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2 ayPy = 1.295+5.260+9.180+5.65 = 3540

In dieser Form stellt die Berechnung der Anzahl von Spininvarianten
oder Valenzdispositionen keine Schwierigkeiten mehr.

III. Die Energieberechnung

Durch die Auswahl einer unabhidngigen Basis von Valenzformeln
aus der Gesamtheit aller Valenzdispositionen ist das Problem soweit
reduziert, wie es iiberhaupt bei dem heutigen Stand der Theorie
moglich 1st. Wir denken hier an Reduktionen allgemeiner Natur, die
vor der Aufstellung des Sdkularproblems durchfiihrbar sind. Es wird
sich ndmlich zeigen, daBl in gewissen Féallen auch eine Vereinfachung
der Sikulardeterminante moglich ist, die aber von Fall zu Fall ver-
schieden sein wird.

Die Eigenfunktionen (II.26) der unabhdngigen Basis, die dem
Pauli-Prinzip gentigen und zu einem Spinmoment S = 0 gehoren,
bilden den Ausgangspunkt unseres Storungsproblems. Es interessieren
uns hier hauptsichlich zwel Fragen: Die Berechnung der Storungs-
energie erster Ordnung auf Grund des Gleichungssystems (1. 33)

f
2, (Hik“SAik) Ck:() 1=1,2, ,..1
k=1

(1)

mit

Hik:fllJiHlled'r Aik:f%'JJde

und die Ermittlung der Eigenfunktion nullter Ndherung
Y =Ciy + Copp + -+ CpYf (2)

In diesem Kapitel beschiftigen wir uns ausschlieBlich mit der Berech-
nung der Energie. Auf die zweite Frage kommen wir im nédchsten
Kapitel zu sprechen.

10. Sikulargleichung eines Systems von Atomen wmat je eimem Elektron

Da die numerische Berechnung der Energie bei groBen Molekilen
oft sehr weitlaufig wird, ist man in solchen Fillen gezwungen, sich mit
einer radikalen Approximation zu begniigen, indem man das Molekiil
durch ein System von Atomen mit je einem Elektron approximiert.
Selbstverstandlich erfihrt auf diese Weise das Sidkularproblem eine
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sehr weitgehende Reduktion. Wir wollen zunichst diesen einfacheren
Fall besprechen.

Um die Berechnung der Elemente der Sikulardeterminante kon-
kreter zu gestalten, soll die Diskussion an Hand eines Spezialfalles,
namlich eines Systems von vier Elektronen, durchgefiihrt werden.
Der Ubergang zu einem System von n Elektronen bietet dann keine
Schwierigkeiten mehr.

Von den drei Valenzdispositionen, die wir dem Vierelektronen-
system in (II.19) zugeordnet haben, sind blo zwel unabhingig.
Welche beiden Dispositionen gewdhlt werden, ist in diesem Spezial-
fall belanglos, jedes Paar bildet eine unabhingige Basis. Am zweck-
miligsten ist die Verwendung der Basis mit nicht gekreuzten Valenz-
strichen, also

D A D A
.

e
C B C B

Beziiglich der Festlegung der Richtung der Valenzstriche gibt es
keine Vorschrift, man kann sie beliebig wihlen. Die einzige Ein-
schrankung besteht darin, da3 die einmal festgelegten Richtungen fir
alle Rechnungen beizubehalten sind. Trotzdem wollen wir sie aus
ZweckmiBigkeitsgriinden definitiv festlegen. Uberall, wo nicht aus-
driicklich anders verfiigt wird, soll die lexikographische Anordnung
der Valenzstriche gewihlt werden, d. h. wenn der Buchstabe A als der
niedrigste und Z als der hochste des Alphabets betrachtet wird, so
soll der Valenzstrich jeweils von dem niedrigeren zum hoéheren gerich-
tet sein.

Den Valenzverteilungen dieser Basis entsprechen die zwei Eigen-
funktionen

| | (4)
i = \—}; ~ 10 Q ug(1) up(2) ue(3) ug(4) .[AD] [BC]

Die Eigenfunktion nullter Niherung ist dann
Y= Cy + Cay (5)

wo die Koeffizienten ¢, und c, noch zu bestimmen sind.
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Das homogene Gleichungssystem (1) besteht hier aus den zwei
Gleichungen
[ [ $iHbuds —c [ gpudr]e, + [ [ 9iHydr —¢ [ggdr]c, = 0

Iif Y. Hdr —¢ f q’z‘l’ld'f] Cy + [f %H‘Pzd‘f — € f %%d‘r] c; =0 @

und die entsprechende Sikulardeterminante ist

[eHgds —< [ggdr [ Hgde—e [gidde

=0 (7)

| bHYdr —¢ [bapidr [ bHds — < [ §ypode

Es sei zundchst bemerkt, daB man in jedem Summanden von ¢

diejenige Funktion fiir H einzusetzen hat, die fiir diesen Teil die

Storung bedeutet. Es gentigt hier wohl, an die Wechselwirkung von
zwel

28y

Atomen mit je einem Elektron zu erinnern. Die potentielle Energie
ist in diesem Fall gegeben durch

82 eZ eZ (32 eZ e?.
Ep = — S B o (8)
TAB Ti2 TA; TB: TA; TIB;
und das Storungsglied der potentiellen Energie ist
2 2 2 52
= (AP, O S, -l (9)

Die Buchstaben A und B bezeichnen hier die beiden Kerne, 1 und 2
die beiden Elektronen; ry, reprisentiert dann die Entfernung des
Elektrons 1 vom Kern A usw. Bei unserem System von vier Elektronen
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hat man natiirlich eine entsprechende Verallgemeinerung vorzunehmen
Dieser Aspekt des Problems interessiert uns aber hier nicht. Bei dem
heutigen Stand der Theorie ist man namlich gezwungen, die Integrale
auf Grund von thermochemischen Daten festzulegen.

Sind die Integrale bekannt, so kann die Energie ¢ berechnet werden.
Die Determinante liefert hier eine Gleichung zweiten Grades mit zwei
Wurzeln, die die Storungen erster Ordnung des betrachteten Eigen-
wertes darstellen. Durch Einfithren der Energie in das Gleichungs-
system, konnen die c¢; berechnet und somit auch die Eigenfunktion
nullter Ndherung erhalten werden.

Es handelt sich nun zunichst darum, die Elemente der Sikulardeter-
minante zu ermitteln. Betrachten wir zu diesem Zweck etwas ausfiihrli-
cher das erste Integral

Hy, = [ ¢ H, ds (10)

Die Spininvariante der Eigenfunktion ¢,

[AB][CD] = % (AB; — A;B)) (C,D, —C,D,) (11)

kann durch die entsprechende Spinfunktion ersetzt werden

%[a(1)8(2) —2(2)8(1)] [x(3)B(4) — a(4)B(3)] = (11a)

= %[a(l)@(2)a(3)ﬁ(4) — B(1)a(2)a(3)B(4) — x(1)B(2)B(3)(4) + B(1)(2)B(3)ex(4)]

Bezeichnen wir ferner das Produkt des Koordinatenanteils der Funk-
tion ¢, mit den vier Spinprodukten der Reihe nach mit §,, 43, 4c, p
also z. B.

bA = % > 1QQ ua(l)up(2)uc(3)ug(4) . «(1)B(2)x(3)(4) (12)
so kann das Integral (10) auch in der Form (13) geschrieben werden.

Hy, =, [(a— B —bc + 4p) H (44— dB — dc + 4p) d= (13)

Im Folgenden wollen wir diese 16 Integrale niher untersuchen.
Ausfiihrlicher geschrieben ergibt das erste
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(14)
D0 Q' ua(1)up(2)uc(3)ug(#)a(1)B(2)x(3)B(4).

al

4
V4!

H % > 1QQua(l)up(2)uc(3)ug(#)e(1)p(2)x(3)p(4)d=

Haa = f YaAHpadT =

Die doppelte Summation kann hier durch eine einfachere ersetzt
werden, wobel gleichzeitig der Fakultitsfaktor sich weghebt. Dies
wird durch folgenden Kunstgriff erreicht. Da tber alle Elektronen
integriert wird, sind die Integrale gegen eine Umbenennung der
Elektronen unempfindlich, vorausgesetzt, dal3 die Variablen aller Funk-
tionen in den verschiedenen Integralen in der gleichen Weise veriandert
werden. Dadurch erreicht man aber, daf3 dieselben Integrale mehrmals
vorkommen, d. h., so oft der Fakultitsfaktor es angibt. Somit hebt
sich dieser einfach weg.

