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Über die skalaren Produkte
der Spinfunktionen von Molekülen

von O. Mäder
Institut für physikalische Chemie der Universität Freiburg

Veröffentlicht mit der Unterstützung des Hochschulrates
der Universität Freiburg

Bei der Berechnung der Elektronenverteilung nach der Heitler-
Rumer-Weyl-Variante der Mesomeriemethode ist die Kenntnis der

Energie der Molekel unerläßlich. Letztere erhält man bekanntlich 1

durch Auflösung der Säkulargleichung mit den Matrixelementen

Mik - C(?i, ?k)-S(AB)(9l, tabçk)-e(-ri, «Pk).

in welchen C die Summe aller Coulombintegrale, (AB) das auf die
Atome A,B bezügliche Austauschintegral, s die Energie und (cpj, epk)

das Skalarprodukt der Spinfunktionen <pi( <pk bezeichnet. Die mit den

Austauschoperatoren tab gebildeten Ausdrücke (<pj, tab<pk) lassen sich,
da tabcpk eine Linearkombination von Spinfunktionen ist, auf Skalar-
produkte zurückführen.

Eine Berechnung der Skalarprodukte auf Grund der Definition

9 [AB]Pab[AC]P-... (A1B2-A2B1)Pab(A1C2-A2C1)p-...

ist, von den einfachsten Fällen abgesehen, wegen der Weitläufigkeit
der Ausdrücke praktisch undurchführbar. Es wurde deshalb ein anderes

Verfahren ausgearbeitet, welches die Hermitizität der Vertau-
schungsoperatoren ausnützt2. In der folgenden Darstellung der
Methode findet sich die Beweisführung vervollständigt und sind die
tabellarischen Hilfsmittel ergänzt worden.

Grundsätzlich ist das Verfahren folgendes. Es liegt eine
Atomanordnung : A mit na Valenzelektronen, B mit nb,.... H mit nb Valenz-

1 Heitler, Handbuch der Radiologie, Bd VI/2, 2. Aufl. 1934.
2 O. Mäder u. O. Klement, Helv. Chim. Acta 42, 2688, 1959.

in
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elektronen vor. Die kreuzungslosen Valenzstrukturen bestimmen
dann eine Basis linear unabhängiger Spinfunktionen <p1( <p2, ..<pf. Zu

jedem Atompaar K,L und dem auf diese Atome bezüglichen Operator
tkl existiert ein Gleichungssystem

tki-Pi a11cp1 + a21<p2 + + afltp£

(1)

tki9f **** aif?i + a2i?2 + ---,-aff'Pf

wobei die Koeffizienten ay genauer etwa als ai ' zu schreiben wären.
Bildet man die skalaren Produkte der Gleichungen (1) mit irgend einer
Spinfuktion cph, so erhält man die Gleichungen

(9h,tklÇi) =Saji(9b,9j) (h,i-l, ...f) (2)

Es gilt nun zufolge der Hermitizität des Operators tkl die Gleichung

(?h, tkitpi) («pi, tkl<ph) (3)

Entwickelt man hierin beide Seiten gemäß Gleichung (2), so ergeben
sich, da h und i alle Werte l^h<i^f durchlaufen, f (f—1)/2 lineare und
homogene Gleichungen mit den gesuchten f(f + l)/2 Skalarprodukten
(<Pr. <Ps)> Q. — 1—S^i) als Unbekannten.

Wir untersuchen nicht, ob die aus einem einzigen Operator tkl
gewonnenen Gleichungen linear unabhängig sind und zur Bestimmung
der Skalarprodukte ausreichen. Da es aber, wenn z die Anzahl der
Atome ist, z(z—1)/2 Austauschoperatoren gibt, lassen sich im ganzen
f(f—l)z(z—l)/41ineare Gleichungen zur Bestimmung der Skalarprodukte
bilden, die, wie wir implizit beweisen werden, sicher ausreichen. Es

ist jedoch klar, daß die Methode in dieser Form äußerst unübersichtlich

und schwierig zu handhaben wäre.
Die Methode, die wir a. a. 0. entwickelten, beruht hauptsächlich

auf dem Umstand, daß jene Austauschoperatoren, die sich auf Paare
benachbarter Atome auf dem Rumerkreis beziehen, viel einfacher zu
rechnen sind als andere. Es läßt sich das Gleichungssystem (1) für
einen derartigen Operator tab explizit in einer Formel wiedergeben.
Der Allgemeinheit wegen nehmen wir dabei an, daß in der betrachteten

Spinfunktion cp s Valenzstriche von A und r Valenzstriche von B
ausgehen, die an r+s verschiedenen Atomen endigen. Außerdem sind

p Valenzstriche zwischen A und B erlaubt, cp hat also die Form
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cp [ABf[BCJ [BC2].. .[BCr] [ADj.. .[ADJ [ADJ 1 (4a)

mit gegebenenfalls weiteren Faktoren, auf welche tab ohne Einfluß ist.
Dem allgemeinen Verfahren gemäß erhält man zunächst

J. s [AC j [BDa]
tab?^-p9+pSigSi[BCp][ADCT]cp,

worauf noch Entkreuzungen vorzunehmen sind. Die Entkreuzungs-
prozedur läßt sich ein für allemal erledigen und es lautet das
Endresultat

[AB] [CrDs] r~* [AB] [CpCp+i] [BDS] (4b)
tabcp - (rS^p)cp + rs[BCr] ^p^+S^ p [ADh] [BCp] [BCp + i]cp

•t;1 [AB] [Dcr+iDg] [ACr] r-! s~l [AB]2 [CpCp + i] [Dg+iDo]
+ rCTìlCTLBCr] [ADo+i] [ADa]<|) + p_l0Z1p0[BCp] [BCp+i] [ADa+i] [ADo]

Beim Gebrauch sind dann die Atome C1,..Cr,DS)... Dx der Formel mit
Atomen des Moleküls zu identifizieren, wobei es sein kann, daß zwei
oder mehr aufeinanderfolgende Atome der Formel auf das gleiche
Atom des Moleküls entfallen. Es verringert sich dann die Anzahl der
Glieder, weil etwa [CpCpTl] oder [CrDJ oder [Da+1DCT] verschwindet.

Indem man die Gleichungen (3), (4) mit Beschränkung auf die

praktisch wichtigen Fälle zu einer Tabelle verarbeitet, wird die
Aufgabe der Bestimmung der Skalarprodukte weitgehend schematisiert
und die Wiederholung der bei den verschiedenen Molekülen
auftretenden Einzeloperationen vermieden.

Zunächst ist zur Gleichung (4b) zu bemerken, daß sie für r^-2, s^2
allgemein gilt, daß dagegen bei r<2 oder r<2 der letzte Term entfällt,
weil [CjCJ oder [D2DJ nicht existieren, und daß aus einem gleichen
Grund bei r 0 oder s 0 alle Terme bis auf den ersten entfallen.

