB2 - A2B,) - [BA]
V2\ (24)

[CD] — (C,D2 - C2D,) - [DG]
V2

einführt, so kann man die drei mathematischen Repräsentanten der
Valenzformeln (19) in ihre definitive Form bringen

+1 ^= 2 IQQ ua(l) ub(2) uc(3) ud(4). [AB] [CD]

+2 7/= 2 IQ Q ua(l) ub(2) uc(3) ud(4). [AD] [BC] (25)

+3 7*-= 2 IQQ ua(!) ub(2) nc(3) ud(4). [AC] [DB]

Wie man sieht, unterscheiden sich die drei Moleküleigenfunktionen
(25) nur in ihren Spinanteilen. Man kann diese als die direkten
Repräsentanten der Valenzbilder betrachten, wobei jedem Valenzstrich
ein Klammerausdruck [AB], [BC] entspricht. [AB] bedeutet also
einen Valenzstrich zwischen den Atomen A und B. Es sei aber darauf
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hingewiesen, daß die Zuordnung hier nicht bloß formaler Natur ist,
wie das etwa noch am Anfang dieses Jahrhunderts in ähnlich
gerichteten Zuordnungen der Fall war. Nach (24) entspricht nämlich
jedem mathematischen Repräsentanten des Valenzstriches zwischen
den Atomen A und B ein Elektronenpaar mit verschiedenen Spins.
Die rechte Seite (24) ist nämlich eine antisymmetrische Linearkombination

von entgegengesetzt gerichteten Spins. Den Ausdruck [AB]
oder das Produkt solcher Ausdrücke nennt man Spininvariante.

Dieses Ergebnis läßt sich auch auf den allgemeinen Fall übertragen,
so daß man für die Moleküleigenfunktionen eines Systems von ein-
und mehrelektronigen Atomen schreiben kann

*Pab, Pbc, * * * - y/^r^ 2 ^Q Q Ua Ub [ABfab [BC]"- (26)

Hier repräsentieren pab, pbc, die Anzahl Valenzstriche zwischen
den Atomen A und B, B und C usw. Die Bedeutung der übrigen Symbole

ist analog dem Ausdruck (13).
Zum Schluß soll die Zuordnung zwischen Valenzbild und

Spinfunktion auch vom Standpunkt der ursprünglichen Entwicklung nach

(HRW) wenigstens kurz angedeutet werden.
Betrachte man zu diesem Zweck zwei orthogonale Vektoren vom

gleichen Betrag mit den Komponenten x, y, z und X, Y, Z, so daß

x2 + y2 + z2 X2 + Y2 + Z2 1, xX + yY + zZ 0

ist. Bilde man anderseits einen komplexen Vektor mit den Komponenten

X' x + iX, Y' y + iY, Z' -= z + iZ

die der Relation X'2 + Y'2 + Z'2 0 genügt. Wenn man nun die
Ausdrücke

A, V X' + iY' A2 V—X' + iY'

konstruiert, so kann man zeigen, daß die zwei Größen Al und A2 die
Komponenten eines zweidimensionalen komplexen Vektors sind, die
sich bei einer Drehung des Koordinatensystems linear transformieren
nach
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Aj 3>21 1 "l~ *^*22-^2

wo die Transformation orthogonal im komplexen Sinne ist mit der
Determinante ana22 — a12a21 1.

Anderseits kann man auch zeigen, daß die verwendeten Spinfunktionen

a und ß bei der Drehung des Koordinatensystems gerade
derselben Transformation unterworfen sind. Es besteht somit folgende
Zuordnung

ciivA, ß cv. A2

d. h. a transformiert sich wie A1 usw.
Betrachten wir unter diesen Voraussetzungen die symmetrischen

Spinfunktionen (8). Wenn für jedes Elektron a und ß sich wie Aj und
A2 transformieren, so werden sich die Spinfunktionen wie die Produkte

9n ~ A,"a

9ra c^> A^a A2na-ra

9o ~ A2na

transformieren. Die Spinfunktionen können dann, insofern man ihr
Verhalten bei der Rotation betrachtet, durch die Größen

t/(na) A/aA^a-fa

ersetzt werden.
Wenn die Spinfunktion eines Atoms durch einen Vektor repräsentiert

werden soll, so muß man nach (13) für jedes Atom einen Vektor
einführen. Für das zweite Atom hat man dann B1( B2, die sich so
transformieren wie Aj und A2. Die Spinfunktionen des Atoms B sind durch

9W(rb)BirbB2nb_rb

zu ersetzen. Somit transformiert sich die ganze Funktion (13) wie das

Produkt 9r 9r d. h.

4>r cv; A/a A2na - **a. B,rb B2nb - **b.

Die Eigenfunktionen (13) gehören, wie wir bereits wissen, zu
verschiedenen Spinwerten. Für die Chemie sind die zu S 0 gehörenden
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am wichtigsten. Die Funktionen, die dem Gesamtspin S 0

entsprechen, bleiben aber gegenüber Spindrehung unverändert, d. h. sie

sind Invarianten der Rotation. Um Funktionen zu bilden, für welche
S 0 ist, muß man also Linearkombinationen von solchen Funktionen
wählen, die invariant sind.

Welche sind aber die Invarianten der Rotation? Falls man zwei
komplexe Vektoren A und B betrachtet, erhält man eine Invariante
durch Bildung der Determinante [AB] A^ - A2BX - [BA].
Dieser Ausdruck ist eine Invariante, weil die Determinante der
Transformationsmatrix gleich 1 ist. Um Linearkombinationen zu erhalten,
muß man mehrere Invarianten von diesem Typus miteinander
multiplizieren. Damit kommt man wieder zum Ausdruck (26). Die
Spininvarianten sind also Kombinationen von Spinfunktionen, die bei der

Drehung des Koordinatensystems unverändert bleiben.
Nun sind wir soweit, daß wir jede chemische Formel oder

Valenzverteilung durch eine Eigenfunktion charakterisieren können, wobei
jedem Valenzstrich zwischen zwei Atomen A und B ein Klammerausdruck

[AB] zugeordnet ist. Sind mehrere Valenzstriche zwischen
zwei Atomen, so wird dies durch den Wert des Exponenten pabi zum
Ausdruck gebracht [AB] Pab. Die Exponenten in (26) müssen natürlich
die Bedingungen

Pab + Pac + Pad + • • • na

Pab + Pbc + Pbd + ¦ ¦ • nb (27)

erfüllen.
Im allgemeinen gibt es für jedes System bestehend aus mehreren

Atomen eine Reihe von Moleküleigenfunktionen (26). Aus den
vorhergehenden Diskussionen folgt eindeutig, daß ihre Zahl gleich der Zahl
der Valenzformeln ist, die man erhält, wenn die Valenzstriche auf allen

möglichen Arten zwischen den Atomen des Moleküls verteilt werden.
Natürlich werden hier auch Valenzformeln vorkommen, die für den
Chemiker zunächst fremd erscheinen. Es sind grundsätzlich aber
zunächst alle Valenzdispositionen des Moleküls in Betracht zu ziehen.

Die Eigenfunktionen (26) beziehen sich noch immer auf ein System
von ungekoppelten Atomen. Sie sollten also den Ausgangspunkt für
die Störungsrechnung bilden, um die Wechselwirkungsenergien
zwischen den Atomen des Moleküls zu berechnen. Bei vier einvalen-
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tigen Atomen, wo nur die drei Valenzverteilungen (19) möglich sind,
wird man auf ein Säkularproblem (I. 33) dritten Grades geführt.
Gegenüber (18), wo eine sechsreihige Determinante zu berechnen war,
bedeutet die Einführung der Valenzdispositionen eine interessante
Vereinfachung. Geht man aber zu größeren Systemen über, so stellt
man fest, daß die erzielte Reduktion zunächst aufgehoben wird und
schon bei 8 Elektronensystem ist der Grad der Säkulardeterminante
größer als vor der Einführung der Valenzdispositionen.

Mit dem Übergang von (18) zu (26) haben wir somit das chemisch

wichtige Ergebnis der Repräsentierbarkeit von Valenzformeln durch
mathematische Ausdrücke zwar realisiert, eine Vereinfachung der

Rechnungen konnte aber dabei nicht erzielt werden, sie sind im
Gegenteil noch komplizierter geworden. Die Tabelle 2 illustriert diese

Situation. In der vierten Kolonne findet man die Anzahl der
Valenzdispositionen bzw. der Eigenfunktionen (26) eines Systems von
einvalentigen Atomen. Zum Glück bietet hier die Invariantentheorie
einen Ausweg, um das Problem rechnerisch weiter zu vereinfachen.

Bereits im einfachsten Fall von vier einelektronigen Atomen kann
man zeigen, daß die drei Eigenfunktionen (25) nicht linear unabhängig
sind. Zwischen den entsprechenden Spininvarianten besteht nämlich
die lineare Beziehung

[AB] [CD] + [AC] [DB] + [AD] [BC] 0 (28)

Man überzeugt sich leicht von der Richtigkeit dieser Relation durch
Einführen aller Ausdrücke vom Typus (24) in (28) und Multiplikation.
Von den drei Spininvarianten (28) sind nur zwei unabhängig. Ein
Fundamentalsatz der Invariantentheorie besagt ferner, daß alle
linearen Abhängigkeiten der Invarianten sich auf die einzige Gleichung
(28) zurückführen lassen. Somit kann man auf Grund dieser einzigen
Gleichung aus der Gesamtheit aller Valenzdispositionen eines Systems
diejenigen auswählen, die linear unabhängig sind.

Die letzte Kolonne der Tab. 2 gibt die Anzahl von linear unabhängigen

Eigenfunktionen bzw. Valenzdispositionen für den Fall von
einvalentigen Atomen an. Wie man sieht, erreicht man auf diese Weise
eine sehr weitgehende Reduktion der Anzahl Funktionen, die für die

Rechnungen in Frage kommen müssen. Bei 8 Elektronen z. B. kann
man insgesamt 105 Valenzdispositionen konstruieren, von denen
aber für die Rechnungen nur 14 notwendig sind.
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Tabelle 2. Anzahl der Moleküleigenfunktionen eines Systems von n Atomen
mit je einem Elektron

Elektronenzahl Von der Form (13) Vom Typus (18) Val«
Zahl der

nzdispositionen
Linear unabhängige
Valenzdispositionen

2 4 2 1 1

4 16 6 3 2

6 64 20 15 5

8 256 70 105 14

10 1 024 252 945 42
12 4 096 924 10 395 132
14 16 384 3 432 135 135 429
16 65 536 12 870 2 027 025 1430
18 262 144 48 620 34 459 425 4 862

Die Gesamtheit der linear unabhängigen Funktionen nennt man
eine unabhängige Basis von Eigenfunktionen oder einfach
unabhängige Basis. Wir werden auch von einer unabhängigen Basis von
Valenzdispositionen sprechen, obwohl diese Ausdrucksweise nicht ganz
richtig ist. Algebraisch betrachtet besteht nämlich nach (28) eine

Abhängigkeit zwischen den drei Invarianten. Man kann also auch
schreiben

[AB] [CD] + [AD] [BC] [AC] [BD] (29)

Die entsprechende Gleichung in Valenzformeln ausgedrückt lautet

+

B B

(29a)

B

Diese Gleichung kann nur dahin interpretiert werden, daß eine
gekreuzte Disposition in zwei kreuzungslosen aufgelöst werden kann.
Zwischen den Atomen A und B z. B. tritt aber auf der linken Seite
ein Valenzstrich auf, rechts dagegen überhaupt keiner. In diesem Sinne
sind die drei Valenzdispositionen linear gar nicht abhängig. Diese

Bemerkung ist notwendig, weil man in der Mesomeriemethode bei
der Berechnung der Elektronenverteilung die beiden Ausdrücke (29)

häufig als völlig gleichwertig behandelt hat.
Die Auswahl einer unabhängigen Basis auf Grund der Gleichung (28)

ist im Prinzip immer möglich. Ihre praktische Anwendung auf Systeme
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von mehr als 6 einvalentigen Atomen führt aber zu äußerst
weitläufigen, um nicht zu sagen, undurchführbaren Operationen. Zum
Glück existiert eine auf die Relation (28) axierte Regel von Rumer,
die in sehr einfacher Weise die Auswahl einer unabhängigen Basis

gestattet. Man bringe zu diesem Zweck die Atome des Moleküls in
einer willkürlichen Reihenfolge auf einem Kreis und bilde alle
Valenzdispositionen, bei denen sich keine Valenzstriche kreuzen. Die so
erhaltene Gesamtheit von Valenzdispositionen entspricht einer

unabhängigen Basis von Spininvarianten oder Eigenfunktionen (26).

Bezüglich der Auswahl einer unabhängigen Basis sei ausdrücklich
bemerkt, daß die Reihenfolge der Atome auf dem Kreis tatsächlich
belanglos ist; die Atome müssen also nicht in der natürlichen Anord-
nun disponiert werden. Daraus folgt aber, daß die verschiedenen
Reihenfolgen der Atome auf dem Kreis zu verschiedenen unabhängigen

Basen führen. Wenn wir die zwei Kohlenstoffatome A und B
und die vier Wasserstoffatome C, D, E, F z. B. in zwei verschiedenen

Reihenfolgen auf einen Kreis bringen, so bekommt man die zwei

unabhängigen Basen (30) des Äthylens. Es muß aber betont werden,
daß die so erhaltenen zwei Basen wie übrigens alle anderen unab-

(30a)

A B

F C / \
3

/
4 /1F xx \ /

6

1

A / 2
E D

(30b)

hängigen Basen gleichwertig sind in dem Sinne, daß die Berechnung
der Energie auf Grund jeder unabhängigen Basis zum selben Resultat
führen muß. Dasselbe muß auch für die Berechnung der Elektronenverteilung

gelten.
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9. Anzahl der Valenzdispositionen einer unabhängigen Basis

Der Ausgangspunkt für die Berechnung der Energie im Rahmen
der Störungsrechnung ist also nach obiger Reduktion durch die
Eigenfunktionen bzw. Valenzdispositionen der unabhängigen Basis gegeben.
Natürlich kann die Zahl der Valenzdispositionen der Basis immer
durch direkte Konstruktion festgelegt werden. Für die Beurteilung
der Komplexität des Problems ist es aber von Vorteil, die Anzahl der
Dispositionen im Voraus zu kennen, abgesehen davon, daß man bei
der praktischen Durchführung der Konstruktion der Dispositionen
eines größeren Systems immer zweifeln kann, ob die Basis vollständig
ist oder nicht. Wir wollen deshalb einen Weg angeben, der erlaubt,
diese Zahl für ein beliebiges Molekül festzulegen.

Wir gehen von folgender Bemerkung Heitiers (HRW) aus: die Zahl
der unabhängigen Invarianten (also auch der Valenzdispositionen)
stimmt mit der Zahl der Terme überein, die nach dem Vektormodell
mit einem Gesamtspin S 0 entstehen.

Um das zu verstehen, nehmen wir an, die Atome A und B haben
respektive na und nb parallele Spins. Das Gesamtspinmoment des

Atoms A ist dann Sa na/2 und dasjenige von B ist Sb nb/2. Wenn
die zwei Atome reagieren, so findet eine Koppelung der beiden Spins
Sa und Sb statt. Das Vektoradditionsmodell zeigt uns, wie die Kopplung
im einzelnen erfolgen wird.

Wir wissen bereits (Abschnitt 6), daß der Spin eines Elektrons
durch einen Vektor der Länge 1/2 repräsentiert werden kann und daß
der Gesamtspin eines Systems von mehreren Elektronen durch
Kombination der zu den verschiedenen Elektronen gehörenden Vektoren
ermittelt werden kann. Es ist also in unserem Fall zunächst möglich,
daß der Vektor Sa der verschiedenen Elektronen des Atoms A und der
Vektor Sb der Elektronen des Atoms B die gleiche Richtung haben,
dann wird die Spinresultante der beiden Atome S Sa+Sb sein. Der
Vektor Sb kann aber auch andere erlaubte Richtungen annehmen
und zwar solche, für die die Resultante Sa+Sb einen um eine oder
mehrere Einheiten kleineren Wert annimmt, bis der Vektor Sb eine

zum Vektor Sa entgegengesetzte Richtung aufweist. Falls Sa>Sb ist,
wird das Gesamtspinmoment also folgende Werte annehmen

S Sa + Sbj Sa + Sb-1, Sa + Sb~2, Sa-Sb (31)
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Diese Sachlage kann man auch so interpretieren: wenn p die Anzahl
Elektronenpaare mit antiparallelen Spins repräsentiert, ist der resultierende

Spin S Sa+Sb —p, wo p die Werte p 0, 1, 2, nb annimmt
Sind mehr als zwei Atome zusammenzusetzen, so kann man

zunächst zwei Atome kombinieren und dann das Resultat mit dem
dritten Atom zusammensetzen. Die resultierenden Terme sind
unabhängig von der Reihenfolge der Zusammensetzung. Hierbei kommt
häufig vor, daß mehr als ein Term die gleiche Multiplizität hat.

Zwei Beispiele sollen zur Illustrierung dieser Sachlage dienen. Statt
des resultierenden Spins wollen wir aber in diesem Abschnitt die Anzahl
der Elektronen mit nicht kompensiertem Spin verwenden, d. h.

na 2Sa> nb 2Sbj...
Als erstes Beispiel betrachten wir ein Atom A mit drei

Valenzelektronen, also na 3 und ein Atom B mit zwei Valenzelektronen
nb 2. Man hat dann drei Kombinationsmöglichkeiten : Die Elektronen
beider Atome haben alle parallelen Spins, somit ist na+nb =3+2 =5.
Ein Elektron von A und ein Elektron von B sind antiparallel, die Zahl
der parallelen Spins sinkt um zwei Einheiten und hat den Wert 3. Im
dritten Fall stellen sich zwei Elektronen von A und zwei Elektronen
von B antiparallel, die Zahl der Elektronen mit nicht kompensiertem
Spin ist gleich 1. Man kann auch sagen, daß die drei Fälle durch vek-
torielle Addition entstehen.

Erweitern wir das obige System von zwei Atomen mit einem dritten
einvalentigen, so erhält man durch Kombination der Werte 5, 3, 1

mit dem dritten Atom:
aus dem Wert 5 bekommt man 6, 4
aus dem Wert 3 bekommt man 4, 2

aus dem Wert 1 bekommt man 2, 0.

Die Anzahl der Elektronen mit nicht kompensiertem Spin sind also 6,
4, 2 und 0. Diese Werte treten hier aber mit verschiedenen Häufigkeiten
auf, die respektive 1, 2, 2, 1 sind. Es sei besonders darauf hingewiesen,
daß der Wert 0 nur einmal auftritt und daß die Anzahl der
Valenzdispositionen mit nicht gekreuzten Valenzstrichen ebenfalls gleich
eins ist: C—A=B.

Als zweites Beispiel nehmen wir den Fall von vier Atomen mit den

Wertigkeiten 2,2,2,2. Durch Zusammensetzung der beiden ersten
Atome erhalten wir für die Anzahl der Elektronen mit parallelen Spins

4, 2, 0 (I)
mit den Häufigkeiten 1, 1. 1
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Tabelle 3. Linear unabhängige Valenzdispositionen bei T,"

IV =r2+r0
r,3 r3+2r1
r,4 r4+3r2+2r0
IV r5+4r3+5r,
r,6 r6+5r4+9r2+5r0
iy r7+6r5+i4r3+i4r1
ry r8+7r6+2or4+28r2+i4r0
iy r9+8r7+27r5+48r3+42r,
ry° r10+9r8+35r6+75r4+9or2+42r0
iy* rn+ior9+44r7+iior5+i65r3+i32r1
Ti12 r12+nr10+54rs+i54r6+275r4+297r2+i32r0
r," r13+i2r„+65r9+208r7+429r5+572r3+429r1
ry4 r,4+i3r12+77r10+273r8+637r6+iooir4+iooir2+429r0
IV5 r15+i4r13+9or11+35or9+9ior7+i638r5+2002r3+i43or1
ry* r16+i5r14+io4r12+44or10+i26or8+2548r6+364or4+

+3432r2+1430r0

Durch Addition des dritten Atoms zu (I) bekommt man
aus 4 6, 4, 2

aus 2 4, 2, 0

aus 0 2 (II)
Das Ergebnis ist also 6, 4, 2, 0

mit den Häufigkeiten 1, 2, 3, 1.

Schließlich ergibt die Addition des vierten Atoms zu (II) :

6 ergibt 8, 6, 4
4 ergibt 6, 4, 2

4 ergibt 6, 4, 2

2 ergibt 4, 2, 0

2 ergibt 4, 2, 0 (III)
2 ergibt 4, 2, 0

0 ergibt 2.

Die Kombinationsmöglickheiten sind also 8, 6, 4, 2, 0

mit den Häufigkeiten 1, 3, 6, 6, 3

Dieses Beispiel, absichtlich so ausführlich dargestellt, führt uns
zu einem Ausdruck, der die Anzahl der unabhängigen Spininvarianten
zu berechnen gestattet. Bezeichnen wir nämlich ein Atom mit zwei

parallelen Spins mit T2 und die vektorielle Addition zweier derartiger
Systeme mit r2xr2, so kann das Ergebnis (I) auch so formuliert werden

r2xr2 ir4+ir2+ir0
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Tabelle 4. Linear unabhängige Valenzdispositionen bei Y2n

iy =r4+r2+r0
iy r6+2r4+3r2+r0
iy r8+3r6+6r4+6r2+3r0
r25 r10+4r8+ior6+i5r4+i5r2+6r0
iy r12+5r10+i5r8+29r6+4or4+36r2+i5r0
iy r14+6r12+2ir10+49r8+84r6+io5r4+9ir2+36r0
r28 r16+7r14+28r12+76r10+i54r8+238r6+28or4+232r2+9ir0
iy r18+8r,6+36r14+nir12+258r10+468r8+672r6+75or4+603r2+

+232r0
r210 r20+9r,8+45r16+i55r,4+405r12+837r10+i398r8+i89or6+

+2025r4+1585r2+603ro
r2n r22+ior20+55r,8+209r,6+605r14+i397r12+264or,0+

+4215r8+5313r6+5500r4+4213r2+1585r0
r212 r24+nr22+66r20+274r18+869r16+22iir,4+4642r12+8i62r10+

+12078r8+14938rfi+15026r4+11298r,+4213r„

d. h. durch Kombination von zwei Atomen mit je zwei parallelen
Spins (linke Seite) entstehen drei Zusammensetzungen : mit vier (T4),
zwei (T2) und null (ro) parallelen Spins, deren Häufigkeiten durch die
Koeffizienten zum Ausdruck kommen. Analog können wir das
Ergebnis (II) durch folgende Beziehung zum Ausdruck bringen

r2xr2xr2 ir6+2r++ir2+ir0

und schließlich bekommt man für (III)

ryryryr, ir8+3r6+6r4+6r2+3r0

D. h.,wenn man vier zweielektronige Atome kombiniert, so bekommt
man eine Zusammensetzung mit 8 parallelen Spins, drei Zusammensetzungen

mit 6 parallelen Spins usw. und schließlich drei Zusammensetzungen

mit durchwegs gesättigten Spins. Das letzte Glied gibt
gleichzeitig die Anzahl der unabhängigen Spininvarianten oder der

entsprechenden Valenzdispositionen der unabhängigen Basis an.
Das, was hier durch Vektoraddition in einem Spezialfall erreicht

wurde, kann verallgemeinert werden. Der entsprechende allgemeine
Ausdruck lautet

ra x rb ra+b + ra+b_2 + ra+b_4 + + ria—t>i (32)
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Tabelle 5. Linear unabhängige Valenzdispositionen bei T3n

iy =r6Tr4+r2+r0
iy r9+2r7+3r5+4r3+2r,
iy r12+3r10+6r8+ior6+iir4+9r2+4r0
jy r15+4r13+ior11+2or9+3or7+36r5+34r3+2or1
ry - r,8+5r16+i5r,4+35r,2+64r,0+96r8+i2or6+i2or4+9or2+34r0
17 - r21+6r19+2ir17+56r15+ii9r13+2iorn+3i5r9+40or7+426r5+

+364r3+2ior,
iy r24+7r22+28r20+84r18+202r16+406r14+70or12+io44r10+ i35ir8+

+i505r6+i4oor4+iooor2+364r0
ry r27+8r25+36r23+i2or21+32irI9+72or17+i392rI5+2352r,3+

+350irn+4600r9+5300r7+5256r5+4269r3+2400ri
17" -r30+9r28+45r26 + 165r24+485r22 + 1197r20+2553ri8+4785ri6 +

+ 7965ri4 + 11845ri2 + 15753ri0 + 18657r8 + 19425r„+17225r4 +
+11925r2+4269r0

Diese Formel, die in der Gruppentheorie für die Ausreduzierung von
Produktdarstellungen der Drehgruppe Verwendung findet, ist die
sogenannte Clebsch-Gordansche Formel.

