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dreireihigen Determinante auch aus dem einfacheren System von zwei
viervalentigen und zwel zweivalentigen Atomen berechnet werden
kénnen. Man kann also das urspriingliche Modell des Athylens (78a)
durch (78b)

(78a) =g B=A=B=0 (78b)

ersetzen. Von dieser Vereinfachung werden wir bei der Berechnung
der Elektronenverteilung im Abschnitt 15 Gebrauch machen.

X 14C—8B 0 0 0 0 0 (79)
8B X+4C—16B —16B -8B _8B 0
0 _C X4+2C4B B B <
B-C 0 0 X+2C—6B 0 0 =0
B-C 0 0 0 X+2C-6B 0
¢ 0 —4C —2C —2C X—2C+4B

X ist hier die Differenz zwischen dem Coulombintegral und der Energie
e, wihrend C und B Austauschintegrale zwischen den Kohlenstoff-
atomen bzw. zwischen Kohlenstoff- und Wasserstoffatomen repra-
sentieren.

IV. Berechnung der Elektronenverteilung

14. Elektronenverteilung eines Systems von Atomen

mit je einem Valenzelektron 1

Die grundlegende Beziehung der Quantenmechanik zur Berechnung
der Elektronenverteilung in stationdrem Zustand ist gegeben durch

vy * de (1)

Hier ist ¢ eine von den Koordinaten abhdngige und ¢* die zu ¢
konjugiert-komplexe Funktion. Da wir ausschlieBlich mit reellen
Funktionen zu tun haben, kann man statt (1) auch

Ydr = dddr,de,de, ... (2)

1 0O. KLEMENT, Helv. Chim. Acta, 34, 1368, 2230 (1951).
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schreiben. Das ergibt die Wahrscheinlichkeit, daB sich das erste
Teilchen im Volumelement dz,, das zweite im Volumelement dt, usw.
befindet. Bildet man das Integral

d'rlfn}ﬂd":zd'r3 ... dr, (3)

so summiert man alle Wahrscheinlichkeiten, dal3 das erste Teilchen im
Volumelement d=x, ist, gleichgiiltig, wo die anderen liegen. Ahnliches
gilt fir alle anderen Teilchen. Summiert man alle Wahrscheinlich-
keiten, so mull die Einheit entstehen, da alle Teilchen des Systems
irgendwo im Raum mit Bestimmtheit vorzufinden sind. Es gilt also
folgende Normierung

fL;ﬂdfl dr, ... dty =1 4)

Auf Grund der Beziehung (2) war es moglich, die Elektronendichte-
vertellung des Wasserstoffatoms und des Wasserstoffmolekiils in
befriedigender Weise zu ermitteln. Deshalb soll auch hier die Elek-
tronenverteilung organischer Molekiile nach der Gleichung (2) be-
rechnet werden.

Um die Uberlegungen konkreter zu gestalten, sollen sie an Hand
eines Beispieles durchgefithrt werden. Zu diesem Zweck wihlen wir
wiederum das System von sechs Elektronen, das wir bei der Energie-
berechnung zur Approximation des Benzols verwendet haben.

Wihlen wir aus der Gesamtheit der 15 moglichen Valenzdisposi-
tionen (Einleitung (3)) eine unabhidngige Basis aus, z. B. die Basis
(ITI. 48). Den fiinf Valenzverteilungen entsprechende vollstindige
Molekiileigenfunktionen sind

|

b = —— N 10 Qua(1)up(2)uc(3)ua(4)ue(5)u¢(6) .[AB[CDIEF]

V6!
b - % S 10 Q ua(1)up(2)uc(3)ua(#)ue(5)ur(6) . [AF [BC] DE]
by - \% S 10 Q ua(1)up(2)uc(3)ug(4)ue(5)ur(6) [ADJBCIEF, (5)
by - v%_!2noQuamub(2>uc(3)ud(4>ue(S)uf(6) [AF)[BEJ[CD)
¥s = = 3 10 Qua(1)up(@)uc(3)ug(#)ue(5)ur(6) [ABJCF]DE;

V6!
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Die Linearkombination der fiinf Funktionen gibt die Eigenfunktion
nullter Niherung

Y = Ci{y + Codp + C3;5 + Cuy + Css (6)

Zur Bestimmung der Koeffizienten ¢, wird man in der Stérungs-
rechnung auf das System von fiinf homogenen Gleichungen (I. 33) mit
den c,, ¢,, c;, ¢y, s als Unbekannten gefithrt. Ist die Energie bekannt,
so wird man die c; durch Auflésung des homogenen Gleichungs-
systems berechnen konnen.

Dem Gleichungssystem (III. 59) entsprechende Sikulardeterminante
(I1I. 60a) ergibt fir die kleinste Wurzel den Wert X = —2,6055. Sie
ist in (III. 77) auf Grund eines der Sakulargleichung &dquivalenten
Gleichungssystems explizite berechnet. Fiihren wir diesen Wert in
(ITI. 60a) bzw. 1in (IIL. 59) ein, so erhdlt man dem Grundzustand ent-
sprechende Koeffizienten der Linearkombination (6) mit den nume-
rischen Werten ¢, = ¢, =1 und c¢; = ¢, = ¢; = —0,4343. Hierbei wurden
die urspriinglich erhaltenen c¢; durch c, dividiert, was bei einem homo-
genen Gleichungssystem erlaubt ist. Man erhdlt also fiir die Eigen-
funktion nullter Ndherung den Ausdruck

g =4, + ¢, —0,4343 ({5 + $y + s5) (7)

Zur Berechnung der Elektronenverteilung bildet man gemil (2)
das Quadrat der Eigenfunktion nullter Niherung (7). Da die Eigen-
funktionen ¢, ¢,, ¥;, ¢, Y5 nicht orthogonal sind, werden auch die
gemischten Produkte von Null verschieden sein, d. h.

$, = ¢F + ¢F + 0,1886 (p3+¢5 + ¢F) + 24,4, |
— 0,8686 (43 + G4y +Pis + $ods + dathy + $ots) (8)
+0,3772 (Ysthy + Ysds + Qus)

Fir die weitere Rechnung sollen zunichst die einzelnen Glieder
¢; by auf eine handlichere Form gebracht werden. Betrachten wir zu
diesem Zweck ausfithrlicher das Produkt ¢, {,

1 , _
bt = 2 e Q dauucugueur (ABJCD][EF]

1
ﬁ E nQ Quaupucugqueur. [AB][CD][EF]
das man einfacher auch so schreiben kann
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1 ; /
$iy = 61 2 nQ' 1Q(Q  uaupucugueur. Quaupucugueur) (Q'e; Qo) (10)

Genau wie bel der Energieberechnung in (I11. 15) kann die doppelte
Summation durch eine einfachere ersetzt werden und gleichzeitig
hebt sich der Fakultiatsfaktor weg, so dal man (10) in der einfacheren
Form

¢, =2 nQ (uaupucugueur QQ uzupucugueur) (@, Q o)) (11)

schreiben kann.

