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Uber die skalaren Produkte
der Spinfunktionen von Molekiilen

von O. MADER

Institut fiir physikalische Chemie der Universitit Freiburg

Veroffentlicht mit der Unterstiitzung des Hochschulrates
der Universitit Freiburg

Bei der Berechnung der Elektronenverteilung nach der HEITLER-
RuMER-WEYL-Variante der Mesomeriemethode ist die Kenntnis der
Energie der Molekel unerldBlich. Letztere erhdlt man bekanntlich !
durch Auflosung der Sdkulargleichung mit den Matrixelementen

M, = Cloi, 0) —Z(AB) (g, taner) —<(@, @x)-

in welchen C die Summe aller Coulombintegrale, (AB) das auf die
Atome A,B beziigliche Austauschintegral, ¢ die Energie und (g;, ¢)
das Skalarprodukt der Spinfunktionen g;, o, bezeichnet. Die mit den
Austauschoperatoren t,, gebildeten Ausdriicke (g, t,,¢,) lassen sich,
da t,, o, eine Linearkombination von Spinfunktionen ist, auf Skalar-
produkte zuriickfiihren.

Eine Berechnung der Skalarprodukte auf Grund der Definition

© = [AB]Pab[AC]Pac,.. = (A, B,—A,B,)Pab(A,C,—A,C,)Pee...

ist, von den einfachsten Fillen abgesehen, wegen der Weitlaufigkeit
der Ausdriicke praktisch undurchfithrbar. Es wurde deshalb ein ande-
res Verfahren ausgearbeitet, welches die Hermitizitat der Vertau-
schungsoperatoren ausniitzt 2. In der folgenden Darstellung der Me-
thode findet sich die Beweisfithrung vervollstindigt und sind die tabel-
larischen Hilfsmittel erganzt worden.

Grundsitzlich ist das Verfahren folgendes. Es liegt eine Atom-
anordnung : A mit n, Valenzelektronen, B mit n,,.... H mit n, Valenz-

! HeiTLER, Handbuch der Radiologie, Bd VI/2, 2. Aufl. 1934.
2 O. MADER u. O. KLEMENT, Helv. Chim. Acta 42, 2688, 1959.
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elektronen vor. Die kreuzungslosen Valenzstrukturen bestimmen
dann eine Basis linear unabhidngiger Spinfunktionen ¢, ¢,, ..q;. Zu
jedem Atompaar K,L und dem auf diese Atome beziiglichen Operator
t,, existiert ein Gleichungssystem

ta®r = 5191+ A Qat. .. AP
..... (1)

ta®r = Q6@+ AgiPo .. . T APy

: : Kkl . .
wobei dic Koeffizienten a;; genauer etwa als ai(j ) zu schreiben wiren.

Bildet man die skalaren Produkte der Gleichungen (1) mit irgend einer
Spinfuktion ¢, so erhdlt man die Gleichungen

(on> tri) = ?aji(q}hi ’Pj) (h, 1= 1, ::1) (2)
Es gilt nun zufolge der Hermitizitit des Operators ty, die Gleichung

(o, tiags) = (i tiPn) (3)

Entwickelt man hierin beide Seiten gemdll Gleichung (2), so ergeben
sich, da h und i alle Werte 1==h<i="f durchlaufen, f(f—1)/2 lineare und
homogene Gleichungen mit den gesuchten f(f+1)/2 Skalarprodukten
(o, @), (1==1r<"s<f) als Unbekannten.

Wir untersuchen nicht, ob die aus einem einzigen Operator t;, ge-
wonnenen Gleichungen linear unabhidngig sind und zur Bestimmung
der Skalarprodukte ausreichen. Da es aber, wenn z die Anzahl der
Atome ist, z(z—1)/2 Austauschoperatoren gibt, lassen sich im ganzen
f(f—1)z(z—1)/4lineare Gleichungen zur Bestimmung der Skalarprodukte
bilden, die, wie wir implizit beweisen werden, sicher ausreichen. Es
ist jedoch klar, daB3 die Methode in dieser Form duBlerst uniibersicht-
lich und schwierig zu handhaben wire.

Die Methode, die wir a. a. O. entwickelten, beruht hauptsichlich
auf dem Umstand, daBl jene Austauschoperatoren, die sich auf Paare
benachbarter Atome auf dem Rumerkreis beziehen, viel einfacher zu
rechnen sind als andere. Es 1dBt sich das Gleichungssystem (1) fiir
einen derartigen Operator t,, explizit in einer Formel wiedergeben.
Der Allgemeinheit wegen nehmen wir dabei an, da3 in der betrach-
teten Spinfunktion ¢ s Valenzstriche von A und r Valenzstriche von B
ausgehen, die an r+s verschiedenen Atomen endigen. Aullerdem sind
p Valenzstriche zwischen A und B erlaubt. ¢ hat also die Form
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¢ = [ABJ"[BC,] [BC,].. [BC,][AD]...[AD,] [AD,] ! (4a)

mit gegebenenfalls weiteren Faktoren, auf welche t,;, ohne Einflul} ist.
Dem allgemeinen Verfahren gemdB erhdlt man zunédchst

Tr S
- [ACe] [BDo]
twg = ~P9* = = [BCe] [ADd]

worauf noch Entkreuzungen vorzunehmen sind. Die Entkreuzungs-
prozedur 146t sich ein fiir allemal erledigen und es lautet das End-
resultat

_ [AB] [CrDs] < [AB][CpCp+1] [BDs] (4b)
tabcP = (rS“p)CP‘i‘rSm E P [ADH] [BCP] [BCP_E_M

[AB] [Do+1Ds] [AC:] TSl sl [AB]2 [CpCp +1] [Do+1Ds]

*ﬁl +2 4 PO TBCo] (BCo] [ADo+1] [ADo]

”621"[5(:@ ADo+1] [ADg] ?

Beim Gebrauch sind dann die Atome C,,..C,,D,,... D; der Formel mit
Atomen des Molekiils zu identifizieren, wobel es sein kann, dall zweil
oder mehr aufeinanderfolgende Atome der Formel auf das gleiche
Atom des Molekiils entfallen. Es verringert sich dann die Anzahl der
Glieder, weil etwa [C,Cg. 4] oder [C,D,] oder [Dg,;Ds] verschwindet.

Indem man die Gleichungen (3), (4) mit Beschrinkung auf die
praktisch wichtigen Fille zu einer Tabelle verarbeitet, wird die Auf-
gabe der Bestimmung der Skalarprodukte weitgehend schematisiert
und die Wiederholung der bei den verschiedenen Molekiilen auf-
tretenden Einzeloperationen vermieden.

Zundchst ist zur Gleichung (4b) zu bemerken, daB sie fiir r=>2, s=>2
allgemein gilt, da3 dagegen bei r<<2 oder <<<2 der letzte Term entfillt,
weil [C,C,] oder [D,D;] nicht existieren, und dal} aus einem gleichen
Grund bei r = 0 oder s = 0 alle Terme bis auf den ersten entfallen.