Als Beispiel für die Anwendung dieser Formel nehmen wir ein
System von vier einvalentigen Atomen. Die Kombination der beiden
ersten Atome gibt

r^^-rj+r,
Die Zusammensetzung von drei Atomen führt auf

ivryr, (r2+r0)xr, r2xr,+r0xr, r3+2r.

Schließlich ergibt die Gesamtheit aller vier Atome

iyxivryr, (r3+2r,)xr, (r3xr,)+2(r,xr,)
(r4+r2)+2 (r2+r0) r4+3r2+2r0

Den vier einvalentigen Atomen entsprechen somit zwei unabhängige
Valenzdispositionen, was wir in (28) bereits festgestellt haben.

Für die praktische Berechnung der Anzahl von Spininvarianten
bzw. Valenzdispositionen der unabhängigen Basis eines beliebigen
Moleküls stellt man am besten Tabellen auf für Partialsysteme
bestehend aus lauter Atomen mit 1, 2, 3 und 4 parallelen Spins; diese

sind in den Tabellen 3, 4, 5 und 6 angegeben. Zur Abkürzung der
Schreibweise haben wir dort die Anzahl der Atome mit der gleichen
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Tabelle 6. Linear unabhängige Valenzdispositionen bei T/1

iy r8+r6+r4+r2+r0
iy r12+2r,0+3r8+4r6+5r4+3r2+r0
r44 r16+3rl4+6r12+ior10+i5r8+i7r6+i6r4+i2r2+5r0
IY r20+4r,8+ior16+2or14+35r12+5ir10+64r8+7or6+65r4+45r2+

+ier0
iy r24+5r22+i5r20+35r18+7or16+i2or14+i8or12+24or10+285r8+

+295r6+26or4+i8or2+65r0
r47 r28+6r2b+2ir24+56r22+i26r20+245r18+42or16+645r14+895r,2+

+H2or10+i26or8+i26or6+io85r4+735r2+26or0
r48 r32+7r30+28r28+84r26+2ior24+454r22+868r20+i492r,8+

+ 233iri6 + 3325rl4+4340rl2 + 5180r,0+5620r8 + 5460r6+4600r4 +

+3080r,+1085ro

Zahl nicht kompensierter Spins im Exponent zum Ausdruck gebracht,
also z. B. statt I\ x rx x V1 x Ti x I\ einfach IV oder statt T3 x T3 x T3 x r3,
T34 geschrieben.

Aus der Tabelle 3 entnimmt man beispielsweise, daß ein System,
bestehend aus 14 Atomen mit je einem Elektron, 429 unabhängige
Valenzdispositionen hat; das ist der Koeffizient von ro in iy4. Anderseits

entnimmt man aus Tabelle 6, daß die Zahl der Valenzdispositionen
eines aus 6 vierwertigen Atomen bestehenden Systems 65 ist.

Die Tabellen können selbstverständlich, wenn nötig, sehr leicht
noch erweitert werden auf Grund der allgemeinen Gleichung (32) bei
gleichzeitiger Beachtung der bereits bekannten Ausdrücke.

Im allgemeinen Fall, d. h. für ein Molekül bestehend aus ax

einwertigen, a2 zweiwertigen, a3 dreiwertigen und a4 vierwertigen Atomen,
erhält man den Koeffizienten von T0 durch schrittweise Ausrechnung
von

iyi x r/2 x iys x iy4 (33)

auf Grund von (32). Man ermittelt also z. B. zunächst T^ixT/2 dann

(T^xT/2) x r3a3 und schließlich (33) unter Verwendung der Angaben
der vier Tabellen.

Als Beispiel betrachte man die Berechnung der Anzahl Valenzbilder
des Äthylens, das aus zwei Kohlenstoffatomen und vier Wasserstoffatomen

besteht. Die Zusammensetzung von T/ und VF, deren einzelne
Ausdrücke aus den Tabellen 6 und 3 zu entnehmen sind, ergibt
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iy x r/ (r8+r6+r4+r2+r0) x (r4+3r2+2r0)
— 1 12 +1 10 +r8 +r6 +r4

+r,„ +r« +r6 +r4 +r2
+r8 +r6 +r4 +r2 +r0

+r6 +r4
+r4

+r2

+3r10 +3r8 +3r6
+3r8 + 3T6 +3r4

+3r6 +3r4
+3r4

+3r2
+3r2+3F0
+3r2

+2r8 +2r„ +2r4 +2r2+2r0

(34)

iy x iy r12+5r10+nr8+i5r6+i6r4+i4r2+6r0

Die unabhängige Basis des Äthylens besteht also aus 6 Valenzbildern,
was wir in (30) bereits durch die direkte Konstruktion festgestellt
haben. Die weitere Ergänzung (33) durch zwei und dreiwertige Atome
erfolgt ganz analog.

Man kann aber noch einen Schritt weiter gehen, um die Rechnungen
zu vereinfachen. Liegen nämlich zwei Teilausdrücke vor, wie z. B.
die oben verwendeten T42 und rx4, so ist der Koeffizient ro in der
Komposition (33) gegeben durch die Summe

S oevßv (35)

wo av und ßv die Koeffizienten von demselben Tv in den beiden
Teilausdrücken bedeutet. Denn eine Zusammensetzung Ta x Tb enthält
dann - und nur dann - ein Glied ro, wenn a b ist. Man hat also bei
der Bildung der Kompositionen Ta x Tb alle Tv zu beachten, die in
beiden Teilausdrücken auftreten. Bildet man die Produkte aller
solchen Koeffizienten und summiert sie, so erhält man die Summe (35),
die den Koeffizienten von ro repräsentiert.

Im obigen Beispiel des Äthylens sind nur T4, r2, ro beiden
Klammerausdrücken (34) gemeinsam. Multiplizieren wir die entsprechenden
Koeffizienten, so erhält man

S oevßv 1+3+2 - 6

Betrachte man noch das Beispiel des Benzols. In den Tabellen
3 und 6 findet man unter FF und r46, daß T6, T4, T2, ro gemeinsam
sind.
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S avßv 1.295+5.260+9.180 + 5.65 3540

In dieser Form stellt die Berechnung der Anzahl von Spininvarianten
oder Valenzdispositionen keine Schwierigkeiten mehr.

III. Die Energieberechnung

Durch die Auswahl einer unabhängigen Basis von Valenzformeln
aus der Gesamtheit aller Valenzdispositionen ist das Problem soweit
reduziert, wie es überhaupt bei dem heutigen Stand der Theorie
möglich ist. Wir denken hier an Reduktionen allgemeiner Natur, die

vor der Aufstellung des Säkularproblems durchführbar sind. Es wird
sich nämlich zeigen, daß in gewissen Fällen auch eine Vereinfachung
der Säkulardeterminante möglich ist, die aber von Fall zu Fall
verschieden sein wird.

Die Eigenfunktionen (II. 26) der unabhängigen Basis, die dem

Pauli-Prinzip genügen und zu einem Spinmoment S 0 gehören,
bilden den Ausgangspunkt unseres Störungsproblems. Es interessieren
uns hier hauptsächlich zwei Fragen: Die Berechnung der Störungsenergie

erster Ordnung auf Grund des Gleichungssystems (I. 33)

f
S (Hik - sAik) ck 0 i-1,2. ...f

k l
Hik J to H <\>k dx Aik j (fo <\>k dT

und die Ermittlung der Eigenfunktion nullter Näherung
iji c,to + c2t]i2 + + Cfto* (2)

In diesem Kapitel beschäftigen wir uns ausschließlich mit der Berechnung

der Energie. Auf die zweite Frage kommen wir im nächsten

Kapitel zu sprechen.

10. Säkulargleichung eines Systems von Atomen mit je einem Elektron

Da die numerische Berechnung der Energie bei großen Molekülen
oft sehr weitläufig wird, ist man in solchen Fällen gezwungen, sich mit
einer radikalen Approximation zu begnügen, indem man das Molekül
durch ein System von Atomen mit je einem Elektron approximiert.
Selbstverständlich erfährt auf diese Weise das Säkularproblem eine
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sehr weitgehende Reduktion. Wir wollen zunächst diesen einfacheren
Fall besprechen.

Um die Berechnung der Elemente der Säkulardeterminante
konkreter zu gestalten, soll die Diskussion an Hand eines Spezialfalles,
nämlich eines Systems von vier Elektronen, durchgeführt werden.
Der Übergang zu einem System von n Elektronen bietet dann keine
Schwierigkeiten mehr.

Von den drei Valenzdispositionen, die wir dem Vierelektronensystem

in (II. 19) zugeordnet haben, sind bloß zwei unabhängig.
Welche beiden Dispositionen gewählt werden, ist in diesem Spezialfall

belanglos, jedes Paar bildet eine unabhängige Basis. Am
zweckmäßigsten ist die Verwendung der Basis mit nicht gekreuzten
Valenzstrichen, also

D AD
<-

(3)

B C B

Bezüglich der Festlegung der Richtung der Valenzstriche gibt es

keine Vorschrift, man kann sie beliebig wählen. Die einzige
Einschränkung besteht darin, daß die einmal festgelegten Richtungen für
alle Rechnungen beizubehalten sind. Trotzdem wollen wir sie aus
Zweckmäßigkeitsgründen definitiv festlegen. Überall, wo nicht
ausdrücklich anders verfügt wird, soll die lexikographische Anordnung
der Valenzstriche gewählt werden, d. h. wenn der Buchstabe A als der

niedrigste und Z als der höchste des Alphabets betrachtet wird, so

soll der Valenzstrich jeweils von dem niedrigeren zum höheren gerichtet

sein.
Den Valenzverteilungen dieser Basis entsprechen die zwei

Eigenfunktionen

+i - 77= 2 ^IqQ ua(l) ub(2) uc(3) ud(4). [AB] [CD]

*2 TTr 2 IQ Qua(!) ub(2) uc(3) ud(4). [AD] [BC]
V 4

(4)

Die Eigenfunktion nullter Näherung ist dann
Ì> C,to + C2*to (5)

wo die Koeffizienten cx und c2 noch zu bestimmen sind.
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(6)

Das homogene Gleichungssystem (1) besteht hier aus den zwei
Gleichungen

[J toHtodx — ej to+id^] Ci + [/ +iHto-dT - e J totodf]

[/ toHtod-r - e / totodr] c, + ("j ^H^dx - e j ^2dz ]

und die entsprechende Säkulardeterminante ist

j toHtodx - z J to+idT J toH*2dT - s J" totodr

J to-H+idt — s J to+idr f to^Hto-dx — e f totodt
(7)

Es sei zunächst bemerkt, daß man in jedem Summanden von iji

diejenige Funktion für H einzusetzen hat, die für diesen Teil die
Störung bedeutet. Es genügt hier wohl, an die Wechselwirkung von
zwei

*B

Atomen mit je einem Elektron zu erinnern. Die potentielle Energie
ist in diesem Fall gegeben durch

e^

rAB

e2

TAi

ez

Tß2

e2

rA2 TBl

und das Störungsglied der potentiellen Energie ist

H
e2

tab
e2

r..
e'

TA2

e2

rßi

(8)

(<>}

Die Buchstaben A und B bezeichnen hier die beiden Kerne, 1 und 2
die beiden Elektronen; rAl repräsentiert dann die Entfernung des
Elektrons 1 vom Kern A usw. Bei unserem System von vier Elektronen

95



hat man natürlich eine entsprechende Verallgemeinerung vorzunehmen
Dieser Aspekt des Problems interessiert uns aber hier nicht. Bei dem

heutigen Stand der Theorie ist man nämlich gezwungen, die Integrale
auf Grund von thermochemischen Daten festzulegen.

Sind die Integrale bekannt, so kann die Energie s berechnet werden.
Die Determinante liefert hier eine Gleichung zweiten Grades mit zwei
Wurzeln, die die Störungen erster Ordnung des betrachteten Eigenwertes

darstellen. Durch Einführen der Energie in das Gleichungssystem,

können die c; berechnet und somit auch die Eigenfunktion
nullter Näherung erhalten werden.

Es handelt sich nun zunächst darum, die Elemente der Säkulardeterminante

zu ermitteln. Betrachten wir zu diesem Zweck etwas ausführlicher

das erste Integral

Hu=JtoHtodT (10)

Die Spininvariante der Eigenfunktion <\>1

[AB] [CD] \ (A,B2 - A2Bi) (C,D2 - C2D,) (11)

kann durch die entsprechende Spinfunktion ersetzt werden

\ [a(l)ß(2) - a(2)ß(l)] [«(3)ß(4) - a(4)ß(3)] (lla)

\ [oe(l)ß(2)a(3)ß(4) - ß(l)«(2)a(3)ß(4) - a(l)ß(2)ß(3)a(4) + ß(l)a(2)ß(3)a(4)]

Bezeichnen wir ferner das Produkt des Koordinatenanteils der Funktion

^1 mit den vier Spinprodukten der Reihe nach mit ^iA, i];B, (|;c> "t*d

also z. B.

+A -L 2 *)Q Q Ua(l)ub(2)uc(3)ud(4). a(l)ß(2)a(3)ß(4) (12)
V 4

so kann das Integral (10) auch in der Form (13) geschrieben werden.

Hn 4
J(<I*a - to - to: + <I*d) H (to\ - +B - to; + «I'd) dx (13)

Im Folgenden wollen wir diese 16 Integrale näher untersuchen.
Ausführlicher geschrieben ergibt das erste
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Haa r+AHto\dT= -^=2wQ'uaJ ^4!

(14)

iub(2)uc(3)ud(4)a(l)ß(2)a(3)ß(4).

HA7=27)QQua(1)ub(2)uc(3)ud(4)a(l)ß(2)a(3)ß(4)d-r

Die doppelte Summation kann hier durch eine einfachere ersetzt
werden, wobei gleichzeitig der Fakultätsfaktor sich weghebt. Dies
wird durch folgenden Kunstgriff erreicht. Da über alle Elektronen
integriert wird, sind die Integrale gegen eine Umbenennung der
Elektronen unempfindlich, vorausgesetzt, daß die Variablen aller
Funktionen in den verschiedenen Integralen in der gleichen Weise verändert
werden. Dadurch erreicht man aber, daß dieselben Integrale mehrmals
vorkommen, d. h., so oft der Fakultätsfaktor es angibt. Somit hebt
sich dieser einfach weg.

Um zu zeigen wie das gemeint ist, nehmen wir für einen Augenblick

an, daß das Integral (14) statt auf vier sich nur auf zwei
Elektronen bezieht und setzen zur Abkürzung ®a(l) ua(l)a(l). Anstatt
(14) erhält man (15a)

i ^2wQ'$a(l)*b(2)H^2^QQ®a(l)*b(2)dT (15a)

- |j /[®.(l)«b(2j - *a(2)*b(l)] H [<Da(l)*b(2) - »B(2)*b(l)]dT (15b)

~ f /*a(l)*b(2) H Oa(l)<I>b(2)dT + /*a(2)<îb(l) H <Da(2)Ob(l)dT

(15c)

- J<l>a(2)<Db(l) H ®a(l)<Db(2)dT - /0a(l)a>b(2) H <Da(2)*b(l)dT]

Läßt man eine beliebige Permutation Q" auf (15c) einwirken, so bleibt
der ganze Ausdruck unverändert. Falls man Q" so wählt, daß für alle

Integrale in den linken Produkten die ursprüngliche Ordnung
hergestellt wird, d. h., so daß Q" gleich der inversen Permutation zu Q'
wird, also Q" Q'-1, dann entsteht folgende Situation: Die Permutation

Q'"1 ergibt in den Produkten der linken Seite aller Integrale
die identische Permutation und in den Produkten der rechten Seite

ergibt sich dasselbe wie vorher, nur in einer anderen Reihenfolge.
Man erhält also statt (15c)
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\ [/ *a(l) *b(2) H <Da(l) d)b(2)dT + J *a(l) <Db(2)H*a(l) <Db(2)dT

- / *a(l) *b(2) H <ï>a(2) ®b(l)dT - j *a(l) ®b(2) H <Da(2) <Db(l) dT]

oder

J <Da(l) *b(2) H 0>a(l) *b(2)dr - / *a(l)<Db(2)Hd>a(2) Ob(l)dT

Das Integral (14) läßt sich jetzt so schreiben

Haa /+AHtoAdT Jua(l)ub(2)uc(3)ud(4)<x(l)ß(2)a(3)ß(4)

• H S riQ Q ua(l)ub(2)uc(3)ud(4)a(l)ß(2)a(3)ß(4)dT
(16)

Dieses besteht aus einer Summe von 24 Teilintegralen, von denen
wir explizite die beiden ersten angeben, indem wir gleichzeitig über
den Spinanteil separat integrieren

Jua(l)ub(2)uc(3)ud(4) H ua(l)ub(2)uc(3)ud(4)dT

f a(l)a(l)d(o J ß(2)ß(2)dco J a(3)a(3)dco J ß(4)ß(4)dco

- Jua(l)ub(2)uc(3)ud(4) H ua(l)ub(2)uc(4)ud(3)dT <17)

f a(l)a(l)dco f ß(2)ß(2)dco J a(3)ß(3)dco J a(4)ß(4)dco

Das erste hat ein positives Vorzeichen, weil auf der rechten Seite
das Produkt der identischen Permutation entspricht. Für das zweite
ist das Vorzeichen negativ, weil die Permutation der Elektronen
ungerade ist. Alle anderen Integrale vom Typus (17) sind mit einem

positiven oder negativen Vorzeichen versehen, je nachdem die
Permutation in (16) gerade oder ungerade ist.

Beachten wir ferner, daß die Spinfunktionen a und ß nach (I. 44 und
45) orthogonal und normiert sind, d. h.

f a(i)ß(i)dco 0 f a(i)a(i)d(o 1 f ß(i)ß(i)dco 1

Auf Grund dieser Eigenschaft ergibt der Spinanteil bei einigen
Ausdrücken (17) den Wert 1 bei anderen 0. Man kann sich leicht
überzeugen, daß unter den 24 Summanden (17) nur vier von null
verschieden sind, denen in (16) folgende Spinprodukte entsprechen :

a(l)ß(2)a(3)ß(4) a(l)ß(2)a(3)ß(4)
a(l)ß(2)a(3)ß(4) a(l)ß(4)a(3)ß(2)
a(l)ß(2)a(3)ß(4) a(3)ß(2)a(l)ß(4)
a(l)ß(2)a(3)ß(4) a(3)ß(4)a(l)ß(2)
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Im ersten Produkt kommt die identische Permutation vor, beim
zweiten und dritten treten einfache Permutationen oder sogenannte
Transpositionen auf, bei denen nur zwei Elektronen gleichzeitig
vertauscht werden. Das vierte Produkt, wo vier Elektronen vertauscht
sind, entspricht einer sogenannten höheren Permutation. Am wichtigsten

sind für uns die identische und die einfachen Permutationen, nur
diese wollen wir berücksichtigen; die anderen sollen vernachlässigt
werden.

Wir bezeichnen das der identischen Permutation entsprechende
Integral mit C und das den Transpositionen entsprechende durch
Angabe der zwei Atome (AB), (AC), (BC),..., zwischen denen die
Permutation stattfindet, d. h.

(18)

C Jua(l)ub(2)uc(3)ud(4) Hua(l)ub(2)uc(3)ud(4)d-r

(AB) Jua(l)ub(2)uc(3)ud(4) H ua(2)ub(l)uc(3)ud(4)dT

Aus (16) ergibt sich auf diese Weise

Haa - JtoAHto^dT C - (BD) - (AC)

Damit haben wir (16) in der erwünschten Form. Die hier auftretenden
Integrale sind charakteristisch für die ganze Theorie. C heißt das

Coulombintegral und (AB), (BC), sind die sogenannten Austauschintegrale.

Eine analoge Rechnung ergibt für die anderen Bestandteile von (13)

folgende Ausdrücke

Hab - - (AB) HBB C - (AD) - (BC) Hcc C - (BC) - (AD)
Hac - (CD) HBC 0 HCD - (AB)
Had 0 Hbd - - (CD) HDD C - (AC) - (BD)

Damit haben wir für den ersten Summanden (13) des Elementes Mn der
Säkulardeterminante das Ergebnis

H„ | [4C + 4(AB) + 4(CD) - 2(AC) - 2(AD) - 2(BC) - 2(BD)]

Ähnlich können auch die anderen Bestandteile der Säkulardeterminante

berechnet werden. Auf die Frage der numerischen Berechnung
der Coulomb- und Austauschintegrale wollen wir hier nicht eingehen.
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Damit haben wir also einen Weg, um die Elemente der
Säkulardeterminante eines Systems von Atomen mit je einem Elektron zu
ermitteln. Obwohl die einzelnen Operationen an und für sich einfach
sind, kann selbstverständlich eine direkte Anwendung dieses
Verfahrens nicht in Frage kommen. Wir wollen im Folgenden einen
einfacheren Weg kennen lernen, der übrigens den Vorteil hat, den
charakteristischen Zug der Mesomeriemethode, nämlich die Verwendung

von Valenzdispositionen, besser zum Ausdruck zu bringen.
Bei der Diskussion der Energie von Molekülen, bestehend aus Atomen
mit mehreren Elektronen, wird eine direkte Ableitung dieser
Berechnung notwendig sein. Trotzdem erscheint es uns angebracht,
einen Übergang zwischen beiden Verfahren im einfachen Fall wenigstens

zu skizzieren.
Betrachten wir zu diesem Zweck den ersten Bestandteil Hu (13)

des Determinantenelementes Mn. Dieses besteht zunächst aus 16

Integralen HJK, wobei aber jedes HIK 24 Summanden enthält. Wenn
die Integration über die Spinanteile nicht durchgeführt wird, so

sind in Hn insgesamt 24-16 384 Integrale zu berücksichtigen. Doch
haben wir in (16) unter den Permutationen nur die identische und die

Transpositionen von nur zwei Elektronen in Betracht gezogen, alle
anderen wurden vernachlässigt. Die gleiche Vereinfachung soll auch
hier vorgenommen werden. Bei jedem H]K tritt einmal die identische
Permutation und sechs Transpositionen auf, denen ein Coulomb und
die sechs Austauschintegrale (AB), (AC), (AD), (BC), (BD) und (CD)

entsprechen. Die Zahl der in Hn auftretenden Integrale wird somit
von 384 auf 16 Coulombintegrale, 16 Austauschintegrale (AB) usw.
insgesamt auf 7-16 112 Integrale reduziert.

Im weiteren wollen wir die in diesen 112 Integralen auftretenden
Spinfunktionen nach den Coulomb- und Austauschintegralen ordnen.
Zu den verschiedenen C, (AB), gehörige Spinfunktionen können
aus (IIa) ohne weiteres abgelesen werden, z. B.