Von der Gesamtheit aller Permutationen sind bei der Energie-
berechnung nur die identische Permutation und die Transpositionen,
d. h. die einfachen Permutationen, die nur zwei Elektronen zwischen
zwel Atomen vertauschen, betrachtet worden. Alle hoheren Permu-
tationen wurden vernachlissigt. Die gleiche Vereinfachung soll auch
hier verwendet werden. Somit bleiben von (11) nur die folgenden tibrig

(12)
@7 = ua(1)up(2)uc(3)ug(4)ue(d)urp(6) . ua(l)up(2)uc(3)ug(4)ue(5)ue(6) (9191
— ua(1)up(2)uc(3)ug(4)ue(5)ue(6) . ua(2)up(l)uc(3)ug(4)ue(5)us(6) (@ tabe:)
— Ua(l)up(2)uc(3)ug(4)ue(S)ur(6) . ua(3)up(2)uc(l)ug(4)ue(5)ur(6) (@ tace:)

.............................................................

=

Es folgen noch 13 analoge Summanden mit den tbrigen Trans-
positionen. Der erste Summand in (12) ist positiv, weilnq deridentischen
Permutation entspricht, fiir alle anderen Permutationen ist die An-
zahl von Inversionen ungerade und somit n - —1.

Bezeichnen wir den Koordinatenanteil im ersten Summanden mit

K = uf(1)ud(2)ud(3)ui(4)ui(5)uf(6) (13)

Ferner soll der Koordinatenanteil des zweiten Summanden, wo ein
Elektron des Atoms A mit einem Elektron des Atoms B vertauscht
ist, mit §,,, im dritten Summanden, wo die Elektronen der Atome A
und C vertauscht sind, mit 3,. usw. bezeichnet werden, d. h.

Bab = Ua(1)up(2)uc(3)ug(4)ue(5)ur(6) . ua(2)up(1)uc(3)ug(4)ue(5)ur(6)
Sac = Ua(1)up(2)uc(3)ug(4)ue(5)ur(6) . ua(3)up(2)uc(l)ua()ue(5)ur(6)

.........................................................

Damit nimmt (12) die Form (15)
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(15)
V% = (.0) K —[(p:tab®1)8ab + (P1tacPi)Bac + (@1tad®:)Bad+ (@itae®:)Bae +
+ (pitarpi)8ar + (@itoc?i)Bbe + (P1tbdP1)Obd + (Pitbe?:)Bbe + (Pitbre.)dbe
+ (pitcapi)Bed + (Pitee®1)8ce + (Piter®i)der + (Prtde®:)8de + (Pitare:)dar

+ (Piter®i)def]
oder (16) an.

b= (1) K -a’Zb (®1tabPi)Bab (16)

Die Summation ist hier tiber alle Atompaare zu erstrecken.

Genau dieselben Uberlegungen konnen aber mit allen anderen Pro-
dukten (8) durchgefiihrt werden. Bei allen wird zunichst die doppelte
Summation durch eine einfache ersetzt und von den Permutationen
sind nur die identische und die Transpositionen zu beriicksichtigen.
In jedem Produkt bleibt eine Koordinatenfunktion K und 15 Aus-
tauschfunktionen 8,y 8, ..., 8¢ Ubrig. Fir jedes Produkt erhédlt man
also einen Ausdruck der Form (16), den man somit in der allgemeineren
tir alle §; . giltigen Form (17)

Yivk = (9igk) K — Zb (#itab?k)ab (17)

schreiben kann.

Im weiteren wollen wir zur Vereinfachung, — wie das bereits bei der
Energieberechnung geschehen ist —, nur die Wechselwirkungen zwischen
Nachbaratomen beriicksichtigen, indem wir voraussetzen, dal} die
sechs FElektronen des betrachteten Systems zur Approximation der
Elektronenverteilung des Benzols dienen soll. Von (17), wo die
Summation sich auf alle Atompaare erstreckt, bleibt (18) tibrig.

didk = (igkx) K —[(eitabek)Bab + (PitocPk)dbe + (PitedPk)ded + (18)
+ (pitdevk)Bde + (Piterek)der + (@itraPk)dfal

Einfithren von (18) in (8) ergibt nun

¢? = {(p191) K —[(@1tabp:)Bab + (@1tbc®1)dbe + (Pitcd®i)8ed + (19)
+ (@1tde®1)8de + (Piter®1)er + (P1tfa®:)dfal}
+ {(p292) K —[(pstan®2)ab + (@2toe®2)dbe + (Poted®2)dca +
+ (@2tde®2)8de + (Poter@2)er + (Patra®:)Sral)
+ 0,1886 {(¢s¢3) K —[(@stab®s)8ab + (stbe®s)Bbe + (@stedes)ded +
+ (patdeps)dde + (Pster®s)der + (@straps)dral)

.......................................................

Die Austauschoperationen sind aber schon von der Energieberechnung
(ITI. 51) her bekannt; dasselbe gilt fir die Skalarprodukte (III. 55).
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Man kennt somit alle in (19) vorkommenden Koeffizienten, deren
numerische Werte aus (III. 63) abgelesen werden kénnen.

Bezeichnen wir allgemein die Summe der Koeffizienten von K mit
a,, die Summe der Koeffizienten von 3,, mit a, usw., so erhdlt man

¢2:anK7318ab+a28bc+...+aj8ikf... (ZO)
oder 1in unserem Fall

LI)Z = 5,9535 K + 2,5854 (Bab = Sbc + Scd + Sde + Sef—Sfa) (21)

Die Verteilung des i-ten Elektrons des Systems (20) erhidlt man nun,
indem man die Koordinaten des fraglichen Teilchens festhilt und tiber
die Koordinaten aller iibrigen Elektronen integriert. Auf Grund von
(21) erhalten wir also die Verteilung des urspriinglich zum Atom A ge-
hoérenden ersten Elektrons p(1), indem wir in Gleichung (21) die Koor-
dinaten des ersten Elektrons festhalten und tiber die Koordinaten des

zweiten, dritten, ..., sechsten Elektrons integrieren.
(22)

o(1) = 5,9535 [ud(1) f ud(2)dr, f u2(3)d, f uj(4)dr, f ud(5)d, j'uzf(@)drﬁ]
+2,5854 [ua (1)up(1) f U (2)up (2)dr, f uZ(3)dr, f ui(4)de, f ug(5) de; ud(6) drg

3]
+ (1) [up(2)uc(2)de, [up (3)uc(3)d=, [ud(4)d=, [ud(5) d=s [ui(6) d=,

+ui(1) [u(2)dr, [ud(3) drs [u§(#)dw, [ue(S)ur(5)dz; [ ue(6)ur (6)d=,

+ up(1)ua (1) [uh(2)d=, [ul(3)d, [ud(4)dr, [ud(5) d, [ur(6)ua (6)d= |
Auf analoge Weise bekommt man die Verteilung des urspriinglich zum
Atom B gehorenden zweiten Elektrons, indem man in (20) die Koor-

dinaten des zweiten Elektrons festhdlt und tber alle tibrigen Elek-

tronen integriert.
(23)
0(2) = 59535 f u(1)dr, . ug(2) f ui(3) dr, [u3(4)dr, f u§(5)d¢5~{ uf(6) dr, |

42,5854 [fua(l)ub(l)d'rl.ua(Z)ub (Z)fu§(3) d‘r3fué(4)d'r4fu§(5) dfsfuf-(e) dr,
+ fu§(1)d-:.-, . ub(2)uc(2)fub(3)uc(3)d'r3fu(21(4)d'r4fu§(5) d’rsb"u%(6)d'rﬁ

+ [Wi1)dr, . ug(2) [ue(3)ua(3)d7, [ue(#)ua(4) dz, [ud(5)d, [uf(6) dr,
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+ [ui(t)ydz, . ub(2) [v3(3) dr, [ug($)ue (#)d=, [ug(5)ue(5) d=, [ub(6
+f ui(1)dr, . u "(2)’ (3)dT3fU(21(4)dT4fue(5) £(5)d J e(6)ug (6)dr,
+ fua( Jug(l)dz, . u (Z)IU(‘;(?’)dT3foi(4)dT4fue2(5)deJua(6)UF(6)d76]

Entsprechend miissen die Integrationen der anderen vier Elektronen,
die urspriinglich zu den Atomen C, D, E und F gehoren, durchgefiihrt
werden. Wie man ohne weiteres feststellen kann, erhilt man die erste
Zeile von (22) durch Integration des ersten Summanden in (21), die
zweite Zeile von (22) durch Integration des zweiten Summanden
in (21) usw.; dieselbe Bemerkung gilt auch fiir (23).