In der Realitdt ist die Summe s+p gleich der Anzahl n, der Valenz-
elektronen des Atoms A und r+p gleich der Anzahl n, der Valenz-
elektronen des Atoms B. Wir kénnen ohne Beschrinkung der Allge-
meinheit annehmen, daf n,~n, (folglich s=r) sei. Zieht man jetzt
samtliche Valenzstrukturen des Molekiils in Betracht, so nimmt die

1 Die an C, D geschriebenen Indizes dienen nur zur Unterscheidung der Atome
und haben nichts mit C,, C,, D;, D, in der (nichtnormierten) Definitionsgleichung
[CD] = C,DsC;D, zu tun.
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bisher p genannte Zahl der zwischen A und B vorhandenen Valenz-
striche die Werte 0,1,...n, an. Die Maximalzahl n, solcher Valenzstri-
che werden wir im folgenden mit m bezeichnen ; es ist also m = n,<“n,.
Die Gesamtheit der Valenzstrukturen zerfillt in m+1 Klassen je nach
den in ihnen vorhandenen Valenzstrichen zwischen A und B. Diese
Klasseneinteilung der Valenzstrukturen iibertrdgt sich auf die Spin-
funktionen. Wir bezeichnen aus ZweckmaiBigkeitsgriinden mit C, die
Klasse jener Spinfunktionen, welche [AB] in der Potenz m haben und
allgemein mit C(i = 0,1,..m) die Klasse jener Spinfunktionen, welche
[AB] in der Potenz m—i haben. Die Spinfunktionen der Klasse C,
haben somit keinen Faktor [AB]. Es sei dies an Hand einer Skizze

erlautert.
A 8 A B A 8 A 3
C, C, & C,

Wenn wir nun in Gleichung (4a,b) auf den FFaktor [AB] achten und
dem Gesagten gemdld m—i1 fiir p eingesetzt denken, so ist, in Worten
ausgedriickt, festzustellen :

Die Anwendung des Operators t,, auf eine Spinfunktion der Klasse
C; (i = 0,1,..m) ergibt drei Anteile, erstens (in allen Fillen) ein Viel-
faches ebendieser Spinfunktion, zweitens (vorausgesetzt i=>1) einige
mit Koeffizienten versehene Spinfunktionen aus der Klasse C, |, drit-
tens (vorausgesetzt i=2) einige mit Koefhzienten versehene Spin-
funktionen aus der Klasse C,_,. Betrachten wir das Gleichungssystem
(1), so konnen wir sagen : Falls die Spinfunktionen nach den Klassen
Co,Croqse-C1,Cy, die sich auf ein Paar von Nachbaratomen A,B be-
ziehen, wie (b) zeigt, angeordnet sind, so bilden die Koeffizienten des
Gleichungssystems eine obere Dreiecksmatrix, die aullerdem in jenen
Umgebungen der Diagonale, die einer Klasse C; entsprechen, ein Viel-
faches der Einheitsmatrix aufweist und in jenen Rechtecken, die
einem Klassenpaar: Zeilen von C;, Spalten von C; (j<i—2) entsprechen,
nur Nullen hat.

Das Vielfache der Einheitsmatrix, von dem die Rede ist, bestimmt
sich aus Gleichung (4b) mit Beriicksichtigung von s+p = n, ;
r+p =n, = m; p = m—i, so dall man erhilt
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rs—p = (n,—m+1)(n,—m+1)—m+1 (6)

Es kann diese Zahl auch gleich Null sein.

Fir jedes Paar benachbarter Atome kann ein Gleichungssystem
wie (1) mit den soeben beschriebenen Eigenschaften der Koeffizienten-
matrix aufgestellt werden, nur ist die Einteilung der Spinfunktionen
in Klassen, die wir dann etwa mit Cy,,, C,,, usw bezeichnen miissen,
fiir jedes Paar benachbarter Atome verschieden.

Wir fragen uns jetzt: Was leistet ein Gleichungssystem (1) mit (3),
bezogen auf ein bestimmtes Paar von Nachbaratomen. Wir nehmen
ein Beispiel zu Hilfe und wihlen dafiir die folgenden Valenzstruk-
turen des Propadienmolekiils

* % A 2 A 8 A B A B
S B3N
78 % g 3 “ \ )

4 A A 8 A8 A a
ES( E@t E@c € ﬁ‘:
° % i Y s\.o

C,D sei das Paar benachbarter Atome. Der Klasseneinteilung ent-
sprechend setzen wir die Reihenfolge der Spinfunktionen mit

Il

Ca = {9598 %95 C1 = <1, 96,977 Co = {P1,92.95>
fest. Man erhdlt bei Ausfithrung der Operation t,,

teas = Bos +8¢, (8)
teads = Spg +hq, +6; +3¢3

teaPe = 8g +4gg +8¢;

teags = 20, +303

teats = 204 + @ +2¢,

teapr = 20, +2¢y +394

tcdcpl - _2({)1

teads = —2¢,

teags = —2¢,4
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Man sieht sofort, dal3 die Gleichung (3) allgemein in dem Fall, da3
o;, ¢n beide der Klasse C, angehoren, nur eine Tautologie ergibt. Kom-
biniert man aber Spinfunktionen der Klasse C, mit Spinfunktionen
der Klasse C,, so ergibt dies im vorliegenden Beispiel

2(¢1,9) +3(,93) = —2(92,%) |
2(;,96) + (@0,P1) +2(91,92) = —2(96,93) (1-=12.3)
2(01,97) +2(p102) +3(9103) = —2(97,¢)

was mit Beriicksichtigung von (¢,9;) = (9;,0n) Zu den Gleichungen fiihrt

4(91,94) = —3(¢ips)
4(91,06) = — (@091 —2(91.92) (1-123) (9
4(91,97) = —2(¢1,92) —3(1,93)

Behandelt man in gleicher Weise C, mit C,, so ergibt das

8(¢i,95) +3(0:1,94) = —2(05,%1) .
8(1,Pg) +4(9i,Pa) +6(91,97) +3(91,93) = —2(pe,ps) (1= 1,2,3)
8(91,Pg) +4(;,06) +8(91,97) = —2(9,9:)

Daraus gewinnt man unter Beniitzung der Resultate (9) die weiteren

10(¢1,95) = 6(91,93)
10(q;,95) = 3(@1:‘?2)*%(%%) (1=123) (10)
10(g1,99) = (@1,91) +6(i,02) +6(1,93)

Es fehlt uns nur die Kenntnis der Skalarprodukte (g;,¢;) fiir
1, = 1,2,3, so wiirden uns die Gleichungen (9), (10) die Skalarprodukte
VOon @,9,,93 mit allen iibrigen Spinfunktionen liefern. Die Verallge-
meinerung liegt auf der Hand : Kennt man (g;,;) fiir alle Spinfunk-
tionen einer Klasse Cy,y,, untereinander, so kennt man vermoge der
Gleichungen

((Pthab(Pk) = (¢x,tan®i)

wobei ¢; die Spinfunktionen der Klasse Cg,;, ¢« die aller tibrigen
Klassen durchlauft, auch alle Skalarprodukte (g;,¢) mit beliebigem
@r, wenn nur ¢; der Klasse Cy,;,, angehort.

Es wire damit zur Auffiilllung des Schemas sdmtlicher Skalarpro-
dukte schon recht viel und in gewissen Fillen alles erreicht. Denn die
Uberlegungen, die zu den Resultaten (9),(10) fithren, lassen sich auf
die verschiedenen Paare aufeinanderfolgender Atome anwenden. Wenn
nun jede Spinfunktion in mindestens einer der niedrigsten Klassen
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Coany Comeys - - - vorkommt, dann ist auBer der Ermittlung der Produkte
der Spinfunktionen der niedrigsten Klassen untereinander nichts mehr
erfordert. Natiirlich geniigt es, aus den verschiedenen Paaren aufein-
anderfolgender Atome geeignete auszuwahlen, so dall jede Spinfunk-
tion in mindestens einer der ausgewdhlten Klassen Cg,,, vorkommt.

