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Mathematische Testtheorie
Grundlagen und neuere Probleme

Teil I
Grundbegriffe der Testtheorie mit Anwendungen

Von Heinz Kres
Mathematisches Institut der Universität Freiburg im Üchtland (Schweiz)
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Einleitung

Die Mathematische Testtheorie gehört neben der Theorie der
Parameterschätzungen und der Theorie der Vertrauens- und Toleranzbereiche

zu den bedeutendsten Teilgebieten der statistischen
Erfahrungsbildung.

In der Praxis der experimentellen Forschung geht es oftmals weniger

darum, einen statistischen Parameter - etwa den Mittelwert einer

Grundgesamtheit - genau zu schätzen, als vielmehr um die Behandlung
von Problemen der folgenden Art :

1. Ein Physiker hat eine neue Methode zum Auftragen der Thoriumschicht

eines Neutronenzählrohres unter folgenden Gesichtspunkten zu
beurteilen :

a) Ist die gewünschte Verkürzung der Löschzeit eingetreten
b) Hat sich dabei die durchschnittliche Lebensdauer des Rohres in
unerwünschter Weise verkürzt

2. Ein Fabrikant möchte wissen, ob eine neue Art der
Nahrungsmittelkonservierung durch radioaktive Präparate die Vitamine
schonender behandelt als die bisherige.

3. Ein Mediziner möchte testen, ob ein neu entwickeltes Antibiotikum

in der Behandlung von Infektionskrankheiten erfolgreicher ist als
das bisher verwendete Standardpräparat.
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4. In der Züchtungsforschung hat ein Botaniker die Erträge einer
neuen Population mit denen der bisherigen zu vergleichen.

5. In der vergleichenden Anatomie - speziell etwa in der Primatologie

- soll die « Echtheit » zweier Arten nachgewiesen werden.
Weitere Probleme finden sich in den Anwendungsbeispielen des

Abschnittes C.

All diesen Aufgabenstellungen liegt ein gemeinsames Problem
zugrunde :

Hat sich im Vergleich mit einer zweiten Grundgesamtheit - oder
durch Abänderung der Versuchsbedingungen - der durchschnittliche
Wert einer zu prüfenden Eigenschaft wesentlich verändert, sei es

vergrößert oder verkleinert Zur mathematischen Behandlung solcher
Probleme werden wir im Abschnitt A eine Nullhypothese H0 aufstellen,
welche besagt, daß beide « Stichproben » (d. h. diejenige aus der ersten
und diejenige aus der zweiten zum Vergleich herangezogenen Population)

zu Grundgesamtheiten mit der gleichen Verteilung gehören.
Zusätzlich werden wir die Alternativhypothese H& betrachten müssen,

wonach die beiden Stichproben als zu verschieden verteilten
Grundgesamtheiten gehörig anzusehen sind. Die Nullhypothese, die auf
Gleichheit der beiden Verteilungen lautet, ist in diesem Falle zu
verwerfen.

In der Testtheorie dient dann auf der Basis der erhobenen
Stichproben eine besondere Stichprobenfunktion mit einer zugehörigen
Testvorschrift zur Entscheidung über Annahme oder Verwerfung der

aufgestellten Nullhypothese. Die Grundzüge dieser Testtheorie, deren

Entwicklung vornehmlich mit den Namen Neyman und Pearson
verbunden ist, werden im folgenden Abschnitt A dargelegt. Dabei
soll bezüglich der Definitionen und der Sprechweise stets das
sogenannte Problem der zwei Stichproben, wie es in den weiter oben
skizzierten Aufgabenstellungen bereits angedeutet wurde und im § 6 noch

genauer formuliert wird, im Vordergrund des Interesses stehen.
Der Abschnitt B bringt dann die wichtigsten und gebräuchlichsten

Testverfahren zur Behandlung des Zwei-Stichproben-Problems.
Zur Veranschaulichung der Theorie werden im Abschnitt C einige

typische Anwendungsbeispiele aus verschiedenen Gebieten dargestellt.
Der Anhang soll schließlich noch einige Hinweise geben auf die Frage,

welchen der zahlreichen Tests man im Einzelfall günstigerweise
anwendet.
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Abschnitt A

Die Grundzüge der Neyman-Pearsonschen Testtheorie

1. Hypothese, Test und kritische Region

In der Mathematischen Statistik nennt man eine eindeutige reell-
wertige Funktion X, die ihre möglichen Werte gemäß Zufall annimmt,
eine zufällige Größe oder stochastische Variable.

Hiervon ausgehend definiert man durch

(1;1) F(t) P(X^t)

eine neue Funktion, die Verteilungsfunktion der zufälligen Veränderlichen

X. Dabei bedeutet P(X^t) die Wahrscheinlichkeit dafür, daß die

zufällige Veränderliche X einen Wert kleiner oder gleich t annimmt.
Die Ableitung der Verteilungsfunktion heißt Dichtefunktion.
Auf die vielfältigen mathematischen Eigenschaften dieser beiden

Funktionen soll hier nicht weiter eingegangen werden. Es sei lediglich
an die wichtigen Forderungen

(1;2) F(-oo) 0 und F(+oo) 1

erinnert. Zur Veranschaulichung verweisen wir auf das bekannteste
Beispiel, die « normale » Dichtefunktion f(x) - auch Gaußsche Glockenkurve

genannt - mit ihrem Integral, der « normalen » Verteilungsfunktion

F(t) :

(l;3)f(x)= l_.exp(-ÖL^)l\ mit
<J • V 271

(l:*)F(t)- -Wexp(-^)
<** • V 2tt J
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und in graphischer Darstellung
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Der Begriff der zufälligen Größe ist für die folgenden Ausführungen
von Bedeutung, weil alle statistischen Untersuchungen über die Merkmale

von Grundgesamtheiten auf die Betrachtung von zufälligen
Größen hinauslaufen.

In einem Experiment bezeichnet man die n beobachteten Werte der
zu untersuchenden Größe X mit x; (i=l,2,.. .,n). Die Gesamtheit der
möglichen n-Tupel bildet den Stichprobenraum X. Seine Dimension ist
also gleich der Anzahl der entnommenen Stichprobenelemente.

Die Menge der in Frage kommenden Verteilungsfunktionen der zu
untersuchenden zufälligen Größe bezeichnen wir mit <Pe>, wobei der
Parameter 6 alle Werte eines Parameterraumes O durchlaufen kann.
Die bei der Untersuchung zugelassenen Verteilungsfunktionen bilden
also die Menge

(l;5) <Pe ; 9EQ>
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Das Problem des Prüfens einer Hypothese durch einen Test stellt
sich dann in folgender Form :

Nach der Durchführung des Experiments hat man auf Grund der
Daten mittels einer Testvorschrift eine der beiden folgenden Entscheidungen

zu treffen :

di : òsco cQ. d. h. die den Ausgang des Experiments herbeiführende
Verteilung liegt in dem Unterraum co des Hypothesenraumes Q.

d2 : 6e£2-co d. h. die Verteilung der zufälligen Größe liegt in dem zu
co komplementären Unterraum Q-co des Hypothesenraumes O.