Um zu zeigen wie das gemeint ist, nehmen wir fiir einen Augen-
blick an, dafl das Integral (14) statt auf vier sich nur auf zwei Elek-
tronen bezieht und setzen zur Abktrzung ®,(1) - u,(1)e(l). Anstatt
(14) erhdlt man (15a)

1 S0 00,002 H \12, S 10 Q Ba(1) Bp(2)d (15)
[0 @(2) B2 y(1)] H [@a1)0b(2) - @2)0p(1)1d=  (15D)

- =1 f(Da(l)q)b(Z) H @y (1) Dp(2)d + f‘Da(Z)‘Db(l)H D4(2) Pp(1)dr
(15¢)
~f®a(2)®b(1)H‘Da(l)(Db(Z)d'f—f‘Da(l)@b(Z)H@a(Z)q’b(l)dT]

LaBt man eine beliebige Permutation Q" auf (15¢) einwirken, so bleibt
der ganze Ausdruck unveridndert. Falls man Q" so wihlt, daB fir alle
Integrale in den linken Produkten die urspriingliche Ordnung her-
gestellt wird, d. h., so daBl Q" gleich der inversen Permutation zu Q’
wird, also Q” = Q"?, dann entsteht folgende Situation: Die Permu-
tation Q! ergibt in den Produkten der linken Seite aller Integrale
die identische Permutation und in den Produkten der rechten Seite
ergibt sich dasselbe wie vorher, nur in einer anderen Reihenfolge.
Man erhilt also statt (15c¢)
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[ a0 @u(2) H@y(1) @p(2)dx + [ @4(1) @p(2) HD,(1) @p(2)dr

— [ ®a(1) @b(2) H 0g(2) Dp(1)dx — [ @4(1) Dy(2) H 0y(2) Dy (1) x|
oder
fcp ) Dp(2) H @y (1) Oy (2)de —fcpau ) D (2) HD,(2) Op(1)de

Das Integral (14) 148t sich jetzt so schreiben

Haa = [ $aH$ads = [ua(1)up(2)uc(3)ug(®)x(1)(2)x(3)B(4)

16
H X1 Qua(l)up(2)uc(3)ua(4)a(1)B(2)x(3)B(4)ds =

Dieses besteht aus einer Summe von 24 Teilintegralen, von denen
wir explizite die beiden ersten angeben, indem wir gleichzeitig tiber
den Spinanteil separat integrieren

fua(l)ub(Z)uc(3)Ud(4) H u,(1)up(2)uc(3)ug(4)de

.fa(l)oa(l)dcofB(Z)B(Z)dwfoc(S)oc(3)dme(4)B(4)dm

— [ua(1)up(@)uc(3)ua(#) H ua(l)up(2)uc(#)ua(3)ds (17)

.fau)a(l)dmf@( dmfa(i’» dmfﬂ(/!,@

.............................................

Das erste hat ein positives Vorzeichen, weil auf der rechten Seite
das Produkt der identischen Permutation entspricht. Fir das zweite
ist das Vorzeichen negativ, weil die Permutation der Elektronen
ungerade ist. Alle anderen Integrale vom Typus (17) sind mit einem
positiven oder negativen Vorzeichen versehen, je nachdem die Per-
mutation in (16) gerade oder ungerade ist.

Beachten wir ferner, daf3 die Spinfunktionen « und § nach (I. 44 und
45) orthogonal und normiert sind, d. h.

foa(i)B(i)dm -0 foc(i)oc(i)dm = fg(i)g(l)dm =

Auf Grund dieser Eigenschaft ergibt der Spinanteil bel einigen Aus-
driicken (17) den Wert 1 bei anderen 0. Man kann sich leicht tber-
zeugen, dall unter den 24 Summanden (17) nur vier von null ver-

chieden sind, denen in (16) folgende Spinprodukte entsprechen
o(1)B(2)a(3)B(#) - «(1)B(2)x(3)B(4)
a(1)B(2)x(3)B(4) . «(1)B(H)a(3)B(2)
x(1)B(2)x(3)B(4) . «(3)B(2)(1)B(4)
«(1)B(2)x(3)B(4) . «(3)E(H)x(1)B(2)
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Im ersten Produkt kommt die identische Permutation vor, beim
zwelten und dritten treten einfache Permutationen oder sogenannte
Transpositionen auf, bei denen nur zwei Elektronen gleichzeitig ver-
tauscht werden. Das vierte Produkt, wo vier Elektronen vertauscht
sind, entspricht einer sogenannten héheren Permutation. Am wichtig-
sten sind fir uns die identische und die einfachen Permutationen, nur
diese wollen wir beriicksichtigen; die anderen sollen vernachlissigt
werden.

Wir bezeichnen das der identischen Permutation entsprechende
Integral mit C und das den Transpositionen entsprechende durch
Angabe der zwei Atome (AB), (AC), ..., (BC),..., zwischen denen die
Permutation stattfindet, d. h.

G fua(l)Ub(Z)Uc(3)Ud(4) H uy(1)up(2)uc(3)uq(4)d=

(AB) = fua(l)ub(f%)uc@)ud(“) H u,(2)up(1)uc(3)ug(4)ds

...............................................

(18)

Aus (16) ergibt sich auf diese Weise

Haa - [$aHyads - C — (BD) — (AC)

Damit haben wir (16) in der erwiinschten Form. Die hier auftretenden
Integrale sind charakteristisch fiir die ganze Theorie. C heiBt das
Coulombintegral und (AB), (BC), ... sind die sogenannten Austausch-
integrale.
Eine analoge Rechnung ergibt fiir die anderen Bestandteile von (13)
folgende Ausdriicke
Hap = —(AB)  Hpp = C—(AD) —(BC)  Hcc - C—(BC) —(AD)
Hac = —(CD)  Hpc =0 Hep = — (AB)
Hap =0 Hpp = —(CD) Hpp = C —(AC) — (BD)

Damit haben wir fiir den ersten Summanden (13) des Elementes M, der
Sakulardeterminante das Ergebnis

iy = %[4(: + 4(AB) + 4(CD) — 2(AC) — 2(AD) — 2(BC) — 2(BD)]
Ahnlich kénnen auch die anderen Bestandteile der Sikulardeter-
minante berechnet werden. Auf die Frage der numerischen Berechnung
der Coulomb- und Austauschintegrale wollen wir hier nicht eingehen.
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Damit haben wir also einen Weg, um die Elemente der Sikular-
determinante eines Systems von Atomen mit je einem Elektron zu
ermitteln. Obwohl die einzelnen Operationen an und fir sich einfach
sind, kann selbstverstindlich eine direkte Anwendung dieses Ver-
fahrens nicht in Frage kommen. Wir wollen im Folgenden einen
einfacheren Weg kennen lernen, der ibrigens den Vorteil hat, den
charakteristischen Zug der Mesomeriemethode, nimlich die Verwen-
dung von Valenzdispositionen, besser zum Ausdruck zu bringen.
Bei der Diskussion der Energie von Molekiilen, bestehend aus Atomen
mit mehreren Elektronen, wird eine direkte Ableitung dieser Be-
rechnung notwendig sein. Trotzdem erscheint es uns angebracht,
einen Ubergang zwischen beiden Verfahren im ecinfachen Fall wenig-
stens zu skizzieren.

Betrachten wir zu diesem Zweck den ersten Bestandteil H,, (13)
des Determinantenelementes M,,. Dieses besteht zunidchst aus 16
Integralen H;g, wobei aber jedes H;x 24 Summanden enthdlt. Wenn
die Integration tiber die Spinanteile nicht durchgefiihrt wird, so
sind in H,, insgesamt 24 .16 - 384 Integrale zu berticksichtigen. Doch
haben wir in (16) unter den Permutationen nur die identische und die
Transpositionen von nur zwei Elektronen in Betracht gezogen, alle
anderen wurden vernachlissigt. Die gleiche Vereinfachung soll auch
hier vorgenommen werden. Beil jedem Hpg tritt einmal die identische
Permutation und sechs Transpositionen auf, denen ein Coulomb und
die sechs Austauschintegrale (AB), (AC), (AD), (BC), (BD) und (CD)
entsprechen. Die Zahl der in H,; auftretenden Integrale wird somit
von 384 auf 16 Coulombintegrale, 16 Austauschintegrale (AB) usw.
insgesamt auf 7-16 = 112 Integrale reduziert.

Im weiteren wollen wir die in diesen 112 Integralen auftretenden
Spinfunktionen nach den Coulomb- und Austauschintegralen ordnen.
Zu den verschiedenen C, (AB), ... gehorige Spinfunktionen koénnen
aus (11a) ohne weiteres abgelesen werden, z. B.
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.....................................

Addieren wir alle Spinanteile, die zum Coulombintegral C gehdren,
anderseits alle zum Austauschintegral (AB) gehorigen Anteile usw.,
indem man gleichzeitig « und @ durch die Bezeichnung A, und A,
respektive B, und B, usw. ersetzt, so bekommt man z. B. fiir C als
Koeffizient

}r (A’BXC?D? — A\A,B,B,C?D? — A’BXC,C,D,D, + A,A,B,B,C,C,D,D,

— AA,B,B,C?D? + A2BC2D? + A,A,B,B,C,C,D,D, - A’BC,C,D,D,

2 11
— A’BXC,C,D,D, + A,A,B,B,C,C,D,D, + A2BXC2D? — A,A,B,B,C3D?

22721

211

G :

Dies kann man aber einfacher auch so schreiben

% (AIBZCIDZ — “X?_B]_C]_DZ o I& 1B2C2D] + AZBICZD].) .
! ‘
"5 (A,B,C,D, — A,B,C,D, — A,B,C,D; + A,B,C,D,))

G

oder auch in der Form

1 1 .
\_z (AB, — A,B,) . \_é (C,D, —C,D,)
1 1
. ﬁ (A,B,—A,B)) . \‘/22 (C,D; — C,D,)

Das sind aber einfach die algebraischen Ausdriicke der Valenzstriche
zwischen den Atomen A, B und C, D. Bei Beachtung von (I1.24) kann
der Koeffizient von C schlieflich durch Spininvarianten dargestellt
werden.