HAA: C[a(l)ß(2)a(3)ß(4)

- (AB)[a(l)ß(2)a(3)ß(4)
- (AC)[a(l)ß(2)a(3)ß(4)

- (AD)[a(l)ß(2)a(3)ß(4)
- (BC)[a(l)ß(2)a(3)ß(4)

- (BD)[a(l)ß(2)a(3)ß(4)

- (CD)[a(l)ß(2)a(3)ß(4)

a(l)ß(2)a(3)ß(4)]
a(2)ß(l)a(3)ß(4)]
a(3)ß(2)a(l)ß(4)]
a(4)ß(2)a(3)ß(l)]
a(l)ß(3)a(2)ß(4)]
a(l)ß(4)a(3)ß(2)]
a(l)ß(2)a(4)ß(3)]
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Hab: C[a(l)ß(2)a(3)ß(4)

- (AB)[a(l)ß(2)a(3)ß(4)
ß(l)a(2)a(3)ß(4)]
ß(2)a(l)a(3)ß(4)]

Addieren wir alle Spinanteile, die zum Coulombintegral C gehören,
anderseits alle zum Austauschintegral (AB) gehörigen Anteile usw.,
indem man gleichzeitig a und [3 durch die Bezeichnung Ax und A2>

respektive B1 und B2 usw. ersetzt, so bekommt man z. B. für C als

Koeffizient

C : \ (A^B2qD2 - A,A2B,B2CfD2 - A2B2C,C2D,D2 + A^B.BAC^D,
- A,A2B,B2C^D^ + A2B^C2iy + A^^BXyC^D, - A2B2C,C2D,D2

-A2B2C,C2D,D2 + A^B^C.C.D.D, + A2B*C2D2 - A,A2B,B2C^D2

+ A^BiBXADJ), -A^CA^D., - A,A2B,B2C*D* + A2B2Cp*)

Dies kann man aber einfacher auch so schreiben

l

C:
¦ (A,B2C,D2 - A2BiCiD2 - A,B2C2D, + A-ZB^D,

2- (A,B2C,D2 A.B^jD,-A^.C.D, + A2B,C2D,)

oder auch in der Form

l

C:
v=(AiB2-A2Bi)

-= (A,B, - A2B,)
V2V

-7= (C,D2
\2

1

\2y

¦ C2D,)

C,D,)

Das sind aber einfach die algebraischen Ausdrücke der Valenzstriche
zwischen den Atomen A, B und C, D. Bei Beachtung von (11.24) kann
der Koeffizient von C schließlich durch Spininvarianten dargestellt
werden.

C: [AB] [CD] [AB] [CD]

Ähnlich können auch die Koeffizienten der übrigen Integrale durch
Spininvarianten ausgedrückt werden :

(AB) + [AB] [CD] [AB][CD]
(AC) - [AB] [CD] [CB][AD]
(AD) - [AB][CD] [DB] [CA]
(BC) - [AB][CD] [DB][CA]
(BD) - [AB][CD] [CB][AD]
(CD) + [AB] [CD] [AB][CD]
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Unter Verwendung dieser Ausdrücke kann der ganze erste Bestandteil

des Elementes Mn durch die einfachere Form

H„ ([AB][CD] [AB][CD]) C - [- ([AB][CD] [AB][CD])(AB) +
+ ([AB][CD] [CB][AD])(AC) + ([AB][CD] [DB][CA])(AD) + (19)
+ ([AB][CD] [DB][CA])(BC) + ([AB][CD] [CB1[AD])(BD) -
-([AB][CD] [AB][CD])(CD)]

repräsentiert werden. Vom Standpunkt der Spininvarianten ist aber
dieser Ausdruck nicht einheitlich: Die unabhängige Basis unseres
Vierelektronensystems besteht nämlich nur aus zwei unabhängigen
Spininvarianten, (19) dagegen enthält auch solche, die gar nicht zu
unserer Basis gehören, z. B. der Koeffizient von (AD). Um dies zu
vermeiden, führen wir einen sogenannten Austauschoperator ein, der
die Vertauschung zweier Elektronen verschiedener Atome bewirken
soll. Wird der Austausch der Elektronen zwischen den Atomen A und
B stattfinden, so bezeichnet man den Operator mit tab, für die
Vertauschung zwischen B und C schreibt man tbc usw. Dementsprechend
bedeutet der Ausdruck tbc [AB] [CD] : die Elektronen der Atome B
und C sollen miteinander vertauscht werden, d. h. aber, daß die
Valenzstriche, die vor der Austauschoperation zwischen den Atomen
A, B und C, D liegen, nach dem Austausch zwischen A und C respektive
B und D liegen werden. Es gilt ferner [AB] — [BA].

Durch Einführung der Austauschoperatoren können die
Koeffizienten der Austauschintegrale in (19) so dargestellt werden:

[AB] [CD]
[AB][CD]
[AB][CD]
[AB][CD]
[AB][CD]
[AB][CD]

(- 1)[AB][CD] [AB][CD] tab[AB][CD]
[CB][AD] [AB][CD] tac[AB][CD]
[DB][CA] [AB][CD] tad[AB][CD]
[DB][CA] [AB][CD] tbc[AB][CD]
[CB][AD] [AB][CD] tbd[AB][CD]

(- 1)[AB][CD] [AB][CD] tcd[AB][CD]

Rechts von den Austauschoperatoren bekommt man also dieselbe

Spininvariante, die zur unabhängigen Basis gehört. Bezeichnen wir
den Spinanteil der ersten Valenzdisposition (3) mit <pj so können die
rechts stehenden Produkte auch so geschrieben werden

(«Pl lab <Pi) (<Pi tbc9i)
(«Pi tac <Pi) («Pi tbd 9i)
(«Pl tad <Pl) («Pi tcd-Pi)
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Mit dieser Bezeichnung erhält man schließlich
(20)

H„ (9i«Pi) C - [(9ltab <pi) (AB) + (<pitacçi) (AC) + (ep, tad ç,) (AD) +
+ (?i tbc 9i) (BC) + (91 tbd 9i) (BD) + (?i W 9i) (CD)]

Das ist aber noch nicht das vollständige Element Mn der
Säkulardeterminante. Den zweiten Teil s J ^14'1d.T erhält man aber durch
eine ähnliche Überlegung. Die den Austauschintegralen entsprechenden
Ausdrücke bezeichnet man mit

Aab (ua(l)ub(2)uc(3)ud(4).ua(2)ub(l)uc(3)ud(4)dTi (21)
Abc j ua(l)ub(2)uc(3)ud(4).ua(l)ub(3)uc(2)ud(4)dT

Diese Integrale sind ebenso wie C und (AB) Funktionen, die vom
Abstand der Atome abhängen. Die Relation, die der Gleichung (20)

entspricht, ist hier

e[(<Pi9i) — !(9itab9i) Aab + (9itac9i) Aac + (9itad9i) Aad + ..„
+ (9itbc9i) Abc + (<p,tbd9i) Abd + (tpitcdçi) Acdj]

Durch Zusammenfassung von (20) und (22) bekommt man schließlich

einen Ausdruck, der die Berechnung des Elementes Mn gestattet.

Mu [(9i9i) C - S (cp,tabçi) (AB)] - z [(9,9,) - 2 (9,tab9i) Aab] (23)
a,b a,b

Die Summation ist gemäß (20) auf alle Atompaare zu erstrecken.
Genau dieselbe Überlegung ist auch für die anderen Elemente der

Säkulardeterminante zu machen, so daß (23) auch in eine allgemeinere
Form geschrieben werden kann

Mik [(9i9k) C — S (9itab9k) (AB)] — e [(<pi<pk) — 2 (9*tab9k) Aab] (24)
a,b a,b

Im Fall des Vierelektronensystems nehmen i und k nur die zwei
Werte 1 und 2 an. Wenn das System statt 4 aus 6,8, Elektronen
besteht, ändert sich formal an (24) überhaupt nichts. Somit kann sie
als eine allgemeine Formel für die Berechnung der Elemente der
Säkulardeterminante eines Systems von Atomen mit je einem Elektron
betrachtet werden. Es ist aber selbstverständlich, daß etwa beim
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Sechselektronensystem die unabhängige Basis aus mehr als zwei

Valenzdispositionen, nämlich aus fünf, besteht, und dementsprechend
werden die Indizes von 1 bis 5 laufen. Auch die Anzahl der
Wechselwirkungsintegrale und der Austauschoperatoren ist größer, nämlich
15. Allerdings pflegt man, wie wir noch sehen werden, bei der expliziten

Berechnung der Energie nicht alle Wechselwirkungsintegrale
in Betracht zu ziehen. Die Berechnung der Spinprodukte (cp, cpk) sowie
der Austauschoperationen (cp; tab cpk) erfolgt natürlich nicht auf dem
hier angegebenen Weg, sondern wird nach geeigneteren Methoden

durchgeführt.
Es sei noch darauf hingewiesen, daß bei der Anwendung der Formel

(24) normalerweise ein System von einer geraden Anzahl von Atomen
berücksichtigt wird; hat man eine ungerade Zahl von Atomen, so

nimmt man noch ein weiteres Atom hinzu, das man ins Unendliche
verlegt.

11. Säkulargleichung eines Systems von Atomen
mit einem und mehreren Valenzelektronen

Die Überlegungen sollen auch hier an Hand eines Beispiels
durchgeführt werden. Betrachten wir zu diesem Zweck das Äthylen,
bestehend aus zwei mit A und B bezeichneten Kohlenstoffatomen und
aus vier mit C, D, E, F bezeichneten Wasserstoffatomen. Die
Elektronen der abgeschlossenen Schalen werden nicht berücksichtigt.
Somit ist das System aus 12 Elektronen gebildet.

Die Ausgangsfunktionen sind die in (II. 26) gegebenen. Aus dieser
Gesamtheit wählt man natürlich eine unabhängige Basis aus, die
hier aus sechs Eigenfunktionen bzw. sechs Valenzdispositionen besteht.
In (II. 30) sind wir bereits zwei unabhängigen Basen des Äthylens
begegnet. Damit die Analogie der Valenzdispositionen der
unabhängigen Basis des Äthylens mit denjenigen des Propans, Butans usw.
ausgeprägter wird, wählen wir die Basis (II. 30a). Selbstverständlich
könnten wir aber auch die andere oder eine weitere wählen. Die
entsprechenden Eigenfunktionen sind die folgenden, wobei die Valenzstriche

wiederum lexikographisch gewählt sind:

to =y^2^QÖua(b2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12).
(25)

[AB]4 [CD] [EF]
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*2 V l2T 2^Q(>aubUcudueuf.[AB]4[CF][DE]

^3 V T2T 2rlQQuaub"cUdUe"f-[AB]3[AF][BC][DE]

*+ V W 2 ^Q Q UaUbUcUdueUf. [AB]**[AF][BE][CD] (25)

to y^ff 2y)QQuaubUcUdUeUf.[AB]^[AD][BC][EF]

to "v/lTT 2^QQuaubUc»d*JeUf-[AB]2[BC][BD][AE][AF]

Die sechs Funktionen unterscheiden sich also nur in den Spininvarianten.

Das homogene Gleichungssystem (I. 33) besteht aus sechs

Gleichungen und die Säkulardeterminante wird vom Grad 6 sein

J toHtodx - s J totodi* J toHtodf-eJ totodT

J «PeHtodx - e J to^tod-r J toHtodx - z J to<kdT

(26)

Es handelt sich zunächst wieder um die Berechnung dieser
Integrale. Betrachten wir z. B.

f toHtodx v/^2^Q'Q'uaUbUcUdUeUf.[AB]4[CD][EF]
J J V 1Z*

Q' (27)

• Hl/4^ 2^QQuaUb«cUdUeUf-[AB]4[CD][EF]dT
\ iz. Q

das man etwas einfacher auch so schreiben kann:

J toHtodx -J2T ^'IQ'^QfQ'uaUb'-icUd'-'eUfH.
./ O'OQ'Q

Q uaubucudueuf) (Q'<pi. Q<pi)dt

(28)

wo die Spininvariante, die zur Eigenfunktion ^ gehört mit cpj

bezeichnet ist.
Wie bei den einwertigen Atomen wird man auch hier die doppelte

Summation durch eine einfache ersetzen, wobei der Fakultätsfaktor
wiederum wegfällt.
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JtoHtodx J*2 *ìQ(uaubucudueufHQuaubucudueuf) (9,Q9,) dx (29)

Würde man das aus 12 Valenzelektronen bestehende Äthylen wie
im Abschnitt 10 als ein einelektroniges System behandeln - was an
und für sich möglich ist - so hätte man Spininvarianten, bestehend

aus einem Produkt von sechs Linearfaktoren: [AB] [CD] [EF] [GH]
[IK] [LM]. Ausmultipliziert ergibt das nach (11) einen Ausdruck von
64 Summanden. Dementsprechend sind 64 Funktionen vom Typus (12)

zu berücksichtigen, die nach (13) 64-64 4096 Integrale (14) ergeben,
wobei die Permutationen der Elektronen noch nicht berücksichtigt
sind. Hier zeigt sich einer der Vorteile des Spinvalenzverfahrens. In
unserem Fall ist

p, [AB]4[CD][EF]

*(C,D2 - C2D,) (E, F2 - E2F,)

(30)

l (A,B2 - A2B,)4(C,D2 - C2Di) (E, F2 - E2F,)

l (AiB2 - 4A^B3A2B, + 6A2B2A2Bj -4A,B2A^ + A4B4)

(CiD2E,F2 - C2D,EiF2 - C,D2E2F, + C2D,E2F,)

das sind nur mehr 20 statt 64 Summanden. Dadurch ist die Zahl der

Teilintegrale (14) von 4096 auf 400 reduziert. Zwar liegen die
Verhältnisse nicht immer so günstig, aber in jedem Fall sind sie günstiger
als bei Systemen aus einelektronigen Atomen mit der gleichen Gesamt-
elektronenzahl.

Betrachten wir eines der 400 Integrale

fS (uaubucudueufHï)QQ uaubucudueUf)
JQ (31)

(A4B4CiD2EiF2v)QQAjB4CiD2EiF2)dT

Für jedes Integral von diesem Typus wären zunächst 12!
Permutationen zu berücksichtigen. Allerdings kommen davon nur 12!/4!4!
in Betracht, denn wir interessieren uns bloß für Permutationen
zwischen verschiedenen Atomen. Selbstverständlich ist man gezwungen,
nur die wichtigsten von ihnen zu betrachten. Das sind die identische
Permutation E und die Permutation von nur zwei Elektronen
zwischen verschiedenen Atomen, d. h. die Transpositionen. Alle anderen
sollen als weniger wichtig vernachlässigt werden.
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Ein erster Bestandteil von (31) ist das der identischen Permutation
entsprechende Integral, das auch hier als Coulombintegral C bezeichnet
wird

C fua(l,2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12).
J

(32)
Hua(l,2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12)dx

Für Q E ist 7] +1 weil ja die Permutation eine gerade Permutation

ist.
Den Transpositionen zweier Elektronen entsprechen die Austauschintegrale.

Sind in (31) zwei Elektronen zwischen den Atomen A und B
vertauscht, so erhält man

(AB) fua(l,2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12)
¦> (33)
Hua(5,2,3,4)ub(l,6,7,8)uc(9)ud(10)ue(ll)uf(12)dx

Für alle anderen Atompaare gibt es ein Austauschintegral vom selben

Typus. Beim Äthylen sind im ganzen 15 Möglichkeiten zu
berücksichtigen: (AB), (AC), (AF), (BC), (BF), (EF). Da die
Permutation eine ungerade ist, so wird v)T —1 sein.

Es ist nun aber zu bemerken, daß die Transposition zweier
Elektronen zwischen zwei mehrelektronigen Atomen wie z. B. A und B
beim Äthylen auf verschiedene Weise realisiert werden kann. Man
kann z. B. das Elektron 1 von A mit dem Elektron 5 von B oder das

Elektron 1 von A mit dem Elektron 6 von B vertauschen usw. Jeder
dieser Transpositionen entspricht aber ein Austauschintegral (33).

Allgemeiner : wenn die Anzahl der Elektronen des Atoms A gleich na,

diejenige von B gleich nb ist, so ist die Zahl der Transpositionen
zwischen den Atomen A und B gleich nanb. Ebenso groß ist die Anzahl der
Bildungsmöglichkeiten des Austauschintegrals (33). Für das
Spinvalenzverfahren ist nun charakteristisch, daß einem Atompaar nur
ein Austauschintegral entspricht, unabhängig davon welche zwei
Elektronen zwischen diesen Atomen vertauscht worden sind. Um
diese Unabhängigkeit des Austauschintegrals von den vertauschten
Elektronen auch formal zum Ausdruck zu bringen, kann man (33)
auch so schreiben

(AB) - JuaubucudueUfHTabuaubucudueUfdx (34)
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Tab bedeutet hier: ein Elektron des Atoms A soll mit einem Elektron
des Atoms B vertauscht werden.

Selbstverständlich werden durch die Permutationen der
Elektronen in (31) nicht nur die Koordinatenfunktionen, sondern auch der

Spinanteil berührt.
Ist Q E, so bleibt der zweite Klammerausdruck in (31)

unverändert. Für die Transposition eines Elektrons von A mit einem Elektron

von B, Q Tab erhält man dagegen

(35)

AjBjC^^iFj.T^A-jB^DjE^j-AjBjdDjE^j.AjAjB^C^jE^

D. h. ein Elektron mit der Spinfunktion a (hier A,) des Atoms A wird
vertauscht mit einem Elektron mit der Spinfunktion ß (hier B2)
des Atoms B. Ähnlich verfährt man mit den anderen Transpositionen
Q Tac, Tad, Tbc, Höhere Permutationen bleiben auch hier
unberücksichtigt. Was hier bezüglich der Permutationen der Elektronen
des Integrals (31) gesagt wurde, gilt auch für die Permutationen in
allen anderen Integralen von Typus (31).

Um diese Ergebnisse in einem einzigen der Relation (29)
entsprechenden Ausdruck zusammen zu fassen, beachte man, daß in dem

Spinprodukt (<f1 <p,) alle Spinanteile der 400 Integralen (31) berücksichtigt

sind. Somit können die Permutationen direkt, sowie sie

bereits in (29) angedeutet sind, an der Spinfunktion cpt durchgeführt
werden.

Ist also in (29) Q die identische Permutation, so erhält man einfach

C (9, 9,) (36)

Für die Vertauschung zweier Elektronen zwischen den Atomen A
und B kann man schreiben

-(AB) (9, Tab9l) (37)

Tab 9i bedeutet hier, daß ein Elektron des Atoms A mit einem Elektron

des Atoms B in allen 20 Summanden (30) zu vertauschen ist.
Nach (37) soll das Resultat noch mit tp, multipliziert werden. Das

entspricht der Vertauschung zweier Elektronen in den erwähnten
Integralen.

Wir haben oben festgestellt, daß bei der Vertauschung zweier
Elektronen zwischen zwei mehrwertigen Atomen nanb Transpositio-
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nen zu berücksichtigen sind. Anderseits bezieht sich aber Tab nur auf
eine Vertauschung von zwei Elektronen. Um alle Transpositionen
zwischen A und B zu berücksichtigen, muß man (cp, Tab tp,) durch

(38)

(9i Ti, na + i 9i) 1- (9i T2, na + i 9i) "I • • • + (9i Tnai na + nb 9i) 2 (9i Tab 9i)
Tab

ersetzen, wobei das erste Glied die Vertauschung des ersten Elektrons
des Atoms A mit dem (na+ l)-ten Elektron des Atoms B zum Ausdruck
bringt. Das letzte Glied repräsentiert die Vertauschung des na-ten
Elektrons des Atoms A mit dem (na+nb)-ten Elektron des Atoms B.
Statt (37) erhält man dann

- (AB) "2 (9, Tab 9,) ,3g>
tab

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
gleichwertig sind, kann man zur Vereinfachung von (39) die Summe
aller Transpositionen mit tab bezeichnen, also

tab S Tab (40)
^ab

setzen. Statt (39) kann man auch

-(AB) (9, tab9,) (41)

schreiben.

Berücksichtigt man schließlich die Vertauschungen zwischen den 14

anderen Atompaaren des Äthylens, so erhält man

(42)

-[(AB)(9,tab9,)4(AC)(9,tac9,) l + (EF) (9,tef9,)] -£ (AB) (9ltabÇl)
a,b

Die Summe ist also über alle Atompaare zu erstrecken.
Den ersten Bestandteil des Elementes Mn der Säkulardeterminante

erhält man somit aus (36) und (42)

ftoHtodx C(9,9,) — S (AB) (9,tab9i) (43)J a,b v '

Um den zweiten Summanden des Elementes Mn zu ermitteln, kann
die gleiche Überlegung gemacht werden. Statt der Austauschintegrale
bekommt man hier die A-Integrale
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Aab j uaubucudueUf.TabuaubucudueUfdT, (44)

wo Tab die gleiche Bedeutung hat wie vorher. Auch hier sind im Fall
des Äthylens den 15 Atompaaren 15 entsprechende A zu
berücksichtigen.

Für das vollständige Element Mn der Säkulardeterminante erhält
man schließlich

Mu [C(9,9i) — 2 (9itab9,) (AB)] — s[(9,9i) — 2 (9,tab9,) Aab] (4c-,
a,b a,b ^s>

Genau dieselbe Ableitung kann aber auch mit den anderen
Matrixelementen gemacht werden. Die Anzahl der Integrale (31) kann
natürlich verschieden sein von der vorherigen, aber diese Zahl tritt
in (45) in expliziter Form noch gar nicht auf, sondern wird erst
nachträglich ermittelt werden. Formal ändert sich an dem Ausdruck nichts,
wenn man ein beliebiges Molekül betrachtet. Somit kann man ganz
allgemein für ein Element Mik der Säkulardeterminante schreiben

M;k =[C (<pi<pk) — 2 (9itab9k) (AB)] - z [(<pi<pk) — 2 (9*tab9k) Aab] (46)
a,b a,b

Selbstverständlich muß die Summation über alle Atompaare erstreckt
werden.

12. Austauschoperationen und Skalarprodukte

In (46) haben wir zwar eine allgemeine Formel zur Berechnung der
Matrixelemente der Säkulargleichung erhalten, jedoch sind die
numerischen Werte der Integrale sowie ihrer Koeffizienten noch unbekannt.
Es soll zunächst die Wirkung der Austauschoperatoren auf die
verschiedenen Funktionen tp berechnet werden. Wie die Wirkung von
Tab auf ein Spinprodukt zu ermitteln ist, haben wir bereits in (35)
gesehen. Ähnlich sollte man auch die übrigen Elektronenvertau-
schungen zwischen den Atomen A und B berechnen, denn tab 2 Tab

repräsentiert ja die Summe aller Vertauschungen von zwei Elektronen
zwischen A und B. Diese Operationen sind gliedweise an den
ausmultiplizierten Invarianten (30) durchzuführen. Das ist aber ein sehr
umständliches Verfahren. Zum Glück kann die Wirkung der
Austauschoperatoren viel einfacher dargestellt werden.
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Nach Heitier wird die Austauschoperation tab direkt an den
Spininvarianten vorgenommen nach folgender Regel: Je ein Valenzstrich,
der von A ausgeht (oder dort endigt), vertauscht seinen Endpunkt
(Ausgangspunkt) mit je einem Valenzstrich, der von B ausgeht (oder
dort endigt). Der auf A und B bezogene Richtungssinn bleibt dabei
unverändert. Ein Valenzstrich zwischen A und B vertauscht nur seine

Richtung.
Algebraisch läßt sich diese Regel so formulieren

tab9 — Pab9 + S PaxPby9
X,Y

[AY] [BX]
[AX] [BY] (47)

Hier ist <p eine der Spininvarianten, auf die der Operator tab

wirken soll. pab ist die Anzahl Valensztriche in 9 zwischen den Atomen
A und B. X und Y sind andere in tp auftretende Atome, mit denen A
und B durch Valenzstriche verbunden sind. pax und pby repräsentieren
die Anzahl dieser Valenzstriche. Die Summation ist über alle Atome
X und Y zu erstrecken mit Ausnahme von A und B.

Wegen der Wichtigkeit dieser Operationen für die ganze
Energieberechnung sollen hier an zwei Beispielen die Rechnungen
durchgeführt werden. Das erste ist ein System von sechs einelektronigen
Atomen, das in der Mesomeriemethode auch zur Approximation der
Energie des Benzols verwendet wird. Als zweites Beispiel sollen die
Austauschoperationen des Äthylens angegeben werden.