Bei der Planung des Experiments stellt man eine Annahme über
seinen Ausgang auf und legt den Bereich co so fest, daß die zu prüfende
Annahme - die dann durch den Test entweder bestätigt oder widerlegt

wird - durch osco charakterisiert ist.
Diese Annahme nennen wir Nullhypothese H0.
Die zu co komplementäre Hypothesenmenge Q-co trägt den Namen

Alternativhypothese Ha oder kurz Alternative. Eine statistische Hypothese

schlechthin spezifiziert eine Untermenge co von Q. und stellt fest,
daß die Verteilungsfunktion der zu untersuchenden zufälligen Größe
X eine Funktion Pq mit 6sco ist.

Für jede Stichprobe (xltx2,...,xn) wird nun durch eine Testvorschrift

anhand einer Testgröße T, die ihrerseits ebenfalls eine zufällige
Größe ist, genau vorgeschrieben, welche der beiden Entscheidungen
d, oder d2 zu treffen ist. Diesen beiden möglichen Entscheidungen
entsprechen zwei zueinander komplementäre Punktmengen des

Stichprobenraumes X.
Diejenige Punktmenge des Raumes X (und ebenfalls die ihr

zugeordnete Punktmenge im Wertebereich W der Testgröße T), die die
Entscheidung d2 nach sich zieht, heißt kritische Region oder
Verwerfungsbereich V, da sie das Verwerfen der zu prüfenden Nyllhypothese
H0 bewirkt.

Die Entscheidung trifft man im allgemeinen nicht primär anhand
der Punkte des Stichprobenraumes, sondern mittels der ihnen
zugeordneten Werte t der Testgröße T. Analog dazu hat man dann die
kritische Region V nicht primär im Stichprobenraum abzustecken,
sondern als eine Punktmenge w im Wertebereich W der Testgröße T.

Faßt man alle Punkte des Stichprobenraumes, die durch T in w
abgebildet werden, zur Menge s zusammen, so besteht ein Test für die
statistische Hypothese H0 auch in der Aufteilung des Stichproben-
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raumes X in die beiden komplementären Teilmengen s und X - s mit
der Maßgabe, daß H0 zugunsten von Ha zu verwerfen ist, sofern das
beobachtete n-Tupel (x1(x2)...,xn) in s liegt.

Nullhypothese und Alternative können wir also kurz wie folgt
beschreiben :

H0 : Osco. falls tsW — w bzw. (x!,x2 xn)sX - s

Ha : öcß-co, falls tcw bzw. (Xj.x,,.. .,xn)s s.

2. Die möglichen Fehler und die Güte eines Tests

Die Wahl des Verwerfungsbereiches V w wird unter folgenden
Gesichtspunkten vorgenommen :

Man gibt zunächst das Testniveau, die sogenannte Irrtumswahrscheinlichkeit

a, mit 0<<x<T, vor und wählt dazu im Wertebereich W der
Testgröße T eine zugehörige kritische Region V w derart aus, daß

H0 aufgrund einer Stichprobe höchstens mit einer Wahrscheinlichkeit
a abgelehnt wird, vorausgesetzt, daß H0 in der Grundgesamtheit wirklich

gilt ; d. h., daß Osco ist. k gibt also die Wahrscheinlichkeit des Ver-
werfens der Nullhypothese an, und zwar unter der Voraussetzung, daß
sie richtig ist. oc bezeichnet man auch als die Wahrscheinlichkeit eines

Fehlers 1. Art. Wir haben also

(2;1) P(w ; Osco) ^Ta.

Andererseits besteht aber die Möglichkeit, daß H0 falsch ist. Um
auch in diesem Falle die richtige Entscheidung, d. h. die Verwerfung
von H0, mit möglichst großer Wahrscheinlichkeit zu treffen, stellt
man an die kritische Region V=w noch die Forderung, daß sie unter der
Voraussetzung der Richtigkeit von Ha eine möglichst große
Wahrscheinlichkeit auf sich vereinigt.

Man fordert also

(2;2) P(w ; OsO-cü) maximal.

Der im Falle der Richtigkeit von Ha mögliche Fehler ist die
Wahrscheinlichkeit des Nichtverwerfens (d. h. des Annehmens) von H0,
obwohl es falsch ist. Sie wird mit ß bezeichnet und trägt den Namen
Wahrscheinlichkeit eines Fehlers 2. Art. Man wird bestrebt sein, diesen
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Fehler möglichst klein zu halten ; das ist gleichwertig mit der Forderung

(2;2).
Das Problem, eine gute kritische Region und damit einen guten

Test zu bekommen, liegt in der Schwierigkeit, bei vorgegebenem Fehler

1. Art einen möglichst kleinen Fehler 2. Art zuzulassen.
Statt der Forderung, den Fehler 2. Art möglichst klein zu halten,

kann man auch verlangen, daß die komplementäre Wahrscheinlichkeit

nach (2;2), nämlich diejenige des Verwerfens von H0, wenn es

falsch ist, möglichst groß wird. Diese Wahrscheinlichkeit

(2*3) M(w ; 6) 1 - ß P(w ; Geu-co)

trägt den Namen Güte- oder Machtfunktion des zu V w gehörenden
Tests.

Von großer theoretischer wie auch praktischer Bedeutung für die
Testtheorie ist auch die sogenannte Operations- oder 'Testcharakteristik

(2;4) L(w;6) 1 - P(w ; OsA-co).

Sie gibt die Annahmewahrscheinlichkeit für H0 in Abhängigkeit von
6 an. Zwischen Gütefunktion und Operationscharakteristik besteht
folgende Beziehung :

(2;5) L(w; 6) - 1 -M(w; 6).

Insbesondere gilt L(w ; Oso) 1 — a

und L(w ; OsU-co) ß.

Da die Punkte des Stichprobenraumes im allgemeinen sowohl unter
H0 wie auch unter Ha eine von Null verschiedene Wahrscheinlichkeit
tragen, läßt sich ein Test mit der Irrtumswahrscheinlichkeit a 0

und der Güte 1, d. h.

(2;6) L(w ; 0) - 1, falls 0eco

0, falls ÔeH-co,

nicht verwirklichen.
Die Berechnung der Güte- oder Machtfunktion (engl. : power-

function), die von Neyman und Pearson in die Testtheorie eingeführt
wurde, bereitet besonders bei den noch zu besprechenden verteilungsfreien

Methoden große Schwierigkeiten, weil sie die Kenntnis der

Verteilungsfunktion der zufälligen Größe unter Ha voraussetzt. Im
allgemeinen beschränkt man sich bei den verteilungsfreien Verfahren
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auf einen Gütevergleich mit dem verteilungsbehafteten Student-
Test und nimmt dazu normal verteilte Grundgesamtheiten an.