Die einvalentigen Atomeigenfunktionen u,(1), uu(2), u.(3), uy(4),
u.(5), up(6) konnen als normiert vorausgesetzt werden, dann sind alle

Integrale vom Typus f uj(k)dry gleich der Einheit. Die iibrigen Inte-
grale sollen wie bei der Energleberechnung mit

Aab = [ ua(l)up(1)ds, [ ua(2)up(2)ds,
Ape = [ up(2)uc(2)ds, [ up(3)uc(3)ds; 24)

.................................

bezeichnet werden. Damit bekommt man aus (22), (23) und gemil
den entsprechenden Ergebnissen der Elektronen 3, 4, 5, 6 einen Aus-
druck p(r), der die Elektronenverteilung unseres Benzolmodells
repriasentiert, wobei die Numerierung der Elektronen weggelassen ist.

o(r) = 5,9535(ug + up + ug + ug + ug + uf)
+ 2,5854 (2uaup VA, + uzlab + ugAab + uzlap + ufAab
+ uaDEe + 2ukii V Abc + udAbc + uiApbe +ufApe
+ uaAcd + UpAcd + 2ucug VA g + UdAcd + ufAcd (25)
+ ugAde + upAde + UiAge + 2ugue YAy, + UfAde
+ UaAef + UpAef + UAer + UGAer + 2ueur | Agp

+ 2uauf VA r +uplar + uiAar + uiAar + uilar)

Um die endgiiltige Elektronenverteilung po(r) zu erhalten, mul} p(r)
allerdings noch mit dem Normierungsfaktor 1/N und der Anzahl
Elektronen 6 multipliziert werden, d. h.
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o(r) = (1) (26)

Zur Ermittlung von N = f o(r) dr, ist noch eine Integration von g(r)
iber den Raum erforderlich, indem man gleichzeitig die Normierung
der uZ, ui, ... und die Ausdriicke (24) berticksichtigt. Fiir N erhilt man
N = 6[5,9535 + 2,5854 (Agh + Apc + Acd + Ade + Aef + Afa)] (27)

Die auf diese Weise erhaltene Elektronendichte p(r) repridsentiert
die kontinuierliche Elektronenverteilung des auf sechs einvalentige
Atome reduzierten Benzols. Man kdnnte damit ein dem Rontgendia-
gramm dhnliches Hohenschichtlinienbild aufstellen. Doch ist die
numerische Berechnung der kontinuierlichen Verteilung angesichts
der zahlreichen Vernachlissigungen, die gemacht worden sind,
nicht von groBem Interesse. Niitzlicher erscheint vom Standpunkt
der Chemie die Berechnung einer diskreten Elektronenformel.

Diese kann aus der kontinuierlichen Verteilung (26) respektive (25)
erhalten werden. In (25) ist u, ndamlich 1im wesentlichen nur an der
“Stelle vom Atom A von Null verschieden, u, ist ebenfalls haupt-
siachlich an der Stelle des Atoms B von Null verschieden usw. Ander-
seits stellt u,uy, eine Austauschladung zwischen den Atomen A und B
dar, uyu, eine Austauschladung zwischen den Atomen B und C usw.,
die fur die Bindung dieser Atome verantwortlich sind. Wir kénnen
somit grob eine Elektronenverteilung angeben, indem wir (26) bzw.
(25) iber den Raum integrieren und die dabei von uj herriithrenden
Anteile mit p(A) bezeichnen und die Elektronenzahl am Atom A
nennen. Analog erhidlt man die Elektronenzahlen p(B), p(C) ... der
anderen Atome B, C, ... aus uj uZ ... Der von u, u, herrithrende
Teil p(AB) wird die Austauschladung zwischen A und B sein, dement-
sprechend man aus u, u, die Austauschladung (BC) zwischen B und C
usw. erhilt. Auf diese Weise entstehen zwei Arten von Indizes: der
Atomindex ¢(I) und der Bindungsindex p(IK). Aus (26) erhidlt man
somit fiir das Benzol als Sechselektronensystem betrachtet

p(A) = % [5,9535 + 2,5854 (Ape + Acd + Ade + Aer)]

6
o (B) = o [5,9535 + 2,5854 (Acd + Ade + Aer + Ary)]
............................................. (28)

e (AB) = - 2. 2,5854 Ay

o (BC) = —- 2. 2,5854 Ape

=
™NT

1z

132



Nun sind aber die Integrale A;, Funktionen der Atomabstinde,
die in unserem Benzolmodell gleich groB sind. Dementsprechend haben
wir

Aap = Ape = Acd = Ade = Aer = Afa (29)

Mit (29) kann (27) jetzt einfacher auch so geschrieben werden

N = 6[5,9535 + 15,5124 A] (27a)

Die Atom- und Bindungsindizes des Benzols (28) nehmen dann eben-
falls die einfachere Form (28a) an.

50535 + 10,3416 A 1+ 1,737 A
pia) = 59535 1 15,5124 A 1+ 26064 ~ 08>

59535 + 10,3416 A 1 + 1,737 A
°B) =39535 7155124 A 126064 - 0%
............................................ (28a)

5.1708 A 0,869 A

e(AB) = 59535 - 155124 A ~ 1+ 26064 — 2140
o (BO) 51708 A 0,869 A 01

T 50535 + 155124 A 1 + 2,606 A

............................................

Selbstverstdndlich sind alle Atomindizes einerseits und alle Bin-
dungsindizes anderseits gleich gro. Ferner mul} die Summe der
Bindungs- und Atomindizes gleich der Gesamtzahl der Elektronen
des betrachteten Systems sein, d. h.

e (A) +p(B) +p(C) + (D) + p(E) + o(F) (30)
+ p(AB) + p(BC) + p(CD) + p(DE) + p(EF) + p(FA) =6
Das 1st 1n (28a) tatsdchlich der Fall.

Es sei ferner bemerkt, dal das in den Ausdriicken (28a) vorkom-
mende A unbekannt ist. Sein Wert liegt zwischen 0 und 1. Falls man
A unbedingt numerisch ausdriicken will, so kann z. B. A = 0,3 ge-
setzt werden, was uns ein verninftiger Wert erscheint. Doch spielt
diese Unbestimmtheit weiter gar keine groBe Rolle, weil A nur auf
den Absolutwert, nicht aber auf die Relativwerte der Indizes einen
EinfluB hat. Fir die Chemie sind aber die Relativwerte von Wichtig-
keit, wie z. B. bei der inneren Energie in der Thermodynamik.

