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dreireihigen Determinante auch aus dem einfacheren System von zwei

viervalentigen und zwei zweivalentigen Atomen berechnet werden
können. Man kann also das ursprüngliche Modell des Äthylens (78a)
durch (78b)

H H\ /(78a) C C D A B C (78b)

H H

ersetzen. Von dieser Vereinfachung werden wir bei der Berechnung
der Elektronenverteilung im Abschnitt 15 Gebrauch machen.

(79)X+4C-8B 0 0 0 0 0

-8B X -4C-16B -16B -8B -SB 0

0 -c X + 2C-4B B B -6B
B-C 0 0 X + 2C-6B 0 0

B-C (1 0 0 X+2C- 6B 0

-C 0 -4C -2C -2C X -2C+4B

X ist hier die Differenz zwischen dem Coulombintegral und der Energie
e, während C und B Austauschintegrale zwischen den Kohlenstoffatomen

bzw. zwischen Kohlenstoff- und Wasserstoffatomen
repräsentieren.

IV. Berechnung der Elektronenverteilung

14. Elektronenverteilung eines Systems von Atomen

mit je einem Valenzelektron l

Die grundlegende Beziehung der Quantenmechanik zur Berechnung
der Elektronenverteilung in stationärem Zustand ist gegeben durch

99 * dx (1)

Hier ist ç) eine von den Koordinaten abhängige und fy* die zu <\>

konjugiert-komplexe Funktion. Da wir ausschließlich mit reellen
Funktionen zu tun haben, kann man statt (1) auch

99dr 99dT,dT2dT3 (2)

O. Klement, Helv. Chim. Acta, 34, 1368, 2230 (1951).
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schreiben. Das ergibt die Wahrscheinlichkeit, daß sich das erste
Teilchen im Volumelement dT,, das zweite im Volumelement df2 usw.
befindet. Bildet man das Integral

dT, J 92dx2dT3 dT„ (3)

so summiert man alle Wahrscheinlichkeiten, daß das erste Teilchen im
Volumelement dt, ist, gleichgültig, wo die anderen liegen. Ähnliches

gilt für alle anderen Teilchen. Summiert man alle Wahrscheinlichkeiten,

so muß die Einheit entstehen, da alle Teilchen des Systems
irgendwo im Raum mit Bestimmtheit vorzufinden sind. Es gilt also

folgende Normierung

f 92dr, dT2 dzn 1 (4)

Auf Grund der Beziehung (2) war es möglich, die Elektronendichte-
verteilung des Wasserstoffatoms und des Wasserstoffmoleküls in
befriedigender Weise zu ermitteln. Deshalb soll auch hier die
Elektronenverteilung organischer Moleküle nach der Gleichung (2)
berechnet werden.

Um die Überlegungen konkreter zu gestalten, sollen sie an Hand
eines Beispieles durchgeführt werden. Zu diesem Zweck wählen wir
wiederum das System von sechs Elektronen, das wir bei der
Energieberechnung zur Approximation des Benzols verwendet haben.

Wählen wir aus der Gesamtheit der 15 möglichen Valenzdispositionen

(Einleitung (3)) eine unabhängige Basis aus, z. B. die Basis

(III. 48). Den fünf Valenzverteilungen entsprechende vollständige
Moleküleigenfunktionen sind

9, ^=2YiQÖua(1)ub(2)uc(3)ud(4)ue(5)uf(6).[AB][CD][EF]

h -4= 2 r)QQua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .[AF][BC][DE]
\6\

93=^27lQQua(1)ub(2)uc(3)ud(4)ue(5)uf(6) [AD][BC][EF] (5)
V6!

+4 =142lQQua(l)ub(2)uc(3)ud(4)ue(5)uf(6) [AF][BE][CD]
V6!

k =-4=2TOQ«a(l)ub(2)uc(3)ud(4)ue(5)Uf(6) [AB][CF][DE]
V 6!
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Die Linearkombination der fünf Funktionen gibt die Eigenfunktion
nullter Näherung

«I* c,9, + c292 + c393 + c494 + c595 (6)

Zur Bestimmung der Koeffizienten c, wird man in der Störungsrechnung

auf das System von fünf homogenen Gleichungen (I. 33) mit
den c,, c2, c3, c4, c5 als Unbekannten geführt. Ist die Energie bekannt,
so wird man die c; durch Auflösung des homogenen Gleichungssystems

berechnen können.
Dem Gleichungssystem (III. 59) entsprechende Säkulardeterminante

(III. 60a) ergibt für die kleinste Wurzel den Wert X -2,6055. Sie
ist in (III. 77) auf Grund eines der Säkulargleichung äquivalenten
Gleichungssystems explizite berechnet. Führen wir diesen Wert in
(III. 60a) bzw. in (III. 59) ein, so erhält man dem Grundzustand
entsprechende Koeffizienten der Linearkombination (6) mit den
numerischen Werten c, c2 1 und c3 c4 - c5 —0,4343. Hierbei wurden
die ursprünglich erhaltenen q durch c, dividiert, was bei einem homogenen

Gleichungssystem erlaubt ist. Man erhält also für die
Eigenfunktion nullter Näherung den Ausdruck

9 9, + ^ - 0,4343 (93 + 94 + <[,,) (7)

Zur Berechnung der Elektronenverteilung bildet man gemäß (2)
das Quadrat der Eigenfunktion nullter Näherung (7). Da die
Eigenfunktionen <9i, *92. ^3» ^4» «l'a nicht orthogonal sind, werden auch die

gemischten Produkte von Null verschieden sein, d. h.

92 Vi + «II + 0,1886 (V + V + i>î) + 29,92

- 0,8686 (9,93 + 9,94 +9,95 + 9293 + ^«h + «Ms) (8)

+ 0,3772 (^9, f 9395 + 9495)

Für die weitere Rechnung sollen zunächst die einzelnen Glieder
¦|/j <9k auf eine handlichere Form gebracht werden. Betrachten wir zu
diesem Zweck ausführlicher das Produkt «9, «9,

9,9, -— 2 IQ' Q' ua"bUcUd*JeUf [AB][CD][EF]
\ 6\ (9)

• -= 2 IQQUaUbUc"dUeUf- [AB][CD][EF]

das man einfacher auch so schreiben kann
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Mi =6|2YlQ'rlQ(<3'uaubUcUdUeUf-QuaUbUcUdUe"Jf)(Q'9iQ9i) (10)

Genau wie bei der Energieberechnung in (III. 15) kann die doppelte
Summation durch eine einfachere ersetzt werden und gleichzeitig
hebt sich der Fakultätsfaktor weg, so daß man (10) in der einfacheren
Form

•Mi SlQ (uaubucudueuf Q uaubucudueuf) (9, Q 9,) (11)

schreiben kann.
Von der Gesamtheit aller Permutationen sind bei der

Energieberechnung nur die identische Permutation und die Transpositionen,
d. h. die einfachen Permutationen, die nur zwei Elektronen zwischen
zwei Atomen vertauschen, betrachtet worden. Alle höheren
Permutationen wurden vernachlässigt. Die gleiche Vereinfachung soll auch
hier verwendet werden. Somit bleiben von (11) nur die folgenden übrig

(12)
9? ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(l)ub(2)uc(3)ud(4)ue(5)uf(6)(9,9,)

- ua(l)ub(2)uc(3)ud(4)ue(5)uf (6). ua(2)ub(l)uc(3)ud(4)ue(5)uf (6) (9,tab9i)

- ua(l)ub(2)uc(3)ud(4)ue(5)uf (6). ua(3)ub(2)uc(l)ud(4)ue(5)uf(6) (9,tac9»)

Es folgen noch 13 analoge Summanden mit den übrigen
Transpositionen. Der erste Summand in (12) ist positiv, weily)Q der identischen
Permutation entspricht, für alle anderen Permutationen ist die
Anzahl von Inversionen ungerade und somit rlT —1.