Finden sich unter den Valenzstrukturen einer Atomanordnung
solche, deren Spinfunktionen zu keiner der Klassen Cy,,, gehoren, so
wollen wir diese, um einen kurzen Ausdruck zu haben, als B-Struk-
turen bezeichnen. In dem Beispiel (7) sind ¢g4,9,,05 Spinfunktionen von
B-Strukturen.

Bevor wir die Schematisierung des Gleichungssystems (8) in An-
griff nehmen, wenden wir uns den Klassen C, zu. Es 1Bt sich zeigen,
daB das auf C, beschrinkte Problem eine einfachere Aufgabe im Sinne
einer rekursiven Methode bietet. Unterscheiden wir die Fille n, = n,
und n,>n,. Im ersteren Fall ist die Zuriickfiihrung offensichtlich. Denn
Spinfunktionen aus Cgy,, haben dann alle den Faktor [AB]™ und in
den anderen Faktoren treten A,B nicht auf. Kennt man also die Skalar-
produkte des Molekiils von der Atomanordnung C,...H, so kennt man
auch den Teil des Molekiils A,B,C,...H, der sich auf die Spinfunktionen
aus der Klasse Cy,,p,, bezieht.

In dem Fall n,>n, 1dBt sich folgendes zeigen :

Die Skalarprodukte der Spinfunktionen aus Cgy,, des Molekiils be-
stehend aus dem Atom A mit n, Valenzelektronen, dem Atom B mit
n,,... dem Atom H mit n, Valenzelektronen sind bis auf einen Propor-
tionalitatsfaktor dieselben wie die entsprechenden Skalarprodukte
beim Molekiil bestehend aus dem Atom A mit n,—n, Valenzelektronen,
dem Atom C mit n,... dem Atom H mit n, Valenzelektronen. In
Formeln

([AB] vg, [AB]"vg) = k(p,9) (11)

In dem Beispiel (7) kénnen demnach die Skalarprodukte der ¢,,¢,,95
aus der Atomanordnung mit den Valenzstrukturen

A 8 A 8 A B
E ol € < E <
= *
7 2 _3*

entnommen werden.
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Wir fithren den Beweis des Satzes fiir den Spezialfall n,—n, = 3 ;
n, = 2. Dann ist ¢ von der Form

o = A(D+A2A‘IJ’ AAQ+A32 (12)
Ebenso
¢ = AjCI)’+AiA2‘F'+A1A:Q’+AZZ’ (12"

wobei die Ausdriicke @, ®’,.. nur aus Cy, C,,... Hy, H, gebildet sind. Es
handelt sich also um das Skalarprodukt der beiden Spinfunktionen

¥ = (AjB:QZAlAZBIBﬁ A:Bi) (AjCD + AiAle 4 AIA:Q + AZZ) (13)
und
D (Af]?‘):—QAlAzBIB2 P AzBi) (Ai(l)’ F AjA;F" e AlAzQ + AZZ) (13")

Die eine dieser beiden Spinfunktionen sei ausmultipliziert. Sie erhilt

die Form (14)
(AiBZﬁZAﬂ‘A B B 5 A?’AZBZ)@ (A4A B2 2A3A2B B AlAzBl)‘F
+ (AjA:B 2A3A2B1B2+A A Bg)ﬁh (AlAng 2A1A2BIB2 4 A B? )Z
kurz
Y = a®@+ Y +vQ+3Z (14,)

Die andere Spinfunktion unterscheidet sich von ihr nur durch die
gestrichenen GréBen, also

¥V = o®@ +BY +v Q'+ 387’ (14,")
Das Skalarprodukt vereinfacht sich in folgender Weise
(VW) = (o@,0D’) + (BY,BYW") + (vQ,vyQ") + (3Z,3Z"), (15)

denn zufolge Orthogonalitit verschwindet (e,£),... wie auch (®,'V”),...
Die Bestimmung der Skalarprodukte («,o) usw vollzieht sich nach
der Gleichung

LAV LAV p.’ V!
(AJA,,AVA))= )] (16)
Beziiglich der Skalarprodukte (®,®’) usw iiberlegen wir, dafl von Null
verschiedene Beitrdge nur entstehen, sobald in @ ein Glied cII und in
@’ ein hochstens im Koeffizienten davon verschiedenes Glied c¢’Il,
wobel Il ein Produkt von Potenzen von C,,C,,...H; H, bezeichnet,
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auftritt. Es kommt dann in dem Skalarprodukt (V,¥”) ein Beitrag
CC’(IL,II) nach (13),(13") vor mit dem Faktor
e’ [AB2[AB]?)(A% A%) — cc’ [AB]?[ABY (17)
und nach (14) mit dem Faktor

cc'[(AA%)(B,)BY) +4(A'A,A'A ) (B B_B B )+ (A’A%, A’A%) (B! BY)],

272 1 2’

was nach (16) ergibt

[1 1+4. ,11—0-1] = ;cc' (18)

C.J”l\l—‘
NJ\»-%

Ebenso ergibt sich, wenn ein Glied CII in ¥ und ein Glied C'IT in W’
vorkommt, daB3 dann nach (13),(13") in dem Skalarprodukt (‘V',%4)
ein Beitrag cc’(I1,II) vorkommt mit dem Faktor

cc’ ([AB*[AB]?)(A’A,,A’A ) = cc’([ABJ*[AB]?) . -;- (19)

und nach (14) und (16) mit dem Faktor
cc'[(AJA,ATA ) (B B)+4(AA] A’AY) (BB, B B,) + (A’A} A’A}) (B!, B?)]
=cc—14i0% w1]1 e’ (20)

Die Ausdriicke (17) bis (20) wiederholen sich im wesentlichen, wenn
man (y€,yQ"), (8Z,8Z") betrachtet und man kann aus ihnen die in (11)
behauptete Proportionalitit fiir den Fall n,—n,=3; n, =2 ablesen.
Die Verallgemeinerung auf beliebiges n,,n, moége hier, da sie eine rein
arithmetische Sache ist, unterlassen werden.

Wir nehmen nun, da wir das Problem beziiglich der Spinfunktionen
einer Klasse C,1m Sinne einer rekursiven Methode als geltst betrachten
konnen, die Verallgemeinerung der speziellen Ergebnisse (9) und (10)
vor. Wie man in dem Beispiel bemerkt, verliuft die Rechnung tiber
Zwischenstufen und bei Kombination von C, mit jeder hoheren Klasse
braucht es eine Zwischenstufe mehr. Es ist moglich, die Zwischen-
stufen auszuschalten. Die folgende Tabelle enthdlt fiir die verschie-
denen Fille 1<<n,<“n,<<4 je zwei Angaben. Die erste Angabe, mit ¢y
bezeichnet, behandeln wir erst spdter ; man benotigt diese nur bei
solchen Atomanordnungen, in denen B-Strukturen auftreten. Die
zweite Angabe ist eben die Verallgemeinerung der Gleichungen (Y),
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(10). Um sich die Entstehungsweise der Tabelle klar zu machen, diirfte
etwa der Abschnitt n, = 3,n, = 3 am giinstigsten liegen. In den Féillen
n, = 1 ist die Tabelle insofern trivial, als die beiden Angaben den-
selben Sachverhalt in verschiedener Weise ausdriicken. Fiir gréBere
Zahlen n,,n, werden die Formeln weitliufig, kommen dafiir aber in
der Praxis, was die erste Angabe betrifft, selten zur Anwendung.