Aus der obigen Ermittlung der Elektronenverteilung des Sechs-
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elektronensystems sieht man ohne weiteres, wie die Rechnungen im
allgemeineren Fall eines Systems von n einvalentigen Atomen ge-
fithrt werden miissen. Die Verallgemeinerung bei den Relationen (9)
bis (20) bietet nichts Neues, falls man in (19) die entsprechende Zahl
der Valenzdispositionen der unabhdngigen Basis berticksichtigt. In
(20) miissen nattrlich alle Wechselwirkungen eingefiihrt werden, die
fir das betreffende System von Interesse sind. Man wird hier natirlich
nur Wechselwirkungen zwischen Nachbaratomen beriicksichtigen,
denn die Approximation eines Molekiils durch einvalentige Atome
ist eine sehr rohe Approximation. Die ao a, a, ... reprdsentieren in
(20) respektive die Summe aller Koeffizienten von K, 8, 8y, ...

Aus (20) erhilt man die Verteilung des ersten Elektrons des Systems
durch eine der (22) analogen Integration iber alle Elektronen mit
Ausnahme des Elektrons 1, dessen Koordinaten festgehalten werden.
Ahnlich verfihrt man mit allen anderen Elektronen. Die Summe aller
dieser Partialergebnisse gibt die Elektronenverteilung des Systems

n 2
p(r) = [Bo(ua+ up+ ...+ up)
+ a, (2uaub)/A,p + UzAab + UghAab + ... + UAALD
+ a; (uéo'Abc + 2Zubug \/A—t; + uéAbc + ww s F uf,Abc (31)
+ a3 (UgAcd + upAcd + 2ucud YVAgg + - - - + upled)
+ aj (uzAmn + upAin + AL + ... + 2uup)/AL,)]

n ist hier gleich der Anzahl aller Elektronen. Ferner ist

N=n(a,+2a,Azp +a,8pc+ ... +31Ap) (32)

Die verschiedenen A; sind die in (24) angegebenen A-Integrale. Aus
(31) erhdlt man durch Integration die allgemeinen Ausdriicke fiir
Atom- und Bindungsindizes.

n
e (A) = N (ag + a2Apc + 23Acq + - - - + 31A1)
n
e (B) = N (g + a3Acd + a4Ade + ... + ajAn) (33)

n
P (C) = N“ (aao -+ alAab <+ a4Ade + e F alAln)

.......................................
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15. Elektronenverteilung eines Systems von Atomen

mit einem und mehrveren Elekivonen !

Die im vorigen Abschnitt erhaltene Elektronenverteilung auf Grund
eines Systems von einvalentigen Atomen kann selbstverstindlich
nur als eine erste Approximation der wirklichen Elektronendichte
betrachtet werden. Die vollstindige Berechnung mit allen Elektronen
ist allerdings meistens recht kompliziert. Will man aber eine Elek-
tronendichte erhalten, die als Grundlage fiir die Interpretation der
Eigenschaften chemischer Molekiile dienen soll, so ist man gezwungen,
trotz rechnerischer Komplikationen die Verteilung auf Grund aller
Valenzelektronen zu ermitteln. Wir wollen deshalb die Berechnung
der Elektronenverteilung auch fiir den allgemeinen Fall, also fiir den
Fall von Systemen, bestehend aus ein- und mehrelektronigen Atomen,
entwickeln.

Die Uberlegungen sollen auch hier an Hand eines Beispiels, nimlich
des Athans, durchgefiihrt werden. Dieses Molekiil, bestehend aus sechs
Wasserstoffatomen und zwei Kohlenstoffatomen, kann wie das Athylen
im Abschnitt 14 durch das einfachere System von zwei viervalentigen
Atomen A,B und zwei dreivalentigen Atomen C,D (34) ersetzt werden.

H—C-C—H D=A-B=C (34)
H \H

Die Rechnungen werden dadurch wesentlich einfacher. Wihrend
nidmlich die urspriingliche Basis des Athans aus 20 Valenzdispositionen
besteht, enthilt die neue Basis nur 4 Valenzdispositionen.

Die den vier Atomen A B,C,D entsprechenden Koordinateneigen-
funktionen bezeichnen wir mit

1 O. KLEMENT, Helv. Chim. Acta, 36, 691 (1953), 42, 1332 (1959).
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s ugll;2,3.4)
: up(5,6,7,8) -
© 1e(9,10,11) (33)
© ug(12,13,14)

QOowr

Die Zahlen sind Abkiirzungen fir die drei Ortskoordinaten der
betreffenden Elektronen.

Die Atomeigenfunktionen (35) sind antisymmetrisch in allen ihren
Elektronen. Aus ZweckmiBigkeitsgriinden wollen wir sie in der
bekannten Determinantenform (I. 40) schreiben.

W) V@) W@ v
v v@ v v

DTV [ H) w0 vE) v -
V4(1) Ve(2) vi(3)  vi4)

Die Atomeigenfunktion u, (1,2,3,4) wurde hier aus Einelektron-
eigenfunktionen v;(i) aufgebaut. Diese seien orthogonal und normiert.
Die Zahlen in den Klammern bedeuten wiederum die drei Orts-
koordinaten, wihrend die Indizes 1, 2, 3, 4 als Abkiirzungen fir die
drei Quantenzahlen des betreffenden Quantenzustandes zu betrachten

: L . ; x
sind. VA 1st der Normierungsfaktor. Entsprechende Determinanten-

ausdriicke gelten fiir die anderen Atomeigenfunktionen (35).

Die Molekiileigenfunktionen (37), die den vier Valenzdispositionen
entsprechen, werden aus diesen antisymmetrischen Atomeigenfunk-
tionen aufgebaut, indem man sie mit den entsprechenden Spinfunk-
tionen erganzt, ihr Produkt bildet und das Ganze in die vom Pauli-
prinzip geforderte antisymmetrische Form (II. 26) bringt.

(37)
by = iﬁi%i’ S gQua(1,2,3,4)up(5,6,7,8)u(9,10,11)ug (12,13,14)
' . [AB] [AD]*[CB]?

1

b, = ‘L‘*jﬁ N 1qQua(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)
| . [AB]?*[AD]?[CB]?*[CD]
/41 41 31 31
s = \/iil# S 10Qua(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)
. [AB]’[AD] [CB] [CD]?
by = /441313 S g Qua(l,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)

141
. [AB]*[CD]?
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Die entsprechende Eigenfunktion nullter Niherung lautet
$ = Cydy + Cops + Cads + Cuthy (38)
Wie bei einvalentigen Atomen bildet man dann

2 = cidi + 2e,c, s + .o (39)

Betrachten wir im einzelnen eines dieser Produkte, z. B. {2. Man
erhdlt hier zunichst einen dem (9) analogen Ausdruck, wo die doppelte
Summation durch eine einfache ersetzt wird und gleichzeitig sich der
Fakultiatsfaktor weg hebt. Es bleibt somit eine Beziehung tibrig, die
formell der Relation (11) entspricht, ndmlich

Gigy = X nQ (uaupucuy. Quaupucug) (9,Qepy) (40)

Von den Permutationen sollen auch hier nur die Identitit und die
Transpositionen beriicksichtigt werden. Dann bleiben von (40)
folgende Anteile tbrig:

ua(1,2,3,4)up(5,6,7,8)uc (9,10,11)uq (12,13,14) .
ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq (12,13,14)
g = ua(l 2,3,4)up(5,6,7,8)uc(9,10,11)ugq(12,13,14)
Tab ta(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq(12,13,14)
Sad = ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq(12,13,14)
Tad ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)
Sbe = Ua(1,2,3,4)up(5,6,7,8)uc(9,10,11)uq(12,13,14)
Toe 1a(1,2,3,4)up(5,6,7,8)uc(9,10,11)ug(12,13,14)