Bezeichnen wir den Koordinatenanteil im ersten Summanden mit

K u^(l)ub(2)u^(3)uâ(4)u^(5)u?(6) (13)

Ferner soll der Koordinatenanteil des zweiten Summanden, wo ein
Elektron des Atoms A mit einem Elektron des Atoms B vertauscht
ist, mit 8ab, im dritten Summanden, wo die Elektronen der Atome A
und C vertauscht sind, mit Sac usw. bezeichnet werden, d. h.

Sab ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(2)ub(l)uc(3)ud(4)ue(5)uf(6)
Sac ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(3)ub(2)uc(l)ud(4)ue(5)uf(6)

Sef ua(l)ub(2)uc(3)ud(4)ue(5)uf(6) .ua(l)ub(2)uc(3)ud(4)ue(6)uf(5)

Damit nimmt (12) die Form (15)
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(15)
Vi (9i9i)K -L(9itab9i)Sab + (9itac9i)Sac + (9itad9i)Sad+ (9itae9i)Sae +

+ (9itaf9i)Saf + (9itbc9i)Sbc + (9itbd9i)Sbd + (9itbe9i)Sbe + (9itbf9i)Sbf
+ (9itcd9i)Scd + (9itce9i)Sce + (9itcf9i)&cf + (9itde9i)Sde + (9itdf9i)Sdf

+ (9itef9i)Sef]
oder (16) an.

Vi (9i9i) K - 2 (9itab9i)Sab nr>a,b (lö)

Die Summation ist hier über alle Atompaare zu erstrecken.
Genau dieselben Überlegungen können aber mit allen anderen

Produkten (8) durchgeführt werden. Bei allen wird zunächst die doppelte
Summation durch eine einfache ersetzt und von den Permutationen
sind nur die identische und die Transpositionen zu berücksichtigen.
In jedem Produkt bleibt eine Koordinatenfunktion K und 15

Austauschfunktionen 8ab> 8ac> ..._ 8ef übrig. Für jedes Produkt erhält man
also einen Ausdruck der Form (16), den man somit in der allgemeineren
für alle Vi «K gültigen Form (17)

9i9k (9i9k) K — S (9itab9k)8ab ,17)
a,b * '

schreiben kann.
Im weiteren wollen wir zur Vereinfachung, - wie das bereits bei der

Energieberechnung geschehen ist -, nur die Wechselwirkungen zwischen
Nachbaratomen berücksichtigen, indem wir voraussetzen, daß die
sechs Elektronen des betrachteten Systems zur Approximation der

Elektronenverteilung des Benzols dienen soll. Von (17), wo die
Summation sich auf alle Atompaare erstreckt, bleibt (18) übrig.

*9i*9k (9i9k) K — [(9itab9k)Sab + (9itbc9k)Sbc + (9itcd9k)8cd +

- (9itde9k)Sde + (9'tef9k)8ef + (9itfa9k)8faj

Einführen von (18) in (8) ergibt nun

(18)

V {(9i9i) K — [(9itab9i)Sab + (9itbc9i)sbc + (9itcd9i)8cd + (19)

+ (9itde9i)Sde + (9itef9i)Sef + (9itfa9i)8fa]}
+ {(9292) K — [(92tab92)8ab + (92tbc92)Sbc + (92tcd92)Scd +

- (92tde92)8de + (92tef92)Sef + (92tfa92)8fa]}
+ 0,1886 {(9393) K — [(93tab93)8ab + (93tbc93)Sbc + (93tcd93)8cd +

+ (93tde93)8de + (93tef93)8ef + (93tfa93)8fa]}

Die Austauschoperationen sind aber schon von der Energieberechnung
(III. 51) her bekannt; dasselbe gilt für die Skalarprodukte (III. 55).

129



Man kennt somit alle in (19) vorkommenden Koeffizienten, deren
numerische Werte aus (III. 63) abgelesen werden können.

Bezeichnen wir allgemein die Summe der Koeffizienten von K mit
a0i die Summe der Koeffizienten von 8ab mit a, usw., so erhält man

V a„ K + ai 8ab + a2 Sbc - + ai 8ik + (20)

oder in unserem Fall

V 5,9535 K + 2,5854 (8ab + Sbc + 8cd + 8de + 8ef+8fa) (21)

Die Verteilung des i-ten Elektrons des Systems (20) erhält man nun,
indem man die Koordinaten des fraglichen Teilchens festhält und über
die Koordinaten aller übrigen Elektronen integriert. Auf Grund von
(21) erhalten wir also die Verteilung des ursprünglich zum Atom A
gehörenden ersten Elektrons p(l), indem wir in Gleichung (21) die
Koordinaten des ersten Elektrons festhalten und über die Koordinaten des

zweiten, dritten, sechsten Elektrons integrieren.
(22)

P(l) 5,9535 [^(l)Ju§(2)dT2/u2(3)dT3Juâ(4)dT4J^(5)dT5juK6)dT6]

+ 2,5854 [ua(l)ub(l)Jua(2)ub(2)dT2ju2(3)dT3/uâ(4)dT4Ju2(5)dT5J'uH6)dTb

+ ua(l)Jub(2)uc(2)dT2Jub(3)uc(3)dT3Juâ(4)dT4Jue(5)dT5JuH6)dT6

+ U^(l)JU§(2)dT2JUc(3)ud(3)dT3juc(4)ud(4)dT4Ju2(5)dT5Ju-f(6)dT6

+ u|(l)Juè(2)dT2jU2(3)dT3Jud(4)Ue(4)dT4Jud(5)ue(5)dT5J'Uf(6)dT()

+ u2(l)Juê(2)dT2ju2(3)dT3jud(4)dT4Jue(5)uf(5)dT5/ue(6)uf(6)dTf,

+ uf(l)ua(l)]'Uê(2)dT2Ju2(3)dT3jud(4)dT4Ju2(5)d-r5juf(6)iia(6)dT6]

Auf analoge Weise bekommt man die Verteilung des ursprünglich zum
Atom B gehörenden zweiten Elektrons, indem man in (20) die
Koordinaten des zweiten Elektrons festhält und über alle übrigen
Elektronen integriert.

(23)

p(2) 5,9535 [Ju2(l)dT, uè(2)Ju2(3)dT3jud(4)dT4Ju|(5)dT3jUf(6)dT6]

+ 2,5854 [Jua(l)ub(l)dT,.ua(2)ub(2)Ju2(3)dT3jud(4)dT4Ju2(5)dT5juf(6)dT6

+ Ju2(l)dT, ub(2)uc(2)Jub(3)uc(3)dT3Ju21(4)dT+j'uI(5)dr5JuK6)dT6

+ Ju'2(l)dT, .uè(2)JUc(3)ud(3)dT3fUc(4)ud(4)dT4/-J2(5)dT5fu^(6)dT6
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+ Ju2(l)dT, .uê(2)Jii2(3)dT3jud(4)ue(4)dT,Jud(5)ue(5)dT5Ju?(6)dT„

+ /u2(l)dT, 4(2)Jb2(3) dx3Jud(4)dT4Jue(5)uf (5) dT5/ue(6)uf (6) d-r«,

+ Jua(l)iJf(l)dT, Uê(2)Ju2(3)dT3JUâ(4)dT4JU2(5)dT5Jua(6)uf (6)dT„]

Entsprechend müssen die Integrationen der anderen vier Elektronen,
die ursprünglich zu den Atomen C, D, E und F gehören, durchgeführt
werden. Wie man ohne weiteres feststellen kann, erhält man die erste
Zeile von (22) durch Integration des ersten Summanden in (21), die
zweite Zeile von (22) durch Integration des zweiten Summanden
in (21) usw. ; dieselbe Bemerkung gilt auch für (23).