Relationen zwischen Skalarprodukten von Spinfunktionen

n, =1, np=1
¢, = [AD][BC] ¢, = [AB] [CD]

P1E = 2¢11+@s;

2(p1,p1) +(Pr,P2) = 0

n, =2, np=1
¢ = [AD][AE] [BC] @s = [AB] [AC] [DE]
¢: = [AB] [AE] [CD]

P1E = 301 +2¢2+@s;

3(Pi,P1) +2(Pi,P2) + (Pis@s) = 0 (1=2,3)
ng=3, np =1
¢, = [AD][AE] [AF] [BC] 93 = [AB] [AC] [AF] [DE]
92 = [AB] [AE] [AF] [CD] ¢4 = [AB] [AC] [AD] [EF]
P1E = 491 +3Q+20;5+@, ;
4 (i, 1) + 3(Pi,@2) +2(i,@s) + (@i Pa) = 0 (i=2,3,4)
n, =4, nb =1
¢, = [AD]|AE] [AF] [AG] [BC] ¢4 = [AB] [AC] [AD] [AG] [EF]
@, = [AB] [AE] [AF] [AG] [CD] ¢s = [AB] [AC] [AD] [AE] [FG]

es = [AB] [AC] [AT] [AG] [DE]
P1E = 9P +40,+303+20,+¢5 ;
5 (i, @1) +4(Pi,P2) +3(0i,93) + 2(i, @q) + (i, @s) =0 (i = 2,3,4,5)

n, =2, n,=2

¢, = [AE] [AF] [BC] [BD] ¢4 = [AB] [AD][BC] [EF]
9. = [AB] [AF] [BE] [CD] ¢s = [AB]*[CD] [EF]
¢s = [AB] [AF] [BC] [DE] 9s = [AB]*[CF] [DE]

P1E = 691+3P2+ 605+ 304+ 295+ ¢4 ;

6 (1,91)—(Pi,Ps) —2(p1,06) = 0 (i=5,6)

n, =3, np =2
¢: = [AE] [AF] [AG] [BC] [BD] ¢s = [AB]*[AG] [CD] [EF]
¢z = [AB] [AF] [AG] [BE] [CD] ¢, = [AB]’[AE] [CD] [FG]
¢s = [AB] [AF] [AG] [BC] [DE] ¢s = [AB]*[AC] [DE] [FG]
¢4 = [AB] [AD] [AG] [BC] [EF] ¢s = [AB]’[AG] [CF] [DE]

¢s = [AB] [AD] [AE] [BC] [FG] ¢10 = [AB]’[AC] [DG] [EF]
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P1p = 1091 +60,+1205+ 80,40, +6p;+ 39+ 295+ 39s+ P10 ;
6(91,91)—2 (91, 96) —(1.97) —2(90,06) —3(P1,09) ) Pi.P10) = 0 (i = 6,...10)

n, =4, np =2
o1 = [AE] [AF] [AG] [AH][BC] [BD] ¢s — [AB]*[AE] [AF] [CD] [GH]
¢, = [AB] [AF] [AG] [AH][BE] [CD] 910 = [AB]?[AC] [AH] [DE] [FG]
¢s = [AB] [AF] [AG] [AH][BC] [DE] ¢u = [AB]*[AC] [AF] [DE] [GH]
¢4 = [AB] [AD] [AG] [AH][BC] [EF] ?12 = [AB]*[AC] [AD] [EF] [GH]
¢s = [AB] [AD] [AE] [AH] [BC] [FG] ¢13 = [AB]*[AG] [AH] [CF] [DE]
¢s = [AB] [AD] [AE] [AF] [BC] [GH] ?11 = [AB]*[AC] [AH] [DG] [EF]
97, = [AB]*[AG] [AH] [CD] [EF] ¢15 = [AB]?[AC] [AD] [EH][FG]
¢s = [ABI?[AE] [AH] [CD] [FG]

P1E = 159, +109,+209;+159,+1095+594+129, + 8P +4Qe+ 6019+ 3911+ 2912+ 6@ 3+

+3014+ P15

20(i, 1) —9(®i,P7)—6(Pi, Ps) —3(Pi,Po) —12(Pi,P10) —6(@i,911) —4 (Pi, P12) —12(Pi,P15)

—6(9i,914)—2(¢ ,915) = 0 (i=7,..15)

i, =3, Ny = 3
¢: = [AF] [AG] [AH][BC] [BD] [BE] ¢ = [AB]*[AF] [BC] [DE] [GH]
9. = [AB] [AG] [AH][BE] [BF] [CD] ¢12 = [AB]*[AD] [BC] [EF] [GH]
¢s = [AB] [AG] [AH][BC] [BF] [DE] ¢1s = [AB]*[AH][BG] [CF] [DE]
¢« = [AB] [AG] [AH][BC] [BD] [EF] ¢1a = [AB]*[AH][BC] [DG] |[EF]
¢s =[AB] [AE] [AH][BC] [BD] [FG] ?15 = [AB]*[AD] [BC] [EH] [FG]

9s = [AB] [AE] [AF] [BC] [BD] [GH] ¢, = [ABJ]*[CD] [EF] [GH]
¢; = [AB]*[AH][BG] [CD] [EF] ¢1; = [AB]Y[CD] [EH] [FG]
¢s = [AB]*[AH][BE] [CD] [FG] ¢1s = [AB]*[CF] [DE] [GH]
9y = [ABJ*[AF] [BE] [CD] [GH] ¢19 = [AB]?[CH] [DE] [FG]
P10 = [AB]*[AH][BC] [DE] [FG] ¢20 = [ABJ?[CH] [DG] [EF]

P1E = 200, +109,+2003+30¢9,+20p;+10ps+8p;+12¢ps+6py+24p,0+12¢,;+ 8¢ s+
+4013+12014+4P15+ 691 +3017+ 3015+ 2P 19+ P20 ;
12(9i,@1) +2(Pi,P1e) + (Pi,Pr7) +(Pi,P1s) + 2(Pi,Pro) +3(Pi,Pao) = 0 (i =16,....20)

Es ist hier, wie wir sagten, der Ort fiir einige Hinweise beziiglich des
Aufbaus der Tabelle. In dem Abschnitt n, = 3, n, = 3 werden auller
den Atomen A,B 6 andere Atome C,D,E F,G H eingefiihrt. Diese ent-
sprechen den Atomen C,,..D; von Gleichung (4a). Im ganzen gehen 20
Spinfunktionen in die Rechnung ein. In der ersten Angabe kommen
sie alle vor, in der zweiten Angabe nur die erste und die fiinf letzten.
Es wird niitzlich sein, fiir den Augenblick noch mehr Allgemeinheit
zu wahren, indem wir auch p Valenzstriche zwischen A und B erlauben.
A hat also n,+p und B n,+p Valenzelektronen. Die 20 Spinfunktionen
des Tabellenabschnittes werden somit ersetzt durch 20 andere

®, - [ABPg, (i = 1,...20)
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das heisst
@, - [AB]’[AF][AG][AH][BC][BD][BE]

®,, - [AB]"*[CH] [DG][EF]

(@, bildet fiir sich die Klasse C;, @, bis @ bilden die Klasse C,, @, bis
®,; die Klasse C, und @4 bis @, die Klasse C,. Wir wenden die Ope-

ration t,, auf die 20 Spinfunktionen @ an.