In der Realität ist die Summe s+p gleich der Anzahl na der
Valenzelektronen des Atoms A und r + p gleich der Anzahl nb der
Valenzelektronen des Atoms B. Wir können ohne Beschränkung der
Allgemeinheit annehmen, daß na^nb (folglich s^r) sei. Zieht man jetzt
sämtliche Valenzstrukturen des Moleküls in Betracht, so nimmt die

1 Die an C, D geschriebenen Indizes dienen nur zur Unterscheidung der Atome
und haben nichts mit C1; C2, Dj, D2 in der (nichtnormierten) Definitionsgleichung
[CD] C1D2~C2D1 zu tun.
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bisher p genannte Zahl der zwischen A und B vorhandenen Valenzstriche

die Werte 0,1,...nb an. Die Maximalzahl nb solcher Valenzstriche

werden wir im folgenden mit m bezeichnen ; es ist also m nb^na.
Die Gesamtheit der Valenzstrukturen zerfällt in m+1 Klassen je nach
den in ihnen vorhandenen Valenzstrichen zwischen A und B. Diese

Klasseneinteilung der Valenzstrukturen überträgt sich auf die
Spinfunktionen. Wir bezeichnen aus Zweckmäßigkeitsgründen mit C0 die
Klasse jener Spinfunktionen, welche [AB] in der Potenz m haben und
allgemein mit Q(i 0,l,..m) die Klasse jener Spinfunktionen, welche

[AB] in der Potenz m—i haben. Die Spinfunktionen der Klasse Cm

haben somit keinen Faktor [AB]. Es sei dies an Hand einer Skizze
erläutert.

M (3)

('. c,

Wenn wir nun in Gleichung (4a,b) auf den Faktor [AB] achten und
dem Gesagten gemäß m—i für p eingesetzt denken, so ist, in Worten
ausgedrückt, festzustellen :

Die Anwendung des Operators tab auf eine Spinfunktion der Klasse
C; (i 0,l,..m) ergibt drei Anteile, erstens (in allen Fällen) ein
Vielfaches ebendieser Spinfunktion, zweitens (vorausgesetzt i^l) einige
mit Koeffizienten versehene Spinfunktionen aus der Klasse C;_1; drittens

(vorausgesetzt i^2) einige mit Koeffizienten versehene
Spinfunktionen aus der Klasse Cj_2. Betrachten wir das Gleichungssystem
(1), so können wir sagen : Falls die Spinfunktionen nach den Klassen
Cm,Cm_1,...C1,C0, die sich auf ein Paar von Nachbaratomen A,B
beziehen, wie (5) zeigt, angeordnet sind, so bilden die Koeffizienten des

Gleichungssystems eine obere Dreiecksmatrix, die außerdem in jenen
Umgebungen der Diagonale, die einer Klasse Q entsprechen, ein
Vielfaches der Einheitsmatrix aufweist und in jenen Rechtecken, die
einem Klassenpaar: Zeilen von C;, Spalten von Cj (j<i—2) entsprechen,
nur Nullen hat.

Das Vielfache der Einheitsmatrix, von dem die Rede ist, bestimmt
sich aus Gleichung (4b) mit Berücksichtigung von s + p na ;

r+p nb m ; p m—i, so daß man erhält
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rs—p (nb—m+i)(na—m+i)—m+i (6)

Es kann diese Zahl auch gleich Null sein.

Für jedes Paar benachbarter Atome kann ein Gleichungssystem
wie (1) mit den soeben beschriebenen Eigenschaften der Koeffizientenmatrix

aufgestellt werden, nur ist die Einteilung der Spinfunktionen
in Klassen, die wir dann etwa mit Ci(ab), Ci(bl,-,, usw bezeichnen müssen,
für jedes Paar benachbarter Atome verschieden.

Wir fragen uns jetzt: Was leistet ein Gleichungssystem (1) mit (3),

bezogen auf ein bestimmtes Paar von Nachbaratomen. Wir nehmen
ein Beispiel zu Hilfe und wählen dafür die folgenden Valenzstrukturen

des Propadienmoleküls

C E

c e

A. g

A i
•A>

x)

A

^^ -^

(-)

C,D sei das Paar benachbarter Atome. Der Klasseneinteilung
entsprechend setzen wir die Reihenfolge der Spinfunktionen mit

C2 **** <<P5.?8.?9>; C! <94,<P6>?7>; Q) <9l>92,93>

fest. Man erhält bei Ausführung der Operation tc

Fafa 895 + 894

Fdfs 89g +494 + 69, +393

tcd99 899 + 4cp6 +897

tcd94 294 + 393

tcd9e _ 29e + 9i +292
tcd97 """* 2cp7 +292 +393

tcd?l -29l
tcd92 -2cp2

tcd?3 " -2cp3

(8)
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Man sieht sofort, daß die Gleichung (3) allgemein in dem Fall, daß

9i,9b beide der Klasse C0 angehören, nur eine Tautologie ergibt.
Kombiniert man aber Spinfunktionen der Klasse C0 mit Spinfunktionen
der Klasse C1( so ergibt dies im vorliegenden Beispiel

2(9i,94) + 3(9i,9s) -2(cp4,9i)

2(9i,9e) + (9i.9i) + 2(9i,92) -2(<p6,9i) (i 1,2,3)
2(9i.97)+2(9i,92) + 3(9i,93) -2(cp7,9i)

was mit Berücksichtigung von (9h,9i) (<Pi,<Ph) zu den Gleichungen führt

4(9i,94) —3(«Pi<p3)

4(9,96) - -(9i,9i)-2(9i,92) (i 1,2,3) (9)

4(9i,9?) —2(<Pi,<Pa)—3(<Pi,93)

Behandelt man in gleicher Weise C0 mit C2, so ergibt das

8(9i>95) + 8(9i,94) -2(95,9,)
8(?i.98)+4(9i.94) +6(9i,97) +3(9i,cp3) -2(9g,9i) (i 1,2,3)
8(91,99) + %i,9e)+8(91,97) -2(99,9i)

Daraus gewinnt man unter Benützung der Resultate (9) die weiteren

10(<Pi,<p6) 6(9i,93)

10(9i)98) - 3(9i)92)+|(9i,93) (i- 1,2,3) (10)

10(9i>99) (9i-9i) + 6(9i,92) +6(9i,cp3)

Es fehlt uns nur die Kenntnis der Skalarprodukte (9i,9j) für
i,j 1,2,3, so würden uns die Gleichungen (9), (10) die Skalarprodukte
von 9l,cp2,93 mit allen übrigen Spinfunktionen liefern. Die
Verallgemeinerung liegt auf der Hand : Kennt man (9i,9j) für alle Spinfunktionen

einer Klasse C0(ab) untereinander, so kennt man vermöge der
Gleichungen

(9i-tab9k) *= (?k,tab¥i)

wobei cpi die Spinfunktionen der Klasse C0(ab), 9k die aller übrigen
Klassen durchläuft, auch alle Skalarprodukte (9i,9k) mit beliebigem
9k, wenn nur 9i der Klasse C^^ angehört.

Es wäre damit zur Auffüllung des Schemas sämtlicher Skalarprodukte

schon recht viel und in gewissen Fällen alles erreicht. Denn die
Überlegungen, die zu den Resultaten (9),(10) führen, lassen sich auf
die verschiedenen Paare aufeinanderfolgender Atome anwenden. Wenn
nun jede Spinfunktion in mindestens einer der niedrigsten Klassen
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C(fcab), C0(bc),... vorkommt, dann ist außer der Ermittlung der Produkte
der Spinfunktionen der niedrigsten Klassen untereinander nichts mehr
erfordert. Natürlich genügt es, aus den verschiedenen Paaren
aufeinanderfolgender Atome geeignete auszuwählen, so daß jede Spinfunktion

in mindestens einer der ausgewählten Klassen C0(kl) vorkommt.
Finden sich unter den Valenzstrukturen einer Atomanordnung

solche, deren Spinfunktionen zu keiner der Klassen C^ gehören, so

wollen wir diese, um einen kurzen Ausdruck zu haben, als B-Struk-
turen bezeichnen. In dem Beispiel (7) sind cp6,cp7,cp8 Spinfunktionen von
B-Strukturen.