Die einvalentigen Atomeigenfunktionen ua(l), ub(2), uc(3), ud(4),
ue(5), uf(6) können als normiert vorausgesetzt werden, dann sind alle

Integrale vom Typus J u*j(k)d-rk gleich der Einheit. Die übrigen
Integrale sollen wie bei der Energieberechnung mit

Aab=Jua(l)ub(l)dTiJua(2)ub(2)dT2

Abc / ub(2)uc(2)dT2 f ub(3)uc(3)dT3
(24)

Afa =/uf(6)ua(6)dT6 Juf(l)ua(l)dT,

bezeichnet werden. Damit bekommt man aus (22), (23) und gemäß
den entsprechenden Ergebnissen der Elektronen 3, 4, 5, 6 einen
Ausdruck p(r), der die Elektronenverteilung unseres Benzolmodells
repräsentiert, wobei die Numerierung der Elektronen weggelassen ist.

p(r) 5,9535(ua + ub + u£ + ud + u2. + u2-)

+ 2,5854 (2uaub i/Â^ + u2Aab + udAab + u2Aab + ufAab

+ uaAbc + 2ubuc \ A^ + udAbc + u2Abc +ufAbc

+ UaAcd + ubAcd + 2ucud VAcd + u2Acd + UfAcd (25)

+ uaAde + ubAde + UcAde + 2udue VÄ^e + ufAde

+ uaAef + ubAef + u^Aef + udAef + 2ueuf \ Aef

+ 2uauf \,Aaf + ubAaf + UcAaf+ udAaf -4- u2Aaf)

Um die endgültige Elektronenverteilung p(r) zu erhalten, muß p(r)

allerdings noch mit dem Normierungsfaktor 1/N und der Anzahl
Elektronen 6 multipliziert werden, d. h.
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P(r)=^p(r) (26)

Zur Ermittlung von N J p(r) dr, ist noch eine Integration von p(r)
über den Raum erforderlich, indem man gleichzeitig die Normierung
der ua, ub, und die Ausdrücke (24) berücksichtigt. Für N erhält man

N 6[5,9535 + 2,5854 (Aab + Abc + Acd + Ade + Aef + Afa)] (27)

Die auf diese Weise erhaltene Elektronendichte p(r) repräsentiert
die kontinuierliche Elektronenverteilung des auf sechs einvalentige
Atome reduzierten Benzols. Man könnte damit ein dem Röntgendia-
gramm ähnliches Höhenschichtlinienbild aufstellen. Doch ist die
numerische Berechnung der kontinuierlichen Verteilung angesichts
der zahlreichen Vernachlässigungen, die gemacht worden sind,
nicht von großem Interesse. Nützlicher erscheint vom Standpunkt
der Chemie die Berechnung einer diskreten Elektronenformel.

Diese kann aus der kontinuierlichen Verteilung (26) respektive (25)

erhalten werden. In (25) ist ua nämlich im wesentlichen nur an der
Stelle vom Atom A von Null verschieden, ub ist ebenfalls
hauptsächlich an der Stelle des Atoms B von Null verschieden usw. Anderseits

stellt uaub eine Austauschladung zwischen den Atomen A und B
dar, ubuc eine Austauschladung zwischen den Atomen B und C usw.,
die für die Bindung dieser Atome verantwortlich sind. Wir können
somit grob eine Elektronenverteilung angeben, indem wir (26) bzw.
(25) über den Raum integrieren und die dabei von u| herrührenden
Anteile mit p(A) bezeichnen und die Elektronenzahl am Atom A
nennen. Analog erhält man die Elektronenzahlen p(B), p(C) der
anderen Atome B, C, aus ub u£_ Der von ua ub herrührende
Teil p(AB) wird die Austauschladung zwischen A und B sein,
dementsprechend man aus ub uc die Austauschladung p(BC) zwischen B und C

usw. erhält. Auf diese Weise entstehen zwei Arten von Indizes: der
Atomindex p(I) und der Bindungsindex p(IK). Aus (26) erhält man
somit für das Benzol als Sechselektronensystem betrachtet

p (A) iL [5,9535 - 2,5854 (Abc h Acd + Ade + Aef)]

P (B) ~ [5,9535 + 2,5854 (Acd + Ade + Aef + Afa)]

p (AB) ^. 2 2,5854 Aab

p (BC) |r • 2 2,5854 Abc

(28)
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Nun sind aber die Integrale Aik Funktionen der Atomabstände,
die in unserem Benzolmodell gleich groß sind. Dementsprechend haben
wir

Aab Abc Acd Ade Aef Afa (29)

Mit (29) kann (27) jetzt einfacher auch so geschrieben werden

N 6 [5,9535 + 15,5124 A] (27a)

Die Atom- und Bindungsindizes des Benzols (28) nehmen dann ebenfalls

die einfachere Form (28a) an.

_
5,9535 + 10,3416 A 1 + 1,737 A

P ' ~ 5,9535 + 15,5124A ~~
1 + 2,606 A " '

(28a)

._. 5,9535 + 10,3416 A 1 + 1,737 A
p (B)

5,9535 + 15,5124 A 1 + 2,606 A °'854

,,m 5,1708 A 0,869 A nl-1£P (AB)
5,9535 + 15,5124 A " 1 + 2,606 A " °M6

5,1708 A 0,869 A _._p (BC)
5,9535 + 15,5124 A " 1 + 2,606 A " °'146

Selbstverständlich sind alle Atomindizes einerseits und alle
Bindungsindizes anderseits gleich groß. Ferner muß die Summe der
Bindungs- und Atomindizes gleich der Gesamtzahl der Elektronen
des betrachteten Systems sein, d. h.

p (A) + p(B) + p(C) + p(D) + p(E) + p(F)
+ p(AB) + p(BC) + p(CD) + p(DE) + p(EF) + p(FA) 6 [ '

Das ist in (28a) tatsächlich der Fall.
Es sei ferner bemerkt, daß das in den Ausdrücken (28a) vorkommende

A unbekannt ist. Sein Wert liegt zwischen 0 und 1. Falls man
A unbedingt numerisch ausdrücken will, so kann z. B. A 0,3
gesetzt werden, was uns ein vernünftiger Wert erscheint. Doch spielt
diese Unbestimmtheit weiter gar keine große Rolle, weil A nur auf
den Absolutwert, nicht aber auf die Relativwerte der Indizes einen
Einfluß hat. Für die Chemie sind aber die Relativwerte von Wichtigkeit,

wie z. B. bei der inneren Energie in der Thermodynamik.
Aus der obigen Ermittlung der Elektronenverteilung des Sechs-

133



elektronensystems sieht man ohne weiteres, wie die Rechnungen im
allgemeineren Fall eines Systems von n einvalentigen Atomen
geführt werden müssen. Die Verallgemeinerung bei den Relationen (9)
bis (20) bietet nichts Neues, falls man in (19) die entsprechende Zahl
der Valenzdispositionen der unabhängigen Basis berücksichtigt. In
(20) müssen natürlich alle Wechselwirkungen eingeführt werden, die
für das betreffende System von Interesse sind. Man wird hier natürlich
nur Wechselwirkungen zwischen Nachbaratomen berücksichtigen,
denn die Approximation eines Moleküls durch einvalentige Atome
ist eine sehr rohe Approximation. Die a0> a, a2 repräsentieren in
(20) respektive die Summe aller Koeffizienten von K, 8abi 8bC]

Aus (20) erhält man die Verteilung des ersten Elektrons des Systems
durch eine der (22) analogen Integration über alle Elektronen mit
Ausnahme des Elektrons 1, dessen Koordinaten festgehalten werden.
Ähnlich verfährt man mit allen anderen Elektronen. Die Summe aller
dieser Partialergebnisse gibt die Elektronenverteilung des Systems

P (r) ^ [a„ (u2 + u2, + + u2)

+ a, (2uaiibVÄah + u2Aab + udAab + + u„Aab

+ a2 (u2Abc + 2ubuc \Ä^c + udAbc + + unAbc (31

+ a3 (uaAcd + ubAcd + 2ucud yÄcd + ¦ • ¦ + u2 Acd)

+ ai (u2A|n + ubAin + u2Ain + + 2uiunyAln)]

n ist hier gleich der Anzahl aller Elektronen. Ferner ist

N n (a„ + a, Aab + a, Abc + + aiA,n) (32)

Die verschiedenen Aik sind die in (24) angegebenen A-Integrale. Aus
(31) erhält man durch Integration die allgemeinen Ausdrücke für
Atom- und Bindungsindizes.