t®@: = ( 9—p)D; +3D, +6D; +9D, +6D; +3Wg+2Dg+4D,,+20,,+Dy
tao®@s = ( 3—p)Dy +20, +4Dg +20, +Dy4

ta @y = ( 3-p)D;y +2015+ 4D+ 2D+ Dy

tu®, = ( 3—p)D, +20, +4D,,+20,,+ Dy,

ta®s = ( 3—p)D; +204 +4D,,+20,,+ D4,

ta®@e = ( 3—p)Dg +204 +4D;;+20,,+ Dy

tu®; = (—1-p)@; + Dy tu@P1s = (—1-p)D14+ Dy
ta@g = (—1-p)Dg + Dy ta@15 = (—1-p)Dy5+ Dy,
tu @y (—1-p)Dy + Dy tu®P1g = (—3—p)Dyg

ti @10 = (—1-p)Dp+ Dy ty Pz = (—3-p)Dy;
tu®Pyy = (—1-p)Pyy+ Dyg tuPrg = (—3—p)Dys
ta®Dys = (—1-p)Dpp+ Dyq tu@y = (—3—D)Dyy

t D3 = (—1-p)Dy3+ Dy tu @ = (—3—p) Dy

Ist nun @, irgend eine Spinfunktion der Klasse C,, also 1 = 16,..20,
dann sehen wir, dall beim Kombinieren von C, mit den hoheren
Klassen die Anzahl p, mit der wir uns gleich nachher kurz beschiftigen
werden, aus den Gleichungen ausfillt. Zum Beispiel ergibt

((Di:taml)(])?) - ((D’?)tan)i) mlt Pi aus CO

(—1-p)(D;, D7) + (@;, D) = (—3—p)(D;,D;)
also
2(D;, D7) + (D;, D) = 0 (21,)

Die iibrigen Gleichungen mit den Spinfunktionen der Klasse C, lauten

2(@0;,Dg ) +(D;,Dy;) = 0; 2(D,Dy ) +(D;,Dyg) = 0
2(D;, D) +(D;,Dyg) = 0; 2(D;,Dyy) +(D;,;Dyg) = 0 (21,)
2@, D) +( @, D) = 0; 2D, Dy5) +(D;,Dyg) = 0
2(D;, D) +(D;,Dy) = 0; 2(D;, D) + (D, Dy5) = 0
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Ebenso ergibt (D;,t,,D,) = (Dy,t,, ;) mit @, aus C,
(B3—p) (D, D) + 2(D;,D;) +4(D;, D) +2(D;,Dg) + (D}, D14) = (—3—p)(@,,D;)

und indem man unter Beniitzung der Gleichungen (21) mit simtlichen
Spinfunktionen der Klasse C, gleicherweise verfihrt, erhilt man

6(®@;, ;) —(@;,D16)—2(D;,Dy7) = 0 (22)
6((1)1:(1)3)—(CDi:CDIB)—Z((Di:CDlQ) =)
6(CD1' (D4)—((Di;®16)—2(®i»(b20) =0
6(®1:®5)A((Di»(bn)_Q((Dix(Dm) =)
6(D;, D) —(D;,D16)—2(D;, D) = O

Endlich ergibt (®;,t,,D,) = (D,,t,, ;) unter Beniitzung der Gleichungen
(22) und einiger der Gleichungen (21)

12(D;, D) + 2(D;, D) + (D, D7) + (@}, D) + 2(D;, D) + 3(D D) = O (23)
(1=16,...20)

Das stimmt bis auf die Verwendung der grollgeschriebenen ® mit der
zweiten Angabe der Tabelle im Abschnitt n, = 3,n, = 3 iiberein. Wir
hidtten schon in (21) und (22), wo die Zahl p ausgefallen ist, wieder die
kleingeschriebenen ¢ verwenden konnen.

Es besteht, um es anders auszudriicken, der Sachverhalt, dal} die
Hinzufiigung von gleichviel Valenzelektronen zu den Atomen A und B
auf die Beziehungen zwischen « Skalarprodukten von Spinfunktionen
aus Cy,, mit Spinfunktionen aus Cyy,,...Cuup» und « Skalarpro-
dukten von Spinfunktionen aus C,,,, untereinander » ohne Einflul3
ist. Dieser Sachverhalt wird auch in folgender Weise illustriert : Bei
der Erarbeitung von (23) erscheinen (22) und (21) als Zwischenresul-
tate. Die Gleichungen (22) sind aber zugleich (in mehrfacher An-
wendung) das Endresultat fiir den Fall n, = 2, n, = 2, so wie die Glei-
chungen(21) das Endresultat fiir den Fall n, = 1, n, = 1 sind. Die Ta-
belle beschrinkt sich also auf « Cy,, mit C,,,, ». Hat man beispiels-
weise ein Atom A mit 4 und ein Atom B mit 3 Valenzelektronen, so
findet man die auf C; beziiglichen Angaben unter n, = 4, n, = 3, die
auf C, beziiglichen unter n, = 3, n, = 2 und die auf C; beziiglichen
unter n, = 2, n, = 1.

Was die Identifizierung der Atome C,D,... der Tabelle mit Atomen
des Molekiils angeht, gilt das zu Gleichung (4) Bemerkte. Der von dem
Operator t,, nicht beeinflullite Teil der Valenzstruktur ¢ aus C, ist



— 158 —

unverdandert den aus der Tabelle entnommenen Angaben beizufiigen.
Wir lassen jetzt deren restlichen Teil folgen

Fortsetzung der Tabelle von Seite 154

n, =4, n, =3

¢ = [AF] [AG] [AH][A]) [BC] [BD] [BE]
¢. =[AB] [AG] [AH][A]] [BE] [BF] [CD]
¢s =[AB] [AG] [AH][A]] [BC] [BF] [DE]
¢s =[AB] [AG] [AH][A]] [BC] [BD] [EF]
¢; = [AB] [AE] [AH][A]] [BC] [BD] [FG]
¢s = [AB] [AE] [AF] [A]] [BC] [BD] [GH]
¢, = [AB] [AE] [AF] [AG] [BC] [BD] [H]]
¢s = [AB]?|AH][A]] [BG] [CD] [EF]

¢y = [AB]’[AH][A]] [BE] [CD] [FG]

¢10 = [AB]?[AF] [A]] [BE] [CD] [GH]
¢ = [AB]P[ATY] [AG] [BE] [CD] [H]]
¢12 = [AB]*[AH][A]] [BC] [DE][FG]

¢1s — [AB]*[AF] [A]] [BC] [DE] [GH]

¢1a = [AB]?[AF] [AG] [BC] [DE] [H]]

¢1s = [AB]*[AD][A]] [BC] [EF¥] [GH]

016 — [AB]’[AD] [AG] [BC] [EF] [H]]

¢17 = [ABI?[AD] [AE] [BC] [FG] [H]]

¢1s = [AB]*[AH][A]] [BG] [CF] [DE]

¢1s = [ABI?[AH][A]] [BC] |DG] [EF]

¢20 = [AB]?[AD] [A]] [BC] [EH][FG]

921 = [AB]?[AD] [AE] [BC] [F]] [GH]

922 = [ABJ’[A]] [CD] [EF] [GH]

923 = [ABJ?[AG] [CD] [EF] [H]]

¢24 = [ABJ’[AE] [CD] [FG] [H]]

¢2s — [AB]*[AC] [DE] [FG] [H]]

926 = [ABJ?[A]] [CD] [EH][FG]

92, = [AB]*[AE] [CD] [F]] [GH]

925 = [AB]*[AC] [DE] [F]] [GH]

¢20 = [AB]*[A]] [CF] [DE] [GH]

@30 = [AB]*[AG] [CF] [DE] [H]]

¢s1 = [AB]’[AC] [DG] [EF] [H]]

¢az = [AB]’[A]] [CH] [DE] [FG]

pss = [AB]?[AC] [D]] [EF] [GH]