Bevor wir die Schematisierung des Gleichungssystems (8) in
Angriff nehmen, wenden wir uns den Klassen C0 zu. Es läßt sich zeigen,
daß das auf C0 beschränkte Problem eine einfachere Aufgabe im Sinne
einer rekursiven Methode bietet. Unterscheiden wir die Fälle na - nb

und na>nb. Im ersteren Fall ist die Zurückführung offensichtlich. Denn

Spinfunktionen aus C^^ haben dann alle den Faktor [AB]m und in
den anderen Faktoren treten A,B nicht auf. Kennt man also die
Skalarprodukte des Moleküls von der Atomanordnung C,...H, so kennt man
auch den Teil des Moleküls A,B,C,...H, der sich auf die Spinfunktionen
aus der Klasse Cq^ bezieht.

In dem Fall na>nb läßt sich folgendes zeigen :

Die Skalarprodukte der Spinfunktionen aus C^^ des Moleküls
bestehend aus dem Atom A mit na Valenzelektronen, dem Atom B mit
nb)... dem Atom H mit nb Valenzelektronen sind bis auf einen
Proportionalitätsfaktor dieselben wie die entsprechenden Skalarprodukte
beim Molekül bestehend aus dem Atom A mit na—nb Valenzelektronen,
dem Atom C mit nC)... dem Atom H mit nh Valenzelektronen. In
Formeln

([ABfbcp, [AB]nb9') k(cp,9') (11)

In dem Beispiel (7) können demnach die Skalarprodukte der 9l,cp2,93

aus der Atomanordnung mit den Valenzstrukturen

a a * 6 t ß

• c e * c E «¦

1* Z 3*
entnommen werden.
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Wir führen den Beweis des Satzes für den Spezialfall na—nb 3 ;

nb 2. Dann ist cp von der Form

9 AjD + AjA.Y-AXu + AjZ (12)

Ebenso

9' A'Q' + AjA^'-A^Q'-rA^Z' (12')

wobei die Ausdrücke 0,0',.. nur aus C1, C2)... Hj, H2 gebildet sind. Es
handelt sich also um das Skalarprodukt der beiden Spinfunktionen

Y - (A;b;-2AiA2B1B2+A:B2i)(A^+A;A2T+AiA^+A32Z) (13)

und

*F' (A2B2-2A ABB +AîB!)(As(D' + AîAr+AA!Û-AîZ) (13')V 1 2 1212 2 l'\ 1 12 12 2 ' V '

Die eine dieser beiden Spinfunktionen sei ausmultipliziert. Sie erhält
die Form

(A5B2-2A4A B B + A3A2B2)$ + (A4A B2-2A3A2B B + A2A3B2)Y¦-12 1212 121' ^12 2 1212 12 1'

+ (A3A2B2-2A2A3B B +A A*B*)Q+ (A2A3B2-2A A4B B z A5B2)Z\ 1 2 2 1212 12 1' *- 1 2 2 1212 2 1'

kurz
T a<D + ßY+TÜ + 8Z (14,)

Die andere Spinfunktion unterscheidet sich von ihr nur durch die
gestrichenen Größen, also

T' - aO' + ßT'+yO' + SZ' (14/)

Das Skalarprodukt vereinfacht sich in folgender Weise

(T7F') - (a<D,a<D') + (ßT,ßT') + (yD,yÜ') + (SZ)8Z'), (15)

denn zufolge Orthogonalität verschwindet (oc,ß),... wie auch (O.T"),...
Die Bestimmung der Skalarprodukte (a,a) usw vollzieht sich nach

der Gleichung

Mwo-gän (i6)

Bezüglich der Skalarprodukte (<I),(D') usw überlegen wir, daß von Null
verschiedene Beiträge nur entstehen, sobald in <1> ein Glied eil und in
O' ein höchstens im Koeffizienten davon verschiedenes Glied cTt,
wobei II ein Produkt von Potenzen von C1,C2,...H1,H2 bezeichnet,



— 153 —

auftritt. Es kommt dann in dem Skalarprodukt (Y.Y') ein Beitrag
CC(11,11) nach (13),(13') vor mit dem Faktor

cc'([AB]2,[AB]2)(A3,A3)= cc'([AB]2,[AB]2) (17)

und nach (14) mit dem Faktor

cc'[(A*A*)(B,2B2)+4(A4A ,A4A )(B B ,B B + (A3A2,A3A2)(B2,B2)],LV 1 l'N >2 2' "> 1 2' 1 2' *> 1 2' 1 2' V 1 2' 1 2' V 1' 1'-"

was nach (16) ergibt

CC'[11 + 4Ì2+lM 2CC' (18>

Ebenso ergibt sich, wenn ein Glied CII in T" und ein Glied CII in Y'
vorkommt, daß dann nach (13),(13') in dem Skalarprodukt (T,^')
ein Beitrag cc'(II,n) vorkommt mit dem Faktor

cc'([AB]2,[AB]2)(A2A2,A2A) - cc'([AB]2,[AB]2) \ (19)

und nach (14) und (16) mit dem Faktor

cc'[(a:a2,a;a2)(b:,b:)-4(a3a:,a3ia:)(b1b2,b1b2)+(aia:.aia:)(b:.b:)]

Die Ausdrücke (17) bis (20) wiederholen sich im wesentlichen, wenn
man (yd,yCi'), (SZ,8Z') betrachtet und man kann aus ihnen die in (11)

behauptete Proportionalität für den Fall na—nb 3 ; nb 2 ablesen.
Die Verallgemeinerung auf beliebiges na,nb möge hier, da sie eine rein
arithmetische Sache ist, unterlassen werden.

Wir nehmen nun, da wir das Problem bezüglich der Spinfunktionen
einer Klasse C0 im Sinne einer rekursiven Methode als gelöst betrachten
können, die Verallgemeinerung der speziellen Ergebnisse (9) und (10)

vor. Wie man in dem Beispiel bemerkt, verläuft die Rechnung über
Zwischenstufen und bei Kombination von C0 mit jeder höheren Klasse
braucht es eine Zwischenstufe mehr. Es ist möglich, die Zwischenstufen

auszuschalten. Die folgende Tabelle enthält für die verschiedenen

Fälle l^nb^na^4 je zwei Angaben. Die erste Angabe, mit 9lB
bezeichnet, behandeln wir erst später ; man benötigt diese nur bei
solchen Atomanordnungen, in denen B-Strukturen auftreten. Die
zweite Angabe ist eben die Verallgemeinerung der Gleichungen (9),
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(10). Um sich die Entstehungsweise der Tabelle klar zu machen, dürfte
etwa der Abschnitt na 3,nb 3 am günstigsten liegen. In den Fällen
nb 1 ist die Tabelle insofern trivial, als die beiden Angaben
denselben Sachverhalt in verschiedener Weise ausdrücken. Für größere
Zahlen na,nb werden die Formeln weitläufig, kommen dafür aber in
der Praxis, was die erste Angabe betrifft, selten zur Anwendung.