P (A) ^- (a0 + a2Abc + a3Acd + + a)Aln)

P (B) N (ao + a3Acd + a4Ade + + aiA|n) (33)

P (C) ^ (a0 + a,Aab + a4Ade + + aiAi„)
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p (AB) - ^55
2n a2Abc

p(BC) X

15. Elektronenverteilung eines Systems von Atomen

mit einem und mehreren Elektronen 1

Die im vorigen Abschnitt erhaltene Elektronenverteilung auf Grund
eines Systems von einvalentigen Atomen kann selbstverständlich
nur als eine erste Approximation der wirklichen Elektronendichte
betrachtet werden. Die vollständige Berechnung mit allen Elektronen
ist allerdings meistens recht kompliziert. Will man aber eine
Elektronendichte erhalten, die als Grundlage für die Interpretation der
Eigenschaften chemischer Moleküle dienen soll, so ist man gezwungen,
trotz rechnerischer Komplikationen die Verteilung auf Grund aller
Valenzelektronen zu ermitteln. Wir wollen deshalb die Berechnung
der Elektronenverteilung auch für den allgemeinen Fall, also für den
Fall von Systemen, bestehend aus ein- und mehrelektronigen Atomen,
entwickeln.

Die Überlegungen sollen auch hier an Hand eines Beispiels, nämlich
des Äthans, durchgeführt werden. Dieses Molekül, bestehend aus sechs

Wasserstoffatomen und zwei Kohlenstoffatomen, kann wie das Äthylen
im Abschnitt 14 durch das einfachere System von zwei viervalentigen
Atomen A,B und zwei dreivalentigen Atomen C,D (34) ersetzt werden.

H\ /H
H— C--C—H/ \H / x H

D=e A-B C (34)

Die Rechnungen werden dadurch wesentlich einfacher. Während
nämlich die ursprüngliche Basis des Äthans aus 20 Valenzdispositionen
besteht, enthält die neue Basis nur 4 Valenzdispositionen.

Die den vier Atomen A,B,C,D entsprechenden Koordinateneigenfunktionen

bezeichnen wir mit

O. Klement, Helv. Chim. Acta, 36, 691 (1953), 42, 1332 (1959).
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A : ua(l,2,3,4)
B : ub(5,6,7,8)
C : uc(9,10,ll)
D : ud(12,13,14)

(35)

Die Zahlen sind Abkürzungen für die drei Ortskoordinaten der
betreffenden Elektronen.

Die Atomeigenfunktionen (35) sind antisymmetrisch in allen ihren
Elektronen. Aus Zweckmäßigkeitsgründen wollen wir sie in der
bekannten Determinantenform (I. 40) schreiben.

ua(1,2,3,4)

v,(l) v,(2) v,(3) v,(4)
1 v2(l) v.(2) v2(3) v2(4)

V4! v3(l) v3(2) v3(3) v,(4)
v«(l) v4(2) v4(3) v4(4)

(36)

Die Atomeigenfunktion ua (1,2,3,4) wurde hier aus
Einelektroneigenfunktionen Vj(i) aufgebaut. Diese seien orthogonal und normiert.
Die Zahlen in den Klammern bedeuten wiederum die drei
Ortskoordinaten, während die Indizes 1, 2, 3, 4 als Abkürzungen für die
drei Quantenzahlen des betreffenden Quantenzustandes zu betrachten

sind. —,= ist der Normierungsfaktor. Entsprechende Determinanten-

ausdrücke gelten für die anderen Atomeigenfunktionen (35).
Die Moleküleigenfunktionen (37), die den vier Valenzdispositionen

entsprechen, werden aus diesen antisymmetrischen Atomeigenfunktionen

aufgebaut, indem man sie mit den entsprechenden Spinfunktionen

ergänzt, ihr Produkt bildet und das Ganze in die vom
Pauliprinzip geforderte antisymmetrische Form (II. 26) bringt.

(37)

3!2*OQQ*Ja(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

[AB] [AD]3[CB]3

V V 14!

«1*2

V
/4! 4! 3! 3!

14!
2YlQ(3ua(1-2.3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

[AB]2[AD]2[CB]2[CD]

93 i/illllll.!2^QQ»a(l,2,3,4)Ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

[AB]3[AD][CB][CD]2

+4 i/4'4^3,'3' 2 ijQQu.(l,2,3,4)ub(5.6.7,8)Uc(9,10,ll)ud(12,13,14)

[AB]4[CD]3
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Die entsprechende Eigenfunktion nullter Näherung lautet

9 c,9, + c292 + c393 + c494 (38)

Wie bei einvalentigen Atomen bildet man dann

92 c?92 + 2c,c29,92 ^ (39)

Betrachten wir im einzelnen eines dieser Produkte, z. B. <\>\- Man
erhält hier zunächst einen dem (9) analogen Ausdruck, wo die doppelte
Summation durch eine einfache ersetzt wird und gleichzeitig sich der
Fakultätsfaktor weg hebt. Es bleibt somit eine Beziehung übrig, die
formell der Relation (11) entspricht, nämlich

+1+1 S *^Q(uaubucUd-Qua"JbUcUd) (<PiQ<Pi) (40)

Von den Permutationen sollen auch hier nur die Identität und die
Transpositionen berücksichtigt werden. Dann bleiben von (40)

folgende Anteile übrig:

K ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)
ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

Sab ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)
Tab ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

8ad ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14) l '

Tad ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)
Sbc ua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

Tbcua(l,2,3,4)ub(5,6,7,8)uc(9,10,ll)ud(12,13,14)

Die Tab) Tad) Tbc repräsentieren hier Transpositionen von nur zwei
Elektronen zwischen den Atomen A und B, A und D, B und C. Im
ganzen gibt es 4.4 Transpositionen, die ein Elektron des Atoms A mit
einem Elektron des Atoms B vertauschen, ferner sind 3.4 Transpositionen

zwischen A und D und ebensoviele zwischen den Atomen B
und C möglich. Wie bei der Energieberechnung ist es auch hier gleichgültig,

welche Transposition für ein bestimmtes Atompaar gewählt
wird. Deshalb kann der Koordinatenanteil, der sich in (40) auf die
Vertauschung zweier Elektronen zwischen den Atomen A und B
bezieht, wie bei einvalentigen Atomen (14) einfach mit 8ab bezeichnet
werden. Analoges gilt für die anderen Koordinatenanteile. Der der
identischen Permutation entsprechende Koordinatenanteil ist auch
hier mit K bezeichnet.
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Die Produkte der zweiten Klammer in (40), d. h. die Koeffizienten
von K, 8abi 8ad 8bc müssen noch auf mehrvalentige Atome erweitert
werden. Für die Identität, d. h. für Q I, erhält man einfach ein
Produkt der Spinfunktionen ^^).

Für die Vertauschung eines Elektrons des Atoms A mit einem
Elektron des Atoms B, also für Q =Tab können wir (9, Tab 9^ schreiben.
Im Fall des Atompaars A und B sind aber 4.4 solche Koeffizienten zu
berücksichtigen, nämlich

(<PiT15<Pi) + (9iTi6*?i) + (?iTi7<Pi) + (9iTi8<Pi) + • • • (42)
+ (9, T459i) + (<PiT46ç,) + (9,T479i) + (<piT48<pi) 2 (9iTab9i)

Tab

wobei das erste Glied die Vertauschung des ersten Elektrons des Atoms
A mit dem Elektron 5 des Atoms B zum Ausdruck bringt. Das letzte
Glied repräsentiert die Vertauschung des Elektrons 4 vom Atom A mit
dem Elektron 8 vom Atom B.