¢34 = [AB]*[A]] [CH] [DG] [EF]

¢ss = [AB][AC] [D]] [EH] [FG]
PR = 390,+209,+409;+60¢,+45¢p5s+ 309+ 15¢;+2005+309y+20p,4+10¢,,4+60p,,+
+40015+20914+30915+15916+1091,+100,5+30014+1500+ 5Py + 2490+ 12053+8a+
+6Qos+12¢o4+4Par+3Pag+ 1200+ 6@ge+3Pa;+8Paat2@ag+hss+Pss ;
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30(Pi,P1) +12(Pi,@a2) +6 (i, P23) +5(Pi, 24) +8(Pi,Pas) +6(Pi,Pas) +2(Pi, Paz) +4 (i, P2g) +
+6(9i,P29) +3(Pi,Pa0) +9(PiPs1) +9(Pi, Pa2) +6(Pi,Paa) +12(Pi,Psa) +3(Pi,Pss) = 0
(1= 22,... 35)

n, =4, n, =4

¢. = [AG] [AH][A]] [AK][BC] [BD] [BE] [BF]
¢, = [AB] [AH][A]] [AK][BE] [BF] [BG] [CD]
¢ = [AB] [AH][A]] [AK][BC] [BF] [BG] [DE]
¢ = [AB] [AH][A]] [AK][BC] [BD][BG] [EF]
¢s = [AB] [AH][A]] [AK][BC] [BD] [BE] [FG]
@s = [AB] [AF] [A]] [AK][BC] [BD] [BE] [GH]
¢, = [AB] [AF] [AG] [AK][BC] [BD] [BE] [H]]
¢s — [AB] [AF] [AG] [AH][BC] [BD] [BE] [JK]
¢y = [AB]?[A]] [AK][BG] [BH][CD] [EF]

¢ = [AB]*[A]] [AK][BE] [BH] [CD] [FG]

¢u = [AB]’[A]] [AK][BE] [BF] [CD] [GH]

¢12 = [AB]’[AG] [AK][BE] [BF] [CD] [H]]

¢1s = [AB]*[AG] [AH][BE] [BF] [CD] [JK]

¢14 = [AB]*[A]] [AK][BC] [BH] [DE] [FG]

¢1s = [AB]?[A]J] [AK][BC] [BF] [DE][GH]

916 = [AB]?[AG] [AK][BC] [BF] [DE] [H]]

o1 = [ABI*[AG] [AH][BC] [BF] [DE] [JK]

¢1s = [AB]?[A]J] [AK][BC] [BD] [EF] [GH]

¢1s = [AB][AG] [AK][BC] [BD] [EF] [H]]

¢20 = [AB][AG] [AH][B(] [BD] [EF] [JK]

¢ = [AB]2|AE] [AK][BC] [BD] [FG] [H]]

P22 = [AB]*[AE] [AH][BC] [BD] [FG] [JK]

¢2s = [ABJ?[AE] [AF] [BC] [BD] [GH][JK]

¢2a = [AB]?[A]] [AK][BG] [BH] [CF] [DE]

¢2s = [ABI*[A]] [AK][BC] [BH] [DG] [EF]

¢z = [ABJ*[A]] [AK][BC] [BD] [EH] [FG]

@27 = [AB]*[AE] [AK][BC] [BD] [F]] [GH]

¢2s = [ABIP[AE] [AF] [BC] [BD] [GK] [H]]

¢z = [ABI*[AK][B]] [CD] [EF] [GH]

¢s0 = [ABPP[AK][BG] [CD] [EF] [H]]

¢a = [ABP[AH][BG] [CD] [EF] [JK]

95 = [AB]*[AK][BE] [CD] [FG] [H]]

®ss = [AB]'[AH][BE] [CD] [FG] [JK]

®sq = [AB][AF] [BE] [CD] [GH][JK]

¢ss = [ABP[AK][BC] [DE] [FG] [H]]

ese — [AB]PIAH][BC] [DE] [FG] [JK]

937 = [AB][AF) [BC] [DE] [GH][JK]

935 = [AB]P[AD] [BC] [EF] [GH][JK]

¢3 = [ABJP[AK][B]] [CD] [EH][FG]

?10 = [AB]*[AK][BE] [CD] [F]] [GH]

¢ = [ABJP[AF] [BE] [CD] [GK][H]]
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¢4 = [ABJ*[AK][BC] [DE] [F]1 [GH]

9as = [AB]’[AF] [BC] [DE] [GK][H]]

¢ = [AB][AD] [BC] [EF] [GK][H]]

eas = [AB]P[AK][B]] [CF] [DE] [GH]

¢46 = [AB]*[AK][BG] [CF] [DE][H]]

¢4 = [AB][AH][BG] [CF] [DE] [JK]

eas = [AB]P[AK][BC] [DG] [EF] [H]]

¢ = [AB]*[AH][BC] [DG] [EF] [JK]

¢s0 = [AB]’[AD] [BC] [EH][FG] [JK]

¢s1 = [AB]*[AK][B]] [CH] [DE] [FG]

¢s2 = [AB]*[AK][BC] [D]] [EF] [GH]

¢ss = [AB]*[AD] [BC] [EK][FG] [H]]

¢sa = [ABPP[AK][B]] [CH] [DG] [EF]

¢ss = [AB]P[AK][BC] [D]] [EH] [FG]

¢s6 = [AB]3AD] [BC] [EK][F]] [GH]

957 = [ABJ4[CD] [EF] [GH][JK]

9ss = [ABJ4CD] [EF] [GK][H]]

¢s9 = [ABJ[CD] [EH] [FG] [JK]

9s0 = [ABJCF] [DE] [GH] [JK]

¢e1 = [ABJY[CF] [DE] [GK][H]]

952 = [ABJ}CD] [EK][FG] [H]]

¥ss = [AB]*[CH] [DE] [FG] [JK]

®ea = [ABJY[CD] [EK][F]] [GH]

®es = [ABY[CH] [DG] [EF] [JK]

¢es = [ABY[CK] [DE] [FG] [H]]

¢er = [ABYCK] [DE] [F]] [GH]

ves = [ABJYCK] [DG] [EF] [H]]

ves = [ABJYCK] [D]] [EF] [GH]

P70 = [AB]*[CK] [D]] [EH] [FG]
p1g = 709;+359s+ 7003 +105¢,+140¢05+105¢;+70@;+ 350+ 30ps+45¢,0+60¢,, +
+400,5+200:53+900,,+120p,5+800,4+400,;+1800;5+1200,4+60¢s0+90¢,; +45¢p,,+
+300,3+15Qas+45P5+90P6+450s;+15Qes+30p+40p30+20¢3;+60¢g,+30pgs+
L2034 +120¢35+60036+4003,+30035+ 15039+ 30040+100, +60@,5+200,5+13¢,,+
+ 15045 +20046+10@47+60@5+ 3005+ 15Q50+10@5; +40p55+10p53+ 55+ 20055+
+0P56T 2405, + 12055+ 12055+ 1 2040+ 6061+ 8Pga+8@ga+a@gat+ Qe+ 6ga+3pg,+
+3Qgs+ 2Pg9 + Qg0 ;
60(i,01) —8(P1,Ps7) —4 (01, 058) —9 (01, Ps9) —%(Pi. Pso) —2(Pi.Ps1) —6 (i, Ps2) —6 (@i, Psa) —
—3(@i,Poa) —3(®i, Pos) —12(Pi,Ps6) —6(Pi, Pe7) —6 (i, Pss) — I (Pi, Pea) —12(i,P70) = 0
(i =B7,.... T