Sechselektronensystem. Die unabhängige Basis besteht aus fünf
Valenzdispositionen

(48)

A A A A A
F \b f/ B F B V/ ^B F^ \b

D D D D D

tf fa ?3 % Y5

Die Valenzstriche sind lexikographisch geordnet. Im ganzen sind
15 Wechselwirkungsintegrale und dementsprechend ebensoviele

Austauschoperatoren zu berücksichtigen. Doch sollen hier nur die
Wechselwirkungen zwischen Nachbaratomen (als Approximation des Benzols

gedacht) berücksichtigt werden. Dann bleiben bloß die Operatoren tab
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tbc. tcd, tde, tef, tfa übrig. Ihre Wirkung auf die erste Valenzdisposition

tp, ergibt

tab ([AB] [CD] [EF]) [BA] [CD] [EF] - [AB] CD FF

tbc ([AB] [CD] [EF]) [DB] [CA] [EF] +9,0

tcd ([AB] [CD] [EF]) [AB] [DC] [EF] - [AB] [CD] [EF]
tde ([AB] [CD] [EF]) [AB] [FD] [EC] +96

tef ([AB] [CD] [EF]) [AB] [CD] [FE] - [AB] [CD] [EF]
tfa ([AB] [CD] [EF]) [AE] [CD] [BF] +9«

— ?i
9,+93

~9' (49)
9i+9s

Die Anwendung der obigen Regel, sei es in der geometrischen oder

algebraischen Form, ist hier äußerst einfach. Die Wirkung des

Austauschoperators tbc auf <px besteht darin, daß die zwei Atome, die mit
B und C verbunden sind, einfach ihre Plätze vertauschen: A nimmt
den Platz von D ein und D kommt an Stelle von A. Wenn die zwei
Atome auf die sich der Operator bezieht in der selben Klammer sind,
wie z. B. in tab [AB] [CD] [EF], so werden A und B ihre Plätze einfach
vertauschen. Hier wurde übrigens von der Eigenschaft [AB] - [BA]
Gebrauch gemacht

Mit den Operatoren tbc, tde, tfa erhält man aus cp, Spininvarianten
oder Valenzdispositionen tp10, tp6, cp8 die gar nicht zur unabhängigen
Basis gehören. Diese müssen auf Grund der Relation (II. 28) auf die
unabhängige Basis zurückgeführt werden

E1 ^Z E

D

3 F

0
C E

D D

[AB] [CD] [EF] + [AD] [BC] [EF] + [AC] [DB] [EF] 0

n t V3 — y. o 0

(50a)

(50b)

(50c)

Es sei noch bemerkt, daß man häufig die Entkreuzungsoperationen
(50) mehrmals anwenden muß, um alle bei den Austauschoperationen
erhaltenen Invarianten auf die unabhängige Basis zurückzuführen.

Bei den anderen vier Valenzdispositionen sind die
Austauschoperationen ebenso einfach wie oben. Es genügt also, wenn wir die

Ergebnisse hier einfach zusammenstellen.
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tab9i — 9i tab92 92+9, tab93
tbc9i 9, + 93 tbc92 — 9-' tbc93 — 93

tcd9i — «Pi tcd92 9: + 94 tcd93 9i +
tde9i 9, + 95 tde92 — 92 tde93 92 +

tef9i -=— 9i tef92 92 + 93 tef93 — 93

tfa9i 9, + 94 tfa92 — 9 2 tfa93 92 +
tab94 9i A 94 tab9s — 9s
tbc94 92+94 tbc95 92 + 9s
tcd94 -94 tCd9s 9i + 95

tde94 92+94 tde9s — 95

tef94 9i + 94 tef9s 9i + 9s
tfa94 -94 tfa9s 92+9s

(51)

-49s + 4(9, + 94)

-497 - +4(9, + 95)

-495

Im zweiten Beispiel des Äthylens sind insgesamt auch 15

Wechselwirkungen, von denen wir nur diejenigen, die sich auf Nachbaratome
beziehen, berücksichtigen wollen, also tab> tae> taf> tbCi tbdi tcd; tef.
Die den sechs Valenzdispositionen entsprechenden Invarianten der
unabhängigen Basis sind in (25) bereits angegeben. Berechnen wir die

Wirkung der sieben Operatoren auf die erste Funktion
(52)

tab ([AB]4[CD] [EF]) 4[ABP[BA] [CD] [EF] -49l
tae ([AB]4[CD] [EF]) 4[AB]3[AF] [CD] [EB] - 494

taf ([AB]4[CD] [EF]) 4[AB]3[AE] [BF] [CD]
tbc([AB]4[CD] [EF]) 4[AB]3[DB] [CA] [EF]
tbd([AB]4[CD] [EF]) 4[AB]3[CB] [AD] [EF]
tcd ([AB]4[CD] [EF]) [AB]4[DC] [EF] - 9,
W ([AB]4[CD] [EF]) [AB]4[CD] [FE] -9,

Für die Wirkung von tab erhält man ein analoges Resultat wie beim
ersten Beispiel, mit dem Unterschied, daß hier das Austauschergebnis
mit 4 multipliziert erscheint, weil in <p1 vier Valenzstriche zwischen
A und B liegen. Bei der Wirkung von tbc wo die zwei Atome B und C

in verschiedenen Klammern sind, kann man ähnlich verfahren wie
bei einwertigen Atomen. Schreibt man tpj in der Form [AB] [AB] [AB]
[AB] [CD] [EF], so wird das mit B verbundene Atom A der ersten
Klammer mit dem mit C verbundenen Atom D der fünften Klammer
vertauscht werden, dann wird A der zweiten Klammer mit D der
fünften Klammer vertauscht werden usw., im ganzen also sind vier
Vertauschungsmöglichkeiten zu beachten, was zu oben angegebenem
Resultat führt. Auf diese Weise können alle Austauschoperationen
sehr einfach durchgeführt werden. Die Austauschoperationen der
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anderen fünf Valenzdispositionen bieten auch keine Schwierigkeiten,
nur müssen gewisse Entkreuzungen öfters vorgenommen werden.
Wir geben für die anderen nur das Resultat an.

(53)tab92 ¦¦ -492 tab93 92 — 293

tae92 ' 4(9,+92+93+ 94+95) tae93 393 — 95 + 39,

taf92 4(92+93) taf93 -93
tbc92 4(92+93) tbc9s -93
tbd92 4(91+92+93+94+95) tbd93 393 — 9+-1-39,

tcd92 : 9i+92 tcd93 93 + 94

tef92 - 9i+92 tef«P3 93+95

tab94 91—294 tab9s 9i—29s tab9e 9i^49
tae94 — 9, + 39, tae95 " - 493- 39s tae96 — 96

taf94 * -94 taf9s - 493+4(f '5 + 396 taf9e " 96

tbc94 ¦ 493+494 + 395 tbc95 : -9s tbc96 — 9s

tbd94 - — 493—396 tbd95 —91 + 395 tbd9ö — 96

tcd94 -94 tcd9s : 9i+9s tcd96 + 96
W«P4 * 91+94 tef9s -95 tef96 1- 96

-294+295+296

Wie wir soeben gesehen haben, erhält man bei der Berechnung der
Austauschoperationen durchwegs lineare Ausdrücke von Spininvarianten.

In der Formel (46) wird also in jeder Klammer (tp; tab <pk) das

tab <pk ebenfalls durch einen linearen Ausdruck ersetzt, der selbstverständlich

noch mit tp; zu multiplizieren ist. D. h. nach der Berechnung
der Austauschoperationen sind die Koeffizienten aller Integrale in
(46) durch Skalarprodukte der Form (tp; tpk) gegeben, deren numerische
Werte nun zu berechnen sind.

Betrachten wir zu diesem Zweck wiederum die vorigen zwei
Beispiele. Beim Sechselektronensystem sind die Produkte der Funktionen
«Pi, 92, ?3, ?4, 9j zu ermitteln. Der direkteste Weg besteht darin, die

Produktbildung gliedweise an den ausmultiplizierten Invarianten
vorzunehmen bei gleichzeitiger Beachtung der Orthogonalitäts-
relationen der Spinfunktionen. Die den Valenzbildern (48) entsprechenden

ausmultiplizierten Spininvarianten sind

(54)

9, =4=[A,B2C1D2E,F2-A2B,CiD2E,F2-A,B2C2D,E,F,+ A,B,C,D,E,F,
V8

-A,B2CiD2E2Fi+A2BiCiD2E2Fi+AiB2C2DiE2Fi-A2BiC2DiE2Fi]

92 X: [A,B,C2D,E2F2- AjB^DiEjFi - A,B2C,D,E2F2 + A,B2C,D,E2F,

-AiB,C2D2EiF2+A2BiC2D2E1F1+AiB2CiD2E,F2-A2B2CiD2EiF1]
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93 — [A,BiC2D2E,F2-A2B1C2D,E1F2-A,B2C1D2E,F2 + A2B2C,D,E,F2
V8

- AiBAD^Fi+A.BiC.DiE^+AiBXiDjE.Fi-A^XiDiE.F,]

94 ^=[A,B,C,D2E2F2-A2B,C1D2E2F,-A,B2C,D2E,F2 + A2B2C1D2E,F1

-AiBiC.DiE^+A.BiC^iE.Fi+AiBjC.DiEiF.-A.B.C.DjEiFJ

95 -L [A,B,C,D,E2F2 - A2B,C,D,E2F2- A,B2C2D,E2F, + A^C^E^F,
V8

-A1B2C,D2E1F2+A2B1C1D2E,F2 + A1B2C2D2E1F1-A2B,C2D2E1F,]

Den ersten Ausdruck z. B. erhält man durch Ausmultiplizieren von

9, [AB] [CD] [EF] -4(A,B2-A2B,) .4(C,D2-C2D,). ^=(E,F2-E2F,)
\ — \ — \ —

Bei der Bildung des Produktes (<f1 tp,J auf Grund von (54) ergeben
alle gemischten Teilprodukte Null wegen der Orthogonalität der
Spinfunktionen, und die übrigen acht ergeben die Einheit. Das Gleiche

gilt auch für <p^ 9^ 9^ 95. Bei der Bildung des Produktes (9, 92);

um noch ein weiteres Beispiel zu nennen, sind nur zwei Teilprodukte
gleich der Einheit, nämlich A] Bj Cf D2 Ef F22 und A\ Bf C22 Df E\ Ff;
alle anderen sind gleich Null. Man erhält für die numerischen Werte
der verschiedenen Skalarprodukte dementsprechend

l
9i93 9i94 9i95 9293 9294 929s 2 (55)

P395 9495 4

Wie bei den Austauschoperationen ist auch hier diese direkte
Berechnung der Skalarprodukte viel zu umständlich und kann bei

größeren Systemen nicht in Frage kommen. Einfacher ist folgender
Weg:

Oben erhielten wir für das Quadrat der Spininvarianten durchwegs
die Einheit. Das Gleiche gilt aber auch für größere Systeme bestehend

aus Atomen mit je einem Elektron: alle 9? sind gleich der Einheit.
Die anderen erhält man auf Grund der Relation (50) ; indem man sie

der Reihe nach mit 9^ 93i 9,0 multipliziert, bekommt man die drei
Gleichungen

(9,9,) + (939,) - (9,o9i) 0

(9,93) + (9393) — (9,093) 0 (56)

(9i9io) + (93910) — (9io9io) 0
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Relationen von diesem Typus sind aber in genügender Anzahl
vorhanden, um alle Skalarprodukte zu bestimmen, falls die 9? schon
bekannt sind.

Im allgemeinen Fall, d. h. bei Systemen von Atomen mit mehreren
Elektronen reichen die Relationen (56) nicht aus, um alle numerischen
Werte der Skalarprodukte zu ermitteln. Aus den Austauschoperationen
kann man aber in genügender Zahl weitere Relationen gewinnen, wenn
man den hermitischen Charakter der Austauschoperatoren in
Betracht zieht. Es gelten dann folgende weitere Beziehungen

9i tab 9k 9k tab 9i
9i tbc 9k 9k tbc 9i (57)

Bei Verwendung solcher Relationen kann man die Skalarprodukte
auch in den etwas komplizierteren Fällen ermitteln. Es muß
allerdings gleich bemerkt werden, daß die Rechnungen bei größeren
Molekülen so weitläufig und unübersichtlich werden, daß die Ermittlung
der (9j <pk) praktisch wieder unmöglich wird.

Bei kleineren Molekülen, wie in unserem vorher behandelten zweiten
Beispiel des Äthylens, deren unabhängige Basis nur aus 6

Valenzdispositionen besteht, ist die numerische Berechnung der
Skalarprodukte auf diesem Weg ohne Schwierigkeit durchführbar. Zu diesem
Zweck nehmen wir zunächst an, daß (rpl 9J auf 1 normiert ist. Die
zweite Valenzdisposition 92 unterscheidet sich von 9, nur durch eine
andere Verteilung der Valenzstriche zwischen den vier einvalentigen
Atomen. Bei Systemen von Atomen mit je einem Elektron sind aber
alle (9; 9i) 1, d. h. sie sind unabhängig von der Verteilung der Valenzstriche.

Das Gleiche gilt auch hier, bezüglich der Valenzstriche, die
ausschließlich zwischen einelektronigen Atomen disponiert sind;
somit ist auch (92 92) =1. Aus Symmetriegründen haben wir ferner

94 9§. (9194) (9i9s). (9294) (929s). (9394) (939s)> (949fi) (959t)

Die übrigen Werte werden nach (57) ermittelt :

(58)

(94tab9i) («PiWu)" — 4(949i) (9i9i) — 2(9,94). (9194) —- (9i9s)

(93tab92) (92tab9s) : — 4(9392) (9292) —2(9293), (9293)

4tae9i) (9itae94) : — 4(9+94) — (9i9i) + 3((pi9+), (9494)- - (959s)
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3taf92) (92taf93): 4(9392) + 4(9393) — (<p2<p3), (9393)

2tcd9i) (91W92): — 2(929i) (9,9,) + (9192), (9i92>

3tcd9i) (9itcd93): —<939i) (9i9s) + (9194). (9193)

(93tcd92) (92tcd93): (939,) + (939,) (9293) + (9,94), (9294) ^ (929=)

(94tcd93> (93tcd94): (9493) + (9494) — (9394), (9394) —- <939s)

(95tcd94> (94tcd9s): —(9594) (9491) + (949s), (949s)

(94tbd9i) (9itbd94): — 4(949s) — 4(9,93) — 3(9,9,,), (9,9,,) 0

(96tae9i) (9itae9e): — 4(9694> — (9i9e). (949s) 0 (959,,)

(9etab92) (92tab96) : - 4(9b92) (?29i) + 4(9293)+
1

h 2(9,94) +2(9295) +2(9296), (9296)
4

(9staf93) (93taf9s): —(9s93)=4(9393)+4(9395)+3(9396). (939e) —jg

(9fctbd94) (94tbd96): — 4(9693) - 3(969<,) — (949,,), (9„96) ^
Nach dem die Berechnung der Austauschoperationen und der

Skalarprodukte bekannt ist, sollten auch die verschiedenen Integrale C,

(AB) und Aab ermittelt werden. Damit würden alle Bestandteile der
allgemeinen Formel explizite verfügbar sein. Eine direkte Berechnung
dieser Größen ist bei dem heutigen Stand der Theorie nicht möglich.
Man ist gezwungen, sie auf Grund von thermochemischen Daten
festzulegen. Wir geben hier die Werte der Coulomb- und Austauschintegrale,

die von Heitier1 für die Berechnung der Energie von
Kohlenwasserstoffen verwendet wurden

C (AB) C + (AB)

c -c 44 88
C -H 77 63

H-H 11,5

Die Buchstaben der ersten Kolonne sind chemische Symbole. Alle
Werte sind in kcal/mol ausgedrückt. Im Fall der H—H Wechselwirkung

ist nur die Summe der Coulomb- und Austauschintegrale bekannt.
Es sei noch bemerkt, daß diese Werte sich auf eine Verdampfungs-

1 W. Heitler, Helv. 38, 5 (1955).
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wärme des Diamanten von 170 kcal beziehen. Die A — Integrale werden
bei der Energieberechnung meistens vernachlässigt.

13. Aufstellung der Säkular- und Bindungsgleichung

Die Energieberechnung ist nun soweit vorbereitet, daß die
Säkulardeterminante aufgestellt werden kann. Betrachten wir den Fall
des Sechselektronensystems.

Wie bereits erwähnt, werden Systeme von Atomen mit je einem
Elektron in der Mesomeriemethode häufig zur Approximation der
Energie konjugierter Moleküle verwendet. Durch diese radikale
Vereinfachung des Problems wird erreicht, daß auch die
Energieberechnung größerer Moleküle, wie z. B. Benzol, Naphtalin usw., der

Rechnung zugänglich wird. Selbstverständlich können die so erhaltenen
Energien nur als Relativwerte eine Bedeutung haben, die man nicht
ohne weiteres mit den experimentell erhaltenen Bildungsenergien
vergleichen kann. Trotzdem können solche Rechnungen von Interesse
sein, z. B. für die Beurteilung der Beständigkeit der betreffenden Moleküle.

In dieser Approximation wird also die Energie des Benzols mit
einem System von sechs einelektronigen Atomen berechnet. Um das

Problem aber noch weiter zu vereinfachen, vernachlässigt man auch
die verschiedenen A — Integrale, die in (46) vorkommen. Eine weitere
Vereinfachung besteht darin, daß man statt der 15 theoretisch
möglichen Wechselwirkungen nur diejenigen zwischen Nachbaratomen
betrachtet; die anderen sind als weniger wichtig vernachlässigt. Es
bleiben also nur die sechs Austauschintegrale (AB), (BC), (CD), (DE),
(EF) und (FA) übrig. Unter dieser Voraussetzung haben wir nach der

Störungsrechnung folgendes Gleichungssystem zu lösen:

Muc, + M,2C2 + M13c3 + M,4c4 + M,5c5 0

M2,c, + M22c2 + M23c3 + M24c4 + M25c5 0
(59)

M5,c, + M52c2 + M53C3 + M54C4 + M55C5 0

Die entsprechende Säkulardeterminante lautet
M,, M,2 M,5
M2, M22 M25

M5, M52 M55

0 (60)
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Die Elemente Mik der Säkulardeterminante werden nach (46)
berechnet. Unter Beachtung der obigen Voraussetzungen sind sie durch
Ausdrücke der Form (61) gegeben.

M„ (9,9,) C -[(9,tab9l) (AB) + (9,tbc9l) (BC) + (91W,) (CD) +

- (9itde9i) (DE) + (9itef9i) (EF) + (9itfa9i) (FA)] - z (9,9,)
M,2 (9i92) C -[(9,tab92) (AB) + (9,tbc92) (BC) + (ç.tdç,) (CD) + (61)

+ (9itde92) (DE) + (9itef92> (EF) + (9itfa92) (FA)] - c (9,9,)

Führt man hier zunächst die Ergebnisse der Austauschoperationen (51)

ein, so entstehen Ausdrücke, in denen alle Koeffizienten der Integrale
durch Skalarprodukte repräsentiert sind :

(62)
Mn (9,9,)C - |- (9,9,) (AB) - [(9,9,) + (9,93)] (BC) - (9,9,) (CD)

-**[(<Pi9i) + (9i95)](DE)-(9,9,)(EF) +[(9,9,) + (9,94)] (FA) |-£(9,9,)
M,2 (9i92)C-|[(9i92) + (9i95)] (AB) -(9,92) (BC) +[(9,9,) + (9,9,)] (CD)

-(9,9,) (DE) + [(9,92) - (9,93] (EF) - (9,92) (FA)| - z (9,9,)

Die Einführung der numerischen Werte der Skalarprodukte (55)

ergibt die Elemente der Säkulardeterminante, in denen neben s nur
noch die Integrale unbestimmt sind.

M„ C -r(AB)-i/2(BC)+(CD)-y2(DE)+(EF)-y2(FA)-£ (63)

m,2 - 1/4C+ y4(AB)+ y4(BC)+ y4(CD)+ h(de) + %(ef)+ y4(FA)-y4s
m,3 - y2c- y2(AB)~ y2(BC)- y2(CD) + %(de)- h(ef) + h(fa) + y2z

m,4 - y2c- y2(AB) + y4(BC)- y2(CD) + y4(DE)- h(ef)- h(fa) + y2e

m,5 - -y2c-y2(AB)+ y4(BC)-y2(CD)-y2(DE)-y2(EF)+ y4(FA)+ y2z

M22 C-y2(AB)+(BC)-y2(CD)+(DE)-y2(EF)+(FA)-E
M23 - y2c+ y4(AB)- vi(BC) + y4(CD)- h(de)- h(ef)- y2(FA) + y2E

M24 - - y2c+ >/4(AB)- y2(BC)- vi(CD)- y2(DE) + y4(EF)- %(fa) + y2z

M25 - HC- H(AB)- H(BC) + y4(CD)- H(DE) + y4(EF)- >/2(FA) + y2z

M33 ¦ C-H(AB)+(BC)-H(CD)-H(DE)+(EF)-H(FA)-e
M34 %C+ H(AB) + H(BC) + % (CD) + y4(DE) + y4(EF) + H(FA)- >/4e

M35 - y4c+y4(AB)+y4(BC)+y4(CD)+y4(DE)+y4(EF)+y4(FA)-y4E
M44 C-H(AB)-H(BC)+(CD)-H(DE)-H(EF)+(FA)-e
M45 y4C+ H(AB) + y4(BC) + y4(CD) + y4(DE) + %(EF) + y4(FA)- y4e

M55 - C + (AB)-H(BC)-H(CD)+(DE)-H(EF)-H(FA)-e

Die Säkulardeterminante (60) ist symmetrisch in Bezug auf die
Hauptdiagonale. In (63) sind somit nur Elemente der Hauptdiagonale und
die von ihr rechts stehenden Elemente angegeben.
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Die Atomabstände zwischen Nachbaratomen des Benzols sind überall

gleich groß. Anderseits sind die Austauschintegrale Funktionen
der Atomabstände, die somit gleichgesetzt werden können (AB)

(BC) (CD) (DE) - (EF) (FA) A. Setzen wir ferner X -^-
so kann die Determinante (60) in der Form (60a) geschrieben werden.

(60a)x + 2 FF ***X
3

"2X"2
1 3

~2X~2 ~k* 3

~2

i-i *F xx 3 1 3

^2X^2 "ï- 3

2

1 3

2X~2 -U-Î2 2
X xx +34X+2 4X

3

2

1 3

2X^2 "2X"2 1x +
3

4X+2 X 4"X
3

2

1 3

2X"2 1x 3

~2X~2 1x+34X+2
1 v 3

4X+2 X

Die Ausrechnung der Determinante ergibt eine Gleichung fünften
Grades mit fünf Wurzeln. Im Fall von Systemen von einelektronigen
Atomen können die Wurzeln berechnet werden, ohne daß die numerischen

Werte der Integrale bekannt sind.
Die Berechnung der Determinante erfolgt am besten mit

Rechenmaschinen. Im obigen Fall kann man zwar durch einige Umformungen
(60a) in einfachere überführen, wie wir das bei der sogenannten
Bindungsdeterminante noch zeigen werden. Doch sind solche

Umformungen bei größeren Systemen viel zu kompliziert, um praktisch
von Bedeutung zu sein.

Nach der Gleichung (46) können also die Elemente der Säkulardeterminante

berechnet werden, insofern man die Austauschoperationen,
die Skalarprodukte sowie die Coulomb- und Austauschintegrale kennt ;

die A — Integrale werden ja meistens bei der Energieberechnung
vernachlässigt. Falls man sich allein für die Energie des Moleküls
interessiert und die Berechnung der Elektronenverteilung zur Seite

läßt, ist es vorteilhaft, die Säkulargleichung (59) durch ein ihr äquivalentes

Gleichungssystem, die sogenannte Bindungsgleichung zu
ersetzen, deren Handhabung bedeutend einfacher wird, ohne die Werte
der Störungsenergie zu verändern.

Die Bindungsgleichung hat den großen Vorteil, daß zu ihrer
Aufstellung nur die Berechnung der Austauschoperationen und die Kenntnis

der Integrale vorausgesetzt werden müssen; die Skalarprodukte
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treten in ihr überhaupt nicht auf. Die Determinante der Bindungsgleichung

ist zwar im Gegensatz zur Säkulardeterminante nicht
symmetrisch; sie hat aber den weiteren Vorteil, daß die überwiegende
Zahl ihrer Elemente - vor allem bei größeren Systemen - verschwinden,
was vom rechnerischen Standpunkt selbstverständlich eine große
Vereinfachung darstellt.