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
wiederum gleichwertig sind, kann man zur Vereinfachung von (42) die
Summe aller dieser Vertauschungen mit tab bezeichnen, also tab E Tab

setzen. Dann wird der Koeffizient von 8ab einfach (<pj tab 9^ sein.

Entsprechendes gilt natürlich auch für die Atompaare A und D, B
und C.

Fassen wir nun alle Teilergebnisse zusammen, so erhält man für
(40) den Ausdruck

+1+1 (<Pi<Pi) K — [(<pitab<pi) 8ab + (9,tad9i) Sad + (<Pitbc9i) Sbc] (43)

Die hier vorkommenden (9191), (91 tab 9,). sind identisch mit
denjenigen, welche bei der Energieberechnung auftreten. Sie werden somit
nach dem dort angegebenen Verfahren berechnet. Ganz ähnlich
erfolgt die Berechnung der anderen Produkte tj^ <\>k in (39).

Führt man die so erhaltenen Ergebnisse in (39) ein, so erhält man

92 cf [K (9i9,) - {8ab (<pitab<pi) + 8ad (9itad9i) + Sbc (9itbc9i)}] (44)
+ 2c,c2[K(ç,92) - (8ab (tpitabcp2) + 8ad(9,tad92) + 8bc (9,tbc92)}]

bzw.

92 a0K + a,8ab + a28bc + a38ad (45)
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Der Koeffizient a0 umfaßt somit alle Skalarprodukte von K, multipliziert

mit den entsprechenden Koeffizienten (39), und ähnlich enthält a,
alle (9i tab 9k), multipliziert mit den zugehörigen Koeffizienten (39) usw.

Wenden wir nun auf y*2 die in (1) - (4) angegebenen Beziehungen der
Quantenmechanik an, so müssen Ausdrücke vom folgenden Typus
berechnet werden:

K: |"u2(l,2,3,4)uè(5,6,7,8)u2(9,10,ll)ud(12,13,14) dT2dx3. .dr,4

ru|(l,2,3,4)uè(5,6,7,8)u|(9,10,ll)uâ(12,13,14) dr,dT3. .dx,4

f ua(l,2,3,4)u|(5,6,7,8)uc(9,10,ll)u|(12,13,14) dT,dr2. .dx13

(46)

d. h. im ersten Integral soll das erste Elektron festgehalten und über
alle anderen Elektronen integriert, im zweiten Integral ist das zweite
Elektron festgehalten, im letzten das Elektron 14, während man über
alle anderen Elektronen integriert.

Für den Austausch zweier Elektronen zwischen den Atomen A und
B erhalten wir

»ab \ ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(l,6,7,8) (47a)

u2(9,10,ll)u2i(12,13,14) dT2dT3. .dr,4

|"ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub (1,6,7,8)

u2(9,10,ll)ud(12,13,14) dT,d-r3dT4...dT,4 (47b)

f ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(l,6,7,8)
u|(9,10,ll)u§(12,13,14) dr,dx2. .d-r,2dT13

Im ersten Integral wird das Elektron 1 festgehalten, im zweiten das

Elektron 2 und im letzten Integral das Elektron 14, während man
über die anderen integriert. Analog verfährt man mit 8ad und 8bc.

Sad: fua(l,2,3,4)ud(12,13,14)ua(12,2,3,4)ud(l,13,14) (48)

uê(5,6,7,8)uc(9,10,ll)dT2dT3. .d-r,4

[ua(l,2,3,4)ud(12,13,14)ua(12,2,3,4)ud(l,13,14)
ub(5,6,7,8)u2(9,10,ll) dT,dT2. .dtl3

8bc: ub(5,6,7,8)uc(9,10,ll)ub(9,6,7,8)uc(5,10,ll)
u|(l,2,3,4)u|(12,13,14) dT2dT3. .dx,4

fub(5,6,7,8)uc(9,10,ll)ub (9,6,7,8)uc(5,10,11)

u|(l,2,3,4)ud(12,13,14) dT,dT2. .dT„

(49)

139



Zur Berechnung dieser Integrale empfiehlt es sich, die Atomeigenfunktionen

in die Determinantenform zu schreiben. Auf diese Weise
werden die ua (1,2,3,4), auf Einelektroneigenfunktionen v,(l),
v2(2), zurückgeführt, die man leicht integrieren kann. Der
Determinantenausdruck des Atoms A ist in (36) schon angegeben.

v5(5) v5(6) v5(7) v5(8)

ub(5,6,7,ii
1

V4!

uc(9,10,ll)

ud(12,13,14)

\3!

1

\ 3

v,(5)
v,(5)
v.(5)

v,(9)
v„(9)
v„(9)

v,2(12)
v„(12)
v,4(12)

v«(6)
v7(6)
v.(6)

v9 (10)

v,„(10)
v„(10)

v„(13)
vi,(13)
v,4(13)

v«(7)
v7(7)
v8(7)

v«(8)
v,(8)
v,(8)

v9 (11)

Vio(H)
v„(H)

v,2(14)
v„(14)
V,4<14)

(50)

(51)

(52)

Hier sind nicht bloß die Elektronen, sondern auch die Elektronen-
zustände durchgehend numeriert.

Wir verwenden nun folgenden Determinantensatz : Wenn man einen
Minor dritter Ordnung von (36) mit sich selbst multipliziert und über
alle seine Elektronen integriert, so erhält man 3 Falls man aber diesen
Minor mit einem anderen multipliziert und integriert, so erhält man
Null. Es handelt sich hier natürlich um Minoren, die aus derselben
Kolonne von (36) gebildet sind. Dieser Satz gilt hier wegen der Ortho-
gonalität der Einelektroneigenfunktionen v;.

Auf Grund von (36) und (50) - (52) schreiben wir nun (46) in der
Form (53) :

^[/[v1(l)A1>1-v2(l)A2,1 + v3(l)A3,,-v4(l)A4,,]2 ub(5,6,7,8)

u2(9,10,ll)ud(12,13,14) dT2dT3. .dT,4

+ 4lJ [- v>(2)Ai,2+ v2(2)A2,2 - v3(2)A3>2 + v4(2)A4,2]2 u§(5,6,7,8)

u^(9,10,ll)ud(12,13,14) dT,dx3. .dr,4

*^/[vs(5)A ¦ v6(5)A6>5 + v7(5)A7,5 - va(5)A8j5]2 u2(l,2,3,4)
(53)

u2(9,10,11)14(12,13,14)dT,dT2dT3dT4dT6. .dx,4

Jf/[V9(9)A v,0(9)A,0)9^v,1(9)A,,,9]2 u2 (1,2,3,4)

ub(5,6,7,8)u2j(12,13,14)dT,. .dx8dT,0. .dx,4
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+ yj [v,2(12)A,2,,2 - v,3(12)A,3,,2 + v14(12)A14,i2]2 u2(l,2,3,4)

ub(5,6,7,8)uc(9,10,ll) dx,. .dx„dx13dx14

Im ersten Integral, wo das Elektron 1 festgehalten ist, wurde die
Determinante (36) der Atomeigenfunktion ua nach der ersten Kolonne
entwickelt. Auf diese Weise enthalten die Adjunkten Aik das erste
Elektron überhaupt nicht, und man kann über ihre Elektronen
integrieren. So ergibt sich nach dem oben angegebenen Determinantensatz

der Faktor 3!. Die übrigen Funktionen ub> u2_ ud werden als
normiert vorausgesetzt und ergeben die Einheit. Das Ergebnis der
Integrationen über die Elektronen 2 bis 14 ist der erste Klammerausdruck

in (54). Im zweiten Integral (52) wird das Elektron 2

festgehalten und dementsprechend ist die Determinante (36) von ua nach
der zweiten Kolonne entwickelt worden. Die Integration über die
Elektronen 1,3,4 ergibt den Faktor 3!. Das Ergebnis beim Festhalten
des Elektrons 2 ist in (54) durch den zweiten Klammerausdruck
gegeben. Analoge Überlegungen gelten beim Festhalten der anderen
Elektronen.