3. Einseitiges und zweiseitiges Testen

Die Wahl der kritischen Region als Teil des Wertebereiches W der
Testgröße T ist unter Berücksichtigung der im vorigen Paragraphen
dargestellten Gesichtspunkte vorzunehmen.

Nun interessiert man sich bei praktischen Untersuchungen häufig
lediglich dafür, ob sich die zu untersuchende Eigenschaft in einer

ganz bestimmten Richtung (z. B. nur Vergrößerung oder nur
Verkleinerung) verändert hat. In diesem Falle spricht man von einseitigem

(entweder rechtsseitigem oder linksseitigem) Testen. Dieses läuft
auf eine Einschränkung des Hypothesenraumes hinaus.

Testet man beispielsweise in einer Grundgesamtheit die Nullhypothese

H0 : Mittelwert E (X) y. - 0 gegenüber der Alternative Ha :

E(X) \i>0, so handelt es sich um ein rechtsseitiges Testen mit dem
Raum der zugelassenen Hypothesen O - <(x^0> und speziell H0 :

co < u, 0> sowie Ha : O-co < jx>0>. Entsprechendes gilt für
linksseitiges Testen.

Interessiert man sich dagegen für Abweichungen in beiden
Richtungen, so testet man zweiseitig gegenüber Ha : (jx^O).

Da die Testgrößen im allgemeinen eindimensionale symmetrische
Verteilungen mit dem Mittelwert 0 besitzen, kann man die kritischen
Regionen durch Schranken wie folgt angeben :

I. T>Ta (rechtsseitig) mit der Irrtumswahrscheinlichkeit a,

II. T<—Ta (linksseitig) ebenfalls auf dem Niveau a,
III. |T|>Ta (zweiseitig) auf dem Niveau 2a.

Dabei bestimmt man Ta aus der Beziehung

(3;1) P(T>Ta)^a.
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4. Einfache und zusammengesetzte Hypothesen

Man wird an einen Test die Forderung stellen, daß er der mächtigste
(d. h. derjenige mit der größten Güte) für das gegebene Problem ist.
Leider ist man aber in der Theorie noch weit davon entfernt, ein
Verfahren angeben zu können, das zu jedem Verwerfungsbereich die
Konstruktion eines mächtigsten Testes gestattet. Lediglich für den Spezialfall,

daß H0 und Ha in einem sogleich zu definierenden Sinne «

einfach » sind, ist dieses Problem durch ein Lemma von Neyman und
Pearson gelöst.

Wir hatten die Hypothesen durch H0: 6sco und Ha: 6sQ-co definiert.
Besteht nun co lediglich aus einem einzigen 6-Wert, dann heißt H0 eine

einfache Hypothese. Entsprechend heißt Ha einfach, wenn £2-co nur aus
einem einzigen O-Wert besteht. Zusammengesetzt heißt eine Hypothese
immer dann, wenn sie mehrere Parameterwerte umfaßt.

Die testtheoretischen Grundbegriffe lassen sich an folgendem
Beispiel mit einfachen Hypothesen verdeutlichen :

Es sei bekannt, daß die Grundgesamtheit entweder die Dichte
f0(x) oder fx(x) besitzt. Wir setzen also :

Ho : f(x) - f0(x) und Ha : f(x) f,(x)

foO

fr-fr«

K. K
i i

Fig. 2

>X

Ist das Testniveau - d. h. die Wahrscheinlichkeit eines Fehlers
1. Art - mit dem Wert a. vorgegeben, so hat man als zugehörigen
Verwerfungsbereich einen Teilbereich der x-Achse auszuwählen, beispiels-
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weise V <K1^x^K2>. Dazu müssen Kx und K2 so gewählt werden,

daß
K2

(4;1) f f0(x)dx a

K,
ist. Der zugehörige Fehler 2. Art beträgt dann

Kj +00
(4;2) f fx(x)dx+ J" fi(x)dx.

— 00 K2

Je nachdem, ob nun das Stichprobenelement x1 in den Bereich V
fällt oder nicht, wird H0 verworfen oder angenommen.

Die angeschriebenen Integrale geben die Flächeninhalte unter den
Dichtefunktionen f0 bzw. fj in den angegebenen Intervallen an. Daher
sieht man sofort, daß bei dieser Wahl des Verwerfungsbereiches der
Fehler 2. Art mehr als 90 % beträgt.

Um einen mächtigsten Test, d. h. einen solchen mit möglichst kleinem
Fehler 2. Art zu bekommen, wird man stattdessen als Verwerfungsbereich

V <x^K> mit
+ 00

(4;3) j" f0(x)dx=a
K

wählen. Als Fehler 2. Art bekommt man dann nur noch
K

(4;4) f f^xjdx.

5. Einige weitere Forderungen an Testverfahren

Man wird stets bemüht sein, Tests mit in gewisser Hinsicht
optimalen Eigenschaften zu verwenden. Zu diesem Zwecke hat man eine
Reihe von Forderungen aufgestellt, die man sinnvollerweise von einem
Test verlangen kann. Die wichtigsten sollen hier angeführt werden.

a) Unverfälschte oder biasfreie Tests : Ein Verwerfungsbereich w mit
der Eigenschaft

(5;1) P(xew ; H0) > P(xew ; Ha)

würde dazu führen, daß die Nullhypothese häufiger verworfen würde
unter der Voraussetzung, daß sie richtig ist, als unter der Voraussetzung,
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daß sie falsch ist. Ein Test mit einem solchen Verwerfungsbereich
heißt nach Neyman und Pearson « biased » oder mit Bias (d. h. mit
einem systematischen Fehler) behaftet. Die wünschenswerte Bias-
freiheit eines durch einen bestimmten Verwerfungsbereich festgelegten
Testverfahrens ist mathematisch oft sehr schwer zu verwirklichen.

b) Gleichmäßig mächtigere Tests: Wenn zwei kritische Regionen
w und w' mit

(5;2) P(x£w ;H0) P(xsw' ; H0)

beide biasfreie Tests ergeben, dann ist w eine bessere kritische Region
als w', wenn die Ungleichung

(5;3) P(x£w ; Ha) > P(x£w' ; Ha)

für alle zulässigen Alternativhypothesen gilt. Der auf dem
Verwerfungsbereich w beruhende Test heißt dann gleichmäßig mächtiger als
der auf w' beruhende. Man wird also bemüht sein, nach Möglichkeit
gleichmäßig mächtigste Tests zu konstruieren.

c) Die Konsistenz eines Tests: Die im Stichprobenraum X
abgesteckte kritische Region w hängt von dessen Dimension ab. Wir
drücken das kurz durch W wn aus. Nach Wald und Wolfowitz
ist ein Test genau dann konsistent, wenn die Wahrscheinlichkeit für
das Verwerfen von H0, sofern Ha gilt, gegen eins strebt, vorausgesetzt,
daß der Stichprobenumfang (d. h. die Dimension des Stichprobenraumes)

gegen unendlich geht. Man fordert also

(5;4) limP(x£wn; Ha) 1.