Zur Aufstellung der Bindungsgleichung geht man wieder von einer
unabhängigen Basis der Eigenfunktionen (II. 26) aus. Um die
Überlegungen möglichst einfach zu gestalten, betrachten wir wieder das

Beispiel des Systems von vier Atomen mit je einem Valenzelektron.
Im ersten Bestandteil des Gleichungssystems (6), d. h. in

J9, H 9, dT (10)

repräsentiert die Funktion <]>1 rechts und links von H eine vollständige
Moleküleigenfunktion (II. 26) mit den 24 Permutationen der
Elektronen und mit den vier Spinfunktionen (IIa), die der Valenzdisposition

in (3) entsprechen. Statt <\i1 führen wir links von H die Partial-
lösung des Vierelektronensystems

ua(l) ub(2) uc(3) ud(4) (64)

ein, was übrigens schon in (16) durchgeführt ist, mit dem Unterschied,
daß jetzt auch die Spinfunktion a(l)ß(2)a(3)ß(4) wegfällt. Die Rolle
der Spinfunktion war ja eigentlich die Berücksichtigung der Nicht-
unterscheidbarkeit der Elektronen im Zusammenhang mit dem
Pauliprinzip, was hier aber bereits erfüllt ist, so daß eine Multiplikation
mit der Spinlosen Funktion erlaubt wird. Statt (13) erhält man somit
den Ausdruck

/ ua(l)ub(2)uc(3)ud(4) H (va- 9b - «PC ^ <Pd) d-r (13a)

oder vier Integrale vom Typus

f ua(l)Ub(2)uc(3)ud(4) H -L 2-*iQQua(l)ub(2)uc(3)ud(4)<x(l)ß(2)a(3)ß(4)dT
J \ A

mit den verschiedenen Spinanteilen (IIa).
Durchläuft man die Reihe der entsprechenden Überlegungen bis

Gleichung (23), so erhält man für den vollständigen Koeffizienten von
ct der ersten Gleichung (6) statt (23) den Ausdruck
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(65)
9,C -[(AB)tab9, + (AC)tac9, + (AD)tad9, + (BC)tbc9, + (BD)tbd9, +

+ (CD)tcd9,] — e[9, — {Aabtab9, + Aactac9, + Aadtad9, + Abctbc9, +
Abdtbd9i T Acdtcd9i']

Eine analoge Überlegung ergibt für den Koeffizienten von c2 derselben

Gleichung (6)

(66)
92C-[(AB)tab92 + (AC)tac92 + (AD)tad<p2 + (BC)tbc92 + (BD)tbdç2 +

+ (CD)tcd92] - e[92 — |Aabtab9, + Aactac92 + Aadtad92 - Abctbc92 +
+ Abdtbd92 + Acdtcd92 }]

Indem wir die A — Integrale vernachlässigen und nur Wechselwirkungen

zwischen Nachbaratomen betrachten, erhält man für die erste

Gleichung (6)

{(C - e)9, - [(AB)tab9, + (BC)tbc9, + (CD)tcd9l + (DA)tda9,]}c, + (67)
+ {(C-E)92-[(AB)tab92 + (BC)tbc92 + (CD)tcd92 + (DA)tda(pJ)c, 0

Die zweite Gleichung (6) liefert dieselbe Relation.
Diese können wir jetzt nach 9, und 92 ordnen, nachdem die

Austauschoperationen berechnet sind. Das ergibt

(68)
{[(C - e) + (AB) - (BC) + (CD) - (DA)]c, + [- (AB) - (CD)]c2}cp, +

+ {[- (BC) - (DA)]c, + [(C - e) - (AB) + (BC) - (CD) + (DA)]c2)92 0

Die Spinfunktionen 9, und 92 sind linear unabhängig. Das heißt aber,
daß eine Relation a, 9, + a 2 92 0. w0 ai und a2 irgendwelche
Konstanten sind, nur dann erfüllt ist, wenn die aj verschwinden. Aus (68)
erhalten wir somit ein System von zwei Gleichungen für die Unbekannten

c, und c2.

[(C - e) + (AB) - (BC) + (CD) - (DA)]c, + [- (AB) - (CD)]c2 0

[- (BC) - (DA)]c, + [(C - z) - (AB) + (BC) - (CD) + (DA)]c2 0 [ '

Dieses System von homogenen linearen Gleichungen ist aber nur dann
erfüllt, wenn die Determinante der Koeffizienten verschwindet. Durch
Nullsetzen dieser Determinante erhält man dieselben s -Werte wie
aus der Säkulardeterminante.

Die gesuchte Energie kann aber auch dann noch berechnet werden,
wenn man statt c, und c2 die <p1 und 92 als Unbekannte betrachtet.
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Die Gleichung (67) ist nämlich auch dann befriedigt, wenn folgende
Gleichungen erfüllt sind.

(C - £)9, -[(AB)tab9i + (BC)tbc9, + (CD)tcd9, + (DA)tda9l] 0

(C - £)92 - [(AB)tab92 + (BC)tbc92 + (CD)tcd92 + (DA)tda92] =0 [ >

Dies sind die sogenannten Bindungsgleichungen im einfachsten Fall
von vier einvalentigen Atomen.

Was wir hier für vier Elektronen erhalten haben, kann auch im
allgemeinen Fall verwendet werden. Die allgemeine Form der Bindungsgleichung,

gültig für Systeme von ein- und mehrvalentigen Atomen,
schreiben wir nach (HRW) in der Form

e(l - S Aabtab) 9k (C - 2 (AB)tab) 9k
a,b a,b (71)

Das ist ein System von f linearen Gleichungen für die f Unbekannten
9k, wo f die Anzahl Valenzdispositionen repräsentiert. Sind die
Austauschoperationen berechnet, so erhält man aus (71) die
Bindungsdeterminante, deren Nullsetzen die Energie liefert.

Wir wollen die Nützlichkeit von (71) durch ein Beispiel illustrieren 1.

Betrachten wir zu diesem Zweck das Sechselektronensystem mit
seinen Wechselwirkungen zwischen den Nachbaratomen, indem wir
die A -Integrale vernachlässigen. Aus (71) erhält man bei Beachtung
von (51) die fünf Gleichungen

(C - s)9, - (AB)9, - (BC) (9, t-93) + (CD)?, - (DE) (9, + <p5)

+ (EF)9,-(FA)(91+94) =0
(C - z)9l - (AB) (92 + 95) + (BC)92 - (CD) (<pa + <p4) + (DE)92

- (EF) (92 + 93) - (FA)92 0

(C - £)ç3 - (AB) (9, + 93) + (BQ93 - (CD) (9, + 93) - (DE) (<p2 + 93)

+ (EF)93 - (FA) (?2 + 93) 0

(C - £)?4 - (AB) (9, + ç,) - (BC) (92 + 94) + (CD)94 - (DE) (<p, + 94)

-(EF)(9, +94) ~(FA)94 0

(C - s)95 - (AB)95 - (BC)(ç2 + 95) - (CD) (9, + 9s) + (DE)95

- (EF) (ç, + 95) - (FA) (92 + 95) 0

Da alle Austauschintegrale gleich sind, können wir sie mit A bezeichnen
und wie bei der Säkulargleichung (C—s)/A=X setzen.

(72)

1 Vgl. auch G. W. Wheland, Journal of Chemical Physics, 3, 230 (1935).
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-<9i + 0 - 93 -94 —95 - 0

0 + X9, - 93 -94 -95 0

-9i - 29, + (X-2) 93+O +0 =0
~9i - 292 +0 +(X-2)94 +0 0

2?i -292+0 +0 + (X-2)95 0

enc le Bindungsdeterminante ist durch (74)

X 0-1-1 -1
0 X -1 -1 -1

-2 -2 X-2 0 0 0

-2 -2 0 X-2 0

-2-2 0 0 X-2

(73)

(74)

Diese Determinante kann durch einige einfache Umformungen direkt
berechnet werden. Addiert man z. B. die zweite Zeile mit negativem
Vorzeichen zu der ersten, so erhält man (75). Addition der ersten
Kolonne (75) zur zweiten ergibt (76).

(75)

X-X 0 0 0

0 X -1-1 -1
-2 -2 X-2 0 0

-2 -2 0 X-2 0

-2 -2 0 0 X-2

X 0 0 0 0

0 X -1 -1 -1
-2 -4 X-2 0 0

-2 -4 0 X-2 0

-2-4 0 0 X-2

0 (76)

Durch analoge Umformungen erhält man schließlich die fünf Wurzeln

X 2, X « 2, X 0, X 1 + \ Î3, X 1 -VÏ3 (77)

oder die fünf gesuchten Energiewerte (I. 35) (hier mit s; bezeichnet)
für die Störung erster Ordnung.

S] c + 2.6055A
2*2 c + 0

S3 c -2A

c
c

2A
4,6055A (77a)

Die Bindungsdeterminante des Äthylens, um noch ein zweites

Beispiel zu erwähnen, läßt sich ohne weiteres mit den Angaben (52)
und (53) konstruieren. Falls man nur die Wechselwirkungen zwischen
den Kohlenstoffatomen und diejenigen zwischen Kohlenstoff- und
Wasserstoffatomen betrachtet, erhält man die Determinante (79). Wie
man sieht, zerfällt diese in drei einreihige und eine dreireihige
Determinante. Bemerkenswert an diesem System ist, daß die Wurzeln der
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dreireihigen Determinante auch aus dem einfacheren System von zwei

viervalentigen und zwei zweivalentigen Atomen berechnet werden
können. Man kann also das ursprüngliche Modell des Äthylens (78a)
durch (78b)

H H\ /(78a) C C D A B C (78b)

H H

ersetzen. Von dieser Vereinfachung werden wir bei der Berechnung
der Elektronenverteilung im Abschnitt 15 Gebrauch machen.

(79)X+4C-8B 0 0 0 0 0

-8B X -4C-16B -16B -8B -SB 0

0 -c X + 2C-4B B B -6B
B-C 0 0 X + 2C-6B 0 0

B-C (1 0 0 X+2C- 6B 0

-C 0 -4C -2C -2C X -2C+4B

X ist hier die Differenz zwischen dem Coulombintegral und der Energie
e, während C und B Austauschintegrale zwischen den Kohlenstoffatomen

bzw. zwischen Kohlenstoff- und Wasserstoffatomen
repräsentieren.

IV. Berechnung der Elektronenverteilung

14. Elektronenverteilung eines Systems von Atomen

mit je einem Valenzelektron l

Die grundlegende Beziehung der Quantenmechanik zur Berechnung
der Elektronenverteilung in stationärem Zustand ist gegeben durch

99 * dx (1)

Hier ist ç) eine von den Koordinaten abhängige und fy* die zu <\>

konjugiert-komplexe Funktion. Da wir ausschließlich mit reellen
Funktionen zu tun haben, kann man statt (1) auch

99dr 99dT,dT2dT3 (2)

O. Klement, Helv. Chim. Acta, 34, 1368, 2230 (1951).
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schreiben. Das ergibt die Wahrscheinlichkeit, daß sich das erste
Teilchen im Volumelement dT,, das zweite im Volumelement df2 usw.
befindet. Bildet man das Integral

dT, J 92dx2dT3 dT„ (3)

so summiert man alle Wahrscheinlichkeiten, daß das erste Teilchen im
Volumelement dt, ist, gleichgültig, wo die anderen liegen. Ähnliches

gilt für alle anderen Teilchen. Summiert man alle Wahrscheinlichkeiten,

so muß die Einheit entstehen, da alle Teilchen des Systems
irgendwo im Raum mit Bestimmtheit vorzufinden sind. Es gilt also

folgende Normierung

f 92dr, dT2 dzn 1 (4)

Auf Grund der Beziehung (2) war es möglich, die Elektronendichte-
verteilung des Wasserstoffatoms und des Wasserstoffmoleküls in
befriedigender Weise zu ermitteln. Deshalb soll auch hier die
Elektronenverteilung organischer Moleküle nach der Gleichung (2)
berechnet werden.

Um die Überlegungen konkreter zu gestalten, sollen sie an Hand
eines Beispieles durchgeführt werden. Zu diesem Zweck wählen wir
wiederum das System von sechs Elektronen, das wir bei der
Energieberechnung zur Approximation des Benzols verwendet haben.

Wählen wir aus der Gesamtheit der 15 möglichen Valenzdispositionen

(Einleitung (3)) eine unabhängige Basis aus, z. B. die Basis

(III. 48). Den fünf Valenzverteilungen entsprechende vollständige
Moleküleigenfunktionen sind

9, ^=2YiQÖua(1)ub(2)uc(3)ud(4)ue(5)uf(6).[AB][CD][EF]

h -4= 2 r)QQua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .[AF][BC][DE]
\6\

93=^27lQQua(1)ub(2)uc(3)ud(4)ue(5)uf(6) [AD][BC][EF] (5)
V6!

+4 =142lQQua(l)ub(2)uc(3)ud(4)ue(5)uf(6) [AF][BE][CD]
V6!

k =-4=2TOQ«a(l)ub(2)uc(3)ud(4)ue(5)Uf(6) [AB][CF][DE]
V 6!
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Die Linearkombination der fünf Funktionen gibt die Eigenfunktion
nullter Näherung

«I* c,9, + c292 + c393 + c494 + c595 (6)

Zur Bestimmung der Koeffizienten c, wird man in der Störungsrechnung

auf das System von fünf homogenen Gleichungen (I. 33) mit
den c,, c2, c3, c4, c5 als Unbekannten geführt. Ist die Energie bekannt,
so wird man die c; durch Auflösung des homogenen Gleichungssystems

berechnen können.
Dem Gleichungssystem (III. 59) entsprechende Säkulardeterminante

(III. 60a) ergibt für die kleinste Wurzel den Wert X -2,6055. Sie
ist in (III. 77) auf Grund eines der Säkulargleichung äquivalenten
Gleichungssystems explizite berechnet. Führen wir diesen Wert in
(III. 60a) bzw. in (III. 59) ein, so erhält man dem Grundzustand
entsprechende Koeffizienten der Linearkombination (6) mit den
numerischen Werten c, c2 1 und c3 c4 - c5 —0,4343. Hierbei wurden
die ursprünglich erhaltenen q durch c, dividiert, was bei einem homogenen

Gleichungssystem erlaubt ist. Man erhält also für die
Eigenfunktion nullter Näherung den Ausdruck

9 9, + ^ - 0,4343 (93 + 94 + <[,,) (7)

Zur Berechnung der Elektronenverteilung bildet man gemäß (2)
das Quadrat der Eigenfunktion nullter Näherung (7). Da die
Eigenfunktionen <9i, *92. ^3» ^4» «l'a nicht orthogonal sind, werden auch die

gemischten Produkte von Null verschieden sein, d. h.

92 Vi + «II + 0,1886 (V + V + i>î) + 29,92

- 0,8686 (9,93 + 9,94 +9,95 + 9293 + ^«h + «Ms) (8)

+ 0,3772 (^9, f 9395 + 9495)

Für die weitere Rechnung sollen zunächst die einzelnen Glieder
¦|/j <9k auf eine handlichere Form gebracht werden. Betrachten wir zu
diesem Zweck ausführlicher das Produkt «9, «9,

9,9, -— 2 IQ' Q' ua"bUcUd*JeUf [AB][CD][EF]
\ 6\ (9)

• -= 2 IQQUaUbUc"dUeUf- [AB][CD][EF]

das man einfacher auch so schreiben kann
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Mi =6|2YlQ'rlQ(<3'uaubUcUdUeUf-QuaUbUcUdUe"Jf)(Q'9iQ9i) (10)

Genau wie bei der Energieberechnung in (III. 15) kann die doppelte
Summation durch eine einfachere ersetzt werden und gleichzeitig
hebt sich der Fakultätsfaktor weg, so daß man (10) in der einfacheren
Form

•Mi SlQ (uaubucudueuf Q uaubucudueuf) (9, Q 9,) (11)

schreiben kann.
Von der Gesamtheit aller Permutationen sind bei der

Energieberechnung nur die identische Permutation und die Transpositionen,
d. h. die einfachen Permutationen, die nur zwei Elektronen zwischen
zwei Atomen vertauschen, betrachtet worden. Alle höheren
Permutationen wurden vernachlässigt. Die gleiche Vereinfachung soll auch
hier verwendet werden. Somit bleiben von (11) nur die folgenden übrig

(12)
9? ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(l)ub(2)uc(3)ud(4)ue(5)uf(6)(9,9,)

- ua(l)ub(2)uc(3)ud(4)ue(5)uf (6). ua(2)ub(l)uc(3)ud(4)ue(5)uf (6) (9,tab9i)

- ua(l)ub(2)uc(3)ud(4)ue(5)uf (6). ua(3)ub(2)uc(l)ud(4)ue(5)uf(6) (9,tac9»)

Es folgen noch 13 analoge Summanden mit den übrigen
Transpositionen. Der erste Summand in (12) ist positiv, weily)Q der identischen
Permutation entspricht, für alle anderen Permutationen ist die
Anzahl von Inversionen ungerade und somit rlT —1.

Bezeichnen wir den Koordinatenanteil im ersten Summanden mit

K u^(l)ub(2)u^(3)uâ(4)u^(5)u?(6) (13)

Ferner soll der Koordinatenanteil des zweiten Summanden, wo ein
Elektron des Atoms A mit einem Elektron des Atoms B vertauscht
ist, mit 8ab, im dritten Summanden, wo die Elektronen der Atome A
und C vertauscht sind, mit Sac usw. bezeichnet werden, d. h.

Sab ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(2)ub(l)uc(3)ud(4)ue(5)uf(6)
Sac ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(3)ub(2)uc(l)ud(4)ue(5)uf(6)

Sef ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(l)ub(2)uc(3)ud(4)ue(6)uf(5)

Damit nimmt (12) die Form (15)
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(15)
Vi (9i9i)K -L(9itab9i)Sab + (9itac9i)Sac + (9itad9i)Sad+ (9itae9i)Sae +

+ (9itaf9i)Saf + (9itbc9i)Sbc + (9itbd9i)Sbd + (9itbe9i)Sbe + (9itbf9i)Sbf
+ (9itcd9i)Scd + (9itce9i)Sce + (9itcf9i)&cf + (9itde9i)Sde + (9itdf9i)Sdf

+ (9itef9i)Sef]
oder (16) an.

Vi (9i9i) K - 2 (9itab9i)Sab nr>a,b (lö)

Die Summation ist hier über alle Atompaare zu erstrecken.
Genau dieselben Überlegungen können aber mit allen anderen

Produkten (8) durchgeführt werden. Bei allen wird zunächst die doppelte
Summation durch eine einfache ersetzt und von den Permutationen
sind nur die identische und die Transpositionen zu berücksichtigen.
In jedem Produkt bleibt eine Koordinatenfunktion K und 15

Austauschfunktionen 8ab> 8ac> ..._ 8ef übrig. Für jedes Produkt erhält man
also einen Ausdruck der Form (16), den man somit in der allgemeineren
für alle Vi «K gültigen Form (17)

9i9k (9i9k) K — S (9itab9k)8ab ,17)
a,b * '

schreiben kann.
Im weiteren wollen wir zur Vereinfachung, - wie das bereits bei der

Energieberechnung geschehen ist -, nur die Wechselwirkungen zwischen
Nachbaratomen berücksichtigen, indem wir voraussetzen, daß die
sechs Elektronen des betrachteten Systems zur Approximation der

Elektronenverteilung des Benzols dienen soll. Von (17), wo die
Summation sich auf alle Atompaare erstreckt, bleibt (18) übrig.

*9i*9k (9i9k) K — [(9itab9k)Sab + (9itbc9k)Sbc + (9itcd9k)8cd +

- (9itde9k)Sde + (9'tef9k)8ef + (9itfa9k)8faj

Einführen von (18) in (8) ergibt nun

(18)

V {(9i9i) K — [(9itab9i)Sab + (9itbc9i)sbc + (9itcd9i)8cd + (19)

+ (9itde9i)Sde + (9itef9i)Sef + (9itfa9i)8fa]}
+ {(9292) K — [(92tab92)8ab + (92tbc92)Sbc + (92tcd92)Scd +

- (92tde92)8de + (92tef92)Sef + (92tfa92)8fa]}
+ 0,1886 {(9393) K — [(93tab93)8ab + (93tbc93)Sbc + (93tcd93)8cd +

+ (93tde93)8de + (93tef93)8ef + (93tfa93)8fa]}

Die Austauschoperationen sind aber schon von der Energieberechnung
(III. 51) her bekannt; dasselbe gilt für die Skalarprodukte (III. 55).
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Man kennt somit alle in (19) vorkommenden Koeffizienten, deren
numerische Werte aus (III. 63) abgelesen werden können.

Bezeichnen wir allgemein die Summe der Koeffizienten von K mit
a0i die Summe der Koeffizienten von 8ab mit a, usw., so erhält man

V a„ K + ai 8ab + a2 Sbc - + ai 8ik + (20)

oder in unserem Fall

V 5,9535 K + 2,5854 (8ab + Sbc + 8cd + 8de + 8ef+8fa) (21)

Die Verteilung des i-ten Elektrons des Systems (20) erhält man nun,
indem man die Koordinaten des fraglichen Teilchens festhält und über
die Koordinaten aller übrigen Elektronen integriert. Auf Grund von
(21) erhalten wir also die Verteilung des ursprünglich zum Atom A
gehörenden ersten Elektrons p(l), indem wir in Gleichung (21) die
Koordinaten des ersten Elektrons festhalten und über die Koordinaten des

zweiten, dritten, sechsten Elektrons integrieren.
(22)

P(l) 5,9535 [^(l)Ju§(2)dT2/u2(3)dT3Juâ(4)dT4J^(5)dT5juK6)dT6]

+ 2,5854 [ua(l)ub(l)Jua(2)ub(2)dT2ju2(3)dT3/uâ(4)dT4Ju2(5)dT5J'uH6)dTb

+ ua(l)Jub(2)uc(2)dT2Jub(3)uc(3)dT3Juâ(4)dT4Jue(5)dT5JuH6)dT6

+ U^(l)JU§(2)dT2JUc(3)ud(3)dT3juc(4)ud(4)dT4Ju2(5)dT5Ju-f(6)dT6

+ u|(l)Juè(2)dT2jU2(3)dT3Jud(4)Ue(4)dT4Jud(5)ue(5)dT5J'Uf(6)dT()

+ u2(l)Juê(2)dT2ju2(3)dT3jud(4)dT4Jue(5)uf(5)dT5/ue(6)uf(6)dTf,

+ uf(l)ua(l)]'Uê(2)dT2Ju2(3)dT3jud(4)dT4Ju2(5)d-r5juf(6)iia(6)dT6]

Auf analoge Weise bekommt man die Verteilung des ursprünglich zum
Atom B gehörenden zweiten Elektrons, indem man in (20) die
Koordinaten des zweiten Elektrons festhält und über alle übrigen
Elektronen integriert.

(23)

p(2) 5,9535 [Ju2(l)dT, uè(2)Ju2(3)dT3jud(4)dT4Ju|(5)dT3jUf(6)dT6]

+ 2,5854 [Jua(l)ub(l)dT,.ua(2)ub(2)Ju2(3)dT3jud(4)dT4Ju2(5)dT5juf(6)dT6

+ Ju2(l)dT, ub(2)uc(2)Jub(3)uc(3)dT3Ju21(4)dT+j'uI(5)dr5JuK6)dT6

+ Ju'2(l)dT, .uè(2)JUc(3)ud(3)dT3fUc(4)ud(4)dT4/-J2(5)dT5fu^(6)dT6
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+ Ju2(l)dT, .uê(2)Jii2(3)dT3jud(4)ue(4)dT,Jud(5)ue(5)dT5Ju?(6)dT„

+ /u2(l)dT, 4(2)Jb2(3) dx3Jud(4)dT4Jue(5)uf (5) dT5/ue(6)uf (6) d-r«,

+ Jua(l)iJf(l)dT, Uê(2)Ju2(3)dT3JUâ(4)dT4JU2(5)dT5Jua(6)uf (6)dT„]

Entsprechend müssen die Integrationen der anderen vier Elektronen,
die ursprünglich zu den Atomen C, D, E und F gehören, durchgeführt
werden. Wie man ohne weiteres feststellen kann, erhält man die erste
Zeile von (22) durch Integration des ersten Summanden in (21), die
zweite Zeile von (22) durch Integration des zweiten Summanden
in (21) usw. ; dieselbe Bemerkung gilt auch für (23).