Somit erhält man für K als Resultat der verschiedenen Integrationen
beim Festhalten der einzelnen Elektronen 1,2, ...,14

\ [vj-(l) - v2(l) + v2(l) + v2(l)] +
1 [v2(2) + v2(2) + v2(2) + v2(2)]

+ \ [vî(3) - v2(3) + v2(3) + v2(3)] + \ [v2(4) + v2(4) + v2(4) + v2(4)]

+ \ [v2(5) + v2(5) + v2(5) + v2(5)] + \ [v2(6) + v2(6) + v2(6) + v2(6)]

+ \ [v2(7) - v2(7) + v;(7) + v2(7)] + \ [v2(8) + v2(8) + v2(8) + v2(8)] (54)

+ \ [vj{9) - v20(9) + v2n(9)] + | [v2(10) + v20(10) + vî,(10)]

+ \ [v2(ll) + v20(ll) + vj^ll)] + \ [v22(12) + v23(12) + v24(12)]

+ \ [vf2(13) + v23(13) + v24(13)] + \ [v22(14) + v23(14) + v24(14)]

Mit Hilfe des obigen Determinantensatzes soll jetzt noch die
Berechnung des Austausches 8ab durchgeführt werden. Zu diesem Zweck
verwenden wir die vier ersten Faktoren von (47a) in der Determinantenform,indem

man gleichzeitig jeden nach der ersten Kolonne entwickelt.
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4f4! / ^1^'.' - ^1^2.* + V3(1)A3,, - v4(l)A,,,]
[v,(5)A,,5 - v2(5)A2,5 + vj(5)A3>5 - v4(5)A4,5]
[v,(5)A5,5 - v6(5)A6,5 + v7(5) A7,5 - v8(5)A8>5] (55)

[v5(l)A5j, - v6(l)A6il + v,(l)A7>1 - v„(l)AM]
u2(9,10,ll)ud(12,13,14) dx2dx3. .dx,4

Die Integrationen über die Elektronen 9 bis 14 sind ohne weiteres
durchführbar, da u2 und ud ja die Einheit ergeben. Mit Ausnahme des

ersten, das wir ja festhalten müssen, und des fünften Elektrons können
wir ohne Schwierigkeit auch über die übrigen integrieren, falls man
beachtet, daß die Adjunkten der ersten und zweiten Klammer einerseits

und diejenigen der dritten und vierten anderseits Funktionen
derselben Koordinaten sind. In beiden Fällen erhält man als Resultat
3!. Somit läßt sich (55) folgendermaßen umformen:

4X41 / HAIFAS) + v2(l)v2(5) + v3(l)v3(5) + v4(l)v4(5)]

[v5(5)v5(l) + v,(5)v,(l) + v7(5)v,(l) + v8(5)v8(l)]dT5

Wenn wir nun das Integral über das Elektron 5 in (56) mit

\ Ä]k" Jvi(5)vk(5)dx5

bezeichnen, so entsteht für den Austausch des ersten und fünften
Elektrons zwischen den Atomen A und B beim Festhalten des ersten
Elektrons der Ausdruck

4774 [viv5 \' A,5 + v2v5 \ A25 + v3v5 V A35 + v4v, V A45

+ v,v6 V A,6 + v2v6 \ A26 + v3v6 \ A36 + v4v6 V A46

+ VjV, V A,7 + v2v7 \ A2, + v3v7 \ A37 + v4v, \ A47

+ v,v8 \ A,8 + v2va \ A28 + v3v8 \ A38 + v4v8 V A4S] (57)

4 8

2 ViflJvkWVÄÜ
4 4.-*4

i l k 5

Der nächste Schritt betrifft die Berechnung von (47b) beim
Festhalten des zweiten Elektrons. Dazu entwickelt man die Determinanten-
ausdrücke des ersten und dritten Faktors nach der ersten und zweiten
Spalte, während der zweite und vierte Faktor wie vorher nach der
ersten Spalte entwickelt werden.
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4! 4! /(
(58)

v,(l) vi(2)
v2(l) v2(2)

v2(l) v2(2)

v4(l) v4(2)

v,(5) v,(2)
v4(5) v4(2)

y,(5)AJ5 -

B

B24 —

B

v,(l)v,(2)
v3(l) v,(2)

v,(l) v3(2)

v4(l) v4(2)
v2(5) v2(2)
v3(5) v3(2)

v6(5)A65 + v7(5)A7

B,

H,

B,

v,(l) v,(2)
v4(l) v4(2)

v,(5) v,(2)
v2(5) v2(2)
v2(5) v2(2)
v4(5) v4(2)

v8(5)A85]

[v5(l)A51-v6(l)A61 + v7(l)A71-v8(l)A8i]
u2(9,10,ll)ud(12,13,14) dx,dx3dx4. .dx,4

B,

B,2

B,

v2(l) v2(2)
v3(l) v3(2)

v,(5)v,(2)
v,(5) v3(2)
v3(5) v3(2)
v4(5) v4(2)

B,

¦3,3

B,

Die Integration von u2 und u2, ergibt die Einheit. Die Adjunkten
Aik sind Funktionen der Elektronen 6, 7 und 8, über die man
integrieren kann, wobei als Resultat 3! sich ergibt. Die Ausdrücke in den

großen eckigen Klammern sind Kompositionen der Minoren zweiten
Grades mit ihren Adjunkten; diese sind von der ersten und zweiten
Kolonne unabhängig, sie sind Funktionen der Koordinaten der
Elektronen 3 und 4. Bildet man das Produkt der großen eckigen Klammerausdrücke

und integriert über die Elektronen 3 und 4, so entsteht,
gemäß dem oben angegebenen Determinantensatz, 2!. Aus (58)
erhält man somit

3f}|[/[vi(l)v2(2)vi(5)v2(2)-v1(2)v2(l)v1(5)v2(2)

-vi(l)v2(2)vi(2)v2(5) + v,(2)v2(l)v,(2)v2(5)
+ v,(l)v3(2)v,(5)v3(2) - v,(2)v3(l)v,(5)v3(2)
-v1(l)v,(2)v,(2)v3(5) + v,(2)v3(l)v,(2)v3(5)
+ v,(l)v4(2)vi(5)v4(2) - v,(2)v4(l)v1(5)v4(2)
-v,(l)v4(2)v,(2)v4(5) + v1(2)v4(l)v,(2)v4(5)
+ V2(l)v3(2)v2(5)v3(2) - V2(2)v3(l)v2(5)v3(2) (59)

-v2(l)v3(2)v2(2)v3(5) + v2(2)v3(l)v2(2)v3(5)
+ V2(l)v4(2)v2(5)v4(2) -v2(2)v4(l)v2(5)v4(2)
-v2(l)v4(2)v2(2)v4(5) + v2(2)v4(l)v2(2)v4(5)
+ v3(l)v4(2)v3(5)v4(2) - V3(2)v4(l)v3(5)v4(2)

- v3(l)v4(2)v3(2)v4(5) + v,(2)v4(l)v,(2)v4(5)]
[v5(5)v5(l) + v6(5)v6(l) + v7(5)v7(l) + v8(5)v8(l)]dx,dx5

Diese können wir auch einfacher in der Summenform (60) schreiben

3 4 8
"