Relationen zwischen Skalarprodukten von Spinfunktionen

na 1, nb= 1

9l [AD] [BC] <p2 [AB] [CD]
9ie 29l+92 ;

2(9i,9i) + (<Pi,92) 0

na 2, nb 1

91 [AD] [AE] [BC] 93 [AB] [AC] [DE]
92 [AB] [AE] [CD]

9ie 39l+292+93 ;

3(tpi,tf1) + 2(tfi,tf2) + (tfi,tf3) =0 (i 2,3)

na 3, nb 1

9l [AD] [AE] [AF] [BC] 9s [AB] [AC] [AF] [DE]
cp2 [AB] [AE] [AF] [CD] 9l [AB] [AC] [AD] [EF]

9ie 491-r392+293+91 ;

4(<pi,9l)+3(<pi><p2)+2(<pi,<p,) + (<pi,94) =0 (i 2,3,4)

na -= 4, nb 1

91 [AD] [AE] [AF] [AG] [BC] 9l [AB] [AC] [AD] [AG] [EF]
92 - [AB] [AE] [AF] [AG] [CD] <p6 [AB] [AC] [AD] [AE] [FG]
<p3 [AB] [AC] [AF] [AG] [DE]

9lE - 59l + 492+393+294+95 ;

5(9i,91) + 4(9i,92) + 3(9i,93)+2r9i,94) + (9i,96)=0 (i 2,3,4,5)

na 2, nb 2

91 [AE] [AF] [BC] [BD] 94 [AB] [AD] [BC] [EF]
92 [AB] [AF] [BE] [CD] 9s [AB]'[CD] [EF]
9s [AB] [AF] [BC] [DE] <p6 [AB]»[CF] [DE]

"Pie - 69Ì+392+693 + 39J+295+96 ;

6(9i,9i)—(<Pi.95)—2(9*,<Pe) =0 (i 5,6)

na 3, nb 2

9! [AE] [AF] [AG] [BC] [BD] 9e [AB]2[AG] [CD] [EF]
<p2 =- [AB] [AF] [AG] [BE] [CD] 9, [AB]2[AE] [CD] [FG]
93 [AB] [AF] [AG] [BC] [DE] 9s [AB]2[AC] [DE] [FG]
9l [AB] [AD] [AG] [BC] [EF] ?9 [AB]2[AG] [CF] [DE]
9s [AB] [AD] [AE] [BC] [FG] 9l0 - [AB]2[AC] [DG] [EF]
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9iE 109l+69s+129,+894+49,-i-69«+39, + 298+39,-i-9l(, ;

6(9i.<Pi)-2(9i,96)-(9i,97)—2(9i,98)-3(9i,99)—)9i,9l0) =0 (i =¦ 6,...10)

9 S

?3

94

9 5

9 e

97

9«

9lE -
+ 39l
20(9i
-6(9

4, nb

-[AE]
[ABl

-[AB]
-[AB]

[AB]
[AB]

-[AB]
[AB]

• 159l +

I-915;

2

[AF] [AG] [AH]
[AF] [AG] [AH]
[AF] [AG] [AH]
[AD] [AG] [AH]
[AD] [AE] [AH]
[AD] [AE] [AF]
'[AG] [AH] [CD]
*[AE] [AH] [CD]
1092+2093+1594

[BC] [BD]
[BE] [CD]
[BC] [DE]
[BC] [EF]
[BC] [FG]
LBC] [GH]
[EF]
[FG]
+ 109s+596-l

99

9io
9n
9l2
9l3
9l4
9l5

129,+8c

[AB]2[AE]
[AB]2[AC]
[AB]2[AC]
[AB]2[AC1
[AB]2[AG]
[AB]2[AC]
[AB]2[AC]

[AF] [CD] [GH]
[AH] [DE] [FG]
[AF] [DE] [GH]
[AD] TEF] [GH]
[AH][CF] [DE]
[AH] [DG] [EF]
[AD] [EH] [FG]

9i)~9(9>,97)—<H9',98)—3(91.9»)—12(9i,9io)—6|
i,9l4)-2(9,9l6) =0 (i 7,...15)

8 + 499+69l0+39ll+29l2+69l3-i

Pi,9ii)—4(91,912)—12(9i,9is)-

na 3, nb 3

9i [AF] [AG] [AH] [BC] [BD] [BE]
?2 [AB] [AG] [AH] [BE] [BF] [CD]
93 [AB] [AG] [AH] LBC] [BF] [DE]
94 - [AB] [AG] [AH] [BC] TBD] [EF]
95 [AB] [AE] [AH][BC] [BD] [FG]
<p6 [AB] [AE] [AF] [BC] [BD] [GH]
97 [AB]2[AH][BG] [CD] [EF]
98 [AB]2[AH][BE] [CD] [FG]
99 [AB]2[AF] [BE] [CD] [GH]
9l0 [AB]2[AH][BC] [DE] [FG]

9lE 209l+109a+2093+3094 + 2095+1096
+ 49l3+129x4+49l5+69l6-l-39l,-l-39i8 + 29i8-l-920 ;

12(9i,9i)+2(9i,9le) + (9i,917) + (9i,9is) + 2(9i,9l9) + 3(9i,9

920

.,+1

[AB]2[AF]
[AB]2[AD]
[AB]2[AH]
[AB]2[AH]

=--[AB]2[AD]
=- [AB]3[CD]

[AB]3[CD]
[AB]»[CF]
[AB]3[CH]
[AB]2[CH]

298 + 699 + 249

(i

[BC] [DE] [GH]
[BC] [EF] [GH]
[BG] [CF] [DE]
[BC] [DG] [EF]
[BC] [EH][FG]
[EF] [GH]
[EH] [FG]
[DE] [GH]
[DE] [FG]
[DG] [EF]
io + 129n+89l2+

(i 16,....20)

Es ist hier, wie wir sagten, der Ort für einige Hinweise bezüglich des

Aufbaus der Tabelle. In dem Abschnitt na 3, nb 3 werden außer
den Atomen A,B 6 andere Atome C,D,E,F,G,H eingeführt. Diese

entsprechen den Atomen C,,.^ von Gleichung (4a). Im ganzen gehen 20

Spinfunktionen in die Rechnung ein. In der ersten Angabe kommen
sie alle vor, in der zweiten Angabe nur die erste und die fünf letzten.
Es wird nützlich sein, für den Augenblick noch mehr Allgemeinheit
zu wahren, indem wir auch p Valenzstriche zwischen A und B erlauben.
A hat also na+p und B nb + p Valenzelektronen. Die 20 Spinfunktionen
des Tabellenabschnittes werden somit ersetzt durch 20 andere

Oi [AB]"9l (i 1....20)
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das heisst

Oi [AB]P [AF] [AG] [AH] [BC] [BD] [BE]

02O [AB]P+3[CH] [DG] [EF]

04 bildet für sich die Klasse C3, 02 bis <D6 bilden die Klasse C2, 07 bis

015 die Klasse C1 und 016 bis 02O die Klasse C0. Wir wenden die
Operation tab auf die 20 Spinfunktionen 0 an.