(41)

Die T,y T,4 Ty reprasentieren hier Transpositionen von nur zwei
Elektronen zwischen den Atomen A und B, A und D, B und C. Im
ganzen gibt es 4.4 Transpositionen, die ein Elektron des Atoms A mit
einem Elektron des Atoms B vertauschen, ferner sind 3.4 Transposi-
tionen zwischen A und D und ebensoviele zwischen den Atomen B
und C moglich. Wie bei der Energieberechnung ist es auch hier gleich-
gultig, welche Transposition fiir ein bestimmtes Atompaar gewdhlt
wird. Deshalb kann der Koordinatenanteil, der sich in (40) auf die
Vertauschung zweier Elektronen zwischen den Atomen A und B
bezieht, wie beil einvalentigen Atomen (14) einfach mit §,, bezeichnet
werden. Analoges gilt fir die anderen Koordinatenanteile. Der der
identischen Permutation entsprechende Koordinatenanteil ist auch
hier mit K bezeichnet.
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Die Produkte der zweiten Klammer in (40), d. h. die Koeffizienten
von K, 3,5 8,4, 8, miissen noch auf mehrvalentige Atome erweitert
werden. Fir die Identitat, d. h. fir QO = I, erhdlt man einfach ein
Produkt der Spinfunktionen (g,9,).

Fiur die Vertauschung eines Elektrons des Atoms A mit einem
Elektron des Atoms B, also fiir Q =T,,, konnen wir (¢, T,y ¢,) schreiben.
Im Fall des Atompaars A und B sind aber 4.4 solche Koeffizienten zu
beriicksichtigen, namlich

(@1 T1591) + (@1 T1621) + (@1 T1791) + (@1 T1spy) + - .. (42)

eoo + (1 Tyspq) + (@1 T4ep1) + (@1 T4r01) + (91T 4sP1) ZTE (P1 Tabe1)
ab

wobei das erste Glied die Vertauschung des ersten Elektrons des Atoms
A mit dem Elektron 5 des Atoms B zum Ausdruck bringt. Das letzte
Glied reprisentiert die Vertauschung des Elektrons 4 vom Atom A mit
dem Elektron 8 vom Atom B.

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
wiederum gleichwertig sind, kann man zur Vereinfachung von (42) die
Summe aller dieser Vertauschungen mit t,, bezeichnen, also t,,, = £ T,
setzen. Dann wird der Koeffizient von §,, einfach (g, t,, ¢,) sein.
Entsprechendes gilt natiirlich auch fir die Atompaare A und D, B
und C.

Fassen wir nun alle Teilergebnisse zusammen, so erhdlt man fir
(40) den Ausdruck

$1¥; = (1p1) K —[(p:tab®i) 8ab + (Pitad®i) 8ad + (@1tbe?1) Bbcl (43)

Die hier vorkommenden (¢,9,), (9, tap ¢1). ... sind identisch mit den-
jenigen, welche bei der Energieberechnung auftreten. Sie werden somit
nach dem dort angegebenen Verfahren berechnet. Ganz dhnlich er-
folgt die Berechnung der anderen Produkte ; ¢ in (39).

Fihrt man die so erhaltenen Ergebnisse in (39) ein, so erhilt man

g% = i [K(9:91) — {Bab (¢:1tab®:) + Bad (CPltachl) + Obc (‘Pltbc@l)}] (44)
+ 2¢,¢, [K(9192) — {Bab (P1tab®2) + 8ad (PitadPz) + Sbe (@1tbe®2))]

.......................................................

bzw.

4)2 =aK + a,8,3p + a‘.2813(: + a38ad (45)
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Der Koeffizient a, umfal3t somit alle Skalarprodukte von K, multipli-
ziert mit den entsprechenden Koeffizienten (39), und ahnlich enthélt a,
alle (¢; tap, o), multipliziert mit den zugehorigen Koeffizienten (39) usw.

Wenden wir nun auf J? die in (1) — (4) angegebenen Beziehungen der
Quantenmechanik an, so miissen Ausdriicke vom folgenden Typus
berechnet werden:

K: [u3(1,2,3,4)u(5,6,7,8)ud(9,10,11)uj(12,13,14) dr,d=,. . .dry,
[(0i(1,2,3,4)u§(5,6,7,8)ud(9,10,11)u3(12,13,14) dr,dr;. . .d7,,

---------------------------------------------------

d. h. im ersten Integral soll das erste Elektron festgehalten und iiber
alle anderen Elektronen integriert, im zweiten Integral ist das zweite
Elektron festgehalten, im letzten das Elektron 14, wihrend man tber
alle anderen Elektronen integriert.

Fir den Austausch zweler Elektronen zwischen den Atomen A und
B erhalten wir

Sab: [ Ua(1,2,3,4)up(5,6,7,8)u4(5,2,3,4)up(1,6,7,8) (47a)
u3(9,10,11)uj(12,13,14) dr,dr;. . .d<,,
[ 1a(1,2,3,4)u5(5,6,7,8)ua(5,2,3,4)up (1,6,7,8)
u2(9,10,11)u3(12,13,14) dz,d=,dx,. . .d=,, (47b)

.....................................

fua(1,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(1,6,7,8)
u(9,10,11)u3(12,13,14) d=,d,. . .dr,,dt,,

Im ersten Integral wird das Elektron 1 festgehalten, im zweiten das
Elektron 2 und im letzten Integral das Elektron 14, wihrend man
tiber die anderen integriert. Analog verfihrt man mit 3,4 und 3.

Bad: [1a(1,2,3,4)uq(12,13,14)u,(12,2,3,4)ug(1,13,14) (48)
u$(5,6,7,8)ui(9,10,11)dr,dx;. . .dx,,

........................................

1,2,3,4)uq(12,13,14)u, (12,2,3,4)uq(1,13,14)

5,6,7,8)u2(9,10,11) dr,dr,. . .dr,s

5,6,7,8)uc(9,10,11)up (9,6,7,8)uc (5,10,11) (49)
)

C
1,2,3,4)uj(12,13,14) dt,dr,. . .dt,,

f up(5,6,7,8)u¢(9,10,11)up (9,6,7,8)uc(5,10,11)
u2(1,2,3,4)u4(12,13,14) dr,ds,. . .d<,,

AN~ A~ —
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Zur Berechnung dieser Integrale empfiehlt es sich, die Atomeigen-
funktionen in die Determinantenform zu schreiben. Auf diese Weise
werden die u, (1,2,3,4), ... auf Einelektroneigenfunktionen v, (1),
v,(2), ... zurickgefiihrt, die man leicht integrieren kann. Der Deter-
minantenausdruck des Atoms A ist in (36) schon angegeben.
vs(7)  vs(8)

vs(3) Vs

up(5,6,7,8) = (50)

—
-~
>

1}“
¥

(
(5 ) ve(8)
(5 ) v4(8)
(5 ) Vs(8)

(51)

1 Vo Ve (10)  vq (11)
va }

(9
g(9,10,11) = —— | v,(9) vy(10) v,e(11)
(9

uy(12,13,14) = T vi3(12)  v5(13)  vy5(14)

— 52
LEL vis(12) v (13) vi(14) =

_T]___ vi2(12) vi2(13) V12(14) |

Hier sind nicht bloB die Elektronen, sondern auch die Elektronen-
zustinde durchgehend numeriert.