Nach dem bisher Erorterten 1at sich das Beispiel des Propadien-
molekiils (7) ausarbeiten mit Ausschlul3 der Spinfunktionen der B-
Strukturen ¢4, 04, 05. Indem das Atompaar AE symmetrisch zu C,D
liegt, besteht die Klasse C,,. aus den Spinfunktionen gz,0,,95. Die
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Reihen (g;,0¢) (i = 3,4,5) konnen daher ohne Rechnen ausgefiillt wer-
den. Die Reihe ¢4 ist zwar nicht neu ; weil wir aber die Skalarprodukte
nur bis auf willkiirliche Normierungsfaktoren erhalten, ist es niitz-
lich, wenn eine neue Klasse, in unserem Fall Cg,,,, mit einer der schon
verwendeten Klassen, hier Cy4), eine Valenzstruktur gemeinsam hat.
Priifen wir die iibrigen Klassen C,, so sehen wir, dall Cy,y,, und Cyy,
zu keinen neuen Teilresultaten fiihren, denn Cy,,, besteht nur aus der
Spinfunktion ¢, und C,,, nur aus ¢;. Dagegen gestattet Cgy,, die Auf-
fillung der Reihe g,.

Was nun die Spinfunktionen von B-Strukturen betriftt, wiirde man
in unserem Beispiel durch direkte Anwendung der Gleichungen (1),
(3) bezogen auf das Atompaar D,E zum Ziel kommen. Die Opera-
tionen wiren folgende

Co = (91,92,93,90,95> 5 C1 = {06:97.980 5 Co = {¢g

taer = 4o, toePs = 4y +204 tie®7 = O
taePs = 4o+ 204 tae®s = 49; taeps = 0
taePs = 43+ 4y, taeps = 0 taePs = —2¢

Die Relationen (¢;,t.ox) = (¢x.tan®) (1= 2,3,4,; k = 6,7,8) liefern die
erforderten Gleichungen und zwar einige mehr als einmal. Es gilt

auller der Symmetrie (g;,k) = (¢x,9;) noch (94,96 = (Ps,9s); (Pe07) =
= (9g,97). Daher wird die Auffiillung geleistet durch

1=2,k=6; 4 (g, 92) +2(96,96) = 0 (24)
1=2,k=7;  4(pe9s) +4(9697) = 0

1=2, k=8,  4(9s94)+2(peps) =0

i=3, k=7 (93,99) = 4(97,93) +4(P7,97)

Bei groBeren Molekiilen kann aber die Zahl der B-Strukturen recht
betrachtlich sein, andererseits wichst die Zahl der Glieder des Aus-
drucks t,; 9, wenn ¢ einer hoheren Klasse angehort, im allgemeinen
Fall ungefihr quadratisch mit der Klasse an. Dadurch wird die Ver-
wendung der Gleichung (3) schwerfillig.

Wir werden die Eigenschaften der Vertauschungsoperatoren be-
ziiglich auf dem Rumerkreis benachbarter Atome A,B einer neuen
Betrachtung unterziehen. Die Idee, etwas vage ausgedriickt, ist die :
Indem die Kombination von Cy,;,, mit den hoheren Klassen ziemlich
leicht vorzunehmen ist, weil die Ausdriicke t,,9 mit ¢ aus C, aus nur
einem Glied bestehen, dieses Vorgehen jedoch beim Vorhandensein

11
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von B-Strukturen nicht zum Ziel fiihrt, versuchen wir in diesem Fall
die oberste Klasse oder wenn es nicht notwendig ist, bis zur obersten
zu gehen, die oberen Klassen mit den unteren zu kombinieren. Wir
werden sehen, dall es einen Weg gibt, zu erreichen, dall in den Glei-
chungen, die wir aus der grundlegenden Gleichung (3) ableiten, der
eine der beiden Faktoren aus nur einem Glied besteht.

Zu diesem Zweck entlehnen wir aus der linearen Algebra den Be-
griff des Eigenwertes und der Eigenvektoren. Wir betrachten den
linearen Raum, der durch die kreuzungslosen Spinfunktionen ¢,,¢s,...¢;
aufgespannt wird. Der Operator t, bewirkt nach Gleichung (1) eine
lineare Abbildung des Raumes, denn er fiihrt den (Basis-) Vektor o,
in JZajicpi und den allgemeinen Vektor li“lbicpi in j./‘.‘,iajib-cpi iiber. Die bei Aus-

1

flihrung der Operation t,, vorkommenden Entkreuzungen lassen sich
derart systematisieren, dal3 das Ergebnis durch die Formel (4) be-
schrieben wird. Bei passender Anordnung der Spinfunktionen nach
den Klassen C,, :0 ohne FFaktor [AB] bis C, :¢ mit dem Faktor [AB}™
bekommt die Koeffizientenmatrix des Gleichungssystems (1) die Ge-
stalt einer oberen Dreiecksmatrix und zwar, wie frither ausgefiihrt,
einer Dreiecksmatrix mit weiteren speziellen Eigenschaften.

Einen Vektor ¢ = Xb;g; nennt man Eigenvektor des Operators t,,

wenn er bei Anwendung des Operators in ein Vielfaches tibergefiihrt
wird, also

tab(P = )\.CP

ist. Der Faktor A heisst ein Eigenwert des Operators t,, und ¢ heisst
ein Eigenvektor zum Eigenwert 1. Die Gesamtheit aller Eigenvektoren
zu einem Eigenwert A bildet fiir sich einen linearen Raum, denn aus
tae = Mg folgt t, ko = Ako und aus t,o = 2o ; tue = Ao folgt
ta(@+9) = A(p+¢’). Man spricht dann von dem Eigenraum zum
Eigenwert 2.

Hermitische Operatoren haben die wichtige Eigenschaft, dall Eigen-
vektoren zu verschiedenen Eigenwerten zueinander orthogonal sind.
Aus (9,t¢") = (¢".ta®) 5 tan® = 25 tap” = X9’ 5 AFN folgt (¢,tamg”) =
= N(9,9) 5 (¢ tw®) = Me',9) = Mo,9'), also (A—2)(¢,¢') = 0. Weil der
erste IFaktor zufolge A" ungleich Null ist, ist der zweite Faktor
gleich Null, und das ist die behauptete Orthogonalitit.
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Die Bestimmung der Eigenwerte eines in der Form der Gleichung (1)
gegebenen Operators geschieht durch Auflosen der Sdkulargleichung

det (A—2E) = 0

wobei E die f-reihige Einheitsmatrix bezeichnet. Im Falle einer Drei-
ecksmatrix sind nun die Wurzeln der Sikulargleichung genau die Dia-
gonalelemente. Wir wissen also auf Grund der Gleichung (6), da3 der
Operator t,, die Eigenwerte (n,—m+1)(n,—m-+1i)—m+1, oder, anders ge-
sagt, da m = n, ist, die Eigenwerte

% = iy +i)—ny+i (i = 0,1,..n,) (25)

hat, und zwar 2; mit der Vielfachheit gleich der Anzahl der Spin-
funktionen der Klasse C,,. Wir wollen noch bemerken, dal die
hochsten Eigenwerte lauten A, = n,ny; 2, = (n,—1)(n,—1)—1;

Ape = (Ma—2)(n,—2)—2 usw.

Man muB sich davor hiiten, die Klassen Cy,p,..Cypeapy fir Eigenrdume
des Operators t,;, zu halten. Nur die Klasse Cy,, ist ein Eigenraum, denn
fiir alle Spinfunktionen aus Cgygy, gilt t,,¢ = —ny¢ und umgekehrt ist
jeder Vektor, fiir den t,,¢ = —n,¢ gilt, Linearkombination der Spin-
funktionen aus Cygy.