C: [AB][CD] . [AB][CD]

Ahnlich kénnen auch die Koeffizienten der iibrigen Integrale durch
Spininvarianten ausgedriickt werden:

(AB) : +[AB][CD] . [AB][CD]
(AC) : —[ABJ][CD] . [CB][AD]
(AD) : —[AB][CD] . [DB][CA]
(BC) : —[AB][CD] . [DB][CA]
(BD) : —[AB][CD] . [CBJ[AD]

(CD) : +[ABJ[CD] . [AB][CD]
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Unter Verwendung dieser Ausdriicke kann der ganze erste Bestand-
teil des Elementes M, durch die einfachere Form

H,, - ([ABJ[CD] . [ABJ[CD]) C —[— ([ABJ[CD] . [ABJ[CD])(AB) +
+ ([AB][CD] . [CB][AD])(AC) + ([AB][CD] . [DB]J[CA(AD) + (19)
+ ([ABJ[CD] . [DBJ[CAJ)(BC) + ([ABJ[CD] . [CBI[AD])(BD) —
—([ABJ(CD] . [AB][CD])(CD)]

repriasentiert werden. Vom Standpunkt der Spininvarianten ist aber
dieser Ausdruck nicht einheitlich: Die unabhidngige Basis unseres
Vierelektronensystems besteht ndmlich nur aus zwel unabhingigen
Spininvarianten, (19) dagegen enthélt auch solche, die gar nicht zu
unserer Basis gehoren, z. B. der Koeffizient von (AD). Um dies zu
vermeiden, fiihren wir einen sogenannten Austauschoperator ein, der
die Vertauschung zweier Elektronen verschiedener Atome bewirken
soll. Wird der Austausch der Elektronen zwischen den Atomen A und
B stattfinden, so bezeichnet man den Operator mit t,,, fiir die Ver-
tauschung zwischen B und C schreibt man t,. usw. Dementsprechend
bedeutet der Ausdruck t,. [AB] [CD]: die Elektronen der Atome B
und C sollen miteinander vertauscht werden, d.h. aber, dall die
Valenzstriche, die vor der Austauschoperation zwischen den Atomen
A, Bund C, D liegen, nach dem Austausch zwischen A und C respektive
B und D liegen werden. Es gilt ferner [AB] = — [BA].

Durch Einfithrung der Austauschoperatoren konnen die Koeffi-
zienten der Austauschintegrale in (19) so dargestellt werden:

[ABJCD] . (— 1)[ABJ[CD] - [ABJ[CD] . tu[ABJ[CD]
[AB][CD] . [CB][AD] = [AB][CD] . t,J[AB][CD]
[AB][CD] . [DB][CA] = [AB][CD] . t,q[AB][CD]
[AB][CD] . [DB][CA] = [AB][CD] . tp[AB][CD]
[AB][CD] . [CB[AD] = [AB][CD] . tpq[AB][CD]

[ABJ][CD] . (— 1)[ABJ[CD] - [ABJ[CD] . tc[ABJ[CD]

Rechts von den Austauschoperatoren bekommt man also dieselbe
Spininvariante, die zur unabhingigen Basis gehort. Bezeichnen wir
den Spinanteil der ersten Valenzdisposition (3) mit ¢, so konnen die
rechts stehenden Produkte auch so geschrieben werden

(@1 tab 1) (@1 the ®1)
(P1 tac ¢1) (@1 tod @1)
(@1 tad 1) (¢1 ted @1)
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Mit dieser Bezeichnung erhilt man schlieBlich

(20)
H,; = (9:91) C —[(pitab 91) (AB) + (@1tac ¢1) (AC) + (9, taq @1) (AD) +
+ (91 toe P1) (BC) + (91 tod 1) (BD) + (91 ted 91) (CD)]

Das ist aber noch nicht das vollstindige Element M,, der Sdkular-

determinante. Den zweiten Teil ¢ f ¢;¢,dr erhdlt man aber durch
eine dhnliche Uberlegung. Die den Austauschintegralen entsprechenden
Ausdriicke bezeichnet man mit

Aap = fua(l)ub(z)uc(3)ud(4) “Ua(2)up(l)uc(3)ug(4)de

............................................

Diese Integrale sind ebenso wie C und (AB) Funktionen, die vom
Abstand der Atome abhidngen. Die Relation, die der Gleichung (20)
entspricht, ist hier

5[(‘?1‘?1) - {(‘Pltab‘Pi) Agp + (CPltaCCPl) Agc + (CPltad(Pl) Apg + (22)
+ (P1tocP1) Abe + (P1tbde:) Abd + (@itede:) Acd‘[]

Durch Zusammenfassung von (20) und (22) bekommt man schlieB3-
lich einen Ausdruck, der die Berechnung des Elementes M,, gestattet.

M, = [(@1“101) i — Eb(cpltab‘;ol) (AB)] — € [(@1‘?1) - Zb(CP1tabCP1) Aab:| (23)
a, a,

Die Summation ist gemaB (20) auf alle Atompaare zu erstrecken.

Genau dieselbe Uberlegung ist auch fiir die anderen Elemente der
Siakulardeterminante zu machen, so da (23) auch in eine allgemeinere
Form geschrieben werden kann

Mk =[(piek) C — Zb(ﬂPitabCPk) (AB)] — e [(piok) — 2 (pitabPk) Aab] (24)

a,b

Im Fall des Vierelektronensystems nehmen 1 und k nur die zwei
Werte 1 und 2 an. Wenn das System statt 4 aus 6,8, ... Elektronen
besteht, dndert sich formal an (24) iiberhaupt nichts. Somit kann sie
als eine allgemeine Formel fir die Berechnung der Elemente der
Sakulardeterminante eines Systems von Atomen mit je einem Elektron
betrachtet werden. Es ist aber selbstverstindlich, dall etwa beim
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Sechselektronensystem die unabhidngige Basis aus mehr als zwel
Valenzdispositionen, nimlich aus finf, besteht, und dementsprechend
werden die Indizes von 1 bis 5 laufen. Auch die Anzahl der Wechsel-
wirkungsintegrale und der Austauschoperatoren ist groBer, ndmlich
15. Allerdings pflegt man, wie wir noch sehen werden, bei der expli-
ziten Berechnung der Energie nicht alle Wechselwirkungsintegrale
in Betracht zu ziehen. Die Berechnung der Spinprodukte (¢; ¢,) sowie
der Austauschoperationen (g; t,, o) erfolgt natiirlich nicht auf dem
hier angegebenen Weg, sondern wird nach geeigneteren Methoden
durchgefiihrt.

Es sei noch darauf hingewiesen, dall bei der Anwendung der Formel
(24) normalerweise ein System von einer geraden Anzahl von Atomen
beriicksichtigt wird; hat man eine ungerade Zahl von Atomen, so
nimmt man noch ein weiteres Atom hinzu, das man ins Unendliche
verlegt.

11. Sakulargleichung eines Systems von Atomen
mit einem und mehveren Valenzelektronen

Die Uberlegungen sollen auch hier an Hand eines Beispiels durch-
gefithrt werden. Betrachten wir zu diesem Zweck das Athylen, be-
stehend aus zwei mit A und B bezeichneten Kohlenstoffatomen und
aus vier mit C, D, E, F bezeichneten Wasserstoffatomen. Die Elek-
tronen der abgeschlossenen Schalen werden nicht berticksichtigt.
Somit ist das System aus 12 Elektronen gebildet.

Die Ausgangsfunktionen sind die in (II. 26) gegebenen. Aus dieser
Gesamtheit wihlt man natiirlich eine unabhingige Basis aus, die
hier aus sechs Eigenfunktionen bzw. sechs Valenzdispositionen besteht.
In (II. 30) sind wir bereits zwei unabhingigen Basen des Athylens
begegnet. Damit die Analogie der Valenzdispositionen der unab-
hingigen Basis des Athylens mit denjenigen des Propans, Butans usw.
ausgeprigter wird, wihlen wir die Basis (II. 30a). Selbstverstandlich
konnten wir aber auch die andere oder eine weitere wiahlen. Die ent-
sprechenden Eigenfunktionen sind die folgenden, wobei die Valenz-
striche wiederum lexikographisch gewihlt sind:

ATA
- \/ Tar S 10Qua(l234)u(5.67,8)ucOua(0)uc(11)ur(12). 0
. [AB]* [CD] [EF] '
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414

b -\ 1 N 1QQ uaupucugueus. [AB]Y[CF][DE]
' 414 o 3 -
$s =\ a1 2 1Q Q uaupucugueus. [AB[AF][BC][DE]
114 o AT 25
b=\ S5 > 1q Q uaupucugueur. [AB[AF][BE][CD] (25)

\/41’241' 2 1nQ Q uaupucugueur. [ABP[AD][BCJ[EF]

\/ 411241 ! S nQQ uaupucuguer. [ABIBCIBDJ[AE]AF]

Die sechs Funktionen unterscheiden sich also nur in den Spininva-
rianten.

Das homogene Gleichungssystem (I. 33) besteht aus sechs Glei-
chungen und die Sikulardeterminante wird vom Grad 6 sein

.............................................. =0 (26)

Es handelt sich zundchst wieder um die Berechnung dieser Inte-
grale. Betrachten wir z. B.

4141 <o ) .
f‘l)lHqudT J \/ 12! an’Q Uaupucugueus. [ABCD]EF] @)
Qf

« \ 12 r ‘(_,TJQ Quzupucugueur. [ABY[CD][EF]d~
das man etwas einfacher auch so schreiben kann:

= 414! [
J\yll-ILI)ld‘r =137 l = 1Q' 1Q(Q uaupucugueupr H. 28
J &4 (28)

-Quaupucugueuy) (Q'e, . Qp,)dr

wo die Spininvariante, die zur Eigenfunktion ¢, gehdrt mit ¢, be-
zeichnet ist.

Wie bei den einwertigen Atomen wird man auch hier die doppelte
Summation durch eine einfache ersetzen, wobei der Fakultitsfaktor
wiederum wegfillt.
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f‘le%dT = f):. nQ (Uaupucugueuy HQuaupucugueuy) (9,Q¢,) dv (29)

Wiirde man das aus 12 Valenzelektronen bestehende Athylen wie
im Abschnitt 10 als ein einelektroniges System behandeln — was an
und fir sich moglich ist — so hidtte man Spininvarianten, bestehend
aus einem Produkt von sechs Linearfaktoren: [AB] [CD] [EF] [GH]
[IK] [LM]. Ausmultipliziert ergibt das nach (11) einen Ausdruck von
64 Summanden. Dementsprechend sind 64 Funktionen vom Typus (12)
zu beriicksichtigen, die nach (13) 64-64 - 4096 Integrale (14) ergeben,
wobei die Permutationen der Elektronen noch nicht berticksichtigt
sind. Hier zeigt sich einer der Vorteile des Spinvalenzverfahrens. In
unserem Iall 1st

o1 = [AB]'[CD](EF]

b

|

(A,B;, — A,B,)*(C,D, — C,D,) (E, F, — E,F))

Ol = oo

(A‘B! — 4A3B3A,B, + 6A2B?A’B? — 4A B,A’B? + A!BY)

1772772

(

@

DEF, —C,D,E\F, — C,D,E,F, + C,D,E,F,)

das sind nur mehr 20 statt 64 Summanden. Dadurch ist die Zahl der
Teilintegrale (14) von 4096 auf 400 reduziert. Zwar liegen die Ver-
hiltnisse nicht immer so giinstig, aber in jedem Fall sind sie glinstiger
als bel Systemen aus einelektronigen Atomen mit der gleichen Gesamt-
elektronenzahl.