[vi(l)vj(l)vi(5)vj(5)vfe(2)
1

4.4.3
/»3 4

2 2
J i lk :2)

k -vk(l)vj(l)vi(5)vj(5)vi(2)vk(2)
-v,(l)vj(l)vk(5)vj(5)vk(2)vi(2)
+ vk(l)vj(l)vk(5)vj(5)v,?(2)]dx,dx2

(60)
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Bezeichnen wir die Integrale über die Elektronen 1 und 5 mit

Aij= fvKlJvjajviWvjPJdTxdT,
r (61)

Akj= J vk(l)vj(l)vk(5)vj(5)dx,dx2

so erhält man schließlich für die Integration von (47b) beim
Festhalten des zweiten Elektrons

3 4 8

4T^—3 2 2 2 Aijvk(2)-yÄ^-VAi7vi(2)vk(2)
' i lk 2j=5 (o2)

¦<k -lÄ7j"VÄk]vk(2)vi(2) + Akjv,?(2)

Die Berechnung von (47) beim Festhalten des dritten und vierten
Elektrons erfolgt genau nach dem Schema des zweiten, und als Resultat
erhält man für jedes Elektron einen Ausdruck (62), d. h. (63a) und (63b)
Es genügt nämlich, die Determinanten anstatt nach der ersten und
zweiten, nach der ersten und dritten bzw. nach der ersten und vierten
Kolonne zu entwickeln. Dabei ändert sich höchstens das Vorzeichen,
was aber für das Endergebnis belanglos ist.

3 4 8

4-^T^ 2 2 2 Aijv|(3)-\Ä^\Ä7vi(3)vk(3)
i lk 2j=5 (63a)
i<k -VÄi7VÄk]vk(3)vi(3) + Akjvf(3)

3 4 8

443 222 Aijvk(4)-VÄT;]-VÄT"vi(4)vk(4)
i=lk=2j=5 (63b)
i<k -VÄij VAkjvk(4)vi(4) + Akjvf(4)

Die Integrationen von 8ab führen beim Festhalten der Elektronen
5, 6, 7, 8 des Atoms B zu Resultaten vom Typus (57) und (62). Wird
nämlich das Elektron 5 festgehalten, so entsteht eine dem Ausdruck
(57) entsprechende Relation (64). Für die anderen Elektronen 6, 7, 8

des Atoms B bekommt man dagegen Ausdrücke vom Typus (62),
nämlich

1
4 8

47^2 2 Vi(5)vk(5)\Aik (64)
ï 1 k 5

7 8 4

443 2 2 2 AjjVk(6) -|Akj\Äi7vi(6)vk(6)***¦ i 5k 6j l _ (65)
i<k _ VA,; VAkj vk(6)vi(6) + Akjvi (6)
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Eine dritte Art von Ergebnis (67) bekommt man aus (47) beim
Festhalten des 9-ten und bei allen übrigen Elektronen, da in allen diesen
Fällen das betrachtete Elektron zu einem Atom gehört, das von dem
Austausch der Elektronen 1 und 5 überhaupt nicht berührt wird.

^y^ j [v,(l)A,,, - v2(l)A2,, -t- v3(l)A3>i - v4(l)A4,J
*

[v,(5)A,,5 - v2(5)A2j5 + v3(5)A3j5 - v4(5)A4i5]
[v5(5)A5>3 - v6(5)A6,5 + v7(5)A7,3 - v8(5)A8>5] (66)

[v5(l) A5,, - v6(l)A6>] + v7(l) A,., - v,(l) A8,,]
[v9(9)A9,9 - Vi0(9)A10>9 + v„(9)A„>9]2
ud(12,13,14) dx,dx2. .dx8dx,0. .dx14

Die Adjunkten der ersten und zweiten Reihe umfassen die
Elektronen 2, 3, 4, die Integration über diese ergibt 3!, diejenige der dritten
und vierten Klammer ergibt ebenfalls 3!. In der fünften Reihe kann
man über die Elektronen 10 und 11 integrieren, was zu 2! führt,
während die Atomeigenfunktion ud (12, 13, 14) die Einheit ergibt. Die
Integration über das erste und fünfte Elektron wird durch Ausdrücke
vom Typus (61) repräsentiert. (47) ergibt somit beim Festhalten des

Elektrons 9

_,
4 8 11

2 2 2 Aikvf(9) (67)
4 4 3

i=lk=51=9

Es folgen noch fünf analoge Resultate für die Integration von (47) beim
Festhalten der Elektronen 10, 11, 12, 13, 14.

Auf diese Weise ist 8ab durch (57), (62), (63), (64), (65) und (67)
vollständig bestimmt. Die zwei anderen Austauschfunktionen 8bc 8ad

sind aber vom gleichen Typus wie 8ab es wird ja jedesmal von der
Gesamtheit aller Elektronen nur der Austausch von je einem Elektron
der betreffenden Atome in Betracht gezogen. Somit können wir für
alle Austausche das Resultat der Integrationen mit Hilfe der
Ausdrücke vom Typus (57), (62) und (67) zusammenstellen.

Wir erhalten somit aus (45) für die Elektronenverteilung p(r) unseres

Systems bestehend aus zwei viervalentigen und zwei dreivalentigen
Atomen die Beziehung (68).
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(l 4

a» ï 2 [v,?(l) + v?(2) + v?(3) + v?(4)]
1 i-1

8

+ 4-2 tvi<5) + vi(6) + vi<7) + v>(8)]
i 5

+ i 2 Cvi(9) +vi(10> + vi<n)]
i 9

14 I (68)
+ ö 2 [v,?(12) + v?(13) + vf(14)] +

i 12 j
f 4 8

+ A 2 2 vi(i)vk(i)VAii;
[i 1 k 5

3 4 8

+ 3"2 2 2 ([Aijv|(2)-2VÄ^\A^vi(2)vk(2)^Akjvl?(2)]
i=lk=2j=5V

i <k + [Aijv|(3) - 2\ Äk] \ A;] v;(3)vk(3) + Akjvf(3)]

+ [AijVk (4) - 2 \ Ä7J \ AjjVi(4)vk(4) + AkjVi2(4)] +

4 8

+ 22 ^(5)^(5) V5£ +

i=lk=5
7 8 4

+
3 2 2 2 ([AijVk(6)-2VAkj\A7jvi(6)vk(6) +Akjvf(6)]

i 5k 6j 1

i<k +[Aijvk(7)-2VÄ7y-VÄT-vi(7)vk(7) - Akjvf(7)J

+ [Aij-vi(8) - 2 VÄkj \ Ä~-Vj(8)vk(8) - Akjvf(8)]) +

4 8 11

+
3 2 2 2 Aik [vî(Q) + v'(10) + vi(n» +

i=lk=51=9
4 8 14

+ Ì 2 2 2 Aik [vf(12) + v,2(13) + vf(14)]'
Aik [vf(12) + vf(13) + vf(14)] \ z

i l k 5 1 12

f 8 11 4

"2 2 2 Aik M«1) + v>(2) + vl(3) + vf(4)] +
5k=91=l4*3\4i

8 11

+ 22 vi(5)vk(5nAik +
i=5k=9

7 8 11

+
3 2 2 2 ([Aijvk(6)-2A,Äkj\Äi]-vi(6)vk(6) -r Akjvf(6)j
i=5k 6j =9
i<k
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+ [Aijvè(7) -2VAkj VAijVi(7)vk(7) + Akjv,?(7)]