Wir verwenden nun folgenden Determinantensatz: Wenn man einen
Minor dritter Ordnung von (36) mit sich selbst multipliziert und iiber
alle seine Elektronen integriert, so erhdlt man 3!. Falls man aber diesen
Minor mit einem anderen multipliziert und integriert, so erhdlt man
Null. Es handelt sich hier nattirlich um Minoren, die aus derselben
Kolonne von (36) gebildet sind. Dieser Satz gilt hier wegen der Ortho-
gonalitit der Einelektroneigenfunktionen v;.

Auf Grund von (36) und (50) - (52) schreiben wir nun (46) in der
Form (53):

1 .
o | DAL = va(1)Ag, + V(1) Az — vi(1)A,,)? ug(5,6,7.8)

ué(9,10,11)uj(12,13,14) dr,dr;. . .dr,

1 L

& ﬂf[— Vi(2)A s+ va(2)Ags — Vvi(2) Az + Vi(2)A,,)? up(5,6,7,8)
ue(9,10,11)ug(12,13,14) dr,drs. . .d7y,

..........................................................

.......................................................

1 2
+ 37 [ V(9 A0 — Vio(9)Are + Vir(9A1,5)% U5 (1,2,3,4)
u(5,6,7,8)u3(12,13,14)dr, . . .drdz,,. . .d7,,

.......................................................
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1 v
TR ‘I ["’12(12)1"\12,12 — V13(12)A13,12 =t V14(12)A14,12]2 u§(1,2,3,4)
u§(5,6,7,8)uf(9,10,11) d=,. . .dr v dry,

......................................................

Im ersten Integral, wo das Elektron 1 festgehalten ist, wurde die
Determinante (36) der Atomeigenfunktion u, nach der ersten Kolonne
entwickelt. Auf diese Weise enthalten die Adjunkten A;, das erste
Elektron tberhaupt nicht, und man kann iiber ihre Elektronen
integrieren. So ergibt sich nach dem oben angegebenen Determinanten-
satz der Faktor 3!. Die iibrigen Funktionen u§ u? uj werden als
normiert vorausgesetzt und ergeben die Einheit. Das Ergebnis der
Integrationen tber die Elektronen 2 bis 14 ist der erste Klammer-
ausdruck in (54). Im zweiten Integral (52) wird das Elektron 2 fest-
gehalten und dementsprechend ist die Determinante (36) von u, nach
der zweiten Kolonne entwickelt worden. Die Integration tber die
Elektronen 1,3,4 ergibt den Faktor 3!. Das Ergebnis beim Festhalten
des Elektrons 2 ist in (54) durch den zweiten Klammerausdruck
gegeben. Analoge Uberlegungen gelten beim Festhalten der anderen
Elektronen.

Somit erhilt man fiir K als Resultat der verschiedenen Integrationen
beim Festhalten der einzelnen Elektronen 1,2, ...,14

%[V;’(l) + vi(1) + vi(1) + vi(1)] + % [v3(2) + vi(2) + v3(2) + vi(2)]
+ 3TV + VIG) + vIB) + IO+ 1 [vIA) + Vi) + VA4) + V)]
£ 3 1V205) + V5) + V(5) + VA(3))+ 1 [vE(6) + vE(6) + vi(6) + vi(6)]
b3 VAT + V) + VAT + VAT S IVEE) + VE®) + VES) + VIS (54)
+ ;[\;(9) + VIO(Q) + v5,(9)] = [Vg(l()) + vi,(10) + fl(IO)]
+3 VAT + V3, (1) + v2,(1)]  + % v2,(12) + v2,(12) + v2,(12)]
3 IVE13) + VE(13) + VA(13)] + 1 [VE(14) + vE,(14) + vE,(14)]

Mit Hilfe des obigen Determinantensatzes soll jetzt noch die Be-
rechnung des Austausches §,,, durchgefithrt werden. Zu diesem Zweck
verwenden wir die vier ersten Faktoren von (47a) in der Determinanten-
form,indem man gleichzeitig jeden nach der ersten Kolonne entwickelt.
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1
7771 ] WAL = va(DAL, + vi(DA,, = V(1A
[Vi(5)A;s— Vz(s)Az,s + Va(S)A3,5 — V4(5)Ay,s]
[Vs(5)As, 5 — V6(5)A6,5 F V?(S)A7,5 == Vs(s)As,sj (55)
(vs(1)As,, — v )As,l - vy (1)A;, — Vs(l)f\s,ﬂ
1

Die Integrationen tber die Elektronen 9 bis 14 sind ohne weiteres
durchfiithrbar, da u2 und uj ja die Einheit ergeben. Mit Ausnahme des
ersten, das wir ja festhalten miissen, und des fiinften Elektrons kénnen
wir ohne Schwierigkeit auch iiber die iibrigen integrieren, falls man
beachtet, dal die Adjunkten der ersten und zweiten Klammer einer-
seits und diejenigen der dritten und vierten anderseits Funktionen
derselben Koordinaten sind. In beiden Fillen erhidlt man als Resultat
3!. Somit 1Bt sich (55) folgendermaBen umforment:

g
;ﬁﬂf[vl(l)vn@) + Va(1)va(5) + v5(1)vs(5) + vi(1)vy(5)] (56)
[vs(5)vs(1) + ve(3)ve(1) + vo(S) V(1) + v(5)ve(l)]dr;

Wenn wir nun das Integral tiber das Elektron 5 in (56) mit

VA = [Vils)vi(5)ds

bezeichnen, so entsteht fiir den Austausch des ersten und funften
Elektrons zwischen den Atomen A und B beim Festhalten des ersten
Elektrons der Ausdruck

1 P — e
4.4 [Vivs VAs + Vovs VA + Vv VA + vivs VA
+ V Vg \E; + V,Vg \E + v3ve 'V 3_3: + vyve ¥ A_w
+vivea VA, + vov, VA + Vv, VA, + vev, VA,

+ VvV, Vg \""Als + ViV \"'.Azs + Vavg VAzg + Vv VAl (57)

i

T4 4.
10

8
> vil)vi(1)VAik
k-5

NV ES

1

Der nichste Schritt betrifft die Berechnung von (47b) beim Fest-
halten des zweiten Elektrons. Dazu entwickelt man die Determinanten-
ausdriicke des ersten und dritten Faktors nach der ersten und zweiten
Spalte, wiahrend der zweite und vierte Faktor wie vorher nach der
ersten Spalte entwickelt werden.
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Diese konnen wir auch einfacher in der Summenform (60) schreiben



Bezeichnen wir die Integrale iiber die Elektronen 1 und 5 mit
A = [ vi(L)vi(1)vi(5)v(5)ddr,

61
A= [ vi(@)vi(1)vk(5)vj(5)dr,d, i

so erhdlt man schlieBlich fir die Integration von (47b) beim Fest-
halten des zweiten Elektrons

3 4 8

1 . e

i.43 El == 3iE) VA V85 2 -
b=k — VA VAg vi(2)vi(2) + Axjvi(2)

Die Berechnung von (47) beim Festhalten des dritten und vierten
Elektrons erfolgt genau nach dem Schema des zweiten, und als Resultat
erhilt man fir jedes Elektron einen Ausdruck (62), d. h. (63a) und (63b)
Es gentigt namlich, die Determinanten anstatt nach der ersten und
zwelten, nach der ersten und dritten bzw. nach der ersten und vierten
Kolonne zu entwickeln. Dabei dndert sich hochstens das Vorzeichen,
was aber fiir das Endergebnis belanglos ist.