Die einvalentigen Atomeigenfunktionen ua(l), ub(2), uc(3), ud(4),
ue(5), uf(6) können als normiert vorausgesetzt werden, dann sind alle

Integrale vom Typus J u*j(k)d-rk gleich der Einheit. Die übrigen
Integrale sollen wie bei der Energieberechnung mit

Aab=Jua(l)ub(l)dTiJua(2)ub(2)dT2

Abc / ub(2)uc(2)dT2 f ub(3)uc(3)dT3
(24)

Afa =/uf(6)ua(6)dT6 Juf(l)ua(l)dT,

bezeichnet werden. Damit bekommt man aus (22), (23) und gemäß
den entsprechenden Ergebnissen der Elektronen 3, 4, 5, 6 einen
Ausdruck p(r), der die Elektronenverteilung unseres Benzolmodells
repräsentiert, wobei die Numerierung der Elektronen weggelassen ist.

p(r) 5,9535(ua + ub + u£ + ud + u2. + u2-)

+ 2,5854 (2uaub i/Â^ + u2Aab + udAab + u2Aab + ufAab

+ uaAbc + 2ubuc \ A^ + udAbc + u2Abc +ufAbc

+ UaAcd + ubAcd + 2ucud VAcd + u2Acd + UfAcd (25)

+ uaAde + ubAde + UcAde + 2udue VÄ^e + ufAde

+ uaAef + ubAef + u^Aef + udAef + 2ueuf \ Aef

+ 2uauf \,Aaf + ubAaf + UcAaf+ udAaf -4- u2Aaf)

Um die endgültige Elektronenverteilung p(r) zu erhalten, muß p(r)

allerdings noch mit dem Normierungsfaktor 1/N und der Anzahl
Elektronen 6 multipliziert werden, d. h.
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P(r)=^p(r) (26)

Zur Ermittlung von N J p(r) dr, ist noch eine Integration von p(r)
über den Raum erforderlich, indem man gleichzeitig die Normierung
der ua, ub, und die Ausdrücke (24) berücksichtigt. Für N erhält man

N 6[5,9535 + 2,5854 (Aab + Abc + Acd + Ade + Aef + Afa)] (27)

Die auf diese Weise erhaltene Elektronendichte p(r) repräsentiert
die kontinuierliche Elektronenverteilung des auf sechs einvalentige
Atome reduzierten Benzols. Man könnte damit ein dem Röntgendia-
gramm ähnliches Höhenschichtlinienbild aufstellen. Doch ist die
numerische Berechnung der kontinuierlichen Verteilung angesichts
der zahlreichen Vernachlässigungen, die gemacht worden sind,
nicht von großem Interesse. Nützlicher erscheint vom Standpunkt
der Chemie die Berechnung einer diskreten Elektronenformel.

Diese kann aus der kontinuierlichen Verteilung (26) respektive (25)

erhalten werden. In (25) ist ua nämlich im wesentlichen nur an der
Stelle vom Atom A von Null verschieden, ub ist ebenfalls
hauptsächlich an der Stelle des Atoms B von Null verschieden usw. Anderseits

stellt uaub eine Austauschladung zwischen den Atomen A und B
dar, ubuc eine Austauschladung zwischen den Atomen B und C usw.,
die für die Bindung dieser Atome verantwortlich sind. Wir können
somit grob eine Elektronenverteilung angeben, indem wir (26) bzw.
(25) über den Raum integrieren und die dabei von u| herrührenden
Anteile mit p(A) bezeichnen und die Elektronenzahl am Atom A
nennen. Analog erhält man die Elektronenzahlen p(B), p(C) der
anderen Atome B, C, aus ub u£_ Der von ua ub herrührende
Teil p(AB) wird die Austauschladung zwischen A und B sein,
dementsprechend man aus ub uc die Austauschladung p(BC) zwischen B und C

usw. erhält. Auf diese Weise entstehen zwei Arten von Indizes: der
Atomindex p(I) und der Bindungsindex p(IK). Aus (26) erhält man
somit für das Benzol als Sechselektronensystem betrachtet

p (A) iL [5,9535 - 2,5854 (Abc h Acd + Ade + Aef)]

P (B) ~ [5,9535 + 2,5854 (Acd + Ade + Aef + Afa)]

p (AB) ^. 2 2,5854 Aab

p (BC) |r • 2 2,5854 Abc

(28)
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Nun sind aber die Integrale Aik Funktionen der Atomabstände,
die in unserem Benzolmodell gleich groß sind. Dementsprechend haben
wir

Aab Abc Acd Ade Aef Afa (29)

Mit (29) kann (27) jetzt einfacher auch so geschrieben werden

N 6 [5,9535 + 15,5124 A] (27a)

Die Atom- und Bindungsindizes des Benzols (28) nehmen dann ebenfalls

die einfachere Form (28a) an.

_
5,9535 + 10,3416 A 1 + 1,737 A

P ' ~ 5,9535 + 15,5124A ~~
1 + 2,606 A " '

(28a)

._. 5,9535 + 10,3416 A 1 + 1,737 A
p (B)

5,9535 + 15,5124 A 1 + 2,606 A °'854

,,m 5,1708 A 0,869 A nl-1£P (AB)
5,9535 + 15,5124 A " 1 + 2,606 A " °M6

5,1708 A 0,869 A _._p (BC)
5,9535 + 15,5124 A " 1 + 2,606 A " °'146

Selbstverständlich sind alle Atomindizes einerseits und alle
Bindungsindizes anderseits gleich groß. Ferner muß die Summe der
Bindungs- und Atomindizes gleich der Gesamtzahl der Elektronen
des betrachteten Systems sein, d. h.

p (A) + p(B) + p(C) + p(D) + p(E) + p(F)
+ p(AB) + p(BC) + p(CD) + p(DE) + p(EF) + p(FA) 6 [ '

Das ist in (28a) tatsächlich der Fall.
Es sei ferner bemerkt, daß das in den Ausdrücken (28a) vorkommende

A unbekannt ist. Sein Wert liegt zwischen 0 und 1. Falls man
A unbedingt numerisch ausdrücken will, so kann z. B. A 0,3
gesetzt werden, was uns ein vernünftiger Wert erscheint. Doch spielt
diese Unbestimmtheit weiter gar keine große Rolle, weil A nur auf
den Absolutwert, nicht aber auf die Relativwerte der Indizes einen
Einfluß hat. Für die Chemie sind aber die Relativwerte von Wichtigkeit,

wie z. B. bei der inneren Energie in der Thermodynamik.
Aus der obigen Ermittlung der Elektronenverteilung des Sechs-
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elektronensystems sieht man ohne weiteres, wie die Rechnungen im
allgemeineren Fall eines Systems von n einvalentigen Atomen
geführt werden müssen. Die Verallgemeinerung bei den Relationen (9)
bis (20) bietet nichts Neues, falls man in (19) die entsprechende Zahl
der Valenzdispositionen der unabhängigen Basis berücksichtigt. In
(20) müssen natürlich alle Wechselwirkungen eingeführt werden, die
für das betreffende System von Interesse sind. Man wird hier natürlich
nur Wechselwirkungen zwischen Nachbaratomen berücksichtigen,
denn die Approximation eines Moleküls durch einvalentige Atome
ist eine sehr rohe Approximation. Die a0> a, a2 repräsentieren in
(20) respektive die Summe aller Koeffizienten von K, 8abi 8bC]

Aus (20) erhält man die Verteilung des ersten Elektrons des Systems
durch eine der (22) analogen Integration über alle Elektronen mit
Ausnahme des Elektrons 1, dessen Koordinaten festgehalten werden.
Ähnlich verfährt man mit allen anderen Elektronen. Die Summe aller
dieser Partialergebnisse gibt die Elektronenverteilung des Systems

P (r) ^ [a„ (u2 + u2, + + u2)

+ a, (2uaiibVÄah + u2Aab + udAab + + u„Aab

+ a2 (u2Abc + 2ubuc \Ä^c + udAbc + + unAbc (31

+ a3 (uaAcd + ubAcd + 2ucud yÄcd + ¦ • ¦ + u2 Acd)

+ ai (u2A|n + ubAin + u2Ain + + 2uiunyAln)]

n ist hier gleich der Anzahl aller Elektronen. Ferner ist

N n (a„ + a, Aab + a, Abc + + aiA,n) (32)

Die verschiedenen Aik sind die in (24) angegebenen A-Integrale. Aus
(31) erhält man durch Integration die allgemeinen Ausdrücke für
Atom- und Bindungsindizes.

P (A) ^- (a0 + a2Abc + a3Acd + + a)Aln)

P (B) N (ao + a3Acd + a4Ade + + aiA|n) (33)

P (C) ^ (a0 + a,Aab + a4Ade + + aiAi„)
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p (AB) - ^55
2n a2Abc

p(BC) X

15. Elektronenverteilung eines Systems von Atomen

mit einem und mehreren Elektronen 1

Die im vorigen Abschnitt erhaltene Elektronenverteilung auf Grund
eines Systems von einvalentigen Atomen kann selbstverständlich
nur als eine erste Approximation der wirklichen Elektronendichte
betrachtet werden. Die vollständige Berechnung mit allen Elektronen
ist allerdings meistens recht kompliziert. Will man aber eine
Elektronendichte erhalten, die als Grundlage für die Interpretation der
Eigenschaften chemischer Moleküle dienen soll, so ist man gezwungen,
trotz rechnerischer Komplikationen die Verteilung auf Grund aller
Valenzelektronen zu ermitteln. Wir wollen deshalb die Berechnung
der Elektronenverteilung auch für den allgemeinen Fall, also für den
Fall von Systemen, bestehend aus ein- und mehrelektronigen Atomen,
entwickeln.

Die Überlegungen sollen auch hier an Hand eines Beispiels, nämlich
des Äthans, durchgeführt werden. Dieses Molekül, bestehend aus sechs

Wasserstoffatomen und zwei Kohlenstoffatomen, kann wie das Äthylen
im Abschnitt 14 durch das einfachere System von zwei viervalentigen
Atomen A,B und zwei dreivalentigen Atomen C,D (34) ersetzt werden.

H\ /H
H— C--C—H/ \H / x H

D=e A-B C (34)

Die Rechnungen werden dadurch wesentlich einfacher. Während
nämlich die ursprüngliche Basis des Äthans aus 20 Valenzdispositionen
besteht, enthält die neue Basis nur 4 Valenzdispositionen.

Die den vier Atomen A,B,C,D entsprechenden Koordinateneigenfunktionen

bezeichnen wir mit

O. Klement, Helv. Chim. Acta, 36, 691 (1953), 42, 1332 (1959).
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A : ua(l,2,3,4)
B : ub(5,6,7,8)
C : uc(9,10,ll)
D : ud(12,13,14)

(35)

Die Zahlen sind Abkürzungen für die drei Ortskoordinaten der
betreffenden Elektronen.

Die Atomeigenfunktionen (35) sind antisymmetrisch in allen ihren
Elektronen. Aus Zweckmäßigkeitsgründen wollen wir sie in der
bekannten Determinantenform (I. 40) schreiben.

ua(1,2,3,4)

v,(l) v,(2) v,(3) v,(4)
1 v2(l) v.(2) v2(3) v2(4)

V4! v3(l) v3(2) v3(3) v,(4)
v«(l) v4(2) v4(3) v4(4)

(36)

Die Atomeigenfunktion ua (1,2,3,4) wurde hier aus
Einelektroneigenfunktionen Vj(i) aufgebaut. Diese seien orthogonal und normiert.
Die Zahlen in den Klammern bedeuten wiederum die drei
Ortskoordinaten, während die Indizes 1, 2, 3, 4 als Abkürzungen für die
drei Quantenzahlen des betreffenden Quantenzustandes zu betrachten

sind. —,= ist der Normierungsfaktor. Entsprechende Determinanten-

ausdrücke gelten für die anderen Atomeigenfunktionen (35).
Die Moleküleigenfunktionen (37), die den vier Valenzdispositionen

entsprechen, werden aus diesen antisymmetrischen Atomeigenfunktionen

aufgebaut, indem man sie mit den entsprechenden Spinfunktionen

ergänzt, ihr Produkt bildet und das Ganze in die vom
Pauliprinzip geforderte antisymmetrische Form (II. 26) bringt.

(37)

3!2*OQQ*Ja(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

[AB] [AD]3[CB]3

V V 14!

«1*2

V
/4! 4! 3! 3!

14!
2YlQ(3ua(1-2.3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

[AB]2[AD]2[CB]2[CD]

93 i/illllll.!2^QQ»a(l,2,3,4)Ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

[AB]3[AD][CB][CD]2

+4 i/4'4^3,'3' 2 ijQQu.(l,2,3,4)ub(5.6.7,8)Uc(9,10,ll)ud(12,13,14)

[AB]4[CD]3
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Die entsprechende Eigenfunktion nullter Näherung lautet

9 c,9, + c292 + c393 + c494 (38)

Wie bei einvalentigen Atomen bildet man dann

92 c?92 + 2c,c29,92 ^ (39)

Betrachten wir im einzelnen eines dieser Produkte, z. B. <\>\- Man
erhält hier zunächst einen dem (9) analogen Ausdruck, wo die doppelte
Summation durch eine einfache ersetzt wird und gleichzeitig sich der
Fakultätsfaktor weg hebt. Es bleibt somit eine Beziehung übrig, die
formell der Relation (11) entspricht, nämlich

+1+1 S *^Q(uaubucUd-Qua"JbUcUd) (<PiQ<Pi) (40)

Von den Permutationen sollen auch hier nur die Identität und die
Transpositionen berücksichtigt werden. Dann bleiben von (40)

folgende Anteile übrig:

K ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)
ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

Sab ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)
Tab ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

8ad ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14) l '

Tad ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)
Sbc ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

Tbcua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

Die Tab) Tad) Tbc repräsentieren hier Transpositionen von nur zwei
Elektronen zwischen den Atomen A und B, A und D, B und C. Im
ganzen gibt es 4.4 Transpositionen, die ein Elektron des Atoms A mit
einem Elektron des Atoms B vertauschen, ferner sind 3.4 Transpositionen

zwischen A und D und ebensoviele zwischen den Atomen B
und C möglich. Wie bei der Energieberechnung ist es auch hier gleichgültig,

welche Transposition für ein bestimmtes Atompaar gewählt
wird. Deshalb kann der Koordinatenanteil, der sich in (40) auf die
Vertauschung zweier Elektronen zwischen den Atomen A und B
bezieht, wie bei einvalentigen Atomen (14) einfach mit 8ab bezeichnet
werden. Analoges gilt für die anderen Koordinatenanteile. Der der
identischen Permutation entsprechende Koordinatenanteil ist auch
hier mit K bezeichnet.
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Die Produkte der zweiten Klammer in (40), d. h. die Koeffizienten
von K, 8abi 8ad 8bc müssen noch auf mehrvalentige Atome erweitert
werden. Für die Identität, d. h. für Q I, erhält man einfach ein
Produkt der Spinfunktionen ^^).

Für die Vertauschung eines Elektrons des Atoms A mit einem
Elektron des Atoms B, also für Q =Tab können wir (9, Tab 9^ schreiben.
Im Fall des Atompaars A und B sind aber 4.4 solche Koeffizienten zu
berücksichtigen, nämlich

(<PiT15<Pi) + (9iTi6*?i) + (?iTi7<Pi) + (9iTi8<Pi) + • • • (42)
+ (9, T459i) + (<PiT46ç,) + (9,T479i) + (<piT48<pi) 2 (9iTab9i)

Tab

wobei das erste Glied die Vertauschung des ersten Elektrons des Atoms
A mit dem Elektron 5 des Atoms B zum Ausdruck bringt. Das letzte
Glied repräsentiert die Vertauschung des Elektrons 4 vom Atom A mit
dem Elektron 8 vom Atom B.

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
wiederum gleichwertig sind, kann man zur Vereinfachung von (42) die
Summe aller dieser Vertauschungen mit tab bezeichnen, also tab E Tab

setzen. Dann wird der Koeffizient von 8ab einfach (<pj tab 9^ sein.

Entsprechendes gilt natürlich auch für die Atompaare A und D, B
und C.

Fassen wir nun alle Teilergebnisse zusammen, so erhält man für
(40) den Ausdruck

+1+1 (<Pi<Pi) K — [(<pitab<pi) 8ab + (9,tad9i) Sad + (<Pitbc9i) Sbc] (43)

Die hier vorkommenden (9191), (91 tab 9,). sind identisch mit
denjenigen, welche bei der Energieberechnung auftreten. Sie werden somit
nach dem dort angegebenen Verfahren berechnet. Ganz ähnlich
erfolgt die Berechnung der anderen Produkte tj^ <\>k in (39).

Führt man die so erhaltenen Ergebnisse in (39) ein, so erhält man

92 cf [K (9i9,) - {8ab (<pitab<pi) + 8ad (9itad9i) + Sbc (9itbc9i)}] (44)
+ 2c,c2[K(ç,92) - (8ab (tpitabcp2) + 8ad(9,tad92) + 8bc (9,tbc92)}]

bzw.

92 a0K + a,8ab + a28bc + a38ad (45)
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Der Koeffizient a0 umfaßt somit alle Skalarprodukte von K, multipliziert

mit den entsprechenden Koeffizienten (39), und ähnlich enthält a,
alle (9i tab 9k), multipliziert mit den zugehörigen Koeffizienten (39) usw.

Wenden wir nun auf y*2 die in (1) - (4) angegebenen Beziehungen der
Quantenmechanik an, so müssen Ausdrücke vom folgenden Typus
berechnet werden:

K: |"u2(l,2,3,4)uè(5,6,7,8)u2(9,10,ll)ud(12,13,14) dT2dx3. .dr,4

ru|(l,2,3,4)uè(5,6,7,8)u|(9,10,ll)uâ(12,13,14) dr,dT3. .dx,4

f ua(l,2,3,4)u|(5,6,7,8)uc(9,10,ll)u|(12,13,14) dT,dr2. .dx13

(46)

d. h. im ersten Integral soll das erste Elektron festgehalten und über
alle anderen Elektronen integriert, im zweiten Integral ist das zweite
Elektron festgehalten, im letzten das Elektron 14, während man über
alle anderen Elektronen integriert.

Für den Austausch zweier Elektronen zwischen den Atomen A und
B erhalten wir

»ab \ ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(l,6,7,8) (47a)

u2(9,10,ll)u2i(12,13,14) dT2dT3. .dr,4

|"ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub (1,6,7,8)

u2(9,10,ll)ud(12,13,14) dT,d-r3dT4...dT,4 (47b)

f ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(l,6,7,8)
u|(9,10,ll)u§(12,13,14) dr,dx2. .d-r,2dT13

Im ersten Integral wird das Elektron 1 festgehalten, im zweiten das

Elektron 2 und im letzten Integral das Elektron 14, während man
über die anderen integriert. Analog verfährt man mit 8ad und 8bc.

Sad: fua(l,2,3,4)ud(12,13,14)ua(12,2,3,4)ud(l,13,14) (48)

uê(5,6,7,8)uc(9,10,ll)dT2dT3. .d-r,4

[ua(l,2,3,4)ud(12,13,14)ua(12,2,3,4)ud(l,13,14)
ub(5,6,7,8)u2(9,10,ll) dT,dT2. .dtl3

8bc: ub(5,6,7,8)uc(9,10,ll)ub(9,6,7,8)uc(5,10,ll)
u|(l,2,3,4)u|(12,13,14) dT2dT3. .dx,4

fub(5,6,7,8)uc(9,10,ll)ub (9,6,7,8)uc(5,10,11)

u|(l,2,3,4)ud(12,13,14) dT,dT2. .dT„

(49)
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Zur Berechnung dieser Integrale empfiehlt es sich, die Atomeigenfunktionen

in die Determinantenform zu schreiben. Auf diese Weise
werden die ua (1,2,3,4), auf Einelektroneigenfunktionen v,(l),
v2(2), zurückgeführt, die man leicht integrieren kann. Der
Determinantenausdruck des Atoms A ist in (36) schon angegeben.

v5(5) v5(6) v5(7) v5(8)

ub(5,6,7,ii
1

V4!

uc(9,10,ll)

ud(12,13,14)

\3!

1

\ 3

v,(5)
v,(5)
v.(5)

v,(9)
v„(9)
v„(9)

v,2(12)
v„(12)
v,4(12)

v«(6)
v7(6)
v.(6)

v9 (10)

v,„(10)
v„(10)

v„(13)
vi,(13)
v,4(13)

v«(7)
v7(7)
v8(7)

v«(8)
v,(8)
v,(8)

v9 (11)

Vio(H)
v„(H)

v,2(14)
v„(14)
V,4<14)

(50)

(51)

(52)

Hier sind nicht bloß die Elektronen, sondern auch die Elektronen-
zustände durchgehend numeriert.

Wir verwenden nun folgenden Determinantensatz : Wenn man einen
Minor dritter Ordnung von (36) mit sich selbst multipliziert und über
alle seine Elektronen integriert, so erhält man 3 Falls man aber diesen
Minor mit einem anderen multipliziert und integriert, so erhält man
Null. Es handelt sich hier natürlich um Minoren, die aus derselben
Kolonne von (36) gebildet sind. Dieser Satz gilt hier wegen der Ortho-
gonalität der Einelektroneigenfunktionen v;.

Auf Grund von (36) und (50) - (52) schreiben wir nun (46) in der
Form (53) :

^[/[v1(l)A1>1-v2(l)A2,1 + v3(l)A3,,-v4(l)A4,,]2 ub(5,6,7,8)

u2(9,10,ll)ud(12,13,14) dT2dT3. .dT,4

+ 4lJ [- v>(2)Ai,2+ v2(2)A2,2 - v3(2)A3>2 + v4(2)A4,2]2 u§(5,6,7,8)

u^(9,10,ll)ud(12,13,14) dT,dx3. .dr,4

*^/[vs(5)A ¦ v6(5)A6>5 + v7(5)A7,5 - va(5)A8j5]2 u2(l,2,3,4)
(53)

u2(9,10,11)14(12,13,14)dT,dT2dT3dT4dT6. .dx,4

Jf/[V9(9)A v,0(9)A,0)9^v,1(9)A,,,9]2 u2 (1,2,3,4)

ub(5,6,7,8)u2j(12,13,14)dT,. .dx8dT,0. .dx,4

140



+ yj [v,2(12)A,2,,2 - v,3(12)A,3,,2 + v14(12)A14,i2]2 u2(l,2,3,4)

ub(5,6,7,8)uc(9,10,ll) dx,. .dx„dx13dx14

Im ersten Integral, wo das Elektron 1 festgehalten ist, wurde die
Determinante (36) der Atomeigenfunktion ua nach der ersten Kolonne
entwickelt. Auf diese Weise enthalten die Adjunkten Aik das erste
Elektron überhaupt nicht, und man kann über ihre Elektronen
integrieren. So ergibt sich nach dem oben angegebenen Determinantensatz

der Faktor 3!. Die übrigen Funktionen ub> u2_ ud werden als
normiert vorausgesetzt und ergeben die Einheit. Das Ergebnis der
Integrationen über die Elektronen 2 bis 14 ist der erste Klammerausdruck

in (54). Im zweiten Integral (52) wird das Elektron 2

festgehalten und dementsprechend ist die Determinante (36) von ua nach
der zweiten Kolonne entwickelt worden. Die Integration über die
Elektronen 1,3,4 ergibt den Faktor 3!. Das Ergebnis beim Festhalten
des Elektrons 2 ist in (54) durch den zweiten Klammerausdruck
gegeben. Analoge Überlegungen gelten beim Festhalten der anderen
Elektronen.