Betrachten wir eines der 400 Integrale

fE (uaupucugqueur H71q Q uzupucugqueur)
© (31)
(A:B;ClDzEleY]QQAiB;ClDZEIFZ)dT

Fir jedes Integral von diesem Typus waren zundchst 12! Permu-
tationen zu bertlicksichtigen. Allerdings kommen davon nur 12!/414!
in Betracht, denn wir interessieren uns blo3 fur Permutationen zwi-
schen verschiedenen Atomen. Selbstverstdndlich ist man gezwungen,
nur die wichtigsten von ihnen zu betrachten. Das sind die identische
Permutation E und die Permutation von nur zwei Elektronen zwi-
schen verschiedenen Atomen, d. h. die Transpositionen. Alle anderen
sollen als weniger wichtig vernachldssigt werden.
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Ein erster Bestandteil von (31) ist das der identischen Permutation
entsprechende Integral, das auch hier als Coulombintegral C bezeichnet
wird

C = [ ua(1,2,3,4)up(5,6,7.8)uc(9)ua(10)uc(11)ur(12).

Huy,(1,2,3,4)up(5,6,7,8)uc(9)ug(10)ue(11)ug(12)dr (32

Fir O = E ist = +1 weil ja die Permutation eine gerade Permuta-
tion ist.

Den Transpositionen zweier Elektronen entsprechen die Austausch-
integrale. Sind in (31) zwel Elektronen zwischen den Atomen A und B
vertauscht, so erhilt man

(AB) = fua(l,2,3,4)ub(5,6,7,8)uc(9)ud(IO)ue(l1)ug(12)
Huy(5,2,3,4)up(1,6,7,8)uc(9)ug(10)ue(11)ug(12)dx

(33)

Fir alle anderen Atompaare gibt es ein Austauschintegral vom selben
Typus. Beim Athylen sind im ganzen 15 Moglichkeiten zu beriick-
sichtigen: (AB), (AC), ..., (AF), (BC), ..., (BF), ..., (EF). Da die Per-
mutation eine ungerade ist, so wird n; = —1 sein.

Es ist nun aber zu bemerken, dafl die Transposition zweier Elek-
tronen zwischen zwel mehrelektronigen Atomen wie z. B. A und B
beim Athylen auf verschiedene Weise realisiert werden kann. Man
kann z. B. das Elektron 1 von A mit dem Elektron 5 von B oder das
Elektron 1 von A mit dem Elektron 6 von B vertauschen usw. Jeder
dieser Transpositionen entspricht aber ein Austauschintegral (33).
Allgemeiner: wenn die Anzahl der Elektronen des Atoms A gleich n,,
diejenige von B gleich ny ist, so ist die Zahl der Transpositionen zwi-
schen den Atomen A und B gleich n,n,. Ebenso grof3 ist die Anzahl der
Bildungsmoglichkeiten des Austauschintegrals (33). Fir das Spin-
valenzverfahren ist nun charakteristisch, dal einem Atompaar nur
ein Austauschintegral entspricht, unabhingig davon welche zwel
Elektronen zwischen diesen Atomen vertauscht worden sind. Um
diese Unabhingigkeit des Austauschintegrals von den vertauschten
Elektronen auch formal zum Ausdruck zu bringen, kann man (33)
auch so schreiben

(AB) = fuanucl,IdueUfH Tapuzupucugqueupde (34)
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T,, bedeutet hier: ein Elektron des Atoms A soll mit einem Elektron
des Atoms B vertauscht werden.

Selbstverstindlich werden durch die Permutationen der Elek-
tronen in (31) nicht nur die Koordinatenfunktionen, sondern auch der
Spinanteil bertihrt.

Ist QO = E, so bleibt der zweite Klammerausdruck in (31) unver-
indert. Fir die Transposition eines Elektrons von A mit einem Elek-
tron von B, O = T,, erhdlt man dagegen

(35)

A'BIC,D,E,F,. T,  A'BIC,D,E,F, = A'BIC,D,E,F,. A’A,B,BXC,D,E F,

D. h. ein Elektron mit der Spinfunktion « (hier A,) des Atoms A wird
vertauscht mit einem Elektron mit der Spinfunktion @ (hier B,)
des Atoms B. Ahnlich verfihrt man mit den anderen Transpositionen
QO = T, Tag, -, Ty, ... Hohere Permutationen bleiben auch hier
unberticksichtigt. Was hier beziiglich der Permutationen der Elektronen
des Integrals (31) gesagt wurde, gilt auch fiir die Permutationen in
allen anderen Integralen von Typus (31).

Um diese Ergebnisse in einem einzigen der Relation (29) entspre-
chenden Ausdruck zusammen zu fassen, beachte man, dall in dem
Spinprodukt (¢, ¢,) alle Spinanteile der 400 Integralen (31) beriick-
sichtigt sind. Somit koénnen die Permutationen direkt, sowie sie
bereits in (29) angedeutet sind, an der Spinfunktion ¢, durchgefithrt
werden.

Ist also in (29) O die identische Permutation, so erhilt man einfach

C (91 94) (36)

Fir die Vertauschung zweier Elektronen zwischen den Atomen A
und B kann man schreiben

— (AB) (9; Tap 1) (37)

T,y ¢, bedeutet hier, dall ein Elektron des Atoms A mit einem Elek-
tron des Atoms B in allen 20 Summanden (30) zu vertauschen ist.
Nach (37) soll das Resultat noch mit ¢, multipliziert werden. Das
entspricht der Vertauschung zweler Elektronen in den erwédhnten
Integralen.

Wir haben oben festgestellt, daBl bei der Vertauschung zweier
Elektronen zwischen zwei mehrwertigen Atomen n,n, Transpositio-
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nen zu berticksichtigen sind. Anderseits bezieht sich aber T,, nur auf
eine Vertauschung von zwel Elektronen. Um alle Transpositionen
zwischen A und B zu berticksichtigen, mull man (¢, T,y 9,) durch

(38)

(¢ Ty, ng+1 1) + (¢1 Ty, ng +1 ¢1) + oo+ (s Tna, ny 4 np P1) :TE (91 Tab 1)
ab

ersetzen, wobeil das erste Glied die Vertauschung des ersten Elektrons
des Atoms A mit dem (n,+ 1)-ten Elektron des Atoms B zum Ausdruck
bringt. Das letzte Glied repréisentiert die Vertauschung des n,-ten
Elektrons des Atoms A mit dem (n, +ny)-ten Elektron des Atoms B.
Statt (37) erhidlt man dann

—(AB) ¥ (¢, Tap @) (39)

~

]ab

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
gleichwertig sind, kann man zur Vereinfachung von (39) die Summe
aller Transpositionen mit t,;, bezeichnen, also

tab = pH Tab 40
i ( )

setzen. Statt (39) kann man auch

— (AB) (9, tab 91) (41)

schreiben.
Berticksichtigt man schliefllich die Vertauschungen zwischen den 14
anderen Atompaaren des Athylens, so erhilt man

(42)
—[(AB) (¢, tabg1) + (AC) (i tac ) +. . . + (EF) (@1 ter))] = — Eb(AB) (@1 taby)
a,
Die Summe ist also tiber alle Atompaare zu erstrecken.
Den ersten Bestandteil des Elementes M,, der Siakulardeterminante
erhilt man somit aus (36) und (42)

J¥1Hdw = C(@i9) — 2 (AB) (01 tan ) (43)

a,b

Um den zweiten Summanden des Elementes M,, zu ermitteln, kann
die gleiche Uberlegung gemacht werden. Statt der Austauschintegrale
bekommt man hier die A-Integrale
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Aap = fuaubucudueuf~Tabuaubucudueufd'r» (+4)

wo T,y die gleiche Bedeutung hat wie vorher. Auch hier sind im Fall
des Athylens den 15 Atompaaren 15 entsprechende A zu beriick-
sichtigen.

Fir das vollstindige Element M,, der Sikulardeterminante erhilt
man schlieflich

M, = [C (p1p1) (p1tab@i) (AB)] — e [(191) — 2 (@1 tab 1) Aabl (45)

a,b a,b

Genau dieselbe Ableitung kann aber auch mit den anderen Matrix-
elementen gemacht werden. Die Anzahl der Integrale (31) kann
natiirlich verschieden sein von der vorherigen, aber diese Zahl tritt
in (45) in expliziter Form noch gar nicht auf, sondern wird erst nach-
traglich ermittelt werden. Formal dndert sich an dem Ausdruck nichts,
wenn man ein beliebiges Molekiil betrachtet. Somit kann man ganz
allgemein fir ein Element M;, der Sikulardeterminante schreiben

Mik =[C (¢iex) — X (pitabek) (AB)] — ¢ [(pirk) — 2 (@itabok) Dab]  (46)
a,b a,b
Selbstverstandlich mul3 die Summation tiber alle Atompaare erstreckt
werden.