tab^l ; 9-p)0, i-302 +6<D3 +904 + 605 +306+208+40lo+20n+09
tab02 3-p)02 + 207 + 408 + 2(D9 +o16
tab03 3-p)(D3 +2013+401C + 20n +(D18

tab(l)4 - 3-p)<D4 + 207 +4014 +2<D12 +(D16

tatPs 3-p)(D5 +208 +4(D10 + 2015 +o17
tab^e 3-p)06 f2<D9 40n + 2<D12 +o16
talP7 -l-p)07 r 0]6 tab-^14 (-1-P)(I)14 + (I)20

tab^S -l-p)(D8 + 017 ta.,^15 (-1"P)015+017
tab09 -l-p)09 + <D16 tabule (-3-p)016
tab^lO -l-p)O10+ o19 tab<I>17 (-3-p)017
tabuli -l-p)(Du+ 018 tab<I>18 (-3-p)(D18
tab®12 - -l-p)(D12+ (D16 tab<l>19 (-3-p)019
tabula -l-p)013+ o18 tab<I)20 - (-3-p)O20

Ist nun Oj irgend eine Spinfunktion der Klasse C0, also i 16,..20,
dann sehen wir, daß beim Kombinieren von C0 mit den höheren
Klassen die Anzahl p, mit der wir uns gleich nachher kurz beschäftigen
werden, aus den Gleichungen ausfällt. Zum Beispiel ergibt

(<Di,tab(D7) - (07,tab0i) mit «p, aus C0

(-i-pm&J + WM (-3-p)(<D7,<D,)
also

2(<Di,07) + (0i,O16) =0 (210

Die übrigen Gleichungen mit den Spinfunktionen der Klasse C0 lauten

2(0i,08)-r(0i,017) 0

2(01,0lo)T(0i,019) 0

2(01,012)+(0i,016) =0
2(0i,014) i (0,02O) 0

2(0,09 M0,016H 0

2(0,011)+(0i,018) O

2(01,013)+(0i,018)-O
2(0i,016)+(0i,017) -0

(21,
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Ebenso ergibt (0i(tab02) (02,^0;) mit 0; aus C0

(3-p)(01,02)+2(0i,07)+4(0i,08)+2(0i,09) + (0i,016) (-3-p)(02,0i)

und indem man unter Benützung der Gleichungen (21) mit sämtlichen
Spinfunktionen der Klasse C2 gleicherweise verfährt, erhält man

6(0i,02)-(01,016)-2(0i,017) 0 (22)

6(0i,03)-(0i,018)-2(0i,019) 0

6(0i,04)-(0i,016)-2(0i,02o) 0

6(0„05)-(0i,017)-2(0i,019) 0

6(0„06)-(0I,016)-2(0i,018) - 0

Endlich ergibt (0i,tab01) (01,tab0i) unter Benützung der Gleichungen
(22) und einiger der Gleichungen (21)

12(0i,01) + 2(0i,016) + (0i,017) + (0i,018) + 2(0i,019) + 3(0i02o) - 0 (23)

(i 16,...20)

Das stimmt bis auf die Verwendung der großgeschriebenen 0 mit der
zweiten Angabe der Tabelle im Abschnitt na 3,nb 3 überein. Wir
hätten schon in (21) und (22), wo die Zahl p ausgefallen ist, wieder die

kleingeschriebenen 9 verwenden können.
Es besteht, um es anders auszudrücken, der Sachverhalt, daß die

Hinzufügung von gleichviel Valenzelektronen zu den Atomen A und B
auf die Beziehungen zwischen « Skalarprodukten von Spinfunktionen
aus C0(ab) mit Spinfunktionen aus C1(ab),... Cm(ab) » und « Skalarprodukten

von Spinfunktionen aus C0(ab) untereinander » ohne Einfluß
ist. Dieser Sachverhalt wird auch in folgender Weise illustriert : Bei
der Erarbeitung von (23) erscheinen (22) und (21) als Zwischenresultate.

Die Gleichungen (22) sind aber zugleich (in mehrfacher
Anwendung) das Endresultat für den Fall na 2, nb 2, so wie die
Gleichungen (21) das Endresultat für den Fall na 1, nb 1 sind. Die
Tabelle beschränkt sich also auf « C^^ mit Cm(ab) ». Hat man beispielsweise

ein Atom A mit 4 und ein Atom B mit 3 Valenzelektronen, so

findet man die auf C3 bezüglichen Angaben unter na 4, nb 3, die
auf C2 bezüglichen unter na 3, nb 2 und die auf C1 bezüglichen
unter na 2, nb - 1.

Was die Identifizierung der Atome C,D,... der Tabelle mit Atomen
des Moleküls angeht, gilt das zu Gleichung (4) Bemerkte. Der von dem

Operator tab nicht beeinflußte Teil der Valenzstruktur cp aus Cm ist
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unverändert den aus der Tabelle entnommenen Angaben beizufügen.
Wir lassen jetzt deren restlichen Teil folgen

Fortsetzung der Tabelle von Seite 154

9i
9 2

9 a

9-.

9 s

9«

9 t

?8

9 9

9io
9n
9l2
9l3
9l4

9l7

9i

924

925

?2f,

929

9so

9si

[BC] [BD] [BF]
[BE] [BF] [CD]
[BC] [BF] [DE]

[BD] [EF]
[BD] [FG]
[BD] [GH]
[BD] [HJ]

[BC]
[BC]
[BC]

na 4, nb 3

[AF] [AG] [AH] [AJ]
[AB] [AG] [AH] [AJ]
[AB] [AG] [AH] [AJ]
[AB] [AG] [AH] [AJ]
[AB] [AE] [AH] [AJ]
[AB] [AE] [AF] [AJ]

- [AB] [AE] [AF] [AG] [BC]
[AB]2[AH][AJ] [BG] [CD] [EF]

- [AB]2[AH][AJ] [BE] [CD] [FG]
[AB]2[AF] [AJ] [BE] [CD] [GH]
[AB]2[AF] [AG] [BE] [CD] [HJ]
[AB]2[AH][AJ] [BC] [DE][FG]
[AB]2[AF] [AJ] [BC] [DE] [GH]
[AB]2[AF1 [AG] [BC] [DE] [HJ]

915 [AB]2[AD] [AJ] [BC] [EF] [GH]
916 [AB]2[AD] [AG] [BC] [EF] [HJ]

[AB]2[AD] [AE] [BC] [FG] [HJ]
[AB]2[AH][AJ] [BG] [CF] [DE]
[AB]2[AH][AJ] [BC] 1DG][EF]

92„ [AB]2[AD] [AJ] [BC] [EH][FG]
«p„ [AB]2[AD] [AE] [BC] [FJ] [GH]
922 [AB]»[AJ] [CD] [EF] [GH]
923 [AB]'[AG] [CD] [EF] [HJ]

- [AB]3[AE] [CD] [FG] [HJ]
[AB]3[AC] [DE] [FG] [HJ]
[AB]3[AJ] [CD] [EH][FG]
[AB]3[AE] [CD] [FJ] [GH]
[AB]3[AC] [DE] [FJ] [GH]
[AB]3[AJ] [CF] [DE] [GH]
[AB]3[AG] [CF] [DE] [HJ]
[AB]3[AC] [DG] [EF] [HJ]

932 [AB]3[AJ] [CH] [DE] [FG]
933 [AB]3[AC] [DJ] [EF] [GH]
<p„ - [AB]3[AJ] [CH] [DG] [EF]
935 [AB]3[AC] [DJ] [EH] [FG]