3 - 8
1 L
73 2 2 2 Ajvk(3) —VAgG VA vil3)vk(3)
i=1k-2j=5 (63a)
i<k —VAjj VAgjvk(3)vi(3) + Agjvi(3)
3 4 8
1 o - 2 = | S —
4 4.3 2 Ajjvk(4) — V Ak VAjj vi(4) v (4)
i=1k=2j=5 (63b)
i<k — VA VAxv#)vi[4) + Agvi(4)

Die Integrationen von 3,, fiihren beim Festhalten der Eiektronen
5,6,7,8 des Atoms B zu Resultaten vom Typus (57) und (62). Wird
namlich das Elektron 5 festgehalten, so entsteht eine dem Ausdruck
(57) entsprechende Relation (64). Fiir die anderen Elektronen 6,7, 8
des Atoms B bekommt man dagegen Ausdricke vom Typus (62),
namlich

1 -+ 8
4.4 > = vil5) vk(3)VAik o3
1=1k=25
., 7 8 4
> = Ayvk(6) — VA VA vi(6)vk(6
T8 B, 2 2 Akl B i -
i<k —VAjj VA vi(6)vi(6) + Agjvi (6)

...............................................
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Eine dritte Art von Ergebnis (67) bekommt man aus (47) beim Fest-
halten des 9-ten und bei allen tbrigen Elektronen, da in allen diesen
FFdllen das betrachtete Elektron zu einem Atom gehort, das von dem
Austausch der Elektronen 1 und 5 tiberhaupt nicht beriithrt wird.

1 _
314131 f Vi) A — Va(1)Ag,y + vi(1)As, — vi(1)A, ]
[Vl(s)Al,s — V3(5)A,s + v3(5 )A —V4(5)A 4,5)
[Vs(s}As,s ve(5)A 6,5 T V(5 )A — vg(5)A ] (66)
[Vs(1)As, — ve(1)Ag, + vo(1)A vs(1)Ag, J
[Vg(g)Ag 9 V10(9)A10 9 T Vu(g) 11,9]2
ug(12,13,14) drv,dry. . - drgdrig. » AT

Die Adjunkten der ersten und zweiten Reihe umfassen die Elek-
tronen 2, 3, 4, die Integration tiber diese ergibt 3!, diejenige der dritten
und vierten Klammer ergibt ebenfalls 3!. In der finften Reihe kann
man iiber die Elektronen 10 und 11 integrieren, was zu 2! fihrt,
wihrend die Atomeigenfunktion uj (12, 13, 14) die Einheit ergibt. Die
Integration tber das erste und fiinfte Elektron wird durch Ausdriicke
vom Typus (61) reprisentiert. (47) ergibt somit beim Festhalten des
Elektrons 9

-+ 8§ 11

1
—— 2 > A (67)
| kV]
4'4'3i=1k:51: 1

Es folgen noch finf analoge Resultate fiir die Integration von (47) beim
Festhalten der Elektronen 10, 11, 12, 13, 14.

Auf diese Weise ist 3,, durch (57), (62), (63), (64), (65) und (67) voll-
standig bestimmt. Die zwel anderen Austauschfunktionen 8y, 8.4
sind aber vom gleichen Typus wie §,, es wird ja jedesmal von der
Gesamtheit aller Elektronen nur der Austausch von je einem Elektron
der betreffenden Atome in Betracht gezogen. Somit kénnen wir fir
alle Austausche das Resultat der Integrationen mit Hilfe der Aus-
dricke vom Typus (57), (62) und (67) zusammenstellen.

Wir erhalten somit aus (45) fir die Elektronenverteilung g(r) unseres
Systems bestehend aus zwel viervalentigen und zwei dreivalentigen
Atomen die Beziehung (68).
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4
> i) + vi(2) + vi(3) + vi(4)]

8
: 135 [V(5) + Vi) + v(7) + V)]
111
+ 5 > [vi(9) +vi(10) + vi(11)]
3119
, 1 1 (68)
+,§ N {vf(lZ)-+ Vf(13)-+ V?(14)] +
i=12 I
5 I 4 8 -
+ LSS i) VAR
4'41i=1k=5
[ 3 4 8
133 3 S ([a5E@ - 2VAG VA vi@vi(@) + digvi(2)]
i=1k=2j=5 _
i<k o+ [AvE3) = 2VAG VA vi3)vi(3) + Agvi(3) ]
+[Agve @) = 2VAG VEgvi@)vic®) + Agvi@) ])*
4 8
+ > vil5)vk(5) VA +
i=1k=5
X 8 @
+3 3 S 3 ([avk(6) = 2VAG VAvi(6)vk(6) + Aivi(6)]
i=5k=6j=1 “
i<k 4| Agvk(7) = 2VAG VAGVI(T)vi(7) + Agvi(T)]
+ [ Agvk (8) — 2VAg VAZ vi(8)vi(8) + Agvi(s) ] )+
8 11
4.% S 3 S AulviO)+ vi(10) + vi(11)] +
i=1k=51=9
1 4 8 14 ]
i3 D S S A (2)+ vi13) + vi14)
i=1k=51=12 I
5 [1 8 11 4
$0 TS S S A Vi) + vi@) + Vi) + i)+
' l i=5k=91=1
8 11
+ N vi(5)vi (5)VAjx +
i=5k=9
1 7 8 11
+3 3 S S ([AivEO) - 2V VA vi6)vk(6) + Aigvi©)]
i=bk=06]=59
i<k



+ | Avi(7) = 2VAG VA vi(T)vi(7) + Agvi(7) |

+[Agvk (8) — 2VA G VA vi®)vi(®) + Agvi®) ] ) +
8

+2 EV, \rAlk

1—5k 9

+— E 2 Z(IAI,Vk (10) — 2/ Ay VAgvi (10)vic (10) + A vi(10) |

i Yo 10j =5
i<k +[Aijvlz((ll)—ZX'%\,Kijvi(ll)Vk(ll)+Aiji2(11)])+
y In 14 l
+§2 3N A vi(12) + vi(13) +vi(14)]
fe 5 I =10 112 l
. I4 14
+ : E > vi()vk (1) VA +
* 311:11{:12
3 4 14
I3 S S (k@ - 2vag VA i@k + AgviR)] ¢
i=1k=2j=12
i<k o [agvi(3) — 2VAg VA viBIvi(3) + Agvi3)] +
3 lAiij 4) = 2V A VAjjvi(4) v (4) + Aijiz(“*)]) +
A L.
oy S S A Vi(5) + vi(6) + vi(7) + vi(8)] +
i=1k=121=5
L4 oo
i > N Ajk [Vi(9) + vi(10) (11)] (68)
i—1k=-121=9
4 1 -
+ X D vi(12)v(12) VA +
i—1k 12

+5 Z 2 2 ([Al,vk (13) =2/ Ay VA vi(13)vi(13) + Ajvi(13) |
1 12 k=13 =1
1\1{

+ [ Ajvk (14) =2V ARGV A vi (14) vic (14) + /_\.k,-x,r%(ldr)])I

Der Ausdruck (68), in dem alle Elektronen in verschiedenen Zu-
stinden vorkommen, ist fiir unsere Zwecke recht kompliziert, kann
aber noch weitgehend vereinfacht werden. Eine erste Vereinfachung
wird auftreten, wenn wir annehmen, dal3 die Atome nur in S-Zustianden
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sind. Ferner haben wir in (41) fiir jedes Atompaar eine einzige Aus-
tauschfunktion 8,4, 8y 8,4 angenommen, und dementsprechend werden
wir in (68) auch fiir jedes Atompaar ein einziges A -Integral haben,
unabhingig davon, wie gro3 die Zahl der Valenzelektronen ist.