12. Austauschoperationen und Skalarprodukte

In (46) haben wir zwar eine allgemeine Formel zur Berechnung der
Matrixelemente der Sikulargleichung erhalten, jedoch sind die nume-
rischen Werte der Integrale sowie ihrer Koeffizienten noch unbekannt.
Es soll zundchst die Wirkung der Austauschoperatoren auf die ver-
schiedenen IFunktionen ¢ berechnet werden. Wie die Wirkung von
T,, auf ein Spinprodukt zu ermitteln ist, haben wir bereits in (35)
gesehen. Ahnlich sollte man auch die iibrigen Elektronenvertau-
schungen zwischen den Atomen A und B berechnen, denn t,, = X T,
reprasentiert ja die Summe aller Vertauschungen von zwei Elektronen
zwischen A und B. Diese Operationen sind gliedweise an den aus-
multiplizierten Invarianten (30) durchzufiihren. Das ist aber ein sehr
umstdndliches Verfahren. Zum Glick kann die Wirkung der Aus-
tauschoperatoren viel einfacher dargestellt werden.
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Nach Heitler wird die Austauschoperation t,, direkt an den Spinin-
varianten vorgenommen nach folgender Regel: Je ein Valenzstrich,
der von A ausgeht (oder dort endigt), vertauscht seinen Endpunkt
(Ausgangspunkt) mit je einem Valenzstrich, der von B ausgeht (oder
dort endigt). Der auf A und B bezogene Richtungssinn bleibt dabei
unverdandert. Ein Valenzstrich zwischen A und B vertauscht nur seine
Richtung.

Algebraisch 1468t sich diese Regel so formulieren

AY][BX
tab® = — Pab?® JFX?YPabey‘P . %X—X-%—IF-B?—]]- (47)

Hier ist ¢ eine der Spininvarianten, auf die der Operator t,,
wirken soll. p, 1st die Anzahl Valensztriche in ¢ zwischen den Atomen
A und B. X und Y sind andere in ¢ auftretende Atome, mit denen A
und B durch Valenzstriche verbunden sind. p,, und py, reprasentieren
die Anzahl dieser Valenzstriche. Die Summation ist iiber alle Atome
X und Y zu erstrecken mit Ausnahme von A und B.

Wegen der Wichtigkeit dieser Operationen fiir die ganze Energie-
berechnung sollen hier an zwei Beispielen die Rechnungen durch-
gefiihrt werden. Das erste ist ein System von sechs einelektronigen
Atomen, das in der Mesomeriemethode auch zur Approximation der
Energie des Benzols verwendet wird. Als zweites Beispiel sollen die
Austauschoperationen des Athylens angegeben werden.

Sechselektronensystem. Die unabhidngige Basis besteht aus finf
Valenzdispositionen

(45)
A A A A A
FoooNB F ‘B F‘ ’B F//B F\\B
el _c En_ 't E c &7 _c E~_ >C
D D D D D

\ﬂ \Fz \'PS \PL, \Ps

Die Valenzstriche sind lexikographisch geordnet. Im ganzen sind
15 Wechselwirkungsintegrale und dementsprechend ebensoviele Aus-
tauschoperatoren zu beriicksichtigen. Doch sollen hier nur die Wechsel-
wirkungen zwischen Nachbaratomen (als Approximation des Benzols
gedacht) berticksichtigt werden. Dann bleiben blofl die Operatoren tg;,
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the, teds tdger ter, tra Ubrig. Thre Wirkung auf die erste Valenzdispo-
sition ¢, ergibt

ab ((AB] [CD] [EF]) = [B ‘\] [CD] [EF] = —[AB] [CD] [EF] = — o,
tbc ([AB] [CD] [EF]) = [DB] [CA] [EF] = +¢4, = @1+Ps
cd ([AB] [CD] [EF]) = [AB1 [DC] [EF] = — [AB] [CD] [EF] = — ¢, 49)
tde([AB [CD] [EF]) = [AB] [FD] [EC] = +o; = Q1ts
ter ((AB] [CD] [EF]) = [AB] [CD] [FE] = — [AB] [CD] [EF] = — ¢,
tra ((AB] [CD] [EF]) = [AE] [CD] [BF] = +o, = @ity

Die Anwendung der obigen Regel, sel es in der geometrischen oder
algebraischen Form, ist hier dullerst einfach. Die Wirkung des Aus-
tauschoperators ty. auf ¢, besteht darin, dall die zwei Atome, die mit
B und C verbunden sind, einfach ihre Pliatze vertauschen: A nimmt
den Platz von D ein und D kommt an Stelle von A. Wenn die zwei
Atome auf die sich der Operator bezieht in der selben Klammer sind,
wie z. B. in t,,[AB][CD][EF], so werden A und B ihre Plitze einfach
vertauschen. Hier wurde tibrigens von der Eigenschaft [AB] = — [BA]
Gebrauch gemacht

Mit den Operatoren ty., tqe, tp erhdlt man aus g, Spininvarianten
oder Valenzdispositionen g,,, 9., ¢z die gar nicht zur unabhingigen
Basis gehoren. Diese miissen auf Grund der Relation (II. 28) auf die
unabhingige Basis zuriickgefiihrt werden

A A A
F, SSB F B F B
T + T i + T =[] (50a)
E / C E C E &
D D D
[AB] [CD] [EF] + [AD] [BC] [EF] + [AC] [DB] [EF] = 0 (50D)
P+ @3 — =10 (SOC)

Es sei noch bemerkt, daB man hédufig die Entkreuzungsoperationen
(50) mehrmals anwenden muf, um alle bei den Austauschoperationen
erhaltenen Invarianten auf die unabhingige Basis zuriickzufiithren.

Bei1 den anderen vier Valenzdispositionen sind die Austausch-
operationen ebenso einfach wie oben. Es geniigt also, wenn wir die
Ergebnisse hier einfach zusammenstellen.
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tabp: = — @ tab®: = @2 +@s

tabes = @1 + @3

the®1 = @1 + @3 theP2 = — @2 thePs = — @3
tedpr = — ¢4 tedPz: = 92 + @4 tedps = @1 + 93
tdep: = @1 + P5 tdep2 = — @2 tde®s = P2 + @3
terpr =— @, tef®z = 92 + @3 tef@s = — @3
tra®: = @1 + @4 tra®: = — @2 tra®s = P2 + 93 (51)
tabPs = @1 + P4 tab®s = — s
thePs = @2 + @4 the®s = @2 + @5
tedPs = — P4 ted®s = @1 + @5
tdePs = P2 + @4 tde®s = — @5
tefps = @1 + @4 terps = @1 + @5
tra®s = — P4 tra®s = P2 + @5

Im zweiten Beispiel des Athylens sind insgesamt auch 15 Wechsel-
wirkungen, von denen wir nur diejenigen, die sich auf Nachbaratome
beziehen, beriicksichtigen wollen, also t,, tie tar toe, toa, ted, ter
Die den sechs Valenzdispositionen entsprechenden Invarianten der
unabhéingigen Basis sind in (25) bereits angegeben. Berechnen wir die
Wirkung der sieben Operatoren auf die erste Funktion

(52)
ab ([ABJ*[CD] [EF])
ae ([AB]*[CD] [EF))
af ( )

4[AB]3[BA] [CD] [EF] = — 4¢,
4[AB][AF] [CD] [EB] = — 4q,

[AB]*[CD] [EF]) = 4[AB][AE] [BF] [CD] = —4qs = + 4(p, + 94)
tbc ([AB]*[CD] [EF]) = 4[AB]’[DB] [CA] [EF] = —4¢; = + 4 (¢, + ¢5)
tpa ((ABJY[CD] [EF]) = 4[ABJ[CB] [AD] [EF] = — 4o,
tea ((ABJY[CD] [EF]) = [AB]*[DC] [EF] = — o,
ter (ABJY[CD] [EF]) = [ABI[CD] [FE] = — g,

Fir die Wirkung von t,, erhdlt man ein analoges Resultat wie beim
ersten Beispiel, mit dem Unterschied, dafl hier das Austauschergebnis
mit 4 multipliziert erscheint, weil in g, vier Valenzstriche zwischen
A und B liegen. Bei der Wirkung von ty,. wo die zwei Atome B und C
in verschiedenen Klammern sind, kann man dhnlich verfahren wie
bei einwertigen Atomen. Schreibt man ¢, in der Form [AB] [AB] [AB]
[AB] [CD] [EF], so wird das mit B verbundene Atom A der ersten
Klammer mit dem mit C verbundenen Atom D der fiinften Klammer
vertauscht werden, dann wird A der zweiten Klammer mit D der
finften Klammer vertauscht werden usw., im ganzen also sind vier
Vertauschungsmoglichkeiten zu beachten, was zu oben angegebenem
Resultat fithrt. Auf diese Weise koénnen alle Austauschoperationen
sehr einfach durchgefiihrt werden. Die Austauschoperationen der
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anderen fiinf Valenzdispositionen bieten auch keine Schwierigkeiten,
nur miissen gewisse Entkreuzungen ofters vorgenommen werden.
Wir geben fiir die anderen nur das Resultat an.

tanp, = — 49, tab®s = @2 — 2¢; (53)
tacpz = H@1+P2+Q3+@+9s) taePs = 393 — @s+304

tare: = 4(P2+@s) tafrps = — 93

tbcpz = 4(92+¢;) theps = — Ps

thdpz = (@1 +P2+P3+Q4+P5) tbdPs = 393 — @4+ 39,

ted®: = @179 tedps = @3 1+@,4

ter®z = @1+ tef@s = @3+¢s

tabPs = @120, tab®s = P1—29; tabPs = @1 +49;+20,+2¢05+ 20,
taePs = — @1+ 39, tae®s = — 49339 taePs = — 96

tarPs = — @4 tar@s = 43 +495+39s tarps = — @

tocPs = 4@3+49,+305 toc@s = — Ps thePs = — %6

thdes = — 4ps—3 thd®s = — @1+39s thd®s = — Po

tedPs = — @4 ted®ps = ¢119s tedPs = + 96

terps = @11+Qy4 terps = — s tefPs = -+ P

Wie wir soeben gesehen haben, erhdlt man bei der Berechnung der
Austauschoperationen durchwegs lineare Ausdriicke von Spininva-
rianten. In der Formel (46) wird also in jeder Klammer (g; t,, @) das
tap ok ebenfalls durch einen linearen Ausdruck ersetzt, der selbstver-
stindlich noch mit ¢; zu multiplizieren ist. D. h. nach der Berechnung
der Austauschoperationen sind die Koeffizienten aller Integrale in
(46) durch Skalarprodukte der Form (¢; ¢,) gegeben, deren numerische
Werte nun zu berechnen sind.