9ie 3591 + 2092 + 4093+6094 + 4595 + 309s+1597
+ 409l8+209l4 + 309l6+159le + 109i7 + 109l8 + 309l
+ 6925 +12926+4927 + 3928 + 12929 + 6930+3931 + 893s

-209„ + 309,+209lo+109ll-i-609,2i
+ 1 5920 + 592!+24922 + 12923 + 8924-

+ 2933+4934+935 ;
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30(9i,9i) + 12(91,922) +6(9i,9as) +4(9i, 24)+8(91,925)+ 6(9i,926) + 2(9i,92,)
+ 6(91,929) +3(9i,93o) +9(91,931) +9(9i,932) + 6(91,933) + 12(9i,9s4) + 3(9i,9
(i 22,... 35)

na 4, nb 4

91 [AG] [AH] [AJ] [AK] [BC] [BD] [BE] [BF]
92 [AB] [AH] [AJ] [AK] [BE] [BF] [BG] [CD]
93 « [AB] [AH] [AJ] [AK] [BC] [BF] [BG] [DE]
94 [AB] [AH] [AJ] [AK] [BC] [BD] [BG] [EF]
95 [AB] [AH] [AJ] [AK][BC] [BD] [BE] [FG]
9„ [AB] [AF] [AJ] [AK] TBC] [BD] [BE] [GH]
9, [AB] [AF] [AG] [AK] [BC] [BD] [BE] [HJ]
98 - [AB] [AF] [AG] [AH][BC] [BD] [BE] [JK]
99 - [AB]2[AJ] [AK][BG] [BH] [CD] [EF]
9!„ [AB]2[AJ] [AK][BE] [BH] [CD] [FG]

9ll [AB]2[AJ] [AK][BE] [BF] [CD] [GH]
9i2 - [AB]2[AG] [AK][BE] [BF] [CD] [HJ]
9i3 [AB]2[AG] TAH][BE] [BF] [CD] [JK]
914 - [AB]2[AJ] [AK][BC] [BH] [DE] [FG]
9l6 [AB]2[AJ] [AK][BC] [BF] [DE] [GH]
916 [AB]2[AG] [AK][BC] [BF] [DE] [HJ]
917 [AB12[AG1 [AH][BC] [BF] [DE] [JK]
918 [AB]2[AJ] [AK][BC] [BD] [EF] [GH]
919 [AB]2[AG] [AK][BC] [BD] [EF] [HJ]
920 » [AB]2[AG] [AH][BC] [BD] [EF] [JK]
921 [AB]2[AE] [AK][BC] [BD] [FG] [HJ]
922 - [AB]2[AE] [AH][BC1 [BD] [FG] [JK]
923 [AB]2[AE] [AF] [BC] [BD] [GH] [JK]
924 - [AB]2[AJ] [AK][BG] [BH] [CF] [DE]
925 [AB]2[AJ] [AK][BC] [BH] [DG] [EF]
926 [AB]2[AJ] [AK][BC] [BD] [EH] [FG]
92, [AB]2[AE] [AK][BC] [BD] [FJ] [GH]
928 [AB]2[AE] [AF] [BC] [BD] [GK] [HJ]
929 [AB13[AK][BJ] [CD] [EF] [GH]
930 [AB]3[AK][BG] [CD] [EF] [HJ]
93! [AB]3[AH][BG] [CD] [EF] [JK]
932 - [AB]3[AK][BE] [CD] [FG] [HJ]
9ss [AB]3[AH][BE] [CD] [FG] [JK]
934 - [AB]3[AF] [BE] [CD] [GH][JK]
935 - [AB]3[AK][BC] [DE] [FG] [HJ]
936 =- [AB]3[AH][BC] [DE] [FG] [JK]
93, [AB]3[AF] [BC] [DE] [GH] [JK]
938 - [AB]3[AD] [BC] [EF] [GH] [JK]
939 [AB]3[AK][BJ] [CD] [EH] [FG]
940 [AB]3[AK][BE] [CD] [FJ] [GH]
941 - [AB]3[AF] [BE] [CD] [GK] [HJ]
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9l2 [AB]3[AK][BC] [DE] [FJ] [GH]
943 - [AB]3[AF] [BC] [DE] [GK] [HJ]

9„ [AB]3[AD][BC] [EF] [GK] [HJ]
945 [AB]3[AK][BJ] [CF] [DE] [GH]
946 [AB]3[AK][BG] [CF] [DE] [HJ]
947 [AB]3[AH][BG] [CF] [DE] [JK]
948 - [AB]3[AK][BC] [DG] [EF] [HJ]
949 - [AB]3[AH][BC] [DG] [EF] [JK]
950 - [ABJ3[AD] [BC] [EH] [FG] [JK]
951 [AB]3[AK][BJ] [CH] [DE] [FG]
952 [AB]3[AK][BC] [DJ] [EF] [GH]
953 - [AB]3[AD] [BC] [EK] [FG] [HJ]
964 [AB]3[AK][BJ] [CH] [DG] [EF]
955 - [AB]3[AK][BC] [DJ] [EH] [FG]
956 [AB]3[AD][BC] [EK][FJ] [GH]
95, - [AB]*[CD] [EF] [GH][JK]
958 - [AB]*[CD] [EF] [GK] [HJ]
959 - [AB]*[CD] [EH] [FG] [JK]
96„ [AB]*[CF] LDE] [GH] [JK]
9oi [AB]4[CF] [DE] [GK] [HJ]
962 TAB]*[CD] [EK][FG] [HJ]
9o3 » [AB]*[CH] [DE] [FG] [JK]
964 [AB]4[CD] [EK] [FJ] [GH]
9,5 [AB]4[CH] [DG] [EF] [JK]
966 [AB]*[CK] [DE] [FG] [HJ]
9e, [AB]*LCK] [DE] [FJ] [GH]
968 [AB]*[CK] [DG] [EF] [HJ]
969 [AB]*[CK] [DJ] [EF] [GH]
9,„ [AB]*[CK] [DJ] [EH] [FG]

9iE 709i + 35924 709ä+10594 +14095+10595 + 709, +3598+3099+459io+609ii+
+40912 + 20913+909I4+120915 + 809i6+40917 + 180918+l 209i9 + 6092o+9092i+4592S
+ 30923+15924+459251-90926 + 4592,^15928 + 30929 + 40930+20931 + 60932 + 30933 +
1-20934 + 120935 + 60936+4093, + 30938+15939 + 3094o + 1094i + 60942 + 20943 + 15944+

+ 15945 + 20946 + 1094, + 60948 + 30949 + 1595„+1095i + 40952+10953+5954 + 20955 +

+ 5950 + 2495,+12958+129594-1296o+6961 +8982 + 8903+4904 + 4905 +6986t3967 +
+ 39o8 + 29o9 + 970 I

60(91,91)—8(91,95,)—4(9i,958)—9(9i,959)-4(9i.9oo)—2(9i.961)-6(9i,962)—6(91,903)-
-3(9l,964)-3(9i,965)—12(9i,966)—6(91,907)—6(9i,988)-9(9i,969)—12(91,9,9) 0

(i 57,.... 70)

Nach dem bisher Erörterten läßt sich das Beispiel des Propadien-
moleküls (7) ausarbeiten mit Ausschluß der Spinfunktionen der B-
Strukturen 96, cp7,98. Indem das Atompaar A,E symmetrisch zu C,D
liegt, besteht die Klasse C^^ aus den Spinfunktionen 93,cp4,cp5. Die
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Reihen (<pi)9k) (i 3,4,5) können daher ohne Rechnen ausgefüllt werden.