Somit erhält man für K als Resultat der verschiedenen Integrationen
beim Festhalten der einzelnen Elektronen 1,2, ...,14

\ [vj-(l) - v2(l) + v2(l) + v2(l)] +
1 [v2(2) + v2(2) + v2(2) + v2(2)]

+ \ [vî(3) - v2(3) + v2(3) + v2(3)] + \ [v2(4) + v2(4) + v2(4) + v2(4)]

+ \ [v2(5) + v2(5) + v2(5) + v2(5)] + \ [v2(6) + v2(6) + v2(6) + v2(6)]

+ \ [v2(7) - v2(7) + v;(7) + v2(7)] + \ [v2(8) + v2(8) + v2(8) + v2(8)] (54)

+ \ [vj{9) - v20(9) + v2n(9)] + | [v2(10) + v20(10) + vî,(10)]

+ \ [v2(ll) + v20(ll) + vj^ll)] + \ [v22(12) + v23(12) + v24(12)]

+ \ [vf2(13) + v23(13) + v24(13)] + \ [v22(14) + v23(14) + v24(14)]

Mit Hilfe des obigen Determinantensatzes soll jetzt noch die
Berechnung des Austausches 8ab durchgeführt werden. Zu diesem Zweck
verwenden wir die vier ersten Faktoren von (47a) in der Determinantenform,indem

man gleichzeitig jeden nach der ersten Kolonne entwickelt.
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4f4! / ^1^'.' - ^1^2.* + V3(1)A3,, - v4(l)A,,,]
[v,(5)A,,5 - v2(5)A2,5 + vj(5)A3>5 - v4(5)A4,5]
[v,(5)A5,5 - v6(5)A6,5 + v7(5) A7,5 - v8(5)A8>5] (55)

[v5(l)A5j, - v6(l)A6il + v,(l)A7>1 - v„(l)AM]
u2(9,10,ll)ud(12,13,14) dx2dx3. .dx,4

Die Integrationen über die Elektronen 9 bis 14 sind ohne weiteres
durchführbar, da u2 und ud ja die Einheit ergeben. Mit Ausnahme des

ersten, das wir ja festhalten müssen, und des fünften Elektrons können
wir ohne Schwierigkeit auch über die übrigen integrieren, falls man
beachtet, daß die Adjunkten der ersten und zweiten Klammer einerseits

und diejenigen der dritten und vierten anderseits Funktionen
derselben Koordinaten sind. In beiden Fällen erhält man als Resultat
3!. Somit läßt sich (55) folgendermaßen umformen:

4X41 / HAIFAS) + v2(l)v2(5) + v3(l)v3(5) + v4(l)v4(5)]

[v5(5)v5(l) + v,(5)v,(l) + v7(5)v,(l) + v8(5)v8(l)]dT5

Wenn wir nun das Integral über das Elektron 5 in (56) mit

\ Ä]k" Jvi(5)vk(5)dx5

bezeichnen, so entsteht für den Austausch des ersten und fünften
Elektrons zwischen den Atomen A und B beim Festhalten des ersten
Elektrons der Ausdruck

4774 [viv5 \' A,5 + v2v5 \ A25 + v3v5 V A35 + v4v, V A45

+ v,v6 V A,6 + v2v6 \ A26 + v3v6 \ A36 + v4v6 V A46

+ VjV, V A,7 + v2v7 \ A2, + v3v7 \ A37 + v4v, \ A47

+ v,v8 \ A,8 + v2va \ A28 + v3v8 \ A38 + v4v8 V A4S] (57)

4 8

2 ViflJvkWVÄÜ
4 4.-*4

i l k 5

Der nächste Schritt betrifft die Berechnung von (47b) beim
Festhalten des zweiten Elektrons. Dazu entwickelt man die Determinanten-
ausdrücke des ersten und dritten Faktors nach der ersten und zweiten
Spalte, während der zweite und vierte Faktor wie vorher nach der
ersten Spalte entwickelt werden.
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4! 4! /(
(58)

v,(l) vi(2)
v2(l) v2(2)

v2(l) v2(2)

v4(l) v4(2)

v,(5) v,(2)
v4(5) v4(2)

y,(5)AJ5 -

B

B24 —

B

v,(l)v,(2)
v3(l) v,(2)

v,(l) v3(2)

v4(l) v4(2)
v2(5) v2(2)
v3(5) v3(2)

v6(5)A65 + v7(5)A7

B,

H,

B,

v,(l) v,(2)
v4(l) v4(2)

v,(5) v,(2)
v2(5) v2(2)
v2(5) v2(2)
v4(5) v4(2)

v8(5)A85]

[v5(l)A51-v6(l)A61 + v7(l)A71-v8(l)A8i]
u2(9,10,ll)ud(12,13,14) dx,dx3dx4. .dx,4

B,

B,2

B,

v2(l) v2(2)
v3(l) v3(2)

v,(5)v,(2)
v,(5) v3(2)
v3(5) v3(2)
v4(5) v4(2)

B,

¦3,3

B,

Die Integration von u2 und u2, ergibt die Einheit. Die Adjunkten
Aik sind Funktionen der Elektronen 6, 7 und 8, über die man
integrieren kann, wobei als Resultat 3! sich ergibt. Die Ausdrücke in den

großen eckigen Klammern sind Kompositionen der Minoren zweiten
Grades mit ihren Adjunkten; diese sind von der ersten und zweiten
Kolonne unabhängig, sie sind Funktionen der Koordinaten der
Elektronen 3 und 4. Bildet man das Produkt der großen eckigen Klammerausdrücke

und integriert über die Elektronen 3 und 4, so entsteht,
gemäß dem oben angegebenen Determinantensatz, 2!. Aus (58)
erhält man somit

3f}|[/[vi(l)v2(2)vi(5)v2(2)-v1(2)v2(l)v1(5)v2(2)

-vi(l)v2(2)vi(2)v2(5) + v,(2)v2(l)v,(2)v2(5)
+ v,(l)v3(2)v,(5)v3(2) - v,(2)v3(l)v,(5)v3(2)
-v1(l)v,(2)v,(2)v3(5) + v,(2)v3(l)v,(2)v3(5)
+ v,(l)v4(2)vi(5)v4(2) - v,(2)v4(l)v1(5)v4(2)
-v,(l)v4(2)v,(2)v4(5) + v1(2)v4(l)v,(2)v4(5)
+ V2(l)v3(2)v2(5)v3(2) - V2(2)v3(l)v2(5)v3(2) (59)

-v2(l)v3(2)v2(2)v3(5) + v2(2)v3(l)v2(2)v3(5)
+ V2(l)v4(2)v2(5)v4(2) -v2(2)v4(l)v2(5)v4(2)
-v2(l)v4(2)v2(2)v4(5) + v2(2)v4(l)v2(2)v4(5)
+ v3(l)v4(2)v3(5)v4(2) - V3(2)v4(l)v3(5)v4(2)

- v3(l)v4(2)v3(2)v4(5) + v,(2)v4(l)v,(2)v4(5)]
[v5(5)v5(l) + v6(5)v6(l) + v7(5)v7(l) + v8(5)v8(l)]dx,dx5

Diese können wir auch einfacher in der Summenform (60) schreiben

3 4 8
"

[vi(l)vj(l)vi(5)vj(5)vfe(2)
1

4.4.3
/»3 4

2 2
J i lk :2)

k -vk(l)vj(l)vi(5)vj(5)vi(2)vk(2)
-v,(l)vj(l)vk(5)vj(5)vk(2)vi(2)
+ vk(l)vj(l)vk(5)vj(5)v,?(2)]dx,dx2

(60)
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Bezeichnen wir die Integrale über die Elektronen 1 und 5 mit

Aij= fvKlJvjajviWvjPJdTxdT,
r (61)

Akj= J vk(l)vj(l)vk(5)vj(5)dx,dx2

so erhält man schließlich für die Integration von (47b) beim
Festhalten des zweiten Elektrons

3 4 8

4T^—3 2 2 2 Aijvk(2)-yÄ^-VAi7vi(2)vk(2)
' i lk 2j=5 (o2)

¦<k -lÄ7j"VÄk]vk(2)vi(2) + Akjv,?(2)

Die Berechnung von (47) beim Festhalten des dritten und vierten
Elektrons erfolgt genau nach dem Schema des zweiten, und als Resultat
erhält man für jedes Elektron einen Ausdruck (62), d. h. (63a) und (63b)
Es genügt nämlich, die Determinanten anstatt nach der ersten und
zweiten, nach der ersten und dritten bzw. nach der ersten und vierten
Kolonne zu entwickeln. Dabei ändert sich höchstens das Vorzeichen,
was aber für das Endergebnis belanglos ist.

3 4 8

4-^T^ 2 2 2 Aijv|(3)-\Ä^\Ä7vi(3)vk(3)
i lk 2j=5 (63a)
i<k -VÄi7VÄk]vk(3)vi(3) + Akjvf(3)

3 4 8

443 222 Aijvk(4)-VÄT;]-VÄT"vi(4)vk(4)
i=lk=2j=5 (63b)
i<k -VÄij VAkjvk(4)vi(4) + Akjvf(4)

Die Integrationen von 8ab führen beim Festhalten der Elektronen
5, 6, 7, 8 des Atoms B zu Resultaten vom Typus (57) und (62). Wird
nämlich das Elektron 5 festgehalten, so entsteht eine dem Ausdruck
(57) entsprechende Relation (64). Für die anderen Elektronen 6, 7, 8

des Atoms B bekommt man dagegen Ausdrücke vom Typus (62),
nämlich

1
4 8

47^2 2 Vi(5)vk(5)\Aik (64)
ï 1 k 5

7 8 4

443 2 2 2 AjjVk(6) -|Akj\Äi7vi(6)vk(6)***¦ i 5k 6j l _ (65)
i<k _ VA,; VAkj vk(6)vi(6) + Akjvi (6)
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Eine dritte Art von Ergebnis (67) bekommt man aus (47) beim
Festhalten des 9-ten und bei allen übrigen Elektronen, da in allen diesen
Fällen das betrachtete Elektron zu einem Atom gehört, das von dem
Austausch der Elektronen 1 und 5 überhaupt nicht berührt wird.

^y^ j [v,(l)A,,, - v2(l)A2,, -t- v3(l)A3>i - v4(l)A4,J
*

[v,(5)A,,5 - v2(5)A2j5 + v3(5)A3j5 - v4(5)A4i5]
[v5(5)A5>3 - v6(5)A6,5 + v7(5)A7,3 - v8(5)A8>5] (66)

[v5(l) A5,, - v6(l)A6>] + v7(l) A,., - v,(l) A8,,]
[v9(9)A9,9 - Vi0(9)A10>9 + v„(9)A„>9]2
ud(12,13,14) dx,dx2. .dx8dx,0. .dx14

Die Adjunkten der ersten und zweiten Reihe umfassen die
Elektronen 2, 3, 4, die Integration über diese ergibt 3!, diejenige der dritten
und vierten Klammer ergibt ebenfalls 3!. In der fünften Reihe kann
man über die Elektronen 10 und 11 integrieren, was zu 2! führt,
während die Atomeigenfunktion ud (12, 13, 14) die Einheit ergibt. Die
Integration über das erste und fünfte Elektron wird durch Ausdrücke
vom Typus (61) repräsentiert. (47) ergibt somit beim Festhalten des

Elektrons 9

_,
4 8 11

2 2 2 Aikvf(9) (67)
4 4 3

i=lk=51=9

Es folgen noch fünf analoge Resultate für die Integration von (47) beim
Festhalten der Elektronen 10, 11, 12, 13, 14.

Auf diese Weise ist 8ab durch (57), (62), (63), (64), (65) und (67)
vollständig bestimmt. Die zwei anderen Austauschfunktionen 8bc 8ad

sind aber vom gleichen Typus wie 8ab es wird ja jedesmal von der
Gesamtheit aller Elektronen nur der Austausch von je einem Elektron
der betreffenden Atome in Betracht gezogen. Somit können wir für
alle Austausche das Resultat der Integrationen mit Hilfe der
Ausdrücke vom Typus (57), (62) und (67) zusammenstellen.

Wir erhalten somit aus (45) für die Elektronenverteilung p(r) unseres

Systems bestehend aus zwei viervalentigen und zwei dreivalentigen
Atomen die Beziehung (68).
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(l 4

a» ï 2 [v,?(l) + v?(2) + v?(3) + v?(4)]
1 i-1

8

+ 4-2 tvi<5) + vi(6) + vi<7) + v>(8)]
i 5

+ i 2 Cvi(9) +vi(10> + vi<n)]
i 9

14 I (68)
+ ö 2 [v,?(12) + v?(13) + vf(14)] +

i 12 j
f 4 8

+ A 2 2 vi(i)vk(i)VAii;
[i 1 k 5

3 4 8

+ 3"2 2 2 ([Aijv|(2)-2VÄ^\A^vi(2)vk(2)^Akjvl?(2)]
i=lk=2j=5V

i <k + [Aijv|(3) - 2\ Äk] \ A;] v;(3)vk(3) + Akjvf(3)]

+ [AijVk (4) - 2 \ Ä7J \ AjjVi(4)vk(4) + AkjVi2(4)] +

4 8

+ 22 ^(5)^(5) V5£ +

i=lk=5
7 8 4

+
3 2 2 2 ([AijVk(6)-2VAkj\A7jvi(6)vk(6) +Akjvf(6)]

i 5k 6j 1

i<k +[Aijvk(7)-2VÄ7y-VÄT-vi(7)vk(7) - Akjvf(7)J

+ [Aij-vi(8) - 2 VÄkj \ Ä~-Vj(8)vk(8) - Akjvf(8)]) +

4 8 11

+
3 2 2 2 Aik [vî(Q) + v'(10) + vi(n» +

i=lk=51=9
4 8 14

+ Ì 2 2 2 Aik [vf(12) + v,2(13) + vf(14)]'
Aik [vf(12) + vf(13) + vf(14)] \ z

i l k 5 1 12

f 8 11 4

"2 2 2 Aik M«1) + v>(2) + vl(3) + vf(4)] +
5k=91=l4*3\4i

8 11

+ 22 vi(5)vk(5nAik +
i=5k=9

7 8 11

+
3 2 2 2 ([Aijvk(6)-2A,Äkj\Äi]-vi(6)vk(6) -r Akjvf(6)j
i=5k 6j =9
i<k
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+ [Aijvè(7) -2VAkj VAijVi(7)vk(7) + Akjv,?(7)]

+ [AijV|(8) - 2VAkj yÄjj vi(8)vk(8) + Akjvf(8)] +

8 11

+ 22 Vi(9)vk(9)VÄ^
i=5k=9

10 11 8

+
2 2 2 2(|AijVk(10)-2ivÄT0VAuvi(10)vk(10) + Akjvf(10)]

i 9k 10j =5
1<k ^Aijvk(H)"2^Akj\Ai]vi(ll)vk(ll)+Akjvf(ll)j) +

8 11 14 I

+ 2 2 2 Aik H(12) + vf(13) +v,2(14)] +

i 5k 91 12

f 4 14

4^3 j 2 2 vi(l)vk(l)VÄ]k +

|i lk=12
3 4 14

\ 2 2 2 (I AijVk(2) - 2 \ Akj A Ay vi(2)vk(2) + Akjvf(2)J
3

i lk 2j 12

i<k +[Aijvè(3)-2\Akj\Aijvi(3)vk(3) + Akjv,?(3)] +

+ | Aijv|(4) - 2 V Âk] VÂÎjVi(4)vk(4) + Akjvf (4)]) +

4 14 8

+ Z 2 2 2 Aik [vf(5) + v,2(6) + vf(7) + vf(8)] +
i lk=121 5

4 14 11

+ *i2 2 2 Aik[vf(9) + vf(10)Tvf(ll)] (68)
i lk 121 9

4 14

+ 22 Vi(12)vk(12)VÄ]k" +
i lk 12

13 14 4
1

+
i 12k 13j =1

^2 2 2([AijVk(13)-2\Akj\Aijvi(13)vk(13)+Akjv,?(13)]

1

I

i<k ï
+ [Aijvi(14)-2vAk]\ A]]vi(14)vk(14) + Akjvï(14)])1

Der Ausdruck (68), in dem alle Elektronen in verschiedenen
Zuständen vorkommen, ist für unsere Zwecke recht kompliziert, kann
aber noch weitgehend vereinfacht werden. Eine erste Vereinfachung
wird auftreten, wenn wir annehmen, daß die Atome nur in S-Zuständen
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sind. Ferner haben wir in (41) für jedes Atompaar eine einzige
Austauschfunktion 8abj 8bC; 8ad angenommen, und dementsprechend werden
wir in (68) auch für jedes Atompaar ein einziges A -Integral haben,
unabhängig davon, wie groß die Zahl der Valenzelektronen ist.

Aber noch eine weitgehende Vereinfachung kann erzielt werden,
weil wir ja gar nicht die kontinuierliche Verteilung suchen, sondern

uns mit einer gröberen Elektronenverteilung wie im Abschnitt 14

begnügen wollen. Ebenso wie dort sind auch hier die v;2 im wesentlichen

nur an der Stelle der betreffenden Atome von Null verschieden,
während die v;vk eine Austauschladung, die zwischen zwei Atomen
herrscht, darstellen. Dementsprechend wollen wir die Elektronenverteilung

wie im Abschnitt 14 durch zwei Arten von Elektronenzahlen:
den Atomindex p(I) und den Bindungsindex p(IK) definieren. Der
erste wird aus (68) dadurch erhalten, daß die aus v;2 durch Integration
hervorgehenden Bestandteile für jedes Atom zusammengefaßt werden.
Bei dieser Operation erhält man aber aus jeder vj2 die Einheit
unabhängig davon, in welchem Zustand sich das Elektron befindet, was
eine weitgehende Vereinfachung der Beziehung (68) darstellt.
Entsprechend wird der Bindungsindex durch Integration der Austauschfunktion

VjVk erhalten, insofern i und k sich auf verschiedene Atome
beziehen. Dabei entsteht, wie oben erwähnt wurde, für jedes Atompaar

nur ein A -Integral. In allen Ausdrücken (68) der Form — 2 j/Akj.
"j/Aij Vj vk beziehen sich die i und k auf dasselbe Atom und
dementsprechend verschwinden sie bei der Integration zufolge der Orthogo-
nalität der Einelektroneigenfunktionen.

Unter diesen Voraussetzungen erfolgt die Verteilung der
verschiedenen Summanden von (68) auf die Atom- und Bindungsindizes
p(A). p(AB) ohne Schwierigkeit, wenn man die ursprüngliche
Numerierung der Elektronen in den vier Atomfunktionen (35) und
die der Elektronenzustände in (36), (50), (51) und (52) beachtet. In
der ersten Zeile von (68) erhält man z. B. durch Integration von
Vj2(l), Vj2(2), v;2(3), v,2(4) überall die Einheit. Der Summationsindex
läuft aber von 1 bis 4. Dementsprechend ergibt die erste Zeile einen

Beitrag a0 % 16 *+ao zur Elektronenzahl p(A) des Atoms A. Eine
analoge Situation findet man bei der zweiten Zeile. Die dritte Zeile

ergibt einen Beitrag 3a0 zur Elektronenzahl p(C). In der fünften Zeile
entsprechen i und k den Atomen A bzw. B. Der Ausdruck v,(l)vk(l)
repräsentiert eine Austauschladung zwischen A und B, die für die
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Bindung verantwortlich ist. Durch Integration erhält man daraus |/Äjk
das wir auf die Atome A und B beziehen können, indem wir \FKFb
schreiben. Die fünfte Zeile ergibt somit einen Beitrag a, Aab zur
Elektronenzahl p(AB). Die folgenden drei Zeilen in (68) ergeben einen

Beitrag 3 a, Aab zum Atomindex p(A), wo wir statt Aik und Akj einfach
Aab schreiben. Analog verteilt man die übrigen Bestandteile von (68).
Die vollständigen Atom- und Bindungsindizes unseres Systems
bestehend aus zwei vierelektronigen und zwei dreielektronigen Atomen
sind in (69) angegeben.

P(A) -j- (4a0 + 3a,Aab + 4a2Abc + 3a3Aad)

p(B) -j- (4a0 + 3a,Aab + 3a2Abc + 4a3Aad)

p(C) ^- (3a0 + 3a,Aab + 2a2Abc + 3a3Aad)

p(D) -- (3a0 + 3a,Aab + 3a2Abc + 2a3Aad)

P(AB) £ 2a,Aab p(BC) - g- 2a2Abc p(AD) £ 2a2Aad

Hier repräsentiert n= (na+nb+nc+nd) =4+4-3+3= 14 die Anzahl aller
Elektronen, während N den Normierungsfaktor darstellt, den man
aus (68) auf Grund von (4) erhält.

N n (a„ + aiAab + a,Abc + a3Aad) (70)

Die Aab Abc Aad sind Funktionen der Atomabstände von der Form

Aab (ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(l,6,7,8)dxidx2 (71)

Selbstverständlich ist auch hier

p(A) + p(B) + p(C) + p(D) + p(AB) - p(BC) + p(AD) n (72)

Nach (69) können wir schließlich die Elektronenzahlen auch im
allgemeinen Fall angeben. Bezeichnen wir respektive mit na nb

nh die Anzahl von Valenzelektronen der Atome A,B, H, die
eine offene Kette bilden, so erhält man für die Atom- und Bindungsindizes

die Ausdrücke (73)
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(73)

p(A) -- (a0na + a,(na - 1) Aab + a2naAbc + a3naAcd + + ajnaAgh)

p(B) —(a„nb + a,(nb-l)Aab + a2(nb-l)Abc + a3nbAcd + + ajnbAgh)

p(C) —(a0nc + a,ncAab + a2(nc-l)Abc + a3(nc —1) Acd + a4ncAde+

¦ • • + ajiicAgh)

p(AB) J 2a,Aab p(BC) £¦ 2a2Abc,

Der Normierungsfaktor ist hier

N n(a0 + a,Aab + a,Abc + + ajAgh) (74)

Da die Atomindizes in (73) für eine offene Kette von Atomen gelten,
kommt der Faktor (na—l) in p(A) nur einmal vor, während man in
p(B) und p(C) die entsprechenden (nb— 1) bzw. (nc—1) je zweimal
vorfindet. Wollte man die Kette auf das Atom A schließen, so würden in
(68) weitere Zeilen hinzukommen, die dem Austausch 8ha entsprechen
und damit würde auch in p(A) ein zweiter Faktor (na—1) auftreten.
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ANHANG

Skalarprodukte aller Systeme bestehend aus vier und fünf Atomen.

Bei der Berechnung der Skalarprodukte des Äthylens auf S. 116

wurde darauf hingewiesen, daß die dort verwendete Methode bei
größeren Molekülen sehr unübersichtlich wird und daß sie praktisch
kaum mehr verwendbar ist. In einer neueren Arbeit x gelang es nun
diese Rechnungen in einer systematischeren Form zu bringen.
Voraussetzung für die Anwendbarkeit dieses Verfahrens ist allerdings die
Kenntnis der Skalarprodukte von Systemen mit einer kleineren
Anzahl von Atomen. Um die Rechnungen zu erleichtern sind in den

folgenden Tabellen die Skalarprodukte aller Systeme bestehend aus
4 und 5 Atomen angegeben worden.

Aus typographischen Gründen sind die Tabellen nicht systematisch
angeordnet. Das folgende Register erlaubt aber, das gesuchte Molekül
ohne Schwierigkeit aufzufinden. Jede Zahl in den Klammern repräsentiert

die Anzahl Elektronen eines Atoms im betrachteten System. So

z. B. entspricht (4, 4, 4, 2) einem System von drei vierelektronigen und
einem zweielektronigen Atom. Die zugehörigen Skalarprodukte sind
auf S. 155 angegeben. Oberhalb jeder Tabelle findet man die
Valenzformeln der entsprechenden unabhängigen Basis. Selbstverständlich
sind in den Endpunkten der Valenzstriche die Atome etwa mit A, B,
C, D respektive mit A, B, C, D, E zu bezeichnen, die man sich auf einem
Kreis angeordnet zu denken hat, indem man die Buchstaben im Sinne
des Uhrzeigers folgen läßt. Auch sind die Valenzstriche mit einer
Richtung zu versehen. Die angegebenen Vorzeichen der
Skalarprodukte entsprechen der lexikographischen Vorzeichensetzung.

Die Skalarprodukte auf S. 153 bis 178 wurden mir freundlicherweise
von Herrn Dr. O. Mäder zur Verfügung gestellt. Die vereinfachte
Berechnung der Anzahl Yalenzdispositionen (Kap. II) einer
unabhängigen Basis stammt ebenfalls von ihm. Die Valenzverteilungen
sind von Herrn F. Rigamonti gezeichnet. Er hatte auch die Freundlichkeit

die numerischen Rechnungen zu wiederholen und die Korrek-

1 O. Mäder und O. Klement, Helv. Chim. Acta, 42, 2688 (1959); O. Mäder, Bull.
Soc. Frib. Sc. Nat., Vol. 53, S. 145.
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turen zu lesen. Beiden Helfern möchte ich an dieser Stelle herzlich
danken. Mein Dank gilt auch dem Redaktor des Bulletin Herrn
Dr. 0. Büchi für das Entgegenkommen, das der Verlag meinen Wünschen

gegenüber bewies.