6. Das Zwei- (bzw. k-) Stichprobenproblem

Ein Experiment möge bei g-facher Wiederholung die Werte x1,x2,

xg geliefert haben und dann unter abgeänderten Verhältnissen bei
h-facher Wiederholung die Werte yi,y2,...,yh. Man möchte nun wissen,

ob die g+h Werte als aus ein und derselben Grundgesamtheit
stammend betrachtet werden können.

Wir betrachten die beiden Stichproben <x;> und \yk> als Realisationen

(d. h. zufällig angenommene Werte) zweier Mengen von
unabhängigen zufälligen Größen, nämlich der X,,X2,.. .,X und derY1;
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Y2,...,Yh. In geometrischer Sprechweise stellen alle möglichen
Realisationen der einen (g+h) dimensionalen zufälligen Größe (X1,X2,...,
Xg,Yj,Y2,.. .,Yh) eine Punktmenge in einem (gfh n)-dimensionalen
Räume dar. Jede Stichprobe repräsentiert einen Punkt dieses Raumes.
Deshalb nennt man die Menge aller Stichproben vom Umfange n den
n-dimensionalen Stichprobenraum.

Man macht nun zunächst die Annahme, daß die zufälligen Größen

Xi alle der Verteilungsfunktion F und die zufälligen Größen Yt alle der

Verteilungsfunktion G gehorchen.
Das Problem der zwei Stichproben besteht dann in der Feststellung,

ob man beide Stichproben als aus ein und derselben Grundgesamtheit
entnommen ansehen kann. Mit anderen Worten : Es ist festzustellen,
ob ein gewisser Effekt vorhanden ist oder nicht.

Zu diesem Zwecke stellt man als zu prüfende Nullhypothese die
Forderung H0:F G (manchmal auch nur : E(X) - E(Y)) auf. Das
besagt, daß beide Stichproben derselben Grundgesamtheit angehören.
Die Alternativhypothese, gegenüber der man den Test aufbaut, soll
besagen, daß beide Stichproben zu verschiedenen Grundgesamtheiten
gehören. Das heißt, man hat als Alternativhypothese Ha : F "^ G

(manchmal fordert man auch Ha : E(X) 5^ E(Y)).
Eine Verallgemeinerung des Problems der zwei Stichproben ergibt

das Problem der k Stichproben. Es besteht in der Untersuchung, ob k
zufällige Stichproben derselben Grundgesamtheit entnommen sein

können, d. h. ob sie zu Populationen mit identischen Verteilungen
gehören.

Wenn die Verteilungen der zu untersuchenden k Grundgesamtheiten
mit F; bezeichnet werden, so wird man als Nullhypothese H0 : Ft
F2 Fk festsetzen. Die Klasse der zuzulassenden Alternativen
wird man in diesem Falle entsprechend dem größeren Schwierigkeitsgrade

der mathematischen Behandlung des Problems kaum als

Ha:Fj5^Fk für i^k festsetzen, sondern durch Zusatzforderungen
einschränken.

Beim Einstichprobenproblem liegt insofern ein etwas anderer
Sachverhalt vor, als hier nicht die Gleichheit der zu mehreren Stichproben
gehörenden Verteilungen untersucht wird, sondern - da nur eine

Stichprobe vorliegt - die zu einer einzigen Stichprobe gehörende
Verteilung auf Übereinstimmung mit einer theoretisch angenommenen
geprüft wird.
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Das Ein- und das k-Stichprobenproblem interessieren hier nur am
Rande, und zwar insofern, als manche der im Abschnitt B behandelten
Testverfahren Erweiterungen für die Behandlung des Ein- und des

k-Stichprobenproblems besitzen.

7. Parametrische und parameterfreie Methoden in der Mathematischen
Statistik

Man kann die Verteilungsfunktion einer zufälligen Größe X im
allgemeinen durch die Angabe von endlich vielen Parametern charakterisieren.

Beispielsweise ist die eindimensionale Normalverteilung - Vergi.
(1;3) und (1;4) - durch die Angabe von zwei Parametern, nämlich des

Mittelwertes m und der Streuung a, eindeutig festgelegt.
Aufgrund dieser Tatsache nennt man alle statistischen Methoden,

die für das zu untersuchende Material Grundgesamtheit) das Gelten

einer gewissen Verteilungsfunktion voraussetzen, parametrische
oder verteilungsbehaftete Methoden. Bekanntlich wird bei biologischen
und medizinischen Untersuchungen häufig - mit mehr oder weniger
großer Berechtigung - eine Normalverteilung angenommen.

Demgegenüber nennt man alle statistischen Methoden, die keinerlei
Voraussetzung über die Art der in der Grundgesamtheit vorliegenden
Verteilung machen, verteilungsfreie oder parameterfreie bzw. nicht-
parametrische Verfahren. Schwache Forderungen, wie etwa die Stetigkeit

der Verteilungsdichte, werden allerdings auch hier aus theoretischen

Erwägungen oft erhoben.
Da man sich bei statistischen Untersuchungen häufig Verhältnissen

gegenübergestellt sieht, bei denen nicht die geringste Aussage über
den Typ der zugrunde liegenden Verteilung gemacht werden kann, hat
man vornehmlich in den letzten drei Jahrzehnten eine ganze Reihe

von nicht-parametrischen Verfahren ersonnen.
Dementsprechend soll im nächsten Abschnitt B bei der Darstellung

von Testmethoden für das Zweistichprobenproblem das Schwergewicht

auf die verteilungsfreien Testverfahren gelegt werden.
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Abschnitt B

Einige wichtige Tests

für die Behandlung des Zweistichprobenproblems

In diesem Abschnitt soll eine Reihe von häufig verwendeten
Prüfverfahren für das im § 6 beschriebene Problem der zwei Stichproben
dargestellt werden. Im Rahmen dieser Arbeit kann es sich nur darum
handeln, die für die Anwendung notwendige Kenntnis der jeweiligen
Testvorschrift im engeren Sinne zu vermitteln. Die sonstigen
theoretischen Eigenschaften des Tests und der Verteilungen der
Testgröße können hingegen nur angedeutet werden.

Zur weiteren Vertiefung in die Probleme der Testtheorie kann von
der am Schluß zitierten Literatur ausgegangen werden.