Die Reihe cp3 ist zwar nicht neu ; weil wir aber die Skalarprodukte
nur bis auf willkürliche Normierungsfaktoren erhalten, ist es nützlich,

wenn eine neue Klasse, in unserem Fall C^^, mit einer der schon
verwendeten Klassen, hier C^^, eine Valenzstruktur gemeinsam hat.
Prüfen wir die übrigen Klassen C0, so sehen wir, daß C^-, und Co,bc)

zu keinen neuen Teilresultaten führen, denn Cq^ besteht nur aus der

Spinfunktion 9l und C^^ nur aus <p5. Dagegen gestattet C^-, die
Auffüllung der Reihe <p9.

Was nun die Spinfunktionen von B-Strukturen betrifft, würde man
in unserem Beispiel durch direkte Anwendung der Gleichungen (1),
(3) bezogen auf das Atompaar D,E zum Ziel kommen. Die Operationen

wären folgende

C2 <?l,tP2.?3,cp4,?5> i Cl **** <<P6.<P7,<P8> '> C0 """* <"?!>>

tde<Pl 49l tde94 - 4cp4+298 tde97 99

t<Je?2 492 + 2cp6 tde95 49ä tde9g - 0

tde93 *493 + 4?7 tde96 0 fde99 "*** -299

Die Relationen (9i,tab9k) - (9k,tab9i) (i 2,3,4, ; k 6,7,8) liefern die
erforderten Gleichungen und zwar einige mehr als einmal. Es gilt
außer der Symmetrie (9i,9k) (9k,9i) noch (cp6>96) (98,?8) '• (?e,?7) ****

(98,<p7). Daher wird die Auffüllung geleistet durch

i 2, k 6

i 2, k 7

i 2, k 8
i 3, k 7

%6,92) + 2(96,96) 0 (24)
4(?6,<P3)+4(?6,<P7) 0

4(96,94) + 2(96,98) 0

(93,99) ¦= 4(97,9s) + 4(97,97)

Bei größeren Molekülen kann aber die Zahl der B-Strukturen recht
beträchtlich sein, andererseits wächst die Zahl der Glieder des
Ausdrucks tab9, wenn cp einer höheren Klasse angehört, im allgemeinen
Fall ungefähr quadratisch mit der Klasse an. Dadurch wird die
Verwendung der Gleichung (3) schwerfällig.

Wir werden die Eigenschaften der Vertauschungsoperatoren
bezüglich auf dem Rumerkreis benachbarter Atome A,B einer neuen
Betrachtung unterziehen. Die Idee, etwas vage ausgedrückt, ist die :

Indem die Kombination von Cq^ mit den höheren Klassen ziemlich
leicht vorzunehmen ist, weil die Ausdrücke tab9 mit 9 aus C0 aus nur
einem Glied bestehen, dieses Vorgehen jedoch beim Vorhandensein
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von B-Strukturen nicht zum Ziel führt, versuchen wir in diesem Fall
die oberste Klasse oder wenn es nicht notwendig ist, bis zur obersten

zu gehen, die oberen Klassen mit den unteren zu kombinieren. Wir
werden sehen, daß es einen Weg gibt, zu erreichen, daß in den
Gleichungen, die wir aus der grundlegenden Gleichung (3) ableiten, der
eine der beiden Faktoren aus nur einem Glied besteht.

Zu diesem Zweck entlehnen wir aus der linearen Algebra den
Begriff des Eigenwertes und der Eigenvektoren. Wir betrachten den
linearen Raum, der durch die kreuzungslosen Spinfunktionen 9l,cp2,...9l
aufgespannt wird. Der Operator tab bewirkt nach Gleichung (1) eine

lineare Abbildung des Raumes, denn er führt den (Basis-) Vektor 9i
in Saji9i und den allgemeinen Vektor 2bi9i in Sa^b^ über. Die bei Aus-

*
1 j,i

führung der Operation tab vorkommenden Entkreuzungen lassen sich
derart systematisieren, daß das Ergebnis durch die Formel (4)
beschrieben wird. Bei passender Anordnung der Spinfunktionen nach
den Klassen Cm :<p ohne Faktor [AB] bis C0 :9 mit dem Faktor [AB]™
bekommt die Koeffizientenmatrix des Gleichungssystems (1) die
Gestalt einer oberen Dreiecksmatrix und zwar, wie früher ausgeführt,
einer Dreiecksmatrix mit weiteren speziellen Eigenschaften.

Einen Vektor 9 2bi9i nennt man Eigenvektor des Operators tab,
i

wenn er bei Anwendung des Operators in ein Vielfaches übergeführt
wird, also

tab? ^9

ist. Der Faktor X heisst ein Eigenwert des Operators tab und 9 heisst
ein Eigenvektor zum Eigenwert X. Die Gesamtheit aller Eigenvektoren
zu einem Eigenwert X bildet für sich einen linearen Raum, denn aus

tab9 X9 folgt tabkcp Xkcp und aus tab9 X9 ; tab9' X9' folgt
tab + ?') M? + 9')- Man spricht dann von dem Eigenraum zum
Eigenwert X.

Hermitische Operatoren haben die wichtige Eigenschaft, daß
Eigenvektoren zu verschiedenen Eigenwerten zueinander orthogonal sind.
Aus (9,tab9') (cp',tab9) ; tab9 X9 ; tab9' X'cp' ; X+X' folgt (9,tab9')

X'(9)9') ; (9',tab9) X(9',cp) X(9,9'), also (X-X')(9,9') 0. Weil der
erste Faktor zufolge X^=X' ungleich Null ist, ist der zweite Faktor
gleich Null, und das ist die behauptete Orthogonalität.
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Die Bestimmung der Eigenwerte eines in der Form der Gleichung (1)

gegebenen Operators geschieht durch Auflösen der Säkulargleichung

det (A-XE) 0

wobei E die f-reihige Einheitsmatrix bezeichnet. Im Falle einer
Dreiecksmatrix sind nun die Wurzeln der Säkulargleichung genau die
Diagonalelemente. Wir wissen also auf Grund der Gleichung (6), daß der

Operator tab die Eigenwerte (nb—m+i)(na—m+i)—m+i, oder, anders
gesagt, da m nb ist, die Eigenwerte

Xj i(na-nb + i)-nb + i (i 0,1,..nb) (25)

hat, und zwar Xj mit der Vielfachheit gleich der Anzahl der
Spinfunktionen der Klasse Ci(ab:r Wir wollen noch bemerken, daß die
höchsten Eigenwerte lauten Xm nanb; X,^ (na—l)(nb—1)—1 ;

Xm.2 (na-2)(nb-2)-2usw.
Man muß sich davor hüten, die Klassen C1(ab),..Cm(ab) für Eigenräume

des Operators tab zu halten. Nur die Klasse C^^ist ein Eigenraum, denn
für alle Spinfunktionen aus C^-, gilt tab9 - —nb9 und umgekehrt ist
jeder Vektor, für den tab9 —nb9 gilt, Linearkombination der
Spinfunktionen aus Co(ab).