Aber noch eine weitgehende Vereinfachung kann erzielt werden,
weil wir ja gar nicht die kontinuierliche Verteilung suchen, sondern
uns mit einer groberen Elektronenverteillung wie im Abschnitt 14 be-
gniigen wollen. Ebenso wie dort sind auch hier die v;* im wesentlichen
nur an der Stelle der betreffenden Atome von Null verschieden,
wihrend die v;v, eine Austauschladung, die zwischen zwei Atomen
herrscht, darstellen. Dementsprechend wollen wir die Elektronen-
verteilung wie im Abschnitt 14 durch zwei Arten von Elektronenzahlen:
den Atomindex p(I) und den Bindungsindex p(IK) definieren. Der
erste wird aus (68) dadurch erhalten, daB3 die aus v;? durch Integration
hervorgehenden Bestandteile fiir jedes Atom zusammengefal3t werden.
Bei dieser Operation erhilt man aber aus jeder v;? die Einheit unab-
hingig davon, in welchem Zustand sich das Elektron befindet, was
eine weitgehende Vereinfachung der Beziehung (68) darstellt. Ent-
sprechend wird der Bindungsindex durch Integration der Austausch-
funktion v;v, erhalten, insofern i und k sich auf verschiedene Atome
beziehen. Dabel entsteht, wie oben erwdhnt wurde, fir jedes Atom-
paar nur ein A -Integral. In allen Ausdriicken (68) der Form —27/Ay;.
1/Ay; Vi v beziehen sich die i und k auf dasselbe Atom und dement-
sprechend verschwinden sie bei der Integration zufolge der Orthogo-
nalitit der Einelektroneigenfunktionen.

Unter diesen Voraussetzungen erfolgt die Verteilung der ver-
schiedenen Summanden von (68) auf die Atom- und Bindungsindizes
o(A). ... o(AB) ... ohne Schwierigkeit, wenn man die urspriingliche
Numerierung der Elektronen in den vier Atomfunktionen (35) und
die der Elektronenzustinde in (36), (50), (51) und (52) beachtet. In
der ersten Zeile von (68) erhdlt man z. B. durch Integration von
vi2(1), vi3(2), v;*(3), v;*(4) tberall die Einheit. Der Summationsindex
lauft aber von 1 bis 4. Dementsprechend ergibt die erste Zeile einen
Beitrag a, . ¥4 . 16 = 4a, zur Elektronenzahl g(A) des Atoms A. Eine
analoge Situation findet man bei der zweiten Zeile. Die dritte Zeile
ergibt einen Beitrag 3a, zur Elektronenzahl ¢(C). In der fiinften Zeile
entsprechen i und k den Atomen A bzw. B. Der Ausdruck v;(1) vy(1)
repriasentiert eine Austauschladung zwischen A und B, die fiir die
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Bindung verantwortlich ist. Durch Integration erhilt man daraus |/A;y,
das wir auf die Atome A und B beziehen kénnen, indem wir 1/A,p
schreiben. Die fiinfte Zeile ergibt somit einen Beitrag a, A,, zur
Elektronenzahl p(AB). Die folgenden drei Zeilen in (68) ergeben einen
Beitrag 3a, A,, zum Atomindex p(A), wo wir statt A;, und Ay; einfach
A,y schreiben. Analog verteilt man die tibrigen Bestandteile von (68).
Die vollstandigen Atom- und Bindungsindizes unseres Systems be-
stehend aus zwel vierelektronigen und zwei dreielektronigen Atomen
sind in (69) angegeben.

p(A) = % (4a, + 3a,Azp + 4a,Ape + 32;A,4)

n
p(B) = N (42, + 3a,A5p + 32,Apc + 4a;A,4)

Z|= =

o(C) =2 (3ay + 3a,A0p + 22,Apc + 325849) (69)
n
e(D) = N (3a, + 3a,Aap + 32,Apc + 2a34;4)

n n n
e(AB) = N 2a,Map o(BC) = N 2a,Apc e(AD) = N 2a,Ma4

Hier reprasentiert n=(n, +ny+n.+ny) =4+4+3+3 =14 die Anzahl aller
Elektronen, wiahrend N den Normierungsfaktor darstellt, den man
aus (68) auf Grund von (4) erhilt.

N =n(ag + a;Aap + a,Apc + a30a4) (70)
Die A,y Ape A,q sind Funktionen der Atomabstinde von der Form

Aab = f“a(1v2J3,4)Ub(5,6,7,8)ua (5,2,3,4)up(1,6,7,8) dr, dr, (71)

Selbstverstindlich ist auch hier

e(A) + p(B) + ¢(C) + p(D) + p(AB) + g(BC) + p(AD) = n (72)

Nach (69) kénnen wir schlieBlich die Elektronenzahlen auch im
allgemeinen Fall angeben. Bezeichnen wir respektive mit n, ny ...
..., n, die Anzahl von Valenzelektronen der Atome A,B, ..., H, die
eine offene Kette bilden, so erhidlt man fiir die Atom- und Bindungs-
indizes die Ausdriicke (73)
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(73)

n
p(A) = N (agna + a;(ng — 1) Agp + anaApe + asngAcg + ... + ajnaAghp)

n
p(B) = 5 (@onb + a;(Mb—1)Aap + a,(nb—1)Abc + asnpAcq + ... + ajnpAgh)

+ ajncAgh)
n n
o(AB) = — . 2a,Azp o(BC) = — 2a,Ap,,
N N
Der Normierungsfaktor ist hier
N = n(ao +a,Ap + 2a,Ape + ... + ajAgh) (74)

Da die Atomindizes in (73) fiir eine offene Kette von Atomen gelten,
kommt der Faktor (n,—1) in p(A) nur einmal vor, wahrend man in
o(B) und p(C) die entsprechenden (n,—1) bzw. (n.—1) je zweimal vor-
findet. Wollte man die Kette auf das Atom A schlieBen, so wiirden in
(68) weitere Zeilen hinzukommen, die dem Austausch 8;, entsprechen
und damit wiirde auch in p(A) ein zweiter Faktor (n,—1) auftreten.

Literatur fiir Kapitel I

A. EvuckeN, Lehrbuch der chemischen Physik, 2. Aufl.,, Bd. I, Leipzig 1938.

H. EvriNGg, J. WALTER und G. E. KiMBaLL, Quantum Chemistry, New York
1944.

S. GrassToNE, Theoretical Chemistry, New York 1944.

P. GomBAs, Theorie und Losungsmethoden des Mehrteilchenproblems der
Wellenmechanik, Basel 1950.

H. HartMANN, Theorie der chemischen Bindung, Berlin 1954.

W. HeIrTLER, Elementare Wellenmechanik, Braunschweig 1961.

H. HerLrmann, Einfiihrung in die Quantenchemie, Leipzig 1937.

K. JELLINEK, Verstindliche Elemente der Wellenmechanik, Basel 1951.

L. PavLinGg und E. B. WiLson, Introduction to Quantum Mechanics, New York
1935.

B.und A. PuLLMAN, Les théories électroniques de la chimie organique, Paris 1952.

C. ScHAEFER, Einfithrung in die theoretische Physik, Bd. II1/2, Berlin 1951.

G. W. WHELAND, Resonance in Organic Chemistry, New York 1955.

150



	Berechnung der Elektronenverteilung