Betrachten wir zu diesem Zweck wiederum die vorigen zwei Bel-
spiele. Beim Sechselektronensystem sind die Produkte der Funktionen
©1, 9y, 93 @4, @5 zu ermitteln. Der direkteste Weg besteht darin, die
Produktbildung gliedweise an den ausmultiplizierten Invarianten
vorzunehmen bei gleichzeitiger Beachtung der Orthogonalitits-
relationen der Spinfunktionen. Die den Valenzbildern (48) entsprechen-
den ausmultiplizierten Spininvarianten sind

(54)

oy = V}é & B, D ER, A B0 R —ABLDER+ ABLDER
—A,B,C,D,E,F,+A,B,C,D,E,F, 1 A,B,C,D,E,F,— A,B,C,D,E,F,]

©, = {1§ [A,B,C,D,E,F,—A,B,C,D,E,F,— A,B,C,D,E,F, + A,B,C,D,E,F,
_ A,B,C,D,E,F,+A,B,C,D,E,F, +A,B,C,D,E,F,—A,B,C,D,E,F,]
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P3= Lg (A,B.C,D.EF,— A,B,C,D,E\F,—A,B,C,D,E\F, + A,B,C,D,EF,

- ‘AlBICZDZE;’.Fl +A2B1C2D1E2Fl +‘AIBZCIDZEZFlH‘AZBzch1E2FI]

1
P+ = = [A,B,C,D,E,F,—A,B,C,DE,F,— A B,C,D,EF, + A,B,C,D,E,F,

(PS = ,\’1_8 [AlechlEze = IﬁzBICID]Eze_A1B2C2D1E2F1 + ‘AZBICZDlEZFl
4‘AlechzEle+A2B1C1D2EiF2‘4'AA1B2C2D2E1F1‘;A2B1C2D2EIF]J

Den ersten Ausdruck z. B. erhidlt man durch Ausmultiplizieren von

1 1 1
= AB CD EF = = AAIBZ_A‘AQBI [ e CIDQ—CEDI = EIF _EZFI
o - [ABJ[CD(EF] = )5 ) S (EFaEaE)

Bei der Bildung des Produktes (¢, ,) auf Grund von (54) ergeben
alle gemischten Teilprodukte Null wegen der Orthogonalitit der
Spinfunktionen, und die iibrigen acht ergeben die Einheit. Das Gleiche
gilt auch fir ¢2 93 ¢ ¢ Bei der Bildung des Produktes (¢, ¢,)
um noch ein weiteres Beispiel zu nennen, sind nur zwei Teilprodukte
gleich der Einheit, namlich A} B3 C2 D, E? F% und A? B? C2 D? E2 F%;
alle anderen sind gleich Null. Man erhilt fir die numerischen Werte
der verschiedenen Skalarprodukte dementsprechend

Pi=¢i=pi=9i=¢3=1 .
P1P3 = 1P+ = P1Ps = P2P3 = PaPs = P2Ps & 3 (55)

1
P1P2 = P3Ps = P3Ps5 = P4Ps T 4

Wie bei den Austauschoperationen ist auch hier diese direkte
Berechnung der Skalarprodukte viel zu umstidndlich und kann bei
grofleren Systemen nicht in Frage kommen. Einfacher ist folgender
Weg:

Oben erhielten wir fiir das Quadrat der Spininvarianten durchwegs
die Einheit. Das Gleiche gilt aber auch fiir groBere Systeme bestehend
aus Atomen mit je einem Elektron: alle ¢f sind gleich der Einheit.
Die anderen erhilt man auf Grund der Relation (50); indem man sie
der Reihe nach mit ¢, ¢, ¢,, multipliziert, bekommt man die drei
Gleichungen

(1¢1) ?3%1) — (P1op1) =0

4
(@195) + (Ps95) — (Pr0®s) = O (56)
(@1910) + (P3P10) — (@10P10) = O
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Relationen von diesem Typus sind aber in gentigender Anzahl vor-
handen, um alle Skalarprodukte zu bestimmen, falls die ¢ schon
bekannt sind.

Im allgemeinen Fall, d. h. bel Systemen von Atomen mit mehreren
Elektronen reichen die Relationen (56) nicht aus, um alle numerischen
Werte der Skalarprodukte zu ermitteln. Aus den Austauschoperationen
kann man aber in geniigender Zahl weitere Relationen gewinnen, wenn
man den hermitischen Charakter der Austauschoperatoren in Be-
tracht zieht. Es gelten dann folgende weitere Beziehungen

¢i tab Pk = Pk tab Pi
@i the Pk = Pk tbe @i (57)

.................

Bei Verwendung solcher Relationen kann man die Skalarprodukte
auch 1in den etwas komplizierteren Fillen ermitteln. Es mul} aller-
dings gleich bemerkt werden, dal3 die Rechnungen be1 groBeren Mole-
kiilen so weitldufig und unitibersichtlich werden, dall die Ermittlung
der (g; ¢)) praktisch wieder unmoglich wird.

Bei kleineren Molekiilen, wie in unserem vorher behandelten zweiten
Beispiel des Athylens, deren unabhingige Basis nur aus 6 Valenz-
dispositionen besteht, ist die numerische Berechnung der Skalar-
produkte autf diesem Weg ohne Schwierigkeit durchfithrbar. Zu diesem
Zweck nehmen wir zunédchst an, daB (¢; ¢,) auf 1 normiert ist. Die
zweite Valenzdisposition ¢, unterscheidet sich von ¢, nur durch eine
andere Verteilung der Valenzstriche zwischen den vier einvalentigen
Atomen. Beil Systemen von Atomen mit je einem Elektron sind aber
alle (o; ©;) = 1, d. h. sie sind unabhingig von der Verteilung der Valenz-
striche. Das Gleiche gilt auch hier, beziiglich der Valenzstriche, die
ausschlieBlich zwischen einelektronigen Atomen disponiert sind;
somit ist auch (¢, ¢,) = 1. Aus Symmetriegriinden haben wir ferner

2

9F = 03, (P194) = (9:2s),  (P204) = (P20s),  (@304) = (P395),  (P4Pe) = (P5P6)

Die tibrigen Werte werden nach (57) ermittelt:

(58)
(¢stabPi) = (@1tabps) : — 4(@4p1) = (@191) — 2(91p4),  (P1%4) = *% = (9195)
(Pstabpz) = (Patabes): — 4(ps92) = (292) — 2(293),  (Paps) = _;
(Pstac?i) = (itacPs): — 4pups) = — (@101) + 3(P194)s (Pups) = é = (ps0s)

oo
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(stares) = (“Pztacha)3 4((P3<P2) + 4(‘?3‘?3) = —(‘PzCPs)v (CPacPs) = g
i
(@steap:) = (CPltcchz): — 2(p,9) = (CPl(Pl) £a (CP1<P2): (‘P1CP2) )
(Psteads) = (iteaps):  —(9591) = (2193) + (2:194),  (1%s) = %
(pstedpz) = (PatedPs): (Papi) + (P392) = (9203) + (P294), (P2ps) = %:(@z%)
(ostears) = (osteaps):  (0u7a) + (0424) = — (oa7a),  (020) = —2 = (9329
(Psted®s) = (Patcdes): — (psPs) = (@401) + (2495), (sps) = %
(PstbdP1) = (@itbdps) 1 — H(@4s) = — H@193) — 3(9196), (Pi9s) = O
(Potac?1) = (@1taePs): — HpsPs) = — (P196)s (Ps26) = 0 = (@590)
(potab®z) = (pztabPe):  — HeePz) = (@201) + H(p2ps) + 1
+ 2(p2ps) +2(0295) +2(92P6), (‘Pz‘?a) = 4
(‘Pstafq’s) = (pstares): ““(‘?5‘?3):4(@3(?3)+4(@3‘P5)+3(‘P§Ph)x (<P3CP6) = _156
(PotbdPs) = (PatbdPe) i — HPeP3) — 3(PePs) = — (P4Ps)s  (P6Ps) = 152

Nach dem die Berechnung der Austauschoperationen und der Skalar-
produkte bekannt ist, sollten auch die verschiedenen Integrale C,
(AB) und A,, ermittelt werden. Damit wiirden alle Bestandteile der
allgemeinen Formel explizite verfiigbar sein. Eine direkte Berechnung
dieser GroBen ist bei dem heutigen Stand der Theorie nicht moglich.
Man ist gezwungen, sie auf Grund von thermochemischen Daten fest-
zulegen. Wir geben hier die Werte der Coulomb- und Austausch-
integrale, die von Heitler! fiir die Berechnung der Energie von Kohlen-
wasserstoffen verwendet wurden

i (AB) C + (AB)
o -G 44 88
C —H 77 63

11.5

Die Buchstaben der ersten Kolonne sind chemische Symbole. Alle
Werte sind in kcal/mol ausgedriickt. Im Fall der H-H Wechselwir-
kung ist nur die Summe der Coulomb- und Austauschintegrale bekannt.
Es sei noch bemerkt, daB3 diese Werte sich auf eine Verdampfungs-

1 W. HEITLER, Helv. 38, 5 (1955).
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wiarme des Diamanten von 170 kecal beziehen. Die A — Integrale werden
bei der Energieberechnung meistens vernachlissigt.