Um allgemein die Eigenvektoren Xb;p;, das heil3t die Systeme der

Koeffizienten b, zu einem gegebenen Eigenwert 2, (p = 0,1,...m) zu
finden, hat man das lineare homogene Gleichungssystem mit der Ko-
effizientenmatrix

A2 E
und den b, als Unbekannten, aufzulésen, in unserem Fall

(a,ll—)\p)b1+a,12b2+... +8.1fbf = 0
azlb1+(322—)\p)b2+ va's +a.2fbf = O (26)

Die auf die Koeffizienten b bezogene Matrix ist die Transponierte der
auf die Basisvektoren ¢ bezogenen Matrix des Gleichungssystems (1).
Sie ist also, wenn wir, wie immer, die Spinfunktionen mit den obersten
Klassen beginnend anordnen, eine untere Dreiecksmatrix. In der
Hauptdiagonale steht zuerst einige Male 2,,—2,, je nach der Anzahl der
Spinfunktionen von C,(m = n,), dann ebenso einige Male X, ;—2,, zu-
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letzt —m,—2,. Nimmt man 3, gleich dem niedrigsten Eigenwert, dann
besteht der unterste Abschnitt der Hauptdiagonale aus Nullen; nimmt
man X, gleich dem zweitniedrigsten Eigenwert, dann der zweitunterste
USw.

Nun hat eine Dreiecksmatrix mit genau r Nullen in der Haupt-
diagonale den Rangdefekt r. Es gibt also zum Eigenwert 2; so viele
linear unabhdngige Losungen b,,...b;, als die dazu gehorige Klasse C,
Spinfunktionen hat.

Die Eigenrdume des Operators t,, wollen wir mit R,R,...
R, (m =n,=n,) bezeichnen. Es ist also, wie schon festgestellt, R, = C,,
aber von R;,...R,, konnen wir nur sagen, dal3 sie von gleicher Dimension
sind wie C,,...C,,.

Wir achten noch auf zwei Umstdnde. Erstens kann die Auflosung
eines Gleichungssystems, dessen Koeffizientenmatrix eine untere
Dreiecksmatrix ist wie in (26), schrittweise von oben her erfolgen,
indem man mit b, beginnt und jeweils b, aus den bekannten b,,...b,
berechnet. Zweitens hat die Koeffizientenmatrix von (26) die spezielle
Beschaffenheit, daBl dort, wo ein Abschnitt der Hauptdiagonale Null
wird (indem 2, einem der Eigenwerte gleich ist), zugleich das ganze
zugehorige Quadrat aus Nullen besteht.

Will man also den Eigenraum R;(i<m) bestimmen, so beginnt das
Gleichungssystem mit

(Am—2)by = 0

woraus b, = 0 folgt, und solange in der Hauptdiagonale %—2; mit j>i
steht, erhdlt man b = 0. In Worten : In dem Eigenraum R;(i<m) kom-
men die Spinfunktionen der Klassen C,,C,,,...C;,; nicht vor. Das-
selbe anders gesagt: Der Eigenraum R(i = 0,1,.m) wird durch die
Spinfunktionen der Klasse C; und der niedereren Klassen C,,...C,
aufgespannt.

Es soll nun die Klasse C; aus den Spinfunktionen ¢, ;,..¢, bestehen.
Wir setzen die Auflésung des Gleichungssystems fort. Indem b,,...b,
alle Null sind, kann man die g ersten Unbekannten weglassen und der
noch tibrige Teil des Gleichungssystems lautet

0. bg+1 =)
0-bypy+0.byp=0
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0.b,1+0. by o+...¥0-by = 0

Ay [ 1,g+10g+1 131 1gr2Dgrat -+ 1 b+ (R g—A)bp g = 0

Das heifit, die Koeffizienten b,_;,....b, der Spinfunktionen ¢, ,...q,,
die in dem Gleichungssystem als Unbekannte auftreten, kénnen will-
kiirlich gewdhlt werden und die Koeffizienten von ¢, _4,...q;, das sind
Spinfunktionen aus niedereren Klassen, bestimmen sich eindeutig aus
diesen.

Speziell kann man fiir die Koeffizienten von ¢, ,bis¢, die Zahlen-
systeme (1,0,...0), (0,1,0,...0),...(0,...0,1) wdahlen. Das heillt in anderen
Worten : Es 146t sich jeder Spinfunktion ¢ aus C; ein Eigenvektor g
aus R; zuordnen, derart dass ¢y aus der einzigen Spinfunktion ¢ aus C;
und aus Spinfunktionen niederer Klassen linear zusammengesetzt ist.

Indem man dieselbe Uberlegung auf die Klassen C,,...C, anwendet,
kommt man, da die unterste Klasse C, selber ein Eigenraum C; = R,
ist, zur SchluBfolgerung : Jede Spinfunktion ¢ aus C; ist aus dem Eigen-
vektor gy aus R; und aus Eigenvektoren niederer Eigenrdume R, 4,... R,
linear zusammengesetzt.

Daraus folgt weiter : Jede Spinfunktion ¢ aus C, ist zu jedem Eigen-
vektor eines hoheren Eigenraumes R, ,,... R, orthogonal. Wir formu-
lieren dies in der Gleichung

(Poom) = 0 (1<]) (27)

Hier besteht tatsdchlich der eine IFaktor aus dem einzigen Glied g,
der Spinfunktion aus der niedereren Klasse. Um g5 zu finden (genauer
miilte gy, gesagt werden), bringt man zunéchst ¢; durch Weglassung
aller Faktoren, die von t,, nicht beeinflullit werden, auf die Form (4a).
Weglassen eines allfidlligen Faktors [AB]J' ergibt eine der Funktionen ¢,
der Tabelle. Der Funktion ¢,; der ersten Angabe (wobei in den meisten
Fillen ein betrdchtlicher Teil der Glieder zufolge Identifizierungen
ausfillt) sind die weggelassenen Faktoren wieder hinzuzufiigen, womit
man die gesuchte Funktion ¢;;; erhdlt.

In dem Beispiel (7) verlduft die systematische Behandlung der B-
Strukturen folgendermassen.

C2(de) = {P1,92,93,94,95) ; Cl(de) = {9697, Ps,

Verwendbare Eigenvektoren sind
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Por = 692+396 ; P3r = 693+60;+ 99 ; Pan = 694+30s
Diese sind alle zu ¢g4,9,,95 orthogonal. Das ergibt die Gleichungen

(96,9:) = —2(92,9)
(02.0) = —(9.9)—5(000) (i = 6,7.8)
(98:9) = —2(Pa,p1)

die, wie es sein mul}, zu denselben Ergebnissen fiihren wie die Glei-
chungen (24).

Die Methode hat erst bei mittelgroBen Molekiilen ihre Vorteile, weil
sie eine serienmiBige Ausfiihrung der Einzeloperationen ermoglicht.
Da sie andererseits rekursiv ist, indem be1 einem Molekiil von mehr
als vier Atomen gewisse kleinere Molekiile bekannt sein miissen, wurden
im hiesigen Institut, um sich den Anfang der Bearbeitung eines be-
liebigen Molekiils zu ersparen, die Skalarprodukte fiir simtliche Sy-
steme bestehend aus vier und fiinf Atomen mit 1 bis 4 Valenzelektronen
im Atom berechnet.



	Über die skalaren Produkte der Spinfunktionen von Molekülen