Während im folgenden § 8 der bekannte und häufig verwendete
parametrische Student-Test beschrieben wird, werden sich die dann
folgenden Paragraphen ausschließlich mit nichtparametrischen
Testverfahren befassen, das heißt mit solchen, bei denen man nicht von
vornherein genötigt ist, dem zu untersuchenden Charakteristikum eine

ganz bestimmte Verteilung zu unterschieben.

8. Der Studentsche t-Test

Der t-Test geht auf eine Arbeit des englischen Statistikers Gösset

zurück, die dieser 1908 unter dem Pseudonym « Student » veröffentlicht

hat.
Man nimmt an, daß die beiden zu vergleichenden Grundgesamtheiten

- aus denen die beiden Stichproben stammen - unabhängig
normal verteilt sind mit gleichen (oder zumindestens in etwa gleichen)
Streuungen und möglicherweise verschiedenen Mittelwerten.

Aus den n g+h Meßwerten der beiden Stichproben x1,x2,...)xg
und yi,y2,.. ,yh hat man zunächst folgende Ausdrücke zu berechnen:

- _ _ l g - l h
(8;1) 1) ^ x — y mit x - £ xi und y r- S y*

gi=l j=l
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l g
-

h
ä;2) s2 -— S (Xi-x)i+ S (yj-y)«n~^!i-i j=i

(8;3) S2 (H)-
Mit diesen Ausdrücken bildet man dann die Testgröße

(8=4) t-".
Diese Testgröße t ist eine zufällige Größe. Ihre Dichtefunktion hat

man berechnet :

(8;5) h(T)-^r- (1 + 1) 2

m*Y-w-'/».rp±!).rg2 / \2

Darin heißt f n—2 die Zahl der Freiheitsgrade. F ist das Funktionszeichen

der Gammafunktion.
h(f) hat die Gestalt einer Glockenkurve und nähert sich für f —>• oo der
normalen Dichtefunktion (1;3).

Die zur Dichte h(z) und damit zu t gehörende Verteilungsfunktion

a

(8;6) H(a) J h(x)dT
— ^j

heißt Student-Verteilung.
Die Testvorschrift lautet nun wie folgt :

Im Falle zweiseitigen Testens stellt man fest, ob der absolute
Betrag der Testgröße t D/S eine positive Schranke ta überschreitet, die
vom vorgegebenen Testniveau oc (-Wahrscheinlichkeit eines Fehlers
1. Art) abhängt. ta ist so berechnet, daß die Wahrscheinlichkeit des

Ereignisses |tl>ta gleich a ist. Die Werte ta liegen als Tabulierung der

t-Verteilung vor ; beispielsweise bei van der Waerden (1957). Die
Nullhypothese H0 : E(X) E(Y) (d. h. gleiche Mittelwerte für beide

Verteilungen) ist zu verwerfen, falls [tj>ta ausfällt. Die Alternativhypothese

würde in diesem Falle unterschiedliche Mittelwerte für die
Verteilungen der beiden zufälligen Größen X und Y fordern.

Will man den Test nur einseitig anwenden, so nimmt man als
Alternative :



Ha : E(X) > E(Y)
oder Ha: E(X) < E(Y).

In diesen Fällen wird die Nullhypothese verworfen, sofern t>ta
beziehungsweise t<-tœ ausfällt. Die Irrtumswahrscheinlichkeit beträgt
dann nur jeweils <x/2.

Beispiele zum t-Test wie auch zu den anderen noch zu behandelnden
Testverfahren folgen im Abschnitt C.

9. Der Zeichentest

Der Zeichentest trägt seinen Namen wegen der Tatsache, daß er als

Ausgangsdaten nur die Vorzeichen der Differenzen von Wertepaaren
benutzt. Man hat also die Stichprobenwerte aus den beiden
Grundgesamtheiten paarweise zu entnehmen. Dieser Test kann auch dann
angewendet werden, wenn ein quantitatives Messen der Werte nicht
möglich ist, sondern sich nur Größenvergleiche anstellen lassen. Das
kommt besonders im Bereich der psychologischen Forschung häufig
vor. Hinsichtlich der Anwendbarkeit des Zeichentests ist jedoch
stets zu beachten, daß die Werte beider Stichproben in Paaren (x^y^
vorliegen müssen, wobei die X; der einen und die yi der anderen
Grundgesamtheit zu entnehmen sind. Der Test eignet sich also speziell zum
Vergleich zweier Behandlungsverfahren, die auf dieselben Versuchsobjekte

nacheinander angewendet werden.
Es seien nun n Paare unabhängiger Beobachtungen (Xj.y^ gegeben.

Man kann dann die Anzahl der positiven Differenzen unter den zu
bildenden n Differenzen (Xj-yJ als Testgröße verwenden.

Die Möglichkeit von « Bindungen » - d. h. von Fällen, in denen Xj y;
ist und man als Differenz Null erhält - kann theoretisch wegen der

Stetigkeit der Verteilungen ausgeschlossen werden. Sofern solche

Bindungen in der Praxis infolge Meßungenauigkeit vorkommen,
kann man sie durch einen einfachen Zufallsprozeß lösen oder aber
einfach fortlassen.

Hat man die Differenzen

(9;1) Zj xi — yi mit i 1,2,3,. ,n

beobachtet, so mögen k von ihnen positiv und die restlichen n-k negativ

ausgefallen sein. Die zi kann man dann als Realisationen von un-
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abhängigen zufälligen Größen Z; auffassen. Unter H0 (gleiche
Verteilungen für die beiden zu untersuchenden Grundgesamtheiten) werden

die Zj mit gleicher Wahrscheinlichkeit - d. h. mit 1f2 - positiv
wie negativ ausfallen :

(9;2) P(Zi>0) -P(Zi<0).

Man hat also unter H0 gleichgroße Anzahlen von positiven und
negativen z-Werten zu erwarten.

Im Falle einseitigen Testens, d. h. gegenüber Ha : X>Y, wird die
kritische Region dadurch festgelegt, daß man H0 verwirft, sobald die
Anzahl N der positiven zi eine kritische Schranke Na überschreitet.

Die Bestimmung von Na zu vorgegebenem œ geschieht wie folgt :

Wenn die Anzahl der positiven Differenzen gleich k und damit
diejenige der negativen Differenzen gleich n-k ist, dann kann man mit
Hilfe der Binomialverteilung für p q x}2 Vertrauensgrenzen bilden,
zwischen denen nach Vorgabe des Testniveaus die Zahlen k und n-k
vermutlich liegen.

Unter H0 ist die Wahrscheinlichkeit dafür, daß mehr als r von den

n Werten z; positiv ausfallen, gleich

(«,P(N>,;H.,.j(t°l)+(r»2)t...+ç)j.(i)-.
Nun hat man r so zu bestimmen, daß es die kleinste Zahl ist, für die

nach (9;3) noch

(9;4) P(N > r ; H0) F <x gilt.