Systeme mit vier Atomen

(4,4,4,4)
(4,4,4,2)
(4,4,3,3)
(4,4,3,1)
(4,4,2,2)
(4,4,1,1)
(4,3,4,3)

153
155
153
153

155
154
153

(4,3,4,1)
(4,3,3,2)
(4,3,2,3)
(4,3,2,1)
(4,3,1,2)
(4,2,4,2)
(4,2,3,1)

153
155
155
154
154
155
154

(4,2,2,2)
(4,1,4,1)
(3,3,3,3)
(3,3,3,1)
(3,3,2,2)
(3,3,1,1)
(3,2,3,2)

154
154
154
154
155
154
155

(3,2,2,1)
(3,2,1,2)
(3,1,3,1)
(2,2,2,2)
(2,2,1,1)
(2,1,2,1)
(1,1,1,1)

154
154
154
155
154
154
153

Systeme mit fünf Atomen

(4,4,4,4,4 S. 178 (4,4,1,2,1 S 157 (4,3,1,1,3 S. 158 (3,3,3,2,1 S. 165

(4,4,4,4,2 S. 159 (4,3,4,3,2 S 162 (4,3,1,1,1 S. 166 (3,3,2,3,1 S. 165

(4,4,4,3,3 s. 169 (4,3,4,2,1 S 162 (4,2,4,2,2 S 173 (3,3,2,2,2 s. 174

(4,4,4,3,1 s. 170 (4,3,3,4,2 s 163 (4,2,4,1,1 S 157 (3,3,2,1,1 s. 156

(4,4,4,2,2 s. 176 (4,3,3,3,3 s 164 (4,2,3,3,2 s. 174 (3,3,1,2,1 s. 156

(4,4,4,1,1 s. 158 (4,3,3,3,1 s 170 (4,2,3,2,1 s. 167 (3,2,3,2,2 s. 175

(4,4,3,4,3 s. 168 (4,3,3,2,2 s 172 (4,2,3,1,2 s. 167 (3,2,3,1,1 s. 156

(4,4,3,4,1 s. 171 (4,3,3,1,3 s. 171 (4,2,2,3,1 s 167 (3,2,2,2,1 s 168

(4,4,3,3,2 s. 161 (4,3,3,1,1) s. 158 (4,2,2,2,2 s 158 (3,2,2,1,2 s 169

(4,4,3,2,3 s. 160 (4,3,2,4,1 s. 164 (4,2,2,1,1 s. 166 (3,2,1,3,1 s. 156

(4,4,3,2,1 s. 159 (4,3,2,3,2 s 175 (4,2,1,4,1 s. 157 (3,2,1,1,1 s. 168

(4,4,3,1,2 s. 161 (4,3,2,2,3 s 173 (4,2,1,2,1 s 167 (3,1,2,1,1 s. 169

(4,4,2,4,2 s. 176 (4,3,2,2,1 s 166 (4,2,1,1,2 s. 167 (2,2,2,2,2 s. 177

(4,4,2,3,1 s. 160 (4,3,2,1,2 s. 166 (4,1,3,3,1 s. 156 (2,2,2,1,1 s. 157

(4,4,2,2,2 s. 172 (4,3,1,4,2 s 163 (4,1,3,1,1 s. 166 (2,2,1,2,1 s. 157

(4,4,2,1,1 s. 157 (4,3,1,3,1 s. 156 (4,1,2,2,1 s. 167 (2,1,1,1,1 s. 165

(4,4,1,4,1) s. 158 4,3,1,2,2) s. 166 (3,3,3,3,2 s. 177

ERRATA

S. 159 sin d die Elem înte M7j9 M9>7 M7,„=M„, 7 50 statt 25.
S. 164 ist das Elemeiit M2 ,i — 36 statt 36.

152



Systeme mit 4 Atomen

3U=J *

480 -240 160 -120 96

-240 210 -170 141 -120

160 -170 176 -170 160

-120 141 -170 210 -240

96 -120 160 -240 480

2 -1

-1 2

48 -24 16 -12

-24 22 -18 15

16 -18 20 -20

-12 15 -20 30

6 -3

-3 5

s .s n
30 -10 5 -3

-10 10 -7 5

5 -7 10 -10

-3 5 -10 30

5 -2

-2 5
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108 -54 36 -27

-54 52 -43 36

36 -43 52 -54

-27 36 -54 108

8 -4

-A 5

-3

-1

"*" ~ "^

4 -1

-1 4

A >N
9 -3

-3 5

,\ .N
2 -i

-1

X ,N
3 -i

-1 2

i 2,

A _2

-2 3

r _ ,n
9 -6

-6 8

,N].N
2 -1

-1 2

i 1 1

3 _2

_2 3

A NI
3 -1

-1 3
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T J\l
24 -8 4

-S 11 -8

4 -8 24

12 -6 4

-6 7 -6

4 -6 12

S N
10 -5 3

-5 6 -5

3 -5 10

n
36 -18 12

-18 18 -15

12 -15 20

n n
18 -6 3

-6 7 -5

3 -5 10

Zl j
18 -12 9

-12 13 -12

9 -12 18

20 -5 2

-5 8 -5

2 -5 20

36 -18 12

-18 19 -16

12 -16 24
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Systeme mit 5 Atomen

12 -4 -8 2 1

2

3

4

16 -4 -4 2

-4 8 1 -4 -4 10 1 -5

-8 1 12 -3 -4 1 10 -5

2 -4 -3 12 -5 -5 10

^
12 -4 2 0 7

2

3

4

10 -5 -6 2

-4 8 -4 -5 -5 10 3 -4

2 -4 12 0 -6 3 18 -12

0 -5 0 10 2 -4 -12 16

Dfr^
8 -4 -4 3 7

2

3

4

18 -9 6 0

-4 12 2 -9 -9 12 -S -5

-4 2 12 -9 6 -8 12 0

3 -9 -9 18 0 -5 0 10
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r \
/

12 -6 4 0 7

2

3

4

25 -15 -15 12

-6 9 -6 -4 -15 45 9 -36

4 -6 12 0 -15 9 45 -36

0 -4 0 S 12 -36 -36 72

X
v4

3
9 -3 -3 2 7

2

4

40 -10 4 0

-3 9 1 -6 -10 25 -10 -18

-3 1 9 -6 4 -10 40 0

2 -6 -<> 12 0 -18 0 36

Z ^ M
40 -30 0 24 7

2

3

4

40 -10 -30 6

-30 45 -18 -36 -10 25 3 -15

0 -18 36 0 -30 3 45 -9

24 -36 0 72 6 -15 -9 45
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12 0 0 -6 0 4

0 4 0 -2 _2 2

0 0 12 0 -6 4

-6 -2 0 7 1 -6

0 _2 -6 1 7 -6

4 2 4 -6 -6 12

^)/^^ i
i ^

30 -15 9 0 7

2

3

4

18 -6 3 0

-15 25 -15 -14 -6 10 -5 -6

9 -15 30 0 3 -5 10 0

0 -14 0 28 0 -6 0 12

M
25 -10 -10 6 7

2

3

4

IS -12 9 0

-10 25 4 -15 -12 16 -12 -6

-10 4 25 -15 9 -12 IS 0

6 -15 -15 30 0 -6 0 12
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7

2

3

I

5

6

7

8

9

10

-3

\
9 10

810 -270 -270 0 180 0 0 -135 0 108

-270 450 90 0 -300 180 0 225 -10S -ISO

-270 90 450 180 -300 0 -108 225 0 -180

0 0 ISO 360 -240 144 -216 72 -36 0

180 -300 -300 -240 460 -240 144 -318 144 240

0 180 0 144 -240 360 -36 72 -216 0

0 0 -108 -216 144 -36 432 -144 72 0

-135 225 225 72 -318 72 -144 378 -144 -360

0 -108 0 -36 144 -216 72 -144 432 0

108 -ISO -180 0 240 0 0 -360 0 720

\\

FYs
50 -25 -20 15 15 -12

-25 35 10 -30 -21 24

-20 10 SO -6 -60 48

15 -30 -6 90 18 -72

15 -21 -60 18 72 -72

-12 24 48 -72 -72 144
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I ^ {

/

2

3

1

5

6

7

8

')

10

7^7
12 3 4 5 6 7 8 0 10

720 -240 -ISO 120 120 0 0 -90 0 72

-240 280 60 -200 -140 60 0 150 -36 -120

-ISO 60 450 -30 -300 0 -162 225 0 -180

120 -200 -30 400 100 -48 0 -300 180 240

120 -140 -300 100 340 -120 216 -318 72 240

0 60 0 -48 -120 360 -108 144 -216 0

0 0 -162 0 216 -108 648 -324 216 0

-90 150 225 -300 -318 144 -324 522 -288 -360

0 -36 0 180 72 -216 216 -28S 432 0

72 -120 -180 240 240 0 0 -360 0 720

>̂:
90 -60 0 45 0 -36

-60 80 -30 -60 18 48

0 -30 45 9 -27 0

45 -60 9 72 -18 -72

0 18 -27 -18 54 0

-36 48 0 -72 0 144
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1

2

3

1

5

6

7

8

9

IO

16*

9 10

810 -540 360 -270 -270 90 -45 27 0 0

-540 720 -480 360 180 -300 150 -90 180 -72

360 -480 520 -480 -60 100 -140 120 -24 60

-270 360 -480 720 18 -30 60 -180 0 0

-270 180 -60 18 450 -150 75 -45 0 0

90 -300 100 -30 -150 310 -137 75 -240 96

-45 150 -140 60 75 -137 190 -150 48 -120

27 -90 120 -180 -45 75 -150 450 0 0

0 180 -24 0 0 -240 48 0 360 -144

0 -72 60 0 0 96 -120 0 -144 360

3

90 -30 15 -9 0 0

-30 50 -25 15 -30 12

15 -25 35 -30 6 -15

-9 15 -30 90 0 0

0 -30 6 0 45 -18

0 12 -15 0 -18 45

162



3

I

5

6

7

8

9

IO

r Fl

10

II)

720 -540 360 -240 120 -60 120 -30 12 0

-540 810 -540 ISO -360 180 -90 225 -90 -162

360 -540 720 -60 120 -240 12 -30 120 0

-240 180 -60 280 -140 64 -200 50 -20 0

120 -360 120 -140 340 -140 100 -268 100 216

-60 180 -240 64 -140 280 -20 50 -200 0

120 -90 12 -200 100 -20 400 -100 40 0

-30 225 -30 50 -268 50 -100 322 -100 -324

12 -90 120 -20 100 -200 40 -100 400 0

0 -162 0 0 216 0 0 -324 0 648

9-

7 90 -30 15 -60 15 -6

2 -30 35 -25 10 -16 10

3 15 -25 50 _2 5 -20

4 -60 10 -2 SO -20 8

5 15 -16 5 -20 32 -20

6 -6 10 -20 8 -20 80
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7

2

3

4

5

6

7

8

9

IO

II

3

ÎO 11

216 0 0 0 -108 0 0 0 72 -54 -54

0 100 0 30 -50 -50 30 -15 50 -15 36

0 0 216 0 0 -108 0 -54 72 0 -54

0 30 0 180 -60 -15 9 -90 60 -45 0

-108 -50 0 -60 124 25 -15 30 -106 75 72

0 -50 -108 -15 25 124 -60 75 -106 30 72

0 30 0 9 -15 -60 180 -45 60 -90 0

0 -15 -54 -90 30 75 -45 180 -120 90 0

72 50 72 60 -106 -106 60 -120 184 -120 -108

-54 -15 0 -45 75 30 -90 90 -120 180 0

-54 -36 -54 0 72 72 0 0 -108 0 216

N4
s

1 90 -30 -60 15 45 -9

2 -30 50 10 -25 -3 15

3 -60 10 65 -14 -60 12

4 15 -25 -14 35 6 -30

5 45 -3 -60 6 90 -18

6 -9 15 12 -30 -18 90



1 72 -36 24 -18 0 0

2 -36 48 -32 24 -20 10

3 24 -32 38 -36 5 -10

4 -18 24 -36 72 0 0

5 0 -20 5 0 30 -15

6 0 10 -10 0 -15 30

3 9- 5

7 48 -16 S -36 S -2

2 -16 22 -16 12 -11 4

3 8 -16 48 -6 8 -12

4 -36 12 -6 72 -36 24

5 S -11 S -36 38 -32

6 -2 4 -12 24 -32 48

\/
2 -1 0

-1 2 -1

0 -1 2
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\
36 -18 12 -18 6 7

2

3

A -3 0

-18 19 -16 3 -5 -3 6 -3

12 -16 24 0 0 0 -3 6

-18 3 0 27 -9

6 -5 0 -9 15

X
24 -8 -18 4 12

-8 16 6 -8 0

-18 6 27 -12 -18

4 -8 -12 16 0

12 0 -18 0 36

*v
4 -1 -3

-1 4 0

-3 0 6

rr\^\^n,Y 3

27 -18 12 -9 3 7

2

3

3 -1 -2

-18 24 -16 6 -10 -1 2 0

12 -16 24 0 0 _2 0 4

-9 6 0 27 -9

3 -10 0 -9 15
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3

15 -6 0 -5 4 1

2

3

3 0 -2

-6 24 0 2 -16 0 3 -2

0 0 24 -8 4 _2 -2 4

-5 2 -8 11 -8

4 -16 4 -8 24

S

24 -16 12 -S 4 7

2

3

3 0 -1

-16 19 -18 2 -4 0 3 -1

12 -18 36 0 0 -1 -1 2

-8 2 0 16 -8

4 -4 0 -S 16

S

\
24 0 0 -S 4 7

2

3

3 -2 -1

0 15 -6 -10 2 -2 3 0

0 -6 24 4 -8 -1 0 3

-8 -10 4 16 -8

4 2 -S -S 16
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7

2

3

4

5

6

7

8

9

IO

II

12

13

450 0 -180 -150 0 0 120 75 -45 0 -90 27 72

0 450 0 -150 -180 -45 75 120 0 27 -90 0 72

-180 0 450 60 0 0 -300 -30 18 0 225 -162 -180

-150 -150 60 200 60 75 -145 -145 75 -45 156 -45 -120

0 -180 0 60 450 18 -30 -300 0 -162 225 0 -180

0 -45 0 75 18 450 -150 -60 36 -270 180 -135 0

120 75 -300 -145 -30 -150 350 104 -60 90 -330 225 240

75 120 -30 -145 -300 -60 104 350 -150 225 -330 90 240

-45 0 18 75 0 36 -60 -150 450 -135 180 -270 0

0 27 0 -45 -162 -270 90 225 -135 540 -360 270 0

-90 -90 225 156 225 180 -330 -330 180 -360 570 -360 -360

27 0 -162 -45 0 -135 225 90 -270 270 -360 540 0

72 72 -180 -120 -180 0 240 240 0 0 -360 0 720

/
12 -6 4 -6 2

-6 7 -6 1 -2

4 -6 12 0 0

-6 1 0 9 -3

2 -2 0 -3 6

\

4 -2 -2

-2 3 0

-2 0 4



^ Q( V
7

2

3

4

5

6

7

S

9

IO

II

12

13

540 -270 0 0 0 -180 180 -135 108 90 -45 27 0

-270 450 0 0 0 90 -300 225 -ISO -45 180 -108 -126

0 0 450 -270 -180 225 -300 90 0 -108 180 -45 -126

0 0 -270 540 108 -135 180 -ISO 0 27 -45 90 0

0 0 -ISO 108 720 -360 240 -ISO 192 0 0 0 0

-180 90 225 -135 -360 390 -330 234 -180 - 150 75 -45 0

ISO -300 -300 ISO 240 -330 500 -330 240 150 -264 150 168

-135 225 90 -180 -ISO 234 -330 390 -360 -45 75 -150 0

108 -180 0 0 192 -180 240 -360 720 0 0 0 0

90 -45 -108 27 0 -150 150 -45 0 300 -150 90 0

Ab 180 180 45 0 75 -264 75 0 -150 306 150 -252

21 -108 -45 90 0 -45 150 -150 0 90 -150 300 0

0 -126 -126 0 0 0 168 0 0 0 -252 0 504

A\/
3 £ 2

9 -6 4 -3 1 7

2

3

3 -1 -2

-6 9 -6 2 -4 -1 3 0

4 -6 12 0 0 -2 0 4

-3 2 0 9 -3

1 -4 0 -3 6



240 -120 80 -60 48 0 0 0

-120 150 -100 75 -60 -60 30 -18

80 -100 100 -90 80 20 -24 20

-60 75 -90 110 -120 -6 10 -20

48 -60 SO -120 240 0 0 0

0 -60 20 -6 0 80 -40 24

0 30 -24 10 0 -40 48 -40

0 -18 20 -20 0 24 -40 80

7 108 -54 36 -27 -54 18 -9

2 -54 52 -43 36 12 -14 10

3 36 -43 52 -54 -3 5 -10

¦1 -27 36 -54 108 0 0 0

5 -54 12 -3 0 72 -24 12

6 18 -14 5 0 -24 28 -20

7 -9 10 -10 0 12 -20 40

170



150 -50 -30 25 20 -15 -15 12

-50 50 10 -35 -20 25 21 -20

-30 10 150 -5 -100 3 75 -60

25 -35 -5 50 14 -50 -30 40

20 -20 -100 14 100 -10 -90 80

-15 25 3 -50 -10 150 30 -120

-15 21 75 -30 -90 30 110 -120

12 -20 -60 40 80 -120 -120 240

12 -48 36 -27 -18 6 -3

-48 52 -48 36 12 -14 10

36 -48 72 -54 -9 15 -30

-27 36 -54 108 0 0 0

-18 12 -9 0 12 -24 12

6 -14 15 0 -24 28 -20

-3 10 -30 0 12 -20 40
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^om \
Xs

54 -36 24 -18 -IS 6 -3 0

-36 48 -32 24 12 -20 10 12

24 -32 38 -36 -3 5 -10 0

-18 24 -36 72 0 0 0 0

-18 12 -3 0 36 -12 6 0

6 -20 5 0 -12 23 -10 -18

-3 10 -10 0 6 -10 20 0

0 12 0 0 0 -18 0 36

Z X
80 -40 -40 0 30 0 -24

-40 SO 20 0 -60 36 48

-40 20 80 36 -60 0 48

0 0 36 108 -54 36 0

30 -60 -60 -54 90 -54 -72

0 36 0 36 -54 108 0

24 48 48 0 -72 0 144
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i^OW
1 54 -18 0 0 -18 12 -9 0

2 -18 30 0 0 6 -20 15 12

3 0 0 30 -18 15 -20 6 12

4 0 0 -18 54 -9 12 -18 0

5 -18 6 15 - 9 36 -24 18 0

6 12 -20 -20 12 -24 35 -24 -18

7 -9 15 6 -18 18 -24 36 0

S 0 12 12 0 0 -18 0 36

X
1 80 -40 20 -40 10 -4 0

2 -40 80 -40 20 -50 20 36

3 20 -40 80 -4 10 -40 0

4 -40 20 -4 80 -20 8 0

5 10 -50 10 -20 59 -20 -54

6 -4 20 -40 8 -20 80 0

7 0 36 0 0 -54 0 108

173



30 0 -12 -10 0 8 5 -6

0 30 0 -10 -12 5 8 -6

-12 0 48 4 0 -32 -2 24

-10 -10 4 15 4 -11 -11 12

0 -12 0 4 48 -2 -32 24

8 5 -32 -11 -2 38 8 -36

5 8 -2 -11 -32 8 38 -36

-6 -6 24 12 24 -36 -36 72

F ^/
72 -24 -24 0 16 0 -12

-24 48 8 0 -32 20 24

-24 8 48 20 -32 0 24

0 0 20 60 -30 20 0

16 -32 -32 -30 53 -30 -36

0 20 0 20 -30 60 0

-12 24 24 0 -36 0 72
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7 48 -16 8 -36 8 -2 24 -4

2 -16 22 -16 12 -11 4 -3 5

3 8 -16 48 -6 8 -12 0 0

4 -36 12 -6 54 -24 15 -36 12

5 8 -11 8 -24 25 -20 6 -10

6 -2 4 -12 15 -20 30 0 0

7 24 -3 0 -36 6 0 54 -18

8 -4 5 0 12 -10 0 -18 30

k

1 72 -48 32 -24 8 -4 0

2 -48 72 -48 16 -32 16 20

3 32 -48 72 -4 8 -24 0

1 -2A 16 -4 48 -16 8 0

5 8 -32 8 -16 37 -16 -30

h -4 16 -24 8 -16 48 0

7 0 20 0 0 -30 0 60
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/ 720 -360 240 -180 144 0 0 0 0

2 -360 360 -300 225 -180 -90 45 -27 0

3 240 -300 400 -300 240 90 -150 90 84

4 -180 225 -300 360 -360 -27 45 -90 0

5 144 -180 240 -360 720 0 0 0 0

6 0 -90 90 -27 0 180 -90 54 0

7 0 45 -150 45 0 -90 171 -90 -126

8 0 -27 90 -90 0 54 -90 180 0

9 0 0 84 0 0 0 -126 0 252

M.M \
400 -100 -100 40 50 40 -30 -30 24

-100 160 25 -100 -80 -10 75 48 -60

-100 25 160 -10 -80 -100 48 75 -60

40 -100 -10 400 50 4 -300 -30 240

50 -80 -80 50 121 50 -105 -105 120

40 -10 -100 4 50 400 -30 -300 240

-30 75 48 -300 -105 -30 360 90 -360

-30 48 75 -30 -105 -300 90 360 -360

24 -60 -60 240 120 240 -360 -360 720
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1 36 0 0 -18 12 0 12 -6 -9

2 0 36 12 -18 0 -6 12 0 -9

3 0 12 24 -16 10 -12 4 _2 0

4 -18 -18 -16 28 -16 8 -17 8 12

5 12 0 10 -16 24 _2 4 -12 0

6 0 -6 -12 8 _2 24 -8 4 0

7 12 12 4 -17 4 -8 20 -8 -18

*J -6 0 _2 8 -12 4 -8 24 0

•1 -9 -9 0 12 0 0 -IS 0 36

^X^, ¦^X 3 / <N Sì/
1 6 2 0 0 2 -3

2 2 6 2 0 0 -3

3 0 2 6 2 0 -3

4 0 0 2 6 2 -3

5 2 0 0 2 6 -3

6 -3 -3 -3 -3 -3 5
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^
VI

li

1

2

3

4

5

6

7

8

9
10
11

12

13

14
15
16

1

2

3
4

5

6

7

8

9

IO

11

12

13

14

15

16

5040 1008 0 0 1008 -2520 -1260 0
1008 5040 1008 0 0 -1260 -2520 -1260

0 1008 5040 1008 0 0 -1260 -2520
0 0 1008 5040 100S 0 0 -1260

1008 0 0 1008 5040 -1260 0 0
-2520 -1260 0 0 -1260 2880 1683 675
-1260 -2520 -1260 0 0 1683 2880 16S3

0 -1260 -2520 -1260 0 675 1683 2880
0 0 -1260 -2520 -1260 675 675 1683

-1260 0 0 -1260 -2520 1683 675 675
756 0 0 0 0 -972 -1350 -405

0 756 0 0 0 -1350 -972 -1350
0 0 756 0 0 -405 -1350 -972
0 0 0 756 0 -405 -405 -1350
0 0 0 0 756 -1350 -405 -405

1680 1680 1680 1680 1680 -2460 -2460 -2460

P 10 11 12 13 14 15 16

0 -1260 756 0 0 0 0 1680
0 0 0 756 0 0 0 1680

-1260 0 0 0 756 0 0 1680
-2520 -1260 0 0 0 756 0 1680
-1260 -2520 0 0 0 0 756 1680

675 16S3 -972 -1350 -405 -405 -1350 -2460
675 675 -1350 -972 -1350 -405 -405 -2460

1683 675 - 405 -1350 -972 -1350 -405 -2460
2880 1683 -405 -405 -1350 -972 -1350 -2460
1683 2880 -1350 -405 -405 -1350 -972 -2460
-405 -1350 2700 243 810 810 243 1350
-405 -405 243 2700 243 810 810 1350

-1350 -405 810 243 2700 243 810 1350
-972 -1350 810 810 243 2700 243 1350

-1350 -972 243 810 810 243 2700 1350
-2460 -2460 1350 1350 1350 1350 1350 4028
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