+ [AijV|(8) - 2VAkj yÄjj vi(8)vk(8) + Akjvf(8)] +

8 11

+ 22 Vi(9)vk(9)VÄ^
i=5k=9

10 11 8

+
2 2 2 2(|AijVk(10)-2ivÄT0VAuvi(10)vk(10) + Akjvf(10)]

i 9k 10j =5
1<k ^Aijvk(H)"2^Akj\Ai]vi(ll)vk(ll)+Akjvf(ll)j) +

8 11 14 I

+ 2 2 2 Aik H(12) + vf(13) +v,2(14)] +

i 5k 91 12

f 4 14

4^3 j 2 2 vi(l)vk(l)VÄ]k +

|i lk=12
3 4 14

\ 2 2 2 (I AijVk(2) - 2 \ Akj A Ay vi(2)vk(2) + Akjvf(2)J
3

i lk 2j 12

i<k +[Aijvè(3)-2\Akj\Aijvi(3)vk(3) + Akjv,?(3)] +

+ | Aijv|(4) - 2 V Âk] VÂÎjVi(4)vk(4) + Akjvf (4)]) +

4 14 8

+ Z 2 2 2 Aik [vf(5) + v,2(6) + vf(7) + vf(8)] +
i lk=121 5

4 14 11

+ *i2 2 2 Aik[vf(9) + vf(10)Tvf(ll)] (68)
i lk 121 9

4 14

+ 22 Vi(12)vk(12)VÄ]k" +
i lk 12

13 14 4
1

+
i 12k 13j =1

^2 2 2([AijVk(13)-2\Akj\Aijvi(13)vk(13)+Akjv,?(13)]

1

I

i<k ï
+ [Aijvi(14)-2vAk]\ A]]vi(14)vk(14) + Akjvï(14)])1

Der Ausdruck (68), in dem alle Elektronen in verschiedenen
Zuständen vorkommen, ist für unsere Zwecke recht kompliziert, kann
aber noch weitgehend vereinfacht werden. Eine erste Vereinfachung
wird auftreten, wenn wir annehmen, daß die Atome nur in S-Zuständen
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sind. Ferner haben wir in (41) für jedes Atompaar eine einzige
Austauschfunktion 8abj 8bC; 8ad angenommen, und dementsprechend werden
wir in (68) auch für jedes Atompaar ein einziges A -Integral haben,
unabhängig davon, wie groß die Zahl der Valenzelektronen ist.

Aber noch eine weitgehende Vereinfachung kann erzielt werden,
weil wir ja gar nicht die kontinuierliche Verteilung suchen, sondern

uns mit einer gröberen Elektronenverteilung wie im Abschnitt 14

begnügen wollen. Ebenso wie dort sind auch hier die v;2 im wesentlichen

nur an der Stelle der betreffenden Atome von Null verschieden,
während die v;vk eine Austauschladung, die zwischen zwei Atomen
herrscht, darstellen. Dementsprechend wollen wir die Elektronenverteilung

wie im Abschnitt 14 durch zwei Arten von Elektronenzahlen:
den Atomindex p(I) und den Bindungsindex p(IK) definieren. Der
erste wird aus (68) dadurch erhalten, daß die aus v;2 durch Integration
hervorgehenden Bestandteile für jedes Atom zusammengefaßt werden.
Bei dieser Operation erhält man aber aus jeder vj2 die Einheit
unabhängig davon, in welchem Zustand sich das Elektron befindet, was
eine weitgehende Vereinfachung der Beziehung (68) darstellt.
Entsprechend wird der Bindungsindex durch Integration der Austauschfunktion

VjVk erhalten, insofern i und k sich auf verschiedene Atome
beziehen. Dabei entsteht, wie oben erwähnt wurde, für jedes Atompaar

nur ein A -Integral. In allen Ausdrücken (68) der Form — 2 j/Akj.
"j/Aij Vj vk beziehen sich die i und k auf dasselbe Atom und
dementsprechend verschwinden sie bei der Integration zufolge der Orthogo-
nalität der Einelektroneigenfunktionen.

Unter diesen Voraussetzungen erfolgt die Verteilung der
verschiedenen Summanden von (68) auf die Atom- und Bindungsindizes
p(A). p(AB) ohne Schwierigkeit, wenn man die ursprüngliche
Numerierung der Elektronen in den vier Atomfunktionen (35) und
die der Elektronenzustände in (36), (50), (51) und (52) beachtet. In
der ersten Zeile von (68) erhält man z. B. durch Integration von
Vj2(l), Vj2(2), v;2(3), v,2(4) überall die Einheit. Der Summationsindex
läuft aber von 1 bis 4. Dementsprechend ergibt die erste Zeile einen

Beitrag a0 % 16 *+ao zur Elektronenzahl p(A) des Atoms A. Eine
analoge Situation findet man bei der zweiten Zeile. Die dritte Zeile

ergibt einen Beitrag 3a0 zur Elektronenzahl p(C). In der fünften Zeile
entsprechen i und k den Atomen A bzw. B. Der Ausdruck v,(l)vk(l)
repräsentiert eine Austauschladung zwischen A und B, die für die
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Bindung verantwortlich ist. Durch Integration erhält man daraus |/Äjk
das wir auf die Atome A und B beziehen können, indem wir \FKFb
schreiben. Die fünfte Zeile ergibt somit einen Beitrag a, Aab zur
Elektronenzahl p(AB). Die folgenden drei Zeilen in (68) ergeben einen

Beitrag 3 a, Aab zum Atomindex p(A), wo wir statt Aik und Akj einfach
Aab schreiben. Analog verteilt man die übrigen Bestandteile von (68).
Die vollständigen Atom- und Bindungsindizes unseres Systems
bestehend aus zwei vierelektronigen und zwei dreielektronigen Atomen
sind in (69) angegeben.

P(A) -j- (4a0 + 3a,Aab + 4a2Abc + 3a3Aad)

p(B) -j- (4a0 + 3a,Aab + 3a2Abc + 4a3Aad)

p(C) ^- (3a0 + 3a,Aab + 2a2Abc + 3a3Aad)

p(D) -- (3a0 + 3a,Aab + 3a2Abc + 2a3Aad)

P(AB) £ 2a,Aab p(BC) - g- 2a2Abc p(AD) £ 2a2Aad

Hier repräsentiert n= (na+nb+nc+nd) =4+4-3+3= 14 die Anzahl aller
Elektronen, während N den Normierungsfaktor darstellt, den man
aus (68) auf Grund von (4) erhält.

N n (a„ + aiAab + a,Abc + a3Aad) (70)

Die Aab Abc Aad sind Funktionen der Atomabstände von der Form

Aab (ua(l,2,3,4)ub(5,6,7,8)ua(5,2,3,4)ub(l,6,7,8)dxidx2 (71)

Selbstverständlich ist auch hier

p(A) + p(B) + p(C) + p(D) + p(AB) - p(BC) + p(AD) n (72)

Nach (69) können wir schließlich die Elektronenzahlen auch im
allgemeinen Fall angeben. Bezeichnen wir respektive mit na nb

nh die Anzahl von Valenzelektronen der Atome A,B, H, die
eine offene Kette bilden, so erhält man für die Atom- und Bindungsindizes

die Ausdrücke (73)
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(73)

p(A) -- (a0na + a,(na - 1) Aab + a2naAbc + a3naAcd + + ajnaAgh)

p(B) —(a„nb + a,(nb-l)Aab + a2(nb-l)Abc + a3nbAcd + + ajnbAgh)

p(C) —(a0nc + a,ncAab + a2(nc-l)Abc + a3(nc —1) Acd + a4ncAde+

¦ • • + ajiicAgh)

p(AB) J 2a,Aab p(BC) £¦ 2a2Abc,

Der Normierungsfaktor ist hier

N n(a0 + a,Aab + a,Abc + + ajAgh) (74)

Da die Atomindizes in (73) für eine offene Kette von Atomen gelten,
kommt der Faktor (na—l) in p(A) nur einmal vor, während man in
p(B) und p(C) die entsprechenden (nb— 1) bzw. (nc—1) je zweimal
vorfindet. Wollte man die Kette auf das Atom A schließen, so würden in
(68) weitere Zeilen hinzukommen, die dem Austausch 8ha entsprechen
und damit würde auch in p(A) ein zweiter Faktor (na—1) auftreten.
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