Dieses r nennen wir ra. Es übernimmt die Rolle der kritischen
Schranke Na.

H0 wird verworfen, sobald für die vorliegenden Stichproben N
größer als Na ausfällt.

Bei zweiseitiger Anwendung wird H0 nicht nur verworfen, wenn die
Zahl der positiven Differenzen N größer als Na ist, sondern auch dann,
wenn die komplementäre Zahl n - N der negativen Differenzen dieselbe
Schranke Na übersteigt. Das Testniveau beträgt in diesem Falle wieder

2a.

Tafeln der Na-Werte für die gängigsten Stichprobenumfänge und die
üblichen Testniveaus findet man unter anderem bei van der Waerden
und in der Monographie von van der Waerden - Nievergelt.
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10. Der Iterationen-Test von Wald und Wolfowitz

Dieser Test geht davon aus, daß man die Werte der beiden
Stichproben in einer einzigen Rangordnung der Größe nach anordnen kann.
(Vgl. Wald und Wolfowitz). Als Testgröße benutzt man dann die

Häufigkeit des Aufeinanderfolgens (d. h. Iterierens) von Beobachtungswerten

einer Stichprobe innerhalb der gemeinsamen Rangordnung :

Sei z1,z2,.. .,zg + h n die größenmäßig geordnete Vereinigung der
beiden Stichproben und V (v1 ,v2,... ,vn) eine folgendermaßen
definierte Folge :

(10;1) vi a, falls zj aus der Stichprobe c^x;) stammt
Vi b, falls zi aus der Stichprobe {yic) stammt.

Eine Teilfolge va + 1, vs + 2, vs + r nennt man eine Iteration,
falls

(10;2) vs + 1 vs + 2= =vs + r gilt und dabei sowohl
(10;3) vs^z£ vs + 1, falls s > 0, wie auch
(10;4) vs + r ^z£ vs + r + 1, falls s+r < g+h, ist.

Die Folge aaababbbaabb hat demnach die folgenden sechs

Iterationen :

aaa ; b ; a ; bbb ; aa ; bb.

Als Testgröße definiert man daraufhin :

(10;5) R Anzahl der Iterationen in V.

Für den Fall, daß H0 gilt, werden die xt und die yk in der gemeinsamen

Rangordnung ziemlich gleichmäßig verteilt sein, so daß für R
ein maximaler Wert zu erwarten ist.

Unter Ha (verschiedene Verteilungen für die beiden Grundgesamtheiten)

wird sich der Wert von R vermindern, da ein « Entmischen »

der Xj und der yk zu erwarten ist.
Der Verwerfungsbereich zum Prüfen der Nullhypothese auf dem

Niveau a. wird wie üblich durch
(10;6) R< Ra

definiert, wobei Ra zu vorgegebenem oc aus der Beziehung

(10;7) P(R<Ra;H0)^a
zu bestimmen ist.

Es läßt sich zeigen, daß unter gewissen Zusatzbedingungen die
Testgröße R asymptotisch normal verteilt ist mit dem Mittelwert
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2g
(10;8) E(R)

und dem Streuungsquadrat

(l0;9)aMR) ^,
wobei c g/h ist.

11. Der Wilcoxon-Test

Der ursprünglich von Wilcoxon 1945 vorgeschlagene Test
beschränkt sich auf den Fall, daß die beiden Stichproben gleichen Umfang

haben und die Ergebnisse paarweise gewonnen werden, wie uns
das bereits beim Zeichentest begegnete. Diese Einschränkungen wurden

dann 1947 von Mann und Whitney durch eine Verallgemeinerung
des Testverfahrens beseitigt. Demzufolge wird der Wilcoxon-Test in
der angelsächsischen Literatur häufig als U-Test von Mann und
Whitney bezeichnet.

X und Y seien wieder zwei unabhängige zufällige Größen mit den
unbekannten Verteilungsfunktionen F(t) beziehungsweise G(t). Man
nennt dann X stochastisch kleiner bzw. größer als Y, wenn für jeden
endlichen Wert von t die Ungleichung

(11*1) F(t) > G(t) bzw. F(t) < G(t)

gilt. Die zu prüfende Nullhypothese soll auf Gleichheit der beiden
Verteilungen lauten : H0 : F G. Getestet wird gegenüber der Alternativhypothese

H, : F(t)>G(t).
Nun habe man als Realisationen der beiden zufälligen Größen die

beiden Stichproben x1(x2).. .,x und y1.y2.---.yi1 erhalten. Wie im
vorigen Paragraphen beim Iterationentest stellt man auch hier die
Rangordnung der Werte beider Stichproben auf. (Parameterfreie
Testverfahren, die die Rangordnung der Meßergebnisse zum
Ausgangspunkt haben, pflegt man als Rangtests zu bezeichnen

Für ein Beispiel mit g 3 und h 6 könnte man etwa folgende
Rangordnung erhalten :

(11;2) y2,x3,y3,x1,x2,y6,y5,y1,y1.

Im Falle stetiger Verteilungen ist diese Anordnung immer herstellbar,

da gleiche Meßwerte nur mit der Wahrscheinlichkeit Null vor-
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kommen, d. h. unmöglich sind. Falls in der Praxis - etwa aus Gründen
der Meßungenauigkeit - gleiche Werte, d. h. Bindungen, vorkommen,
löst man sie durch einen Zufallsprozeß auf oder läßt sie einfach
unberücksichtigt.

Kommt nun in dieser Rangordnung ein yk an einer früheren Stelle
als ein xu so spricht man von einer Inversion. In dem Beispiel (11;2)
bildet der erste x-Wert, nämlich x3, genau eine Inversion, und zwar
mit dem vorausgehenden y2. Der zweite und der dritte x-Wert, Xj und
x2, bilden je zwei Inversionen, und zwar beide mit den zwei
vorausgehenden y-Werten y2 und y3. Und so fort.

Die Gesamtzahl U derartiger Inversionen in der Rangordnung ist
nun unsere Testgröße.

Liegen aus den beiden Stichproben insgesamt g+h n Elemente vor,
so sind unter H0 alle n möglichen Anordnungen oder Permutationen
gleich wahrscheinlich ; und zwar hat jede die Wahrscheinlichkeit

(11;3) P 1/n

Wir haben nunmehr den Verwerfungsbereich V aus einer Teilmenge
dieser n möglichen Anordnungen zu bilden. An V haben wir die
Forderung gestellt, bei vorgegebenem Fehler 1. Art einen möglichst
kleinen Fehler 2. Art - d. h. eine möglichst große Güte - zu liefern.
Wenn wir als Wahrscheinlichkeit eines Fehlers 1. Art a vorgeben, so

darf V höchstens an von den n möglichen Anordnungen umfassen,
damit die Forderung

(11;4) P(V;H0) ^ a

gewahrt bleibt. Hinzu kommt die Forderung, daß

(11; 5) P(V ; Ha) maximal

angestrebt werden soll. Wir wählen hier diejenigen an Anordnungen
als Elemente von V aus, die die wenigsten Inversionen enthalten;
unter anderem insbesondere auch den Extremfall mit keiner Inversion :

x1,x2,...,xg,y1,y2,...,yh.
Der Wilcoxon-Test schreibt nunmehr vor, die Nullhypothese zu

verwerfen, sobald die Anzahl der Inversionen U eine festgesetzte
Schranke Ua unterschreitet. Ua hat die Forderung

(11;6) P(U<Ua;H0)^a
zu erfüllen, die besagt, daß unter H0 die Anzahl der Anordnungen mit
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U<Uœ höchstens a n! beträgt. Damit haben wir den Wilcoxon-Test für
die einseitige - und zwar linksseitige - Anwendung definiert.

Die Bestimmung der Inversionenzahl kann man sehr praktisch auch

aus den Rangnummern vornehmen: Es sei z1,z2,. -,zg+h n die aus
den beiden Stichproben gebildete Rangordnung. Wenn darin das

kleinste aus einem x-Wert hervorgegangene z die Rangnummer rt
trägt, dann bildet es mit den rx-l vorangehenden y-Werten genau rx-l
Inversionen. Das zweitkleinste aus einem x-Wert hervorgegangene z

möge die Rangnummer r2 tragen ; es bildet dann mit den r2-2
vorausgehenden y-Werten genau r2-2 Inversionen. Und so fort.

Man erhält also als Summe der Rangnummern der x; und damit
als Anzahl der Inversionen

(11;") U- (rx-l) + (r,-2) + ¦-• + (rg-g)

- Ir,- Si- In-fcl.
i= 1 i= 1 i 1

Da der Ausdruck g(g+l)/2 bei vorgegebenen Stichprobenumfängen
g

konstant ist, kann man ebensogut den Ausdruck 1^ S Tj d. h. die
i=l

Summe der Rangnummern der xi; als Testgröße nehmen. Häufig
verwendet man stattdessen auch die Summe der Rangnummern der yk.
Zwischen beiden besteht die Beziehung

(1l:8)Rz Rx+Ry (H±llil.

Bei linksseitiger Anwendung wird H0 genau dann zugunsten von
Ha : F(t)>G(t) verworfen, wenn die Anzahl der Inversionen U unter
der Schranke Ua liegt. Dann ist zu erwarten, daß im allgemeinen
X<Y gilt. Insbesondere ist das der Fall, wenn die beiden Stichproben
die extreme Rangordnung

(11;9) x,x,x,. ,x,y,y y

aufweisen und damit die Minimalzahl an Inversionen Umin - 0

vorliegt.

Bei rechtsseitiger Anwendung des Wilcoxon-Testes wird H0 zugunsten

von Ha: F(t) < G(t) verworfen, wenn die Anzahl der Inversionen
oberhalb einer Schranke U'a liegt. Insbesondere ist das der Fall, wenn
die Rangordnung
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(11;10) y,y,. - .,y,x,x,

mit der Maximalzahl an Inversionen Umax gh vorliegt. U'a wird
ähnlich wie Ua bestimmt.

Sind nun im Experiment Unterschiede in beiden Richtungen von
Interesse, so wird man den Test zweiseitig, d. h. gegenüber der
Vereinigung der beiden obigen Alternativmengen, aufbauen. In diesem
Falle wird H0 nicht nur verworfen, wenn (linksseitig) U<Ua ist, sondern
auch dann, wenn (rechtsseitig) U>U'a ausfällt. Die
Irrtumswahrscheinlichkeit beträgt dann wieder 2a.

In der Praxis arbeitet man allerdings auch im Falle zweiseitigen
Testens nur mit einer einzigen Schranke :

Berücksichtigt man nämlich neben der Anzahl der Inversionen U
auch noch die Anzahl der Nichtinversionen U+, so gilt

(11;11) U+ U+ g-h.

Die Grenzfälle ergeben sich aus den Anordnungen

(11;9) mit U 0 und U+ g.h sowie
(11;10) mit U g.h und U + 0.

Genau dann, wenn die Anzahl U der Inversionen die Schranke U'a
übersteigt, dann unterschreitet die Zahl U+ der Nichtinversionen die
Schranke Ua.

Daraus folgt : Bei zweiseitiger Anwendung des Wilcoxon-Testes
wird H0 verworfen, wenn U<Ua oder U+<Ua ist.

Die Bestimmung der Schranken Ua hat für kleinere Stichprobenumfänge

mittels kombinatorischer Überlegungen zu erfolgen. Für
größere Stichprobenumfänge macht man von dem Ergebnis
Gebrauch, daß die Testgröße U asymptotisch normal verteilt ist mit dem
Mittelwert

(11-12) Eg,h(U) =-Ç-

und dem Streuungsquadrat

di-la) g\(U)=gh(g;oh+1).

Man kann dann die Tafeln der Normalverteilung benutzen. Die
nötigen Tabellen zur praktischen Anwendung des Wilcoxon-Testes
findet man beispielsweise bei van der Waerden (1957).
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Zum Gebrauch der Tafeln sei abschließend noch folgendes bemerkt :

Nach den bisherigen Betrachtungen könnte man die Tafeln so
aufbauen, daß zu den gebräuchlichsten Testniveaus (1/100 1 °/0 ;

1/50 2 °/o '• 1/20 5 °/o) und zu verschiedenen Stichprobenumfängen
g, h die Schranken Ua angegeben würden, bei deren Unter- bzw.
Überschreiten die beiden Stichproben in den Verwerfungsbereich fallen und
somit H0 zu verwerfen ist.

Im allgemeinen verwendet man dagegen unmittelbar die Verteilung
der Testgröße U und definiert als sogenannte Testwahrscheinlichkeit
die Wahrscheinlichkeit des Ereignisses (U^u ; H0), also

(11;14) p(u) P(U^u ;H0),

wobei u der im Einzelfalle von der zufälligen Größe U angenommene
Wert sein soll.

Liefert also das Experiment die Inversionenzahl u, so wird H0 auf
dem Niveau a verworfen, sofern

(11;15) p(u) - P(U^u ; H0) ^a
ausfällt.

Wegen P(U^u) ist der Test hier linksseitig aufgebaut. Rechtsseitiges
Testen führt man aus, indem man u durch

(11;16) u' g.h —u

ersetzt, ohne die Bezeichnungen der beiden Stichproben zu vertauschen.

Ergibt sich ein u>g-h/2, so unterläßt man die Transformation
nach (11;16) und nimmt statt p(u) die komplementäre Wahrscheinlichkeit

(11;17) p(u') =l-p(u).
Im Falle zweiseitigen Testens prüft man sowohlp (u) als auch p(u')

nach (11;15). Die Irrtumswahrscheinlichkeit ist dann wiederum 2a.