Um allgemein die Eigenvektoren 2bi9i, das heißt die Systeme der
i

Koeffizienten b, zu einem gegebenen Eigenwert Xp (p - 0,1,...m) zu
finden, hat man das lineare homogene Gleichungssystem mit der Ko-
eifizientenmatrix

A-XpE

und den b; als Unbekannten, aufzulösen, in unserem Fall

(a11-Xp)b1+a12b2+... +alfb, 0

a21b1+(a22-Xp)b2+ + a2fbj 0 (26)

a£1b1+a12b2+.... + (a1£-Xp)bf 0

Die auf die Koeffizienten b bezogene Matrix ist die Transponierte der
auf die Basisvektoren <p bezogenen Matrix des Gleichungssystems (1).
Sie ist also, wenn wir, wie immer, die Spinfunktionen mit den obersten
Klassen beginnend anordnen, eine untere Dreiecksmatrix. In der
Hauptdiagonale steht zuerst einige Male 7^—Xp, je nach der Anzahl der
Spinfunktionen von Cm(m nb), dann ebenso einige Male Xm.1—Xp, zu-
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letzt —nb—Xp. Nimmt man Xp gleich dem niedrigsten Eigenwert, dann
besteht der unterste Abschnitt der Hauptdiagonale aus Nullen; nimmt
man Xp gleich dem zweitniedrigsten Eigenwert, dann der zweitunterste
usw.

Nun hat eine Dreiecksmatrix mit genau r Nullen in der
Hauptdiagonale den Rangdefekt r. Es gibt also zum Eigenwert Xj so viele
linear unabhängige Lösungen b^.-.bj, als die dazu gehörige Klasse Q
Spinfunktionen hat.

Die Eigenräume des Operators tab wollen wir mit Rq.R!,...
Rm(m - nb-^na) bezeichnen. Es ist also, wie schon festgestellt, R0 C0,

aber von R1;...Rm können wir nur sagen, daß sie von gleicher Dimension
sind wie C1,...Cm.

Wir achten noch auf zwei Umstände. Erstens kann die Auflösung
eines Gleichungssystems, dessen Koeffizientenmatrix eine untere
Dreiecksmatrix ist wie in (26), schrittweise von oben her erfolgen,
indem man mit b1 beginnt und jeweils bg aus den bekannten ^....hg.!
berechnet. Zweitens hat die Koeffizientenmatrix von (26) die spezielle
Beschaffenheit, daß dort, wo ein Abschnitt der Hauptdiagonale Null
wird (indem Xp einem der Eigenwerte gleich ist), zugleich das ganze
zugehörige Quadrat aus Nullen besteht.

Will man also den Eigenraum Rj(i<m) bestimmen, so beginnt das

Gleichungssystem mit

(X^XOW 0

woraus bx 0 folgt, und solange in der Hauptdiagonale Xj—Xj mit j>i
steht, erhält man b 0. In Worten : In dem Eigenraum Rj(i<m) kommen

die Spinfunktionen der Klassen Cm,Cm.1( ...Ci+1 nicht vor.
Dasselbe anders gesagt: Der Eigenraum R;(i 0,l,..m) wird durch die

Spinfunktionen der Klasse Q und der niedereren Klassen Q^, ...C0

aufgespannt.
Es soll nun die Klasse Cj aus den Spinfunktionen 9g+1,..9h bestehen.

Wir setzen die Auflösung des Gleichungssystems fort. Indem b^.-.bg
alle Null sind, kann man die g ersten Unbekannten weglassen und der
noch übrige Teil des Gleichungssystems lautet

0 bg+1 0
0 ¦ bg+1+0 bg+2 0
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0 bg+1+0 bg+2+... + 0 • bh 0

ag+i>g+ihg+i+ag+1,g+2bg+2+... + ag+1,hbh+(Xi_1—Xj)bh+1 0

Das heißt, die Koeffizienten bg+1,....bh der Spinfunktionen 9g+1,...9h,
die in dem Gleichungssystem als Unbekannte auftreten, können
willkürlich gewählt werden und die Koeffizienten von 9h+J,...9£, das sind
Spinfunktionen aus niedereren Klassen, bestimmen sich eindeutig aus
diesen.

Speziell kann man für die Koeffizienten von 9g+1bis9b die
Zahlensysteme (1,0,...0), (0,1,0,...0),...(0,...0,1) wählen. Das heißt in anderen
Worten : Es läßt sich jeder Spinfunktion cp aus Q ein Eigenvektor 9b

aus R; zuordnen, derart dass 9e aus der einzigen Spinfunktion 9 aus C£

und aus Spinfunktionen niederer Klassen linear zusammengesetzt ist.
Indem man dieselbe Überlegung auf die Klassen CU1,... C0 anwendet,

kommt man, da die unterste Klasse C0 selber ein Eigenraum C0 R0

ist, zur Schlußfolgerung : Jede Spinfunktion cp aus C£ ist aus dem
Eigenvektor cpB aus Rj und aus Eigenvektoren niederer Eigenräume KU1,... R0

linear zusammengesetzt.
Daraus folgt weiter : Jede Spinfunktion cp aus Q ist zu jedem

Eigenvektor eines höheren Eigenraumes Ri+1,...Rm orthogonal. Wir formulieren

dies in der Gleichung

(9i,9jE) - 0 (i<j) (27)

Hier besteht tatsächlich der eine Faktor aus dem einzigen Glied 9i>

der Spinfunktion aus der niedereren Klasse. Um 9jB zu finden (genauer
müßte cpjB(ab) gesagt werden), bringt man zunächst 9j durch Weglassung
aller Faktoren, die von tab nicht beeinflußt werden, auf die Form (4a).
Weglassen eines allfälligen Faktors [AB]P ergibt eine der Funktionen 9l
der Tabelle. Der Funktion 9lB der ersten Angabe (wobei in den meisten
Fällen ein beträchtlicher Teil der Glieder zufolge Identifizierungen
ausfällt) sind die weggelassenen Faktoren wieder hinzuzufügen, womit
man die gesuchte Funktion 9jB erhält.

In dem Beispiel (7) verläuft die systematische Behandlung der B-
Strukturen folgendermassen.

C2(de) <?1,?2>?3,?4,?5> '> C1(de) <cp6,cp7,98>

Verwendbare Eigenvektoren sind
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92B - 692+396 ; 93B - 693+6cp7+99 ; 94E - 6cp4+398

Diese sind alle zu 96,97,98 orthogonal. Das ergibt die Gleichungen

(?6-9i) - -2(?2,?i)

~6^

1

(?7,9i) - -(<P3.<Pi)-*c(?9.<Pi) (Ì 6-7,8)

(?8,9i) - -2(?4-9i)

die, wie es sein muß, zu denselben Ergebnissen führen wie die
Gleichungen (24).

Die Methode hat erst bei mittelgroßen Molekülen ihre Vorteile, weil
sie eine serienmäßige Ausführung der Einzeloperationen ermöglicht.
Da sie andererseits rekursiv ist, indem bei einem Molekül von mehr
als vier Atomen gewisse kleinere Moleküle bekannt sein müssen, wurden
im hiesigen Institut, um sich den Anfang der Bearbeitung eines

beliebigen Moleküls zu ersparen, die Skalarprodukte für sämtliche
Systeme bestehend aus vier und fünf Atomen mit 1 bis 4 Valenzelektronen
im Atom berechnet.
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