13. Aufstellung der Sikular- und Bindungsgleichung

Die Energieberechnung ist nun soweit vorbereitet, dal die Sikular-
determinante aufgestellt werden kann. Betrachten wir den Fall
des Sechselektronensystems.

Wie bereits erwihnt, werden Systeme von Atomen mit je einem
Elektron in der Mesomeriemethode hdufig zur Approximation der
Energie konjugierter Molekiile verwendet. Durch diese radikale
Vereinfachung des Problems wird erreicht, daBl auch die Energie-
berechnung gréBerer Molekiile, wie z. B. Benzol, Naphtalin usw., der
Rechnung zuginglich wird. Selbstverstandlich konnen die so erhaltenen
Energien nur als Relativwerte eine Bedeutung haben, die man nicht
ohne weiteres mit den experimentell erhaltenen Bildungsenergien
vergleichen kann. Trotzdem koénnen solche Rechnungen von Interesse
sein, z. B. fiir die Beurteilung der Bestdndigkeit der betreffenden Mole-
kiile.

In dieser Approximation wird also die Energie des Benzols mit
einem System von sechs einelektronigen Atomen berechnet. Um das
Problem aber noch weiter zu vereinfachen, vernachlissigt man auch
die verschiedenen A — Integrale, die in (46) vorkommen. Eine weitere
Vereinfachung besteht darin, dal man statt der 15 theoretisch mog-
lichen Wechselwirkungen nur diejenigen zwischen Nachbaratomen
betrachtet; die anderen sind als weniger wichtig vernachliassigt. Es
bleiben also nur die sechs Austauschintegrale (AB), (BC), (CD), (DE),
(EF) und (FA) tbrig. Unter dieser Voraussetzung haben wir nach der
Storungsrechnung folgendes Gleichungssystem zu losen:

M,,c;, + M,;c;, + M;c; + M, ¢y + M;5¢5 =0
M,,c, + M,,c, + M,sc; + M,cy + Myscs =0 (59)

.....................................

Die entsprechende Sikulardeterminante lautet

My; Mg ..o.oncc... M,;
M, M, ........ Mys | _ (60)
Mo Mo rwivssuns M
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Die Elemente M;, der Sikulardeterminante werden nach (46) be-
rechnet. Unter Beachtung der obigen Voraussetzungen sind sie durch
Ausdriicke der Form (61) gegeben.

M, = (‘Pl%Q ) C —[(pi1tabe:) (AB) + (0.1tpep:) (BC) + (@iteap,) (CD) +
+ (@1tde®)) (DE) + (@iterpy) (EF) + (Cpltfacpl) (FA)] — e (@:91)

M,, = (thp) —[(¢:tabe2) (AB) + (CPltbcCPz)( + (@1tedgs) (CD) +  (61)
+ (p1tdeps) (DE) + (pitere.) (E (<P1tfacpz) (FA)] — e (p192)

........................................................

Fihrt man hier zunichst die Ergebnisse der Austauschoperationen (51)
ein, so entstehen Ausdriicke, in denen alle Koeffizienten der Integrale
durch Skalarprodukte reprdsentiert sind:
(62)
M, = (p:91)C — {_ (9191) (AB) + [(@:191) + (p193)] (BC) — (9.194) (CD)
+[(@191) + (195)] (DE) — (:9:1) (EF) + [(@101) + (@194)] (FA) | —e(p191)
M,; = (9:9,)C _1[(@1@2) + (9:195)] (AB) — (192) (BC) + [(CPNP ) + (@.94)] (CD)
—(@192) (DE) + [(p192) + (193] (EF) — (9192) (FA)} — € (9:192)

..............................................................

Die Einfithrung der numerischen Werte der Skalarprodukte (55)
ergibt die Elemente der Sikulardeterminante, in denen neben & nur
noch die Integrale unbestimmt sind.

M,, = C +(AB)— 1(BC) +(CD)— %(DE) +(EF)— %(FA)—e (63)
M,, = 14C+ 14(AB) + J4(BC) + J4(CD) + 14(DE) + 4 (EF) + J4(FA)— Ve
M,; = —1C—12(AB)—15(BC)—15(CD) + 14 (DE

)— %(EF)+ J4(FA) + Yse
M, = —1C—%(AB) + J4(BC)— 12(CD) + J4(DE)— 1 (EF)— 1 (FA) + Ve
M5 = —%C—1(AB) + 14(BC)— % (CD)— 1(DE)— 1 (EF) + % (FA) + Yae
M,, = C—1%(AB)+(BC)— %(CD) +(DE)— %(EF) +(IFA)—e
M,; = —15C+ V4(AB)— 15(BC) + 14(CD)— 15(DE)— ) (EF)— 15(FA) + e
M, = —%C+ J4(AB)— 1% (BC)— % (CD)— 1(DE) + 4 (EF)— 15(FA) + Vs
M,s = — 1C— Vz(AB)— Y2(BC) + 14(CD)— % (DE) + %4 (EF)— 15(FA) + e
M;; = C—14(AB) +(BC)—12(CD)—J4(DE) +(EF)— J5(FA)—

M, = 14C+ 1(AB) + 14(BC) + J4(CD) + 14 (DE) + 14 (EF) + 14 (FA)— e
M;; = Y4C+ 14(AB)+ 14(BC) + 14(CD) + 14(DE) + % (EF) + 14 (FA)— Ve
My, = C—1%(AB)—14(BC) +(CD)—14(DE)— 15 (EF) +(FA) —¢
M5 = %4C+ V4(AB)+ 14 (BC) + Y4(CD) + Y%(DE) + 4 (EF) + 14 (FA)— Y4e
M;;s = C+(AB)— 15(BC)— 1%(CD) +(DE)— 1 (EF)— J5(FA)—¢

Die Sikulardeterminante (60) ist symmetrisch in Bezug auf die Haupt-
diagonale. In (63) sind somit nur Elemente der Hauptdiagonale und
die von ihr rechts stehenden Elemente angegeben.

119



Die Atomabstinde zwischen Nachbaratomen des Benzols sind iiber-
all gleich groB. Anderseits sind die Austauschintegrale Funktionen
der Atomabstdnde, die somit gleichgesetzt werden konnen (AB) -

C—sg

(BC) = (CD) - (DE) - (EF) - (FA) = A. Setzen wir ferner X - ——,
so kann die Determinante (60) in der Form (60a) geschrieben werden.
<} ol dnd el ey

Die Ausrechnung der Determinante ergibt eine Gleichung fiinften
Grades mit finf Wurzeln. Im Fall von Systemen von einelektronigen
Atomen konnen die Wurzeln berechnet werden, ohne dal3 die numeri-
schen Werte der Integrale bekannt sind.

Die Berechnung der Determinante erfolgt am besten mit Rechen-
maschinen. Im obigen Fall kann man zwar durch einige Umformungen
(60a) in einfachere tberfithren, wie wir das bei der sogenannten
Bindungsdeterminante noch zeigen werden. Doch sind solche Um-
formungen bei groeren Systemen viel zu kompliziert, um praktisch
von Bedeutung zu sein.

Nach der Gleichung (46) kénnen also die Elemente der Sikulardeter-
minante berechnet werden, insofern man die Austauschoperationen,
die Skalarprodukte sowie die Coulomb- und Austauschintegrale kennt;
die A — Integrale werden ja meistens bei der Energieberechnung
vernachlissigt. Falls man sich allein fiir die Energie des Molekiils
interessiert und die Berechnung der Elektronenverteilung zur Seite
1aBt, ist es vorteilhaft, die Sdkulargleichung (59) durch ein ihr dquiva-
lentes Gleichungssystem, die sogenannte Bindungsgleichung zu er-
setzen, deren Handhabung bedeutend einfacher wird, ohne die Werte
der Storungsenergie zu verdndern.

Die Bindungsgleichung hat den groBen Vorteil, dal3 zu ihrer Auf-
stellung nur die Berechnung der Austauschoperationen und die Kennt-
nis der Integrale vorausgesetzt werden miissen; die Skalarprodukte
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treten in ihr dberhaupt nicht auf. Die Determinante der Bindungs-
gleichung ist zwar im Gegensatz zur Sikulardeterminante nicht
symmetrisch; sie hat aber den weiteren Vorteil, dal3 die iiberwiegende
Zahlihrer Elemente — vor allem bei gréBeren Systemen — verschwinden,
was vom rechnerischen Standpunkt selbstverstindlich eine grof3e
Vereinfachung darstellt.

Zur Aufstellung der Bindungsgleichung geht man wieder von einer
unabhingigen Basis der Eigenfunktionen (II. 26) aus. Um die Uber-
legungen moglichst einfach zu gestalten, betrachten wir wieder das
Beispiel des Systems von vier Atomen mit je einem Valenzelektron.

Im ersten Bestandteil des Gleichungssystems (6), d. h. in

[ H Y ds (10)

reprasentiert die Funktion ¢, rechts und links von H eine vollstindige
Molekiileigenfunktion (II.26) mit den 24 Permutationen der Elek-
tronen und mit den vier Spinfunktionen (11a), die der Valenzdispo-
sition in (3) entsprechen. Statt ¢, fithren wir links von H die Partial-
l6sung des Vierelektronensystems

ua(1) up(2) uc(3) ug(4) (64)

ein, was tbrigens schon in (16) durchgefiihrt ist, mit dem Unterschied,
daB jetzt auch die Spinfunktion «(1)B(2)x(3)E(4) wegfillt. Die Rolle
der Spinfunktion war ja eigentlich die Beriicksichtigung der Nicht-
unterscheidbarkeit der Elektronen im Zusammenhang mit dem Pauli-
prinzip, was hier aber bereits erfillt ist, so da3 eine Multiplikation
mit der Spinlosen Funktion erlaubt wird. Statt (13) erhdlt man somit
den Ausdruck

fua(l)ub(Z)uc(3)ud(4) H (ya—¢B—tdc + ¥p) d= (13a)
oder vier Integrale vom Typus

[ wa(l)up(2)ue(3)ua(®) H \—% S 1QQua(1)up(2)uc(3)ua()a(1)B(2)a(3)B(#)dx

mit den verschiedenen Spinanteilen (11a).

Durchliuft man die Reihe der entsprechenden Uberlegungen bis
Gleichung (23), so erhidlt man fiir den vollstindigen Koeffizienten von
c, der ersten Gleichung (6) statt (23) den Ausdruck
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(65)
?,C —[(AB)tapp, + (AC)tacep; + (AD)tage; + (BC)tpep; + (BD)tpap, +
+ (CD)tedp:] — ele, — {Aabtab@l + Aactac®: + Aadtade: + Apctbep: +
+ ApdtbdP: + Acatedps)]

Eine analoge Uberlegung ergibt fiir den Koeffizienten von c, derselben
Gleichung (6)
(66)
0,C —[(AB)tapp, + (AC)tace, + (AD)tage, + (BC)tpep: + (BD)tpap,+
+ (CD)tede,] —ele, — {Aabtab@z + Agctacp: + Aadtade: + Apctbep: +
+ ApdtbdPz+Acdteap: |]

Indem wir die A — Integrale vernachlissigen und nur Wechselwir-
kungen zwischen Nachbaratomen betrachten, erhilt man fir die erste
Gleichung (6)

{(C—¢e)o, —[(AB)tapp, + (BC)thep: + (CD)tege, + (DA)tgae.]jc; + (67)
+ {(C — e)gp; —[(AB)tapp: + (BC)tpep: + (CD)teap, + (DA)tgag,llc, = 0

Die zweite Gleichung (6) liefert dieselbe Relation.
Diese konnen wir jetzt nach ¢, und ¢, ordnen, nachdem die Aus-
tauschoperationen berechnet sind. Das ergibt
(68)
{{(C —¢) + (AB) — (BC) + (CD) — (DA)]c, + [— (AB) — (CD)]c,)e, +
+ {{— (BC) — (DA)]c, + [(C—¢) —(AB) + (BC) —(CD) + (DA)]c,Je, = 0

Die Spinfunktionen ¢, und g, sind linear unabhingig. Das heillt aber,
daB eine Relation a, ¢, + a,9, =0, wo a, und a, irgendwelche Kon-
stanten sind, nur dann erfiillt ist, wenn die a; verschwinden. Aus (68)
erhalten wir somit ein System von zwel Gleichungen fiir die Unbekann-
ten ¢, und c,.
[(C—¢) + (AB) —(BC) + (CD) — (DA)le, + [~ (AB) —(CD)Je, = 0 o,
[— (BC) — (DA)]e, + [(C —¢) — (AB) + (BC) — (CD) + (DA)]c, = 0
Dieses System von homogenen linearen Gleichungen ist aber nur dann
erfillt, wenn die Determinante der Koeffizienten verschwindet. Durch
Nullsetzen dieser Determinante erhdlt man dieselben e-Werte wie
aus der Sikulardeterminante.
Die gesuchte Energie kann aber auch dann noch berechnet werden,
wenn man statt ¢, und c, die ¢, und ¢, als Unbekannte betrachtet.
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Die Gleichung (67) ist nidmlich auch dann befriedigt, wenn folgende
Gleichungen erfiillt sind.

(C —e)p —[(AB)tapp: + (BC)thep, + (CD)teap; + (DA)tdgag,] = 0 (70)

(C —2)e. — [(AB)tapp: + (BC)tpep, + (CD)teqp: + (DA)tgag.] = 0
Dies sind die sogenannten Bindungsgleichungen im einfachsten Fall
von vier einvalentigen Atomen.

Was wir hier fiir vier Elektronen erhalten haben, kann auch im
allgemeinen Fall verwendet werden. Die allgemeine Form der Bindungs-
gleichung, gultig fiir Systeme von ein- und mehrvalentigen Atomen,
schreiben wir nach (HRW) in der Form

(1 — X Agptan) ¢k = (C — X (AB)tap) ok (71)
a,b a,b

Das ist ein System von f linearen Gleichungen fiir die f Unbekannten
ox, wo f die Anzahl Valenzdispositionen reprisentiert. Sind die Aus-
tauschoperationen berechnet, so erhdlt man aus (71) die Bindungs-
determinante, deren Nullsetzen die Energie liefert.

Wir wollen die Niitzlichkeit von (71) durch ein Beispiel illustrieren *.
Betrachten wir zu diesem Zweck das Sechselektronensystem mit
seinen Wechselwirkungen zwischen den Nachbaratomen, indem wir
die A -Integrale vernachldssigen. Aus (71) erhdlt man bei Beachtung
von (51) die fiinf Gleichungen

(C —<)p, + (AB)p, — (BC) (91+93) + (CD)o, — (DE) (¢, + @5)
+ (EF)p, — (FA) (¢, + 94 = 0
(C —e)p. — (AB) (g2 + @5) + (BC)p, — (CD) (92 + @4) + (DE)p,
— (EF) (92 + @3) + (FA)p, = 0
(C —e)p; — (AB) (9, + @3) + (BC)ey — (CD) (¢, + @3) — (DE) (9, + ¢3) (72)
+ (EF)p; — (FA) (p2 + 93) = 0
(C —€)ps — (AB) (p1 + 94) — (BC) (@2 + 94) + (CD)p, — (DE) (9, + @,)
— (EF) (@, + @4) + (FA)p, =0
(C —e)ps — (AB)os — (BC)(92 + @5) — (CD) (@, + @5) + (DE)es
— (EF) (9, + @5) — (FA) (g2 +95) =0

Da alle Austauschintegrale gleich sind, kénnen wir sie mit A bezeichnen
und wie bei der Sikulargleichung (C—<¢)/A =X setzen.

1 Vgl. auch G. W, WHELAND, Journal of Chemical Physics, 3, 230 (1935).
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X +0  —o; —P4 —Ps =0

0+ Xo, — o3 —P4 —Ps =0
—20; — 20, + (X—2)p; + 0 + 0 =0 (73)
—20, — 29, + 0 +(X—2)p, + 0 =
—2¢, —2¢, +0 + 0 + (X—2)p5; =0

Die entsprechende Bindungsdeterminante ist durch (74) gegeben

X 8 -4 -4 -4
0 X -1 -1 -1
9 -2 X2 D O - (74)
2 -2 0 X-2 0
-4 -2 0 0 X3

Diese Determinante kann durch einige einfache Umformungen direkt
berechnet werden. Addiert man z. B. die zweite Zeile mit negativem
Vorzeichen zu der ersten, so erhdlt man (75). Addition der ersten
Kolonne (75) zur zweiten ergibt (76).

X-X 0 0 @ X 0 0 0 o0
0 X —1 -1 —1 0 X —1 -1 —1

(75) 23 X2 0 0 |=|-F-4K2 0 0 |=0 76
2-2 0 X-20 2 4 0 X-2 0
—2-F 0 06 X2 3 -4 B 0 X2

Durch analoge Umformungen erhilt man schlieBlich die fiinf Wurzeln

X=2 X=2 X=0, X=1+%13 X=1-V13 (77)

oder die fiinf gesuchten Energiewerte (I. 35) (hier mit ¢ bezeichnet)
fur die Stoérung erster Ordnung.

e, = C + 2,6055A g, = C—2A
e, =C+0 es = C —4,6055A (77a)
83 = C — ZA

Die Bindungsdeterminante des Athylens, um noch ein zweites
Beispiel zu erwihnen, la3t sich ohne weiteres mit den Angaben (52)
und (53) konstruieren. Falls man nur die Wechselwirkungen zwischen
den Kohlenstoffatomen und diejenigen zwischen Kohlenstoff- und
Wasserstoffatomen betrachtet, erhilt man die Determinante (79). Wie
man sieht, zerfillt diese in drei einreihige und eine dreireihige Deter-
minante. Bemerkenswert an diesem System ist, dall die Wurzeln der
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dreireihigen Determinante auch aus dem einfacheren System von zwei
viervalentigen und zwel zweivalentigen Atomen berechnet werden
kénnen. Man kann also das urspriingliche Modell des Athylens (78a)
durch (78b)

(78a) =g B=A=B=0 (78b)

ersetzen. Von dieser Vereinfachung werden wir bei der Berechnung
der Elektronenverteilung im Abschnitt 15 Gebrauch machen.

X 14C—8B 0 0 0 0 0 (79)
8B X+4C—16B —16B -8B _8B 0
0 _C X4+2C4B B B <
B-C 0 0 X+2C—6B 0 0 =0
B-C 0 0 0 X+2C-6B 0
¢ 0 —4C —2C —2C X—2C+4B

X ist hier die Differenz zwischen dem Coulombintegral und der Energie
e, wihrend C und B Austauschintegrale zwischen den Kohlenstoff-
atomen bzw. zwischen Kohlenstoff- und Wasserstoffatomen repra-
sentieren.

IV. Berechnung der Elektronenverteilung

14. Elektronenverteilung eines Systems von Atomen

mit je einem Valenzelektron 1

Die grundlegende Beziehung der Quantenmechanik zur Berechnung
der Elektronenverteilung in stationdrem Zustand ist gegeben durch

vy * de (1)

Hier ist ¢ eine von den Koordinaten abhdngige und ¢* die zu ¢
konjugiert-komplexe Funktion. Da wir ausschlieBlich mit reellen
Funktionen zu tun haben, kann man statt (1) auch

Ydr = dddr,de,de, ... (2)

1 0O. KLEMENT, Helv. Chim. Acta, 34, 1368, 2230 (1951).
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