Aufgrund dieser Überlegungen hat man dann nicht mehr die
kritischen Schranken Ua zu fabulieren, sondern die Testwahrscheinlichkeiten

nach (11*14), d. h. die Verteilungsfunktion von U unter H0 zu
den verschiedenen Stichprobenumfängen g und h.
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12. Der X-Test von van der Waerden

In einer Reihe von Arbeiten hat van der Waerden die Güte
parameterfreier Tests untersucht und mit der des parametrischen Student-
Tests verglichen. In diesem Zusammenhang entwickelt er eine wesentliche

Abänderung des Wilcoxon-Testes, die er als X-Test bezeichnet.
Die n=g + h Elemente der beiden Stichproben xx,x2,...,xg und

y1,y2,.. .,yh mögen ihrer Größe nach die Rangordnung z1,z2,z3,.. .,zn
bilden.

Wir bezeichnen nun mit

(12;1) z - T(u)

die Umkehrfunktion der normalen Verteilungsfunktion

z

(12;2) u <D (z) -7= f e-^ l ^dz.
V 2tt -'

—00

Wie im vorigen Paragraphen beim Wilcoxon-Test bezeichne r
wiederum die Rangnummern in der Rangordnung der Stichprobenwerte.

Als Testgröße für den X-Test dient dann die Summe

(12;3) X^STJ^
wobei r lediglich diejenigen Rangnummern zu durchlaufen hat,
deren zrWert einen x-Wert verkörpert. X besteht also aus g Summanden.

Die Testvorschrift lautet dann : Sobald die Summe (12;3) einen
gewissen kritischen Wert Xa übersteigt, wird die Nullhypothese
verworfen zugunsten der Alternative, nach der die Xj im allgemeinen größer

sind als die yk. Damit hat man rechtsseitig getestet. Die Schranke

Xa ist so zu bestimmen, daß unter der Annahme gleicher Wahrscheinlichkeiten

für alle n möglichen Rangordnungen (d. h. unter H0) die
Wahrscheinlichkeit des Ereignisses (X>Xa) noch f^a ist.

Nimmt man zur Summe (12;3) noch die Summe

(12=4) Y - ST (^).
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worin s die Rangnummern der yk durchläuft, hinzu, so geht bei
Vertauschung der Rollen der beiden Stichproben die Testgröße X in
Y= -X über. Man kann mit derselben kritischen Schranke auch linksseitig

testen.
Bei zweiseitiger Anwendung des X-Texts hat man schließlich H0

zu verwerfen, wenn X oder Y die Schranke Xa übersteigt. Für X>Xa
werden die x( im allgemeinen größer sein als die yk, während für
Y>Xa die entgegengesetzte Aussage zu machen ist.

Eine ausführliche Gebrauchsanleitung befindet sich in der bereits
erwähnten Monographie von van der Waerden - Nievergelt sowie
bei van der Waerden (1957).

In weiteren Untersuchungen hat van der Waerden gezeigt, daß
die Testgröße X asymptotisch

(12;5) N ((0 ; ~ Q Yverteilt ist ;

das heißt : sie strebt gegen eine Normalverteilung mit dem Mittelwert
Null und

Q gemäß

Null und dem Streuungsquadrat ^— Q. Dabei berechnet sich die Größe

* n1 ^ 1TJ.2/ 1

(12;6) Q-- 2 Yv ' w n. Vn+11=1 v

Eventuell auftretende Bindungen unter den Stichprobenwerten
brauchen hier nicht gelöst zu werden ; man bildet einfach die Summe
der T-Werte zu den umstrittenen Rangnummern und fügt für jeden
Meßwert das arithmetische Mittel der Summanden als Anteil zur
Testgröße hinzu.

Abschnitt C

Anwendungsbeispiele zu den behandelten Testverfahren

An einer Reihe von Beispielen aus verschiedenen Gebieten sollen

nun die Anwendungsmöglichkeiten der im Abschnitt B beschriebenen
Testverfahren für das Problem der zwei Stichproben aufgezeigt werden.
Die meisten Beispiele sind so geartet, daß sie ohne weiteres mit mehreren

der besprochenen Tests behandelt werden können. Zum Teil wer-



den wir das praktisch auch durchführen, an anderer Stelle jedoch
nur darauf hinweisen.

13. Die Auswertung psychologischer Untersuchungen mit dem Iterationen-Test

Im Rahmen einer psychologischen Untersuchung - Vgl. Siegel -
wurden 12 Jungen und 12 Mädchen im Alter von 4 Jahren während
gewisser Spielzeiten beobachtet. Für jedes Kind wurden Anzahl und
Intensität von « aktiven Handlungen » nach einem bestimmten
Verfahren registriert. Man erwartete, daß zwischen Jungen und Mädchen
dieses Alters ein Unterschied im Ausmaß der « Aktivität » vorhanden
sein würde und stellte folgende Hypothesen auf :

H0 : Das Ausmaß der Aktivität ist bei Jungen und Mädchen dieses

Alters gleich.
Ha : Jungen und Mädchen dieses Alters unterscheiden sich hinsichtlich

der Aktivität.

Das Experiment lieferte folgende Ergebnisse :

Jungen: 86 ; 69 ; 72 ; 65 ; 113 ; 65 ; 118 ; 45 ; 141 ; 104 ; 41 ; 50 ;

Mädchen : 55 ; 40 ; 22 ; 58 ; 16 ; 7 ; 9 ; 16 ; 26 ; 36 ; 20 ; 15 ;

Da die Ergebnisse rangmäßig geordnet werden können und die
Hypothesen sich auf Unterschiede der beiden unabhängigen Gruppen
(Jungen und Mädchen) beziehen, kann man den Iterationen-Test von
Wald und Wolfowitz (neben anderen Prüfverfahren anwenden.

Wir bezeichnen nun mit J beziehungsweise mit M die Meßwerte,
die zu einem Jungen beziehungsweise zu einem Mädchen gehören, und
stellen die Rangordnung der beiden Stichproben auf. Ohne die numerischen

Werte noch einmal zu wiederholen, erhält man :

MMMMMMMMMM; JJJ; MM; JJJJJJJJJ;
1. 2. 3. 4. Iteration.

Für unsere beiden Stichproben vom Umfange g - h 12 entnehmen
wir dieser Rangordnung als Anzahl der Iterationen den Wert R 4.

Wir führen den Test zweiseitig auf dem Niveau 2a 0,05 durch und
entnehmen der Tabelle als zugehörige Schranke den Wert Ra 7.

Ergebnis : R< Ra. Unser Wert R 4 fällt in den Verwerfungsbereich ;

H0 ist also zugunsten von Ha zu verