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S avßv 1.295+5.260+9.180 + 5.65 3540

In dieser Form stellt die Berechnung der Anzahl von Spininvarianten
oder Valenzdispositionen keine Schwierigkeiten mehr.

III. Die Energieberechnung

Durch die Auswahl einer unabhängigen Basis von Valenzformeln
aus der Gesamtheit aller Valenzdispositionen ist das Problem soweit
reduziert, wie es überhaupt bei dem heutigen Stand der Theorie
möglich ist. Wir denken hier an Reduktionen allgemeiner Natur, die

vor der Aufstellung des Säkularproblems durchführbar sind. Es wird
sich nämlich zeigen, daß in gewissen Fällen auch eine Vereinfachung
der Säkulardeterminante möglich ist, die aber von Fall zu Fall
verschieden sein wird.

Die Eigenfunktionen (II. 26) der unabhängigen Basis, die dem

Pauli-Prinzip genügen und zu einem Spinmoment S 0 gehören,
bilden den Ausgangspunkt unseres Störungsproblems. Es interessieren
uns hier hauptsächlich zwei Fragen: Die Berechnung der Störungsenergie

erster Ordnung auf Grund des Gleichungssystems (I. 33)

f
S (Hik - sAik) ck 0 i-1,2. ...f

k l
Hik J to H <\>k dx Aik j (fo <\>k dT

und die Ermittlung der Eigenfunktion nullter Näherung
iji c,to + c2t]i2 + + Cfto* (2)

In diesem Kapitel beschäftigen wir uns ausschließlich mit der Berechnung

der Energie. Auf die zweite Frage kommen wir im nächsten

Kapitel zu sprechen.

10. Säkulargleichung eines Systems von Atomen mit je einem Elektron

Da die numerische Berechnung der Energie bei großen Molekülen
oft sehr weitläufig wird, ist man in solchen Fällen gezwungen, sich mit
einer radikalen Approximation zu begnügen, indem man das Molekül
durch ein System von Atomen mit je einem Elektron approximiert.
Selbstverständlich erfährt auf diese Weise das Säkularproblem eine
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sehr weitgehende Reduktion. Wir wollen zunächst diesen einfacheren
Fall besprechen.

Um die Berechnung der Elemente der Säkulardeterminante
konkreter zu gestalten, soll die Diskussion an Hand eines Spezialfalles,
nämlich eines Systems von vier Elektronen, durchgeführt werden.
Der Übergang zu einem System von n Elektronen bietet dann keine
Schwierigkeiten mehr.

Von den drei Valenzdispositionen, die wir dem Vierelektronensystem

in (II. 19) zugeordnet haben, sind bloß zwei unabhängig.
Welche beiden Dispositionen gewählt werden, ist in diesem Spezialfall

belanglos, jedes Paar bildet eine unabhängige Basis. Am
zweckmäßigsten ist die Verwendung der Basis mit nicht gekreuzten
Valenzstrichen, also

D AD
<-

(3)

B C B

Bezüglich der Festlegung der Richtung der Valenzstriche gibt es

keine Vorschrift, man kann sie beliebig wählen. Die einzige
Einschränkung besteht darin, daß die einmal festgelegten Richtungen für
alle Rechnungen beizubehalten sind. Trotzdem wollen wir sie aus
Zweckmäßigkeitsgründen definitiv festlegen. Überall, wo nicht
ausdrücklich anders verfügt wird, soll die lexikographische Anordnung
der Valenzstriche gewählt werden, d. h. wenn der Buchstabe A als der

niedrigste und Z als der höchste des Alphabets betrachtet wird, so

soll der Valenzstrich jeweils von dem niedrigeren zum höheren gerichtet

sein.
Den Valenzverteilungen dieser Basis entsprechen die zwei

Eigenfunktionen

+i - 77= 2 ^IqQ ua(l) ub(2) uc(3) ud(4). [AB] [CD]

*2 TTr 2 IQ Qua(!) ub(2) uc(3) ud(4). [AD] [BC]
V 4

(4)

Die Eigenfunktion nullter Näherung ist dann
Ì> C,to + C2*to (5)

wo die Koeffizienten cx und c2 noch zu bestimmen sind.
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(6)

Das homogene Gleichungssystem (1) besteht hier aus den zwei
Gleichungen

[J toHtodx — ej to+id^] Ci + [/ +iHto-dT - e J totodf]

[/ toHtod-r - e / totodr] c, + ("j ^H^dx - e j ^2dz ]

und die entsprechende Säkulardeterminante ist

j toHtodx - z J to+idT J toH*2dT - s J" totodr

J to-H+idt — s J to+idr f to^Hto-dx — e f totodt
(7)

Es sei zunächst bemerkt, daß man in jedem Summanden von iji

diejenige Funktion für H einzusetzen hat, die für diesen Teil die
Störung bedeutet. Es genügt hier wohl, an die Wechselwirkung von
zwei

*B

Atomen mit je einem Elektron zu erinnern. Die potentielle Energie
ist in diesem Fall gegeben durch

e^

rAB

e2

TAi

ez

Tß2

e2

rA2 TBl

und das Störungsglied der potentiellen Energie ist

H
e2

tab
e2

r..
e'

TA2

e2

rßi

(8)

(<>}

Die Buchstaben A und B bezeichnen hier die beiden Kerne, 1 und 2
die beiden Elektronen; rAl repräsentiert dann die Entfernung des
Elektrons 1 vom Kern A usw. Bei unserem System von vier Elektronen
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hat man natürlich eine entsprechende Verallgemeinerung vorzunehmen
Dieser Aspekt des Problems interessiert uns aber hier nicht. Bei dem

heutigen Stand der Theorie ist man nämlich gezwungen, die Integrale
auf Grund von thermochemischen Daten festzulegen.

Sind die Integrale bekannt, so kann die Energie s berechnet werden.
Die Determinante liefert hier eine Gleichung zweiten Grades mit zwei
Wurzeln, die die Störungen erster Ordnung des betrachteten Eigenwertes

darstellen. Durch Einführen der Energie in das Gleichungssystem,

können die c; berechnet und somit auch die Eigenfunktion
nullter Näherung erhalten werden.

Es handelt sich nun zunächst darum, die Elemente der Säkulardeterminante

zu ermitteln. Betrachten wir zu diesem Zweck etwas ausführlicher

das erste Integral

Hu=JtoHtodT (10)

Die Spininvariante der Eigenfunktion <\>1

[AB] [CD] \ (A,B2 - A2Bi) (C,D2 - C2D,) (11)

kann durch die entsprechende Spinfunktion ersetzt werden

\ [a(l)ß(2) - a(2)ß(l)] [«(3)ß(4) - a(4)ß(3)] (lla)

\ [oe(l)ß(2)a(3)ß(4) - ß(l)«(2)a(3)ß(4) - a(l)ß(2)ß(3)a(4) + ß(l)a(2)ß(3)a(4)]

Bezeichnen wir ferner das Produkt des Koordinatenanteils der Funktion

^1 mit den vier Spinprodukten der Reihe nach mit ^iA, i];B, (|;c> "t*d

also z. B.

+A -L 2 *)Q Q Ua(l)ub(2)uc(3)ud(4). a(l)ß(2)a(3)ß(4) (12)
V 4

so kann das Integral (10) auch in der Form (13) geschrieben werden.

Hn 4
J(<I*a - to - to: + <I*d) H (to\ - +B - to; + «I'd) dx (13)

Im Folgenden wollen wir diese 16 Integrale näher untersuchen.
Ausführlicher geschrieben ergibt das erste
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Haa r+AHto\dT= -^=2wQ'uaJ ^4!

(14)

iub(2)uc(3)ud(4)a(l)ß(2)a(3)ß(4).

HA7=27)QQua(1)ub(2)uc(3)ud(4)a(l)ß(2)a(3)ß(4)d-r

Die doppelte Summation kann hier durch eine einfachere ersetzt
werden, wobei gleichzeitig der Fakultätsfaktor sich weghebt. Dies
wird durch folgenden Kunstgriff erreicht. Da über alle Elektronen
integriert wird, sind die Integrale gegen eine Umbenennung der
Elektronen unempfindlich, vorausgesetzt, daß die Variablen aller
Funktionen in den verschiedenen Integralen in der gleichen Weise verändert
werden. Dadurch erreicht man aber, daß dieselben Integrale mehrmals
vorkommen, d. h., so oft der Fakultätsfaktor es angibt. Somit hebt
sich dieser einfach weg.

Um zu zeigen wie das gemeint ist, nehmen wir für einen Augenblick

an, daß das Integral (14) statt auf vier sich nur auf zwei
Elektronen bezieht und setzen zur Abkürzung ®a(l) ua(l)a(l). Anstatt
(14) erhält man (15a)

i ^2wQ'$a(l)*b(2)H^2^QQ®a(l)*b(2)dT (15a)

- |j /[®.(l)«b(2j - *a(2)*b(l)] H [<Da(l)*b(2) - »B(2)*b(l)]dT (15b)

~ f /*a(l)*b(2) H Oa(l)<I>b(2)dT + /*a(2)<îb(l) H <Da(2)Ob(l)dT

(15c)

- J<l>a(2)<Db(l) H ®a(l)<Db(2)dT - /0a(l)a>b(2) H <Da(2)*b(l)dT]

Läßt man eine beliebige Permutation Q" auf (15c) einwirken, so bleibt
der ganze Ausdruck unverändert. Falls man Q" so wählt, daß für alle

Integrale in den linken Produkten die ursprüngliche Ordnung
hergestellt wird, d. h., so daß Q" gleich der inversen Permutation zu Q'
wird, also Q" Q'-1, dann entsteht folgende Situation: Die Permutation

Q'"1 ergibt in den Produkten der linken Seite aller Integrale
die identische Permutation und in den Produkten der rechten Seite

ergibt sich dasselbe wie vorher, nur in einer anderen Reihenfolge.
Man erhält also statt (15c)
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\ [/ *a(l) *b(2) H <Da(l) d)b(2)dT + J *a(l) <Db(2)H*a(l) <Db(2)dT

- / *a(l) *b(2) H <ï>a(2) ®b(l)dT - j *a(l) ®b(2) H <Da(2) <Db(l) dT]

oder

J <Da(l) *b(2) H 0>a(l) *b(2)dr - / *a(l)<Db(2)Hd>a(2) Ob(l)dT

Das Integral (14) läßt sich jetzt so schreiben

Haa /+AHtoAdT Jua(l)ub(2)uc(3)ud(4)<x(l)ß(2)a(3)ß(4)

• H S riQ Q ua(l)ub(2)uc(3)ud(4)a(l)ß(2)a(3)ß(4)dT
(16)

Dieses besteht aus einer Summe von 24 Teilintegralen, von denen
wir explizite die beiden ersten angeben, indem wir gleichzeitig über
den Spinanteil separat integrieren

Jua(l)ub(2)uc(3)ud(4) H ua(l)ub(2)uc(3)ud(4)dT

f a(l)a(l)d(o J ß(2)ß(2)dco J a(3)a(3)dco J ß(4)ß(4)dco

- Jua(l)ub(2)uc(3)ud(4) H ua(l)ub(2)uc(4)ud(3)dT <17)

f a(l)a(l)dco f ß(2)ß(2)dco J a(3)ß(3)dco J a(4)ß(4)dco

Das erste hat ein positives Vorzeichen, weil auf der rechten Seite
das Produkt der identischen Permutation entspricht. Für das zweite
ist das Vorzeichen negativ, weil die Permutation der Elektronen
ungerade ist. Alle anderen Integrale vom Typus (17) sind mit einem

positiven oder negativen Vorzeichen versehen, je nachdem die
Permutation in (16) gerade oder ungerade ist.

Beachten wir ferner, daß die Spinfunktionen a und ß nach (I. 44 und
45) orthogonal und normiert sind, d. h.

f a(i)ß(i)dco 0 f a(i)a(i)d(o 1 f ß(i)ß(i)dco 1

Auf Grund dieser Eigenschaft ergibt der Spinanteil bei einigen
Ausdrücken (17) den Wert 1 bei anderen 0. Man kann sich leicht
überzeugen, daß unter den 24 Summanden (17) nur vier von null
verschieden sind, denen in (16) folgende Spinprodukte entsprechen :

a(l)ß(2)a(3)ß(4) a(l)ß(2)a(3)ß(4)
a(l)ß(2)a(3)ß(4) a(l)ß(4)a(3)ß(2)
a(l)ß(2)a(3)ß(4) a(3)ß(2)a(l)ß(4)
a(l)ß(2)a(3)ß(4) a(3)ß(4)a(l)ß(2)
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Im ersten Produkt kommt die identische Permutation vor, beim
zweiten und dritten treten einfache Permutationen oder sogenannte
Transpositionen auf, bei denen nur zwei Elektronen gleichzeitig
vertauscht werden. Das vierte Produkt, wo vier Elektronen vertauscht
sind, entspricht einer sogenannten höheren Permutation. Am wichtigsten

sind für uns die identische und die einfachen Permutationen, nur
diese wollen wir berücksichtigen; die anderen sollen vernachlässigt
werden.

Wir bezeichnen das der identischen Permutation entsprechende
Integral mit C und das den Transpositionen entsprechende durch
Angabe der zwei Atome (AB), (AC), (BC),..., zwischen denen die
Permutation stattfindet, d. h.

(18)

C Jua(l)ub(2)uc(3)ud(4) Hua(l)ub(2)uc(3)ud(4)d-r

(AB) Jua(l)ub(2)uc(3)ud(4) H ua(2)ub(l)uc(3)ud(4)dT

Aus (16) ergibt sich auf diese Weise

Haa - JtoAHto^dT C - (BD) - (AC)

Damit haben wir (16) in der erwünschten Form. Die hier auftretenden
Integrale sind charakteristisch für die ganze Theorie. C heißt das

Coulombintegral und (AB), (BC), sind die sogenannten Austauschintegrale.

Eine analoge Rechnung ergibt für die anderen Bestandteile von (13)

folgende Ausdrücke

Hab - - (AB) HBB C - (AD) - (BC) Hcc C - (BC) - (AD)
Hac - (CD) HBC 0 HCD - (AB)
Had 0 Hbd - - (CD) HDD C - (AC) - (BD)

Damit haben wir für den ersten Summanden (13) des Elementes Mn der
Säkulardeterminante das Ergebnis

H„ | [4C + 4(AB) + 4(CD) - 2(AC) - 2(AD) - 2(BC) - 2(BD)]

Ähnlich können auch die anderen Bestandteile der Säkulardeterminante

berechnet werden. Auf die Frage der numerischen Berechnung
der Coulomb- und Austauschintegrale wollen wir hier nicht eingehen.
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Damit haben wir also einen Weg, um die Elemente der
Säkulardeterminante eines Systems von Atomen mit je einem Elektron zu
ermitteln. Obwohl die einzelnen Operationen an und für sich einfach
sind, kann selbstverständlich eine direkte Anwendung dieses
Verfahrens nicht in Frage kommen. Wir wollen im Folgenden einen
einfacheren Weg kennen lernen, der übrigens den Vorteil hat, den
charakteristischen Zug der Mesomeriemethode, nämlich die Verwendung

von Valenzdispositionen, besser zum Ausdruck zu bringen.
Bei der Diskussion der Energie von Molekülen, bestehend aus Atomen
mit mehreren Elektronen, wird eine direkte Ableitung dieser
Berechnung notwendig sein. Trotzdem erscheint es uns angebracht,
einen Übergang zwischen beiden Verfahren im einfachen Fall wenigstens

zu skizzieren.
Betrachten wir zu diesem Zweck den ersten Bestandteil Hu (13)

des Determinantenelementes Mn. Dieses besteht zunächst aus 16

Integralen HJK, wobei aber jedes HIK 24 Summanden enthält. Wenn
die Integration über die Spinanteile nicht durchgeführt wird, so

sind in Hn insgesamt 24-16 384 Integrale zu berücksichtigen. Doch
haben wir in (16) unter den Permutationen nur die identische und die

Transpositionen von nur zwei Elektronen in Betracht gezogen, alle
anderen wurden vernachlässigt. Die gleiche Vereinfachung soll auch
hier vorgenommen werden. Bei jedem H]K tritt einmal die identische
Permutation und sechs Transpositionen auf, denen ein Coulomb und
die sechs Austauschintegrale (AB), (AC), (AD), (BC), (BD) und (CD)

entsprechen. Die Zahl der in Hn auftretenden Integrale wird somit
von 384 auf 16 Coulombintegrale, 16 Austauschintegrale (AB) usw.
insgesamt auf 7-16 112 Integrale reduziert.

Im weiteren wollen wir die in diesen 112 Integralen auftretenden
Spinfunktionen nach den Coulomb- und Austauschintegralen ordnen.
Zu den verschiedenen C, (AB), gehörige Spinfunktionen können
aus (IIa) ohne weiteres abgelesen werden, z. B.

HAA: C[a(l)ß(2)a(3)ß(4)

- (AB)[a(l)ß(2)a(3)ß(4)
- (AC)[a(l)ß(2)a(3)ß(4)

- (AD)[a(l)ß(2)a(3)ß(4)
- (BC)[a(l)ß(2)a(3)ß(4)

- (BD)[a(l)ß(2)a(3)ß(4)

- (CD)[a(l)ß(2)a(3)ß(4)

a(l)ß(2)a(3)ß(4)]
a(2)ß(l)a(3)ß(4)]
a(3)ß(2)a(l)ß(4)]
a(4)ß(2)a(3)ß(l)]
a(l)ß(3)a(2)ß(4)]
a(l)ß(4)a(3)ß(2)]
a(l)ß(2)a(4)ß(3)]
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Hab: C[a(l)ß(2)a(3)ß(4)

- (AB)[a(l)ß(2)a(3)ß(4)
ß(l)a(2)a(3)ß(4)]
ß(2)a(l)a(3)ß(4)]

Addieren wir alle Spinanteile, die zum Coulombintegral C gehören,
anderseits alle zum Austauschintegral (AB) gehörigen Anteile usw.,
indem man gleichzeitig a und [3 durch die Bezeichnung Ax und A2>

respektive B1 und B2 usw. ersetzt, so bekommt man z. B. für C als

Koeffizient

C : \ (A^B2qD2 - A,A2B,B2CfD2 - A2B2C,C2D,D2 + A^B.BAC^D,
- A,A2B,B2C^D^ + A2B^C2iy + A^^BXyC^D, - A2B2C,C2D,D2

-A2B2C,C2D,D2 + A^B^C.C.D.D, + A2B*C2D2 - A,A2B,B2C^D2

+ A^BiBXADJ), -A^CA^D., - A,A2B,B2C*D* + A2B2Cp*)

Dies kann man aber einfacher auch so schreiben

l

C:
¦ (A,B2C,D2 - A2BiCiD2 - A,B2C2D, + A-ZB^D,

2- (A,B2C,D2 A.B^jD,-A^.C.D, + A2B,C2D,)

oder auch in der Form

l

C:
v=(AiB2-A2Bi)

-= (A,B, - A2B,)
V2V

-7= (C,D2
\2

1

\2y

¦ C2D,)

C,D,)

Das sind aber einfach die algebraischen Ausdrücke der Valenzstriche
zwischen den Atomen A, B und C, D. Bei Beachtung von (11.24) kann
der Koeffizient von C schließlich durch Spininvarianten dargestellt
werden.

C: [AB] [CD] [AB] [CD]

Ähnlich können auch die Koeffizienten der übrigen Integrale durch
Spininvarianten ausgedrückt werden :

(AB) + [AB] [CD] [AB][CD]
(AC) - [AB] [CD] [CB][AD]
(AD) - [AB][CD] [DB] [CA]
(BC) - [AB][CD] [DB][CA]
(BD) - [AB][CD] [CB][AD]
(CD) + [AB] [CD] [AB][CD]
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Unter Verwendung dieser Ausdrücke kann der ganze erste Bestandteil

des Elementes Mn durch die einfachere Form

H„ ([AB][CD] [AB][CD]) C - [- ([AB][CD] [AB][CD])(AB) +
+ ([AB][CD] [CB][AD])(AC) + ([AB][CD] [DB][CA])(AD) + (19)
+ ([AB][CD] [DB][CA])(BC) + ([AB][CD] [CB1[AD])(BD) -
-([AB][CD] [AB][CD])(CD)]

repräsentiert werden. Vom Standpunkt der Spininvarianten ist aber
dieser Ausdruck nicht einheitlich: Die unabhängige Basis unseres
Vierelektronensystems besteht nämlich nur aus zwei unabhängigen
Spininvarianten, (19) dagegen enthält auch solche, die gar nicht zu
unserer Basis gehören, z. B. der Koeffizient von (AD). Um dies zu
vermeiden, führen wir einen sogenannten Austauschoperator ein, der
die Vertauschung zweier Elektronen verschiedener Atome bewirken
soll. Wird der Austausch der Elektronen zwischen den Atomen A und
B stattfinden, so bezeichnet man den Operator mit tab, für die
Vertauschung zwischen B und C schreibt man tbc usw. Dementsprechend
bedeutet der Ausdruck tbc [AB] [CD] : die Elektronen der Atome B
und C sollen miteinander vertauscht werden, d. h. aber, daß die
Valenzstriche, die vor der Austauschoperation zwischen den Atomen
A, B und C, D liegen, nach dem Austausch zwischen A und C respektive
B und D liegen werden. Es gilt ferner [AB] — [BA].

Durch Einführung der Austauschoperatoren können die
Koeffizienten der Austauschintegrale in (19) so dargestellt werden:

[AB] [CD]
[AB][CD]
[AB][CD]
[AB][CD]
[AB][CD]
[AB][CD]

(- 1)[AB][CD] [AB][CD] tab[AB][CD]
[CB][AD] [AB][CD] tac[AB][CD]
[DB][CA] [AB][CD] tad[AB][CD]
[DB][CA] [AB][CD] tbc[AB][CD]
[CB][AD] [AB][CD] tbd[AB][CD]

(- 1)[AB][CD] [AB][CD] tcd[AB][CD]

Rechts von den Austauschoperatoren bekommt man also dieselbe

Spininvariante, die zur unabhängigen Basis gehört. Bezeichnen wir
den Spinanteil der ersten Valenzdisposition (3) mit <pj so können die
rechts stehenden Produkte auch so geschrieben werden

(«Pl lab <Pi) (<Pi tbc9i)
(«Pi tac <Pi) («Pi tbd 9i)
(«Pl tad <Pl) («Pi tcd-Pi)
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Mit dieser Bezeichnung erhält man schließlich
(20)

H„ (9i«Pi) C - [(9ltab <pi) (AB) + (<pitacçi) (AC) + (ep, tad ç,) (AD) +
+ (?i tbc 9i) (BC) + (91 tbd 9i) (BD) + (?i W 9i) (CD)]

Das ist aber noch nicht das vollständige Element Mn der
Säkulardeterminante. Den zweiten Teil s J ^14'1d.T erhält man aber durch
eine ähnliche Überlegung. Die den Austauschintegralen entsprechenden
Ausdrücke bezeichnet man mit

Aab (ua(l)ub(2)uc(3)ud(4).ua(2)ub(l)uc(3)ud(4)dTi (21)
Abc j ua(l)ub(2)uc(3)ud(4).ua(l)ub(3)uc(2)ud(4)dT

Diese Integrale sind ebenso wie C und (AB) Funktionen, die vom
Abstand der Atome abhängen. Die Relation, die der Gleichung (20)

entspricht, ist hier

e[(<Pi9i) — !(9itab9i) Aab + (9itac9i) Aac + (9itad9i) Aad + ..„
+ (9itbc9i) Abc + (<p,tbd9i) Abd + (tpitcdçi) Acdj]

Durch Zusammenfassung von (20) und (22) bekommt man schließlich

einen Ausdruck, der die Berechnung des Elementes Mn gestattet.

Mu [(9i9i) C - S (cp,tabçi) (AB)] - z [(9,9,) - 2 (9,tab9i) Aab] (23)
a,b a,b

Die Summation ist gemäß (20) auf alle Atompaare zu erstrecken.
Genau dieselbe Überlegung ist auch für die anderen Elemente der

Säkulardeterminante zu machen, so daß (23) auch in eine allgemeinere
Form geschrieben werden kann

Mik [(9i9k) C — S (9itab9k) (AB)] — e [(<pi<pk) — 2 (9*tab9k) Aab] (24)
a,b a,b

Im Fall des Vierelektronensystems nehmen i und k nur die zwei
Werte 1 und 2 an. Wenn das System statt 4 aus 6,8, Elektronen
besteht, ändert sich formal an (24) überhaupt nichts. Somit kann sie
als eine allgemeine Formel für die Berechnung der Elemente der
Säkulardeterminante eines Systems von Atomen mit je einem Elektron
betrachtet werden. Es ist aber selbstverständlich, daß etwa beim
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Sechselektronensystem die unabhängige Basis aus mehr als zwei

Valenzdispositionen, nämlich aus fünf, besteht, und dementsprechend
werden die Indizes von 1 bis 5 laufen. Auch die Anzahl der
Wechselwirkungsintegrale und der Austauschoperatoren ist größer, nämlich
15. Allerdings pflegt man, wie wir noch sehen werden, bei der expliziten

Berechnung der Energie nicht alle Wechselwirkungsintegrale
in Betracht zu ziehen. Die Berechnung der Spinprodukte (cp, cpk) sowie
der Austauschoperationen (cp; tab cpk) erfolgt natürlich nicht auf dem
hier angegebenen Weg, sondern wird nach geeigneteren Methoden

durchgeführt.
Es sei noch darauf hingewiesen, daß bei der Anwendung der Formel

(24) normalerweise ein System von einer geraden Anzahl von Atomen
berücksichtigt wird; hat man eine ungerade Zahl von Atomen, so

nimmt man noch ein weiteres Atom hinzu, das man ins Unendliche
verlegt.

11. Säkulargleichung eines Systems von Atomen
mit einem und mehreren Valenzelektronen

Die Überlegungen sollen auch hier an Hand eines Beispiels
durchgeführt werden. Betrachten wir zu diesem Zweck das Äthylen,
bestehend aus zwei mit A und B bezeichneten Kohlenstoffatomen und
aus vier mit C, D, E, F bezeichneten Wasserstoffatomen. Die
Elektronen der abgeschlossenen Schalen werden nicht berücksichtigt.
Somit ist das System aus 12 Elektronen gebildet.

Die Ausgangsfunktionen sind die in (II. 26) gegebenen. Aus dieser
Gesamtheit wählt man natürlich eine unabhängige Basis aus, die
hier aus sechs Eigenfunktionen bzw. sechs Valenzdispositionen besteht.
In (II. 30) sind wir bereits zwei unabhängigen Basen des Äthylens
begegnet. Damit die Analogie der Valenzdispositionen der
unabhängigen Basis des Äthylens mit denjenigen des Propans, Butans usw.
ausgeprägter wird, wählen wir die Basis (II. 30a). Selbstverständlich
könnten wir aber auch die andere oder eine weitere wählen. Die
entsprechenden Eigenfunktionen sind die folgenden, wobei die Valenzstriche

wiederum lexikographisch gewählt sind:

to =y^2^QÖua(b2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12).
(25)

[AB]4 [CD] [EF]

104



*2 V l2T 2^Q(>aubUcudueuf.[AB]4[CF][DE]

^3 V T2T 2rlQQuaub"cUdUe"f-[AB]3[AF][BC][DE]

*+ V W 2 ^Q Q UaUbUcUdueUf. [AB]**[AF][BE][CD] (25)

to y^ff 2y)QQuaubUcUdUeUf.[AB]^[AD][BC][EF]

to "v/lTT 2^QQuaubUc»d*JeUf-[AB]2[BC][BD][AE][AF]

Die sechs Funktionen unterscheiden sich also nur in den Spininvarianten.

Das homogene Gleichungssystem (I. 33) besteht aus sechs

Gleichungen und die Säkulardeterminante wird vom Grad 6 sein

J toHtodx - s J totodi* J toHtodf-eJ totodT

J «PeHtodx - e J to^tod-r J toHtodx - z J to<kdT

(26)

Es handelt sich zunächst wieder um die Berechnung dieser
Integrale. Betrachten wir z. B.

f toHtodx v/^2^Q'Q'uaUbUcUdUeUf.[AB]4[CD][EF]
J J V 1Z*

Q' (27)

• Hl/4^ 2^QQuaUb«cUdUeUf-[AB]4[CD][EF]dT
\ iz. Q

das man etwas einfacher auch so schreiben kann:

J toHtodx -J2T ^'IQ'^QfQ'uaUb'-icUd'-'eUfH.
./ O'OQ'Q

Q uaubucudueuf) (Q'<pi. Q<pi)dt

(28)

wo die Spininvariante, die zur Eigenfunktion ^ gehört mit cpj

bezeichnet ist.
Wie bei den einwertigen Atomen wird man auch hier die doppelte

Summation durch eine einfache ersetzen, wobei der Fakultätsfaktor
wiederum wegfällt.
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JtoHtodx J*2 *ìQ(uaubucudueufHQuaubucudueuf) (9,Q9,) dx (29)

Würde man das aus 12 Valenzelektronen bestehende Äthylen wie
im Abschnitt 10 als ein einelektroniges System behandeln - was an
und für sich möglich ist - so hätte man Spininvarianten, bestehend

aus einem Produkt von sechs Linearfaktoren: [AB] [CD] [EF] [GH]
[IK] [LM]. Ausmultipliziert ergibt das nach (11) einen Ausdruck von
64 Summanden. Dementsprechend sind 64 Funktionen vom Typus (12)

zu berücksichtigen, die nach (13) 64-64 4096 Integrale (14) ergeben,
wobei die Permutationen der Elektronen noch nicht berücksichtigt
sind. Hier zeigt sich einer der Vorteile des Spinvalenzverfahrens. In
unserem Fall ist

p, [AB]4[CD][EF]

*(C,D2 - C2D,) (E, F2 - E2F,)

(30)

l (A,B2 - A2B,)4(C,D2 - C2Di) (E, F2 - E2F,)

l (AiB2 - 4A^B3A2B, + 6A2B2A2Bj -4A,B2A^ + A4B4)

(CiD2E,F2 - C2D,EiF2 - C,D2E2F, + C2D,E2F,)

das sind nur mehr 20 statt 64 Summanden. Dadurch ist die Zahl der

Teilintegrale (14) von 4096 auf 400 reduziert. Zwar liegen die
Verhältnisse nicht immer so günstig, aber in jedem Fall sind sie günstiger
als bei Systemen aus einelektronigen Atomen mit der gleichen Gesamt-
elektronenzahl.

Betrachten wir eines der 400 Integrale

fS (uaubucudueufHï)QQ uaubucudueUf)
JQ (31)

(A4B4CiD2EiF2v)QQAjB4CiD2EiF2)dT

Für jedes Integral von diesem Typus wären zunächst 12!
Permutationen zu berücksichtigen. Allerdings kommen davon nur 12!/4!4!
in Betracht, denn wir interessieren uns bloß für Permutationen
zwischen verschiedenen Atomen. Selbstverständlich ist man gezwungen,
nur die wichtigsten von ihnen zu betrachten. Das sind die identische
Permutation E und die Permutation von nur zwei Elektronen
zwischen verschiedenen Atomen, d. h. die Transpositionen. Alle anderen
sollen als weniger wichtig vernachlässigt werden.

106



Ein erster Bestandteil von (31) ist das der identischen Permutation
entsprechende Integral, das auch hier als Coulombintegral C bezeichnet
wird

C fua(l,2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12).
J

(32)
Hua(l,2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12)dx

Für Q E ist 7] +1 weil ja die Permutation eine gerade Permutation

ist.
Den Transpositionen zweier Elektronen entsprechen die Austauschintegrale.

Sind in (31) zwei Elektronen zwischen den Atomen A und B
vertauscht, so erhält man

(AB) fua(l,2,3,4)ub(5,6,7,8)uc(9)ud(10)ue(ll)uf(12)
¦> (33)
Hua(5,2,3,4)ub(l,6,7,8)uc(9)ud(10)ue(ll)uf(12)dx

Für alle anderen Atompaare gibt es ein Austauschintegral vom selben

Typus. Beim Äthylen sind im ganzen 15 Möglichkeiten zu
berücksichtigen: (AB), (AC), (AF), (BC), (BF), (EF). Da die
Permutation eine ungerade ist, so wird v)T —1 sein.

Es ist nun aber zu bemerken, daß die Transposition zweier
Elektronen zwischen zwei mehrelektronigen Atomen wie z. B. A und B
beim Äthylen auf verschiedene Weise realisiert werden kann. Man
kann z. B. das Elektron 1 von A mit dem Elektron 5 von B oder das

Elektron 1 von A mit dem Elektron 6 von B vertauschen usw. Jeder
dieser Transpositionen entspricht aber ein Austauschintegral (33).

Allgemeiner : wenn die Anzahl der Elektronen des Atoms A gleich na,

diejenige von B gleich nb ist, so ist die Zahl der Transpositionen
zwischen den Atomen A und B gleich nanb. Ebenso groß ist die Anzahl der
Bildungsmöglichkeiten des Austauschintegrals (33). Für das
Spinvalenzverfahren ist nun charakteristisch, daß einem Atompaar nur
ein Austauschintegral entspricht, unabhängig davon welche zwei
Elektronen zwischen diesen Atomen vertauscht worden sind. Um
diese Unabhängigkeit des Austauschintegrals von den vertauschten
Elektronen auch formal zum Ausdruck zu bringen, kann man (33)
auch so schreiben

(AB) - JuaubucudueUfHTabuaubucudueUfdx (34)
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Tab bedeutet hier: ein Elektron des Atoms A soll mit einem Elektron
des Atoms B vertauscht werden.

Selbstverständlich werden durch die Permutationen der
Elektronen in (31) nicht nur die Koordinatenfunktionen, sondern auch der

Spinanteil berührt.
Ist Q E, so bleibt der zweite Klammerausdruck in (31)

unverändert. Für die Transposition eines Elektrons von A mit einem Elektron

von B, Q Tab erhält man dagegen

(35)

AjBjC^^iFj.T^A-jB^DjE^j-AjBjdDjE^j.AjAjB^C^jE^

D. h. ein Elektron mit der Spinfunktion a (hier A,) des Atoms A wird
vertauscht mit einem Elektron mit der Spinfunktion ß (hier B2)
des Atoms B. Ähnlich verfährt man mit den anderen Transpositionen
Q Tac, Tad, Tbc, Höhere Permutationen bleiben auch hier
unberücksichtigt. Was hier bezüglich der Permutationen der Elektronen
des Integrals (31) gesagt wurde, gilt auch für die Permutationen in
allen anderen Integralen von Typus (31).

Um diese Ergebnisse in einem einzigen der Relation (29)
entsprechenden Ausdruck zusammen zu fassen, beachte man, daß in dem

Spinprodukt (<f1 <p,) alle Spinanteile der 400 Integralen (31) berücksichtigt

sind. Somit können die Permutationen direkt, sowie sie

bereits in (29) angedeutet sind, an der Spinfunktion cpt durchgeführt
werden.

Ist also in (29) Q die identische Permutation, so erhält man einfach

C (9, 9,) (36)

Für die Vertauschung zweier Elektronen zwischen den Atomen A
und B kann man schreiben

-(AB) (9, Tab9l) (37)

Tab 9i bedeutet hier, daß ein Elektron des Atoms A mit einem Elektron

des Atoms B in allen 20 Summanden (30) zu vertauschen ist.
Nach (37) soll das Resultat noch mit tp, multipliziert werden. Das

entspricht der Vertauschung zweier Elektronen in den erwähnten
Integralen.

Wir haben oben festgestellt, daß bei der Vertauschung zweier
Elektronen zwischen zwei mehrwertigen Atomen nanb Transpositio-
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nen zu berücksichtigen sind. Anderseits bezieht sich aber Tab nur auf
eine Vertauschung von zwei Elektronen. Um alle Transpositionen
zwischen A und B zu berücksichtigen, muß man (cp, Tab tp,) durch

(38)

(9i Ti, na + i 9i) 1- (9i T2, na + i 9i) "I • • • + (9i Tnai na + nb 9i) 2 (9i Tab 9i)
Tab

ersetzen, wobei das erste Glied die Vertauschung des ersten Elektrons
des Atoms A mit dem (na+ l)-ten Elektron des Atoms B zum Ausdruck
bringt. Das letzte Glied repräsentiert die Vertauschung des na-ten
Elektrons des Atoms A mit dem (na+nb)-ten Elektron des Atoms B.
Statt (37) erhält man dann

- (AB) "2 (9, Tab 9,) ,3g>
tab

Da die Vertauschungen zweier Elektronen zwischen zwei Atomen
gleichwertig sind, kann man zur Vereinfachung von (39) die Summe
aller Transpositionen mit tab bezeichnen, also

tab S Tab (40)
^ab

setzen. Statt (39) kann man auch

-(AB) (9, tab9,) (41)

schreiben.

Berücksichtigt man schließlich die Vertauschungen zwischen den 14

anderen Atompaaren des Äthylens, so erhält man

(42)

-[(AB)(9,tab9,)4(AC)(9,tac9,) l + (EF) (9,tef9,)] -£ (AB) (9ltabÇl)
a,b

Die Summe ist also über alle Atompaare zu erstrecken.
Den ersten Bestandteil des Elementes Mn der Säkulardeterminante

erhält man somit aus (36) und (42)

ftoHtodx C(9,9,) — S (AB) (9,tab9i) (43)J a,b v '

Um den zweiten Summanden des Elementes Mn zu ermitteln, kann
die gleiche Überlegung gemacht werden. Statt der Austauschintegrale
bekommt man hier die A-Integrale

109



Aab j uaubucudueUf.TabuaubucudueUfdT, (44)

wo Tab die gleiche Bedeutung hat wie vorher. Auch hier sind im Fall
des Äthylens den 15 Atompaaren 15 entsprechende A zu
berücksichtigen.

Für das vollständige Element Mn der Säkulardeterminante erhält
man schließlich

Mu [C(9,9i) — 2 (9itab9,) (AB)] — s[(9,9i) — 2 (9,tab9,) Aab] (4c-,
a,b a,b ^s>

Genau dieselbe Ableitung kann aber auch mit den anderen
Matrixelementen gemacht werden. Die Anzahl der Integrale (31) kann
natürlich verschieden sein von der vorherigen, aber diese Zahl tritt
in (45) in expliziter Form noch gar nicht auf, sondern wird erst
nachträglich ermittelt werden. Formal ändert sich an dem Ausdruck nichts,
wenn man ein beliebiges Molekül betrachtet. Somit kann man ganz
allgemein für ein Element Mik der Säkulardeterminante schreiben

M;k =[C (<pi<pk) — 2 (9itab9k) (AB)] - z [(<pi<pk) — 2 (9*tab9k) Aab] (46)
a,b a,b

Selbstverständlich muß die Summation über alle Atompaare erstreckt
werden.

12. Austauschoperationen und Skalarprodukte

In (46) haben wir zwar eine allgemeine Formel zur Berechnung der
Matrixelemente der Säkulargleichung erhalten, jedoch sind die
numerischen Werte der Integrale sowie ihrer Koeffizienten noch unbekannt.
Es soll zunächst die Wirkung der Austauschoperatoren auf die
verschiedenen Funktionen tp berechnet werden. Wie die Wirkung von
Tab auf ein Spinprodukt zu ermitteln ist, haben wir bereits in (35)
gesehen. Ähnlich sollte man auch die übrigen Elektronenvertau-
schungen zwischen den Atomen A und B berechnen, denn tab 2 Tab

repräsentiert ja die Summe aller Vertauschungen von zwei Elektronen
zwischen A und B. Diese Operationen sind gliedweise an den
ausmultiplizierten Invarianten (30) durchzuführen. Das ist aber ein sehr
umständliches Verfahren. Zum Glück kann die Wirkung der
Austauschoperatoren viel einfacher dargestellt werden.
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Nach Heitier wird die Austauschoperation tab direkt an den
Spininvarianten vorgenommen nach folgender Regel: Je ein Valenzstrich,
der von A ausgeht (oder dort endigt), vertauscht seinen Endpunkt
(Ausgangspunkt) mit je einem Valenzstrich, der von B ausgeht (oder
dort endigt). Der auf A und B bezogene Richtungssinn bleibt dabei
unverändert. Ein Valenzstrich zwischen A und B vertauscht nur seine

Richtung.
Algebraisch läßt sich diese Regel so formulieren

tab9 — Pab9 + S PaxPby9
X,Y

[AY] [BX]
[AX] [BY] (47)

Hier ist <p eine der Spininvarianten, auf die der Operator tab

wirken soll. pab ist die Anzahl Valensztriche in 9 zwischen den Atomen
A und B. X und Y sind andere in tp auftretende Atome, mit denen A
und B durch Valenzstriche verbunden sind. pax und pby repräsentieren
die Anzahl dieser Valenzstriche. Die Summation ist über alle Atome
X und Y zu erstrecken mit Ausnahme von A und B.

Wegen der Wichtigkeit dieser Operationen für die ganze
Energieberechnung sollen hier an zwei Beispielen die Rechnungen
durchgeführt werden. Das erste ist ein System von sechs einelektronigen
Atomen, das in der Mesomeriemethode auch zur Approximation der
Energie des Benzols verwendet wird. Als zweites Beispiel sollen die
Austauschoperationen des Äthylens angegeben werden.

Sechselektronensystem. Die unabhängige Basis besteht aus fünf
Valenzdispositionen

(48)

A A A A A
F \b f/ B F B V/ ^B F^ \b

D D D D D

tf fa ?3 % Y5

Die Valenzstriche sind lexikographisch geordnet. Im ganzen sind
15 Wechselwirkungsintegrale und dementsprechend ebensoviele

Austauschoperatoren zu berücksichtigen. Doch sollen hier nur die
Wechselwirkungen zwischen Nachbaratomen (als Approximation des Benzols

gedacht) berücksichtigt werden. Dann bleiben bloß die Operatoren tab
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tbc. tcd, tde, tef, tfa übrig. Ihre Wirkung auf die erste Valenzdisposition

tp, ergibt

tab ([AB] [CD] [EF]) [BA] [CD] [EF] - [AB] CD FF

tbc ([AB] [CD] [EF]) [DB] [CA] [EF] +9,0

tcd ([AB] [CD] [EF]) [AB] [DC] [EF] - [AB] [CD] [EF]
tde ([AB] [CD] [EF]) [AB] [FD] [EC] +96

tef ([AB] [CD] [EF]) [AB] [CD] [FE] - [AB] [CD] [EF]
tfa ([AB] [CD] [EF]) [AE] [CD] [BF] +9«

— ?i
9,+93

~9' (49)
9i+9s

Die Anwendung der obigen Regel, sei es in der geometrischen oder

algebraischen Form, ist hier äußerst einfach. Die Wirkung des

Austauschoperators tbc auf <px besteht darin, daß die zwei Atome, die mit
B und C verbunden sind, einfach ihre Plätze vertauschen: A nimmt
den Platz von D ein und D kommt an Stelle von A. Wenn die zwei
Atome auf die sich der Operator bezieht in der selben Klammer sind,
wie z. B. in tab [AB] [CD] [EF], so werden A und B ihre Plätze einfach
vertauschen. Hier wurde übrigens von der Eigenschaft [AB] - [BA]
Gebrauch gemacht

Mit den Operatoren tbc, tde, tfa erhält man aus cp, Spininvarianten
oder Valenzdispositionen tp10, tp6, cp8 die gar nicht zur unabhängigen
Basis gehören. Diese müssen auf Grund der Relation (II. 28) auf die
unabhängige Basis zurückgeführt werden

E1 ^Z E

D

3 F

0
C E

D D

[AB] [CD] [EF] + [AD] [BC] [EF] + [AC] [DB] [EF] 0

n t V3 — y. o 0

(50a)

(50b)

(50c)

Es sei noch bemerkt, daß man häufig die Entkreuzungsoperationen
(50) mehrmals anwenden muß, um alle bei den Austauschoperationen
erhaltenen Invarianten auf die unabhängige Basis zurückzuführen.

Bei den anderen vier Valenzdispositionen sind die
Austauschoperationen ebenso einfach wie oben. Es genügt also, wenn wir die

Ergebnisse hier einfach zusammenstellen.
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tab9i — 9i tab92 92+9, tab93
tbc9i 9, + 93 tbc92 — 9-' tbc93 — 93

tcd9i — «Pi tcd92 9: + 94 tcd93 9i +
tde9i 9, + 95 tde92 — 92 tde93 92 +

tef9i -=— 9i tef92 92 + 93 tef93 — 93

tfa9i 9, + 94 tfa92 — 9 2 tfa93 92 +
tab94 9i A 94 tab9s — 9s
tbc94 92+94 tbc95 92 + 9s
tcd94 -94 tCd9s 9i + 95

tde94 92+94 tde9s — 95

tef94 9i + 94 tef9s 9i + 9s
tfa94 -94 tfa9s 92+9s

(51)

-49s + 4(9, + 94)

-497 - +4(9, + 95)

-495

Im zweiten Beispiel des Äthylens sind insgesamt auch 15

Wechselwirkungen, von denen wir nur diejenigen, die sich auf Nachbaratome
beziehen, berücksichtigen wollen, also tab> tae> taf> tbCi tbdi tcd; tef.
Die den sechs Valenzdispositionen entsprechenden Invarianten der
unabhängigen Basis sind in (25) bereits angegeben. Berechnen wir die

Wirkung der sieben Operatoren auf die erste Funktion
(52)

tab ([AB]4[CD] [EF]) 4[ABP[BA] [CD] [EF] -49l
tae ([AB]4[CD] [EF]) 4[AB]3[AF] [CD] [EB] - 494

taf ([AB]4[CD] [EF]) 4[AB]3[AE] [BF] [CD]
tbc([AB]4[CD] [EF]) 4[AB]3[DB] [CA] [EF]
tbd([AB]4[CD] [EF]) 4[AB]3[CB] [AD] [EF]
tcd ([AB]4[CD] [EF]) [AB]4[DC] [EF] - 9,
W ([AB]4[CD] [EF]) [AB]4[CD] [FE] -9,

Für die Wirkung von tab erhält man ein analoges Resultat wie beim
ersten Beispiel, mit dem Unterschied, daß hier das Austauschergebnis
mit 4 multipliziert erscheint, weil in <p1 vier Valenzstriche zwischen
A und B liegen. Bei der Wirkung von tbc wo die zwei Atome B und C

in verschiedenen Klammern sind, kann man ähnlich verfahren wie
bei einwertigen Atomen. Schreibt man tpj in der Form [AB] [AB] [AB]
[AB] [CD] [EF], so wird das mit B verbundene Atom A der ersten
Klammer mit dem mit C verbundenen Atom D der fünften Klammer
vertauscht werden, dann wird A der zweiten Klammer mit D der
fünften Klammer vertauscht werden usw., im ganzen also sind vier
Vertauschungsmöglichkeiten zu beachten, was zu oben angegebenem
Resultat führt. Auf diese Weise können alle Austauschoperationen
sehr einfach durchgeführt werden. Die Austauschoperationen der
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anderen fünf Valenzdispositionen bieten auch keine Schwierigkeiten,
nur müssen gewisse Entkreuzungen öfters vorgenommen werden.
Wir geben für die anderen nur das Resultat an.

(53)tab92 ¦¦ -492 tab93 92 — 293

tae92 ' 4(9,+92+93+ 94+95) tae93 393 — 95 + 39,

taf92 4(92+93) taf93 -93
tbc92 4(92+93) tbc9s -93
tbd92 4(91+92+93+94+95) tbd93 393 — 9+-1-39,

tcd92 : 9i+92 tcd93 93 + 94

tef92 - 9i+92 tef«P3 93+95

tab94 91—294 tab9s 9i—29s tab9e 9i^49
tae94 — 9, + 39, tae95 " - 493- 39s tae96 — 96

taf94 * -94 taf9s - 493+4(f '5 + 396 taf9e " 96

tbc94 ¦ 493+494 + 395 tbc95 : -9s tbc96 — 9s

tbd94 - — 493—396 tbd95 —91 + 395 tbd9ö — 96

tcd94 -94 tcd9s : 9i+9s tcd96 + 96
W«P4 * 91+94 tef9s -95 tef96 1- 96

-294+295+296

Wie wir soeben gesehen haben, erhält man bei der Berechnung der
Austauschoperationen durchwegs lineare Ausdrücke von Spininvarianten.

In der Formel (46) wird also in jeder Klammer (tp; tab <pk) das

tab <pk ebenfalls durch einen linearen Ausdruck ersetzt, der selbstverständlich

noch mit tp; zu multiplizieren ist. D. h. nach der Berechnung
der Austauschoperationen sind die Koeffizienten aller Integrale in
(46) durch Skalarprodukte der Form (tp; tpk) gegeben, deren numerische
Werte nun zu berechnen sind.

Betrachten wir zu diesem Zweck wiederum die vorigen zwei
Beispiele. Beim Sechselektronensystem sind die Produkte der Funktionen
«Pi, 92, ?3, ?4, 9j zu ermitteln. Der direkteste Weg besteht darin, die

Produktbildung gliedweise an den ausmultiplizierten Invarianten
vorzunehmen bei gleichzeitiger Beachtung der Orthogonalitäts-
relationen der Spinfunktionen. Die den Valenzbildern (48) entsprechenden

ausmultiplizierten Spininvarianten sind

(54)

9, =4=[A,B2C1D2E,F2-A2B,CiD2E,F2-A,B2C2D,E,F,+ A,B,C,D,E,F,
V8

-A,B2CiD2E2Fi+A2BiCiD2E2Fi+AiB2C2DiE2Fi-A2BiC2DiE2Fi]

92 X: [A,B,C2D,E2F2- AjB^DiEjFi - A,B2C,D,E2F2 + A,B2C,D,E2F,

-AiB,C2D2EiF2+A2BiC2D2E1F1+AiB2CiD2E,F2-A2B2CiD2EiF1]
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93 — [A,BiC2D2E,F2-A2B1C2D,E1F2-A,B2C1D2E,F2 + A2B2C,D,E,F2
V8

- AiBAD^Fi+A.BiC.DiE^+AiBXiDjE.Fi-A^XiDiE.F,]

94 ^=[A,B,C,D2E2F2-A2B,C1D2E2F,-A,B2C,D2E,F2 + A2B2C1D2E,F1

-AiBiC.DiE^+A.BiC^iE.Fi+AiBjC.DiEiF.-A.B.C.DjEiFJ

95 -L [A,B,C,D,E2F2 - A2B,C,D,E2F2- A,B2C2D,E2F, + A^C^E^F,
V8

-A1B2C,D2E1F2+A2B1C1D2E,F2 + A1B2C2D2E1F1-A2B,C2D2E1F,]

Den ersten Ausdruck z. B. erhält man durch Ausmultiplizieren von

9, [AB] [CD] [EF] -4(A,B2-A2B,) .4(C,D2-C2D,). ^=(E,F2-E2F,)
\ — \ — \ —

Bei der Bildung des Produktes (<f1 tp,J auf Grund von (54) ergeben
alle gemischten Teilprodukte Null wegen der Orthogonalität der
Spinfunktionen, und die übrigen acht ergeben die Einheit. Das Gleiche

gilt auch für <p^ 9^ 9^ 95. Bei der Bildung des Produktes (9, 92);

um noch ein weiteres Beispiel zu nennen, sind nur zwei Teilprodukte
gleich der Einheit, nämlich A] Bj Cf D2 Ef F22 und A\ Bf C22 Df E\ Ff;
alle anderen sind gleich Null. Man erhält für die numerischen Werte
der verschiedenen Skalarprodukte dementsprechend

l
9i93 9i94 9i95 9293 9294 929s 2 (55)

P395 9495 4

Wie bei den Austauschoperationen ist auch hier diese direkte
Berechnung der Skalarprodukte viel zu umständlich und kann bei

größeren Systemen nicht in Frage kommen. Einfacher ist folgender
Weg:

Oben erhielten wir für das Quadrat der Spininvarianten durchwegs
die Einheit. Das Gleiche gilt aber auch für größere Systeme bestehend

aus Atomen mit je einem Elektron: alle 9? sind gleich der Einheit.
Die anderen erhält man auf Grund der Relation (50) ; indem man sie

der Reihe nach mit 9^ 93i 9,0 multipliziert, bekommt man die drei
Gleichungen

(9,9,) + (939,) - (9,o9i) 0

(9,93) + (9393) — (9,093) 0 (56)

(9i9io) + (93910) — (9io9io) 0
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Relationen von diesem Typus sind aber in genügender Anzahl
vorhanden, um alle Skalarprodukte zu bestimmen, falls die 9? schon
bekannt sind.

Im allgemeinen Fall, d. h. bei Systemen von Atomen mit mehreren
Elektronen reichen die Relationen (56) nicht aus, um alle numerischen
Werte der Skalarprodukte zu ermitteln. Aus den Austauschoperationen
kann man aber in genügender Zahl weitere Relationen gewinnen, wenn
man den hermitischen Charakter der Austauschoperatoren in
Betracht zieht. Es gelten dann folgende weitere Beziehungen

9i tab 9k 9k tab 9i
9i tbc 9k 9k tbc 9i (57)

Bei Verwendung solcher Relationen kann man die Skalarprodukte
auch in den etwas komplizierteren Fällen ermitteln. Es muß
allerdings gleich bemerkt werden, daß die Rechnungen bei größeren
Molekülen so weitläufig und unübersichtlich werden, daß die Ermittlung
der (9j <pk) praktisch wieder unmöglich wird.

Bei kleineren Molekülen, wie in unserem vorher behandelten zweiten
Beispiel des Äthylens, deren unabhängige Basis nur aus 6

Valenzdispositionen besteht, ist die numerische Berechnung der
Skalarprodukte auf diesem Weg ohne Schwierigkeit durchführbar. Zu diesem
Zweck nehmen wir zunächst an, daß (rpl 9J auf 1 normiert ist. Die
zweite Valenzdisposition 92 unterscheidet sich von 9, nur durch eine
andere Verteilung der Valenzstriche zwischen den vier einvalentigen
Atomen. Bei Systemen von Atomen mit je einem Elektron sind aber
alle (9; 9i) 1, d. h. sie sind unabhängig von der Verteilung der Valenzstriche.

Das Gleiche gilt auch hier, bezüglich der Valenzstriche, die
ausschließlich zwischen einelektronigen Atomen disponiert sind;
somit ist auch (92 92) =1. Aus Symmetriegründen haben wir ferner

94 9§. (9194) (9i9s). (9294) (929s). (9394) (939s)> (949fi) (959t)

Die übrigen Werte werden nach (57) ermittelt :

(58)

(94tab9i) («PiWu)" — 4(949i) (9i9i) — 2(9,94). (9194) —- (9i9s)

(93tab92) (92tab9s) : — 4(9392) (9292) —2(9293), (9293)

4tae9i) (9itae94) : — 4(9+94) — (9i9i) + 3((pi9+), (9494)- - (959s)
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3taf92) (92taf93): 4(9392) + 4(9393) — (<p2<p3), (9393)

2tcd9i) (91W92): — 2(929i) (9,9,) + (9192), (9i92>

3tcd9i) (9itcd93): —<939i) (9i9s) + (9194). (9193)

(93tcd92) (92tcd93): (939,) + (939,) (9293) + (9,94), (9294) ^ (929=)

(94tcd93> (93tcd94): (9493) + (9494) — (9394), (9394) —- <939s)

(95tcd94> (94tcd9s): —(9594) (9491) + (949s), (949s)

(94tbd9i) (9itbd94): — 4(949s) — 4(9,93) — 3(9,9,,), (9,9,,) 0

(96tae9i) (9itae9e): — 4(9694> — (9i9e). (949s) 0 (959,,)

(9etab92) (92tab96) : - 4(9b92) (?29i) + 4(9293)+
1

h 2(9,94) +2(9295) +2(9296), (9296)
4

(9staf93) (93taf9s): —(9s93)=4(9393)+4(9395)+3(9396). (939e) —jg

(9fctbd94) (94tbd96): — 4(9693) - 3(969<,) — (949,,), (9„96) ^
Nach dem die Berechnung der Austauschoperationen und der

Skalarprodukte bekannt ist, sollten auch die verschiedenen Integrale C,

(AB) und Aab ermittelt werden. Damit würden alle Bestandteile der
allgemeinen Formel explizite verfügbar sein. Eine direkte Berechnung
dieser Größen ist bei dem heutigen Stand der Theorie nicht möglich.
Man ist gezwungen, sie auf Grund von thermochemischen Daten
festzulegen. Wir geben hier die Werte der Coulomb- und Austauschintegrale,

die von Heitier1 für die Berechnung der Energie von
Kohlenwasserstoffen verwendet wurden

C (AB) C + (AB)

c -c 44 88
C -H 77 63

H-H 11,5

Die Buchstaben der ersten Kolonne sind chemische Symbole. Alle
Werte sind in kcal/mol ausgedrückt. Im Fall der H—H Wechselwirkung

ist nur die Summe der Coulomb- und Austauschintegrale bekannt.
Es sei noch bemerkt, daß diese Werte sich auf eine Verdampfungs-

1 W. Heitler, Helv. 38, 5 (1955).
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wärme des Diamanten von 170 kcal beziehen. Die A — Integrale werden
bei der Energieberechnung meistens vernachlässigt.

13. Aufstellung der Säkular- und Bindungsgleichung

Die Energieberechnung ist nun soweit vorbereitet, daß die
Säkulardeterminante aufgestellt werden kann. Betrachten wir den Fall
des Sechselektronensystems.

Wie bereits erwähnt, werden Systeme von Atomen mit je einem
Elektron in der Mesomeriemethode häufig zur Approximation der
Energie konjugierter Moleküle verwendet. Durch diese radikale
Vereinfachung des Problems wird erreicht, daß auch die
Energieberechnung größerer Moleküle, wie z. B. Benzol, Naphtalin usw., der

Rechnung zugänglich wird. Selbstverständlich können die so erhaltenen
Energien nur als Relativwerte eine Bedeutung haben, die man nicht
ohne weiteres mit den experimentell erhaltenen Bildungsenergien
vergleichen kann. Trotzdem können solche Rechnungen von Interesse
sein, z. B. für die Beurteilung der Beständigkeit der betreffenden Moleküle.

In dieser Approximation wird also die Energie des Benzols mit
einem System von sechs einelektronigen Atomen berechnet. Um das

Problem aber noch weiter zu vereinfachen, vernachlässigt man auch
die verschiedenen A — Integrale, die in (46) vorkommen. Eine weitere
Vereinfachung besteht darin, daß man statt der 15 theoretisch
möglichen Wechselwirkungen nur diejenigen zwischen Nachbaratomen
betrachtet; die anderen sind als weniger wichtig vernachlässigt. Es
bleiben also nur die sechs Austauschintegrale (AB), (BC), (CD), (DE),
(EF) und (FA) übrig. Unter dieser Voraussetzung haben wir nach der

Störungsrechnung folgendes Gleichungssystem zu lösen:

Muc, + M,2C2 + M13c3 + M,4c4 + M,5c5 0

M2,c, + M22c2 + M23c3 + M24c4 + M25c5 0
(59)

M5,c, + M52c2 + M53C3 + M54C4 + M55C5 0

Die entsprechende Säkulardeterminante lautet
M,, M,2 M,5
M2, M22 M25

M5, M52 M55

0 (60)
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Die Elemente Mik der Säkulardeterminante werden nach (46)
berechnet. Unter Beachtung der obigen Voraussetzungen sind sie durch
Ausdrücke der Form (61) gegeben.

M„ (9,9,) C -[(9,tab9l) (AB) + (9,tbc9l) (BC) + (91W,) (CD) +

- (9itde9i) (DE) + (9itef9i) (EF) + (9itfa9i) (FA)] - z (9,9,)
M,2 (9i92) C -[(9,tab92) (AB) + (9,tbc92) (BC) + (ç.tdç,) (CD) + (61)

+ (9itde92) (DE) + (9itef92> (EF) + (9itfa92) (FA)] - c (9,9,)

Führt man hier zunächst die Ergebnisse der Austauschoperationen (51)

ein, so entstehen Ausdrücke, in denen alle Koeffizienten der Integrale
durch Skalarprodukte repräsentiert sind :

(62)
Mn (9,9,)C - |- (9,9,) (AB) - [(9,9,) + (9,93)] (BC) - (9,9,) (CD)

-**[(<Pi9i) + (9i95)](DE)-(9,9,)(EF) +[(9,9,) + (9,94)] (FA) |-£(9,9,)
M,2 (9i92)C-|[(9i92) + (9i95)] (AB) -(9,92) (BC) +[(9,9,) + (9,9,)] (CD)

-(9,9,) (DE) + [(9,92) - (9,93] (EF) - (9,92) (FA)| - z (9,9,)

Die Einführung der numerischen Werte der Skalarprodukte (55)

ergibt die Elemente der Säkulardeterminante, in denen neben s nur
noch die Integrale unbestimmt sind.

M„ C -r(AB)-i/2(BC)+(CD)-y2(DE)+(EF)-y2(FA)-£ (63)

m,2 - 1/4C+ y4(AB)+ y4(BC)+ y4(CD)+ h(de) + %(ef)+ y4(FA)-y4s
m,3 - y2c- y2(AB)~ y2(BC)- y2(CD) + %(de)- h(ef) + h(fa) + y2z

m,4 - y2c- y2(AB) + y4(BC)- y2(CD) + y4(DE)- h(ef)- h(fa) + y2e

m,5 - -y2c-y2(AB)+ y4(BC)-y2(CD)-y2(DE)-y2(EF)+ y4(FA)+ y2z

M22 C-y2(AB)+(BC)-y2(CD)+(DE)-y2(EF)+(FA)-E
M23 - y2c+ y4(AB)- vi(BC) + y4(CD)- h(de)- h(ef)- y2(FA) + y2E

M24 - - y2c+ >/4(AB)- y2(BC)- vi(CD)- y2(DE) + y4(EF)- %(fa) + y2z

M25 - HC- H(AB)- H(BC) + y4(CD)- H(DE) + y4(EF)- >/2(FA) + y2z

M33 ¦ C-H(AB)+(BC)-H(CD)-H(DE)+(EF)-H(FA)-e
M34 %C+ H(AB) + H(BC) + % (CD) + y4(DE) + y4(EF) + H(FA)- >/4e

M35 - y4c+y4(AB)+y4(BC)+y4(CD)+y4(DE)+y4(EF)+y4(FA)-y4E
M44 C-H(AB)-H(BC)+(CD)-H(DE)-H(EF)+(FA)-e
M45 y4C+ H(AB) + y4(BC) + y4(CD) + y4(DE) + %(EF) + y4(FA)- y4e

M55 - C + (AB)-H(BC)-H(CD)+(DE)-H(EF)-H(FA)-e

Die Säkulardeterminante (60) ist symmetrisch in Bezug auf die
Hauptdiagonale. In (63) sind somit nur Elemente der Hauptdiagonale und
die von ihr rechts stehenden Elemente angegeben.
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Die Atomabstände zwischen Nachbaratomen des Benzols sind überall

gleich groß. Anderseits sind die Austauschintegrale Funktionen
der Atomabstände, die somit gleichgesetzt werden können (AB)

(BC) (CD) (DE) - (EF) (FA) A. Setzen wir ferner X -^-
so kann die Determinante (60) in der Form (60a) geschrieben werden.

(60a)x + 2 FF ***X
3

"2X"2
1 3

~2X~2 ~k* 3

~2

i-i *F xx 3 1 3

^2X^2 "ï- 3

2

1 3

2X~2 -U-Î2 2
X xx +34X+2 4X

3

2

1 3

2X^2 "2X"2 1x +
3

4X+2 X 4"X
3

2

1 3

2X"2 1x 3

~2X~2 1x+34X+2
1 v 3

4X+2 X

Die Ausrechnung der Determinante ergibt eine Gleichung fünften
Grades mit fünf Wurzeln. Im Fall von Systemen von einelektronigen
Atomen können die Wurzeln berechnet werden, ohne daß die numerischen

Werte der Integrale bekannt sind.
Die Berechnung der Determinante erfolgt am besten mit

Rechenmaschinen. Im obigen Fall kann man zwar durch einige Umformungen
(60a) in einfachere überführen, wie wir das bei der sogenannten
Bindungsdeterminante noch zeigen werden. Doch sind solche

Umformungen bei größeren Systemen viel zu kompliziert, um praktisch
von Bedeutung zu sein.

Nach der Gleichung (46) können also die Elemente der Säkulardeterminante

berechnet werden, insofern man die Austauschoperationen,
die Skalarprodukte sowie die Coulomb- und Austauschintegrale kennt ;

die A — Integrale werden ja meistens bei der Energieberechnung
vernachlässigt. Falls man sich allein für die Energie des Moleküls
interessiert und die Berechnung der Elektronenverteilung zur Seite

läßt, ist es vorteilhaft, die Säkulargleichung (59) durch ein ihr äquivalentes

Gleichungssystem, die sogenannte Bindungsgleichung zu
ersetzen, deren Handhabung bedeutend einfacher wird, ohne die Werte
der Störungsenergie zu verändern.

Die Bindungsgleichung hat den großen Vorteil, daß zu ihrer
Aufstellung nur die Berechnung der Austauschoperationen und die Kenntnis

der Integrale vorausgesetzt werden müssen; die Skalarprodukte
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treten in ihr überhaupt nicht auf. Die Determinante der Bindungsgleichung

ist zwar im Gegensatz zur Säkulardeterminante nicht
symmetrisch; sie hat aber den weiteren Vorteil, daß die überwiegende
Zahl ihrer Elemente - vor allem bei größeren Systemen - verschwinden,
was vom rechnerischen Standpunkt selbstverständlich eine große
Vereinfachung darstellt.

Zur Aufstellung der Bindungsgleichung geht man wieder von einer
unabhängigen Basis der Eigenfunktionen (II. 26) aus. Um die
Überlegungen möglichst einfach zu gestalten, betrachten wir wieder das

Beispiel des Systems von vier Atomen mit je einem Valenzelektron.
Im ersten Bestandteil des Gleichungssystems (6), d. h. in

J9, H 9, dT (10)

repräsentiert die Funktion <]>1 rechts und links von H eine vollständige
Moleküleigenfunktion (II. 26) mit den 24 Permutationen der
Elektronen und mit den vier Spinfunktionen (IIa), die der Valenzdisposition

in (3) entsprechen. Statt <\i1 führen wir links von H die Partial-
lösung des Vierelektronensystems

ua(l) ub(2) uc(3) ud(4) (64)

ein, was übrigens schon in (16) durchgeführt ist, mit dem Unterschied,
daß jetzt auch die Spinfunktion a(l)ß(2)a(3)ß(4) wegfällt. Die Rolle
der Spinfunktion war ja eigentlich die Berücksichtigung der Nicht-
unterscheidbarkeit der Elektronen im Zusammenhang mit dem
Pauliprinzip, was hier aber bereits erfüllt ist, so daß eine Multiplikation
mit der Spinlosen Funktion erlaubt wird. Statt (13) erhält man somit
den Ausdruck

/ ua(l)ub(2)uc(3)ud(4) H (va- 9b - «PC ^ <Pd) d-r (13a)

oder vier Integrale vom Typus

f ua(l)Ub(2)uc(3)ud(4) H -L 2-*iQQua(l)ub(2)uc(3)ud(4)<x(l)ß(2)a(3)ß(4)dT
J \ A

mit den verschiedenen Spinanteilen (IIa).
Durchläuft man die Reihe der entsprechenden Überlegungen bis

Gleichung (23), so erhält man für den vollständigen Koeffizienten von
ct der ersten Gleichung (6) statt (23) den Ausdruck
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(65)
9,C -[(AB)tab9, + (AC)tac9, + (AD)tad9, + (BC)tbc9, + (BD)tbd9, +

+ (CD)tcd9,] — e[9, — {Aabtab9, + Aactac9, + Aadtad9, + Abctbc9, +
Abdtbd9i T Acdtcd9i']

Eine analoge Überlegung ergibt für den Koeffizienten von c2 derselben

Gleichung (6)

(66)
92C-[(AB)tab92 + (AC)tac92 + (AD)tad<p2 + (BC)tbc92 + (BD)tbdç2 +

+ (CD)tcd92] - e[92 — |Aabtab9, + Aactac92 + Aadtad92 - Abctbc92 +
+ Abdtbd92 + Acdtcd92 }]

Indem wir die A — Integrale vernachlässigen und nur Wechselwirkungen

zwischen Nachbaratomen betrachten, erhält man für die erste

Gleichung (6)

{(C - e)9, - [(AB)tab9, + (BC)tbc9, + (CD)tcd9l + (DA)tda9,]}c, + (67)
+ {(C-E)92-[(AB)tab92 + (BC)tbc92 + (CD)tcd92 + (DA)tda(pJ)c, 0

Die zweite Gleichung (6) liefert dieselbe Relation.
Diese können wir jetzt nach 9, und 92 ordnen, nachdem die

Austauschoperationen berechnet sind. Das ergibt

(68)
{[(C - e) + (AB) - (BC) + (CD) - (DA)]c, + [- (AB) - (CD)]c2}cp, +

+ {[- (BC) - (DA)]c, + [(C - e) - (AB) + (BC) - (CD) + (DA)]c2)92 0

Die Spinfunktionen 9, und 92 sind linear unabhängig. Das heißt aber,
daß eine Relation a, 9, + a 2 92 0. w0 ai und a2 irgendwelche
Konstanten sind, nur dann erfüllt ist, wenn die aj verschwinden. Aus (68)
erhalten wir somit ein System von zwei Gleichungen für die Unbekannten

c, und c2.

[(C - e) + (AB) - (BC) + (CD) - (DA)]c, + [- (AB) - (CD)]c2 0

[- (BC) - (DA)]c, + [(C - z) - (AB) + (BC) - (CD) + (DA)]c2 0 [ '

Dieses System von homogenen linearen Gleichungen ist aber nur dann
erfüllt, wenn die Determinante der Koeffizienten verschwindet. Durch
Nullsetzen dieser Determinante erhält man dieselben s -Werte wie
aus der Säkulardeterminante.

Die gesuchte Energie kann aber auch dann noch berechnet werden,
wenn man statt c, und c2 die <p1 und 92 als Unbekannte betrachtet.
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Die Gleichung (67) ist nämlich auch dann befriedigt, wenn folgende
Gleichungen erfüllt sind.

(C - £)9, -[(AB)tab9i + (BC)tbc9, + (CD)tcd9, + (DA)tda9l] 0

(C - £)92 - [(AB)tab92 + (BC)tbc92 + (CD)tcd92 + (DA)tda92] =0 [ >

Dies sind die sogenannten Bindungsgleichungen im einfachsten Fall
von vier einvalentigen Atomen.

Was wir hier für vier Elektronen erhalten haben, kann auch im
allgemeinen Fall verwendet werden. Die allgemeine Form der Bindungsgleichung,

gültig für Systeme von ein- und mehrvalentigen Atomen,
schreiben wir nach (HRW) in der Form

e(l - S Aabtab) 9k (C - 2 (AB)tab) 9k
a,b a,b (71)

Das ist ein System von f linearen Gleichungen für die f Unbekannten
9k, wo f die Anzahl Valenzdispositionen repräsentiert. Sind die
Austauschoperationen berechnet, so erhält man aus (71) die
Bindungsdeterminante, deren Nullsetzen die Energie liefert.

Wir wollen die Nützlichkeit von (71) durch ein Beispiel illustrieren 1.

Betrachten wir zu diesem Zweck das Sechselektronensystem mit
seinen Wechselwirkungen zwischen den Nachbaratomen, indem wir
die A -Integrale vernachlässigen. Aus (71) erhält man bei Beachtung
von (51) die fünf Gleichungen

(C - s)9, - (AB)9, - (BC) (9, t-93) + (CD)?, - (DE) (9, + <p5)

+ (EF)9,-(FA)(91+94) =0
(C - z)9l - (AB) (92 + 95) + (BC)92 - (CD) (<pa + <p4) + (DE)92

- (EF) (92 + 93) - (FA)92 0

(C - £)ç3 - (AB) (9, + 93) + (BQ93 - (CD) (9, + 93) - (DE) (<p2 + 93)

+ (EF)93 - (FA) (?2 + 93) 0

(C - £)?4 - (AB) (9, + ç,) - (BC) (92 + 94) + (CD)94 - (DE) (<p, + 94)

-(EF)(9, +94) ~(FA)94 0

(C - s)95 - (AB)95 - (BC)(ç2 + 95) - (CD) (9, + 9s) + (DE)95

- (EF) (ç, + 95) - (FA) (92 + 95) 0

Da alle Austauschintegrale gleich sind, können wir sie mit A bezeichnen
und wie bei der Säkulargleichung (C—s)/A=X setzen.

(72)

1 Vgl. auch G. W. Wheland, Journal of Chemical Physics, 3, 230 (1935).
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-<9i + 0 - 93 -94 —95 - 0

0 + X9, - 93 -94 -95 0

-9i - 29, + (X-2) 93+O +0 =0
~9i - 292 +0 +(X-2)94 +0 0

2?i -292+0 +0 + (X-2)95 0

enc le Bindungsdeterminante ist durch (74)

X 0-1-1 -1
0 X -1 -1 -1

-2 -2 X-2 0 0 0

-2 -2 0 X-2 0

-2-2 0 0 X-2

(73)

(74)

Diese Determinante kann durch einige einfache Umformungen direkt
berechnet werden. Addiert man z. B. die zweite Zeile mit negativem
Vorzeichen zu der ersten, so erhält man (75). Addition der ersten
Kolonne (75) zur zweiten ergibt (76).

(75)

X-X 0 0 0

0 X -1-1 -1
-2 -2 X-2 0 0

-2 -2 0 X-2 0

-2 -2 0 0 X-2

X 0 0 0 0

0 X -1 -1 -1
-2 -4 X-2 0 0

-2 -4 0 X-2 0

-2-4 0 0 X-2

0 (76)

Durch analoge Umformungen erhält man schließlich die fünf Wurzeln

X 2, X « 2, X 0, X 1 + \ Î3, X 1 -VÏ3 (77)

oder die fünf gesuchten Energiewerte (I. 35) (hier mit s; bezeichnet)
für die Störung erster Ordnung.

S] c + 2.6055A
2*2 c + 0

S3 c -2A

c
c

2A
4,6055A (77a)

Die Bindungsdeterminante des Äthylens, um noch ein zweites

Beispiel zu erwähnen, läßt sich ohne weiteres mit den Angaben (52)
und (53) konstruieren. Falls man nur die Wechselwirkungen zwischen
den Kohlenstoffatomen und diejenigen zwischen Kohlenstoff- und
Wasserstoffatomen betrachtet, erhält man die Determinante (79). Wie
man sieht, zerfällt diese in drei einreihige und eine dreireihige
Determinante. Bemerkenswert an diesem System ist, daß die Wurzeln der

124



dreireihigen Determinante auch aus dem einfacheren System von zwei

viervalentigen und zwei zweivalentigen Atomen berechnet werden
können. Man kann also das ursprüngliche Modell des Äthylens (78a)
durch (78b)

H H\ /(78a) C C D A B C (78b)

H H

ersetzen. Von dieser Vereinfachung werden wir bei der Berechnung
der Elektronenverteilung im Abschnitt 15 Gebrauch machen.

(79)X+4C-8B 0 0 0 0 0

-8B X -4C-16B -16B -8B -SB 0

0 -c X + 2C-4B B B -6B
B-C 0 0 X + 2C-6B 0 0

B-C (1 0 0 X+2C- 6B 0

-C 0 -4C -2C -2C X -2C+4B

X ist hier die Differenz zwischen dem Coulombintegral und der Energie
e, während C und B Austauschintegrale zwischen den Kohlenstoffatomen

bzw. zwischen Kohlenstoff- und Wasserstoffatomen
repräsentieren.

IV. Berechnung der Elektronenverteilung

14. Elektronenverteilung eines Systems von Atomen

mit je einem Valenzelektron l

Die grundlegende Beziehung der Quantenmechanik zur Berechnung
der Elektronenverteilung in stationärem Zustand ist gegeben durch

99 * dx (1)

Hier ist ç) eine von den Koordinaten abhängige und fy* die zu <\>

konjugiert-komplexe Funktion. Da wir ausschließlich mit reellen
Funktionen zu tun haben, kann man statt (1) auch

99dr 99dT,dT2dT3 (2)

O. Klement, Helv. Chim. Acta, 34, 1368, 2230 (1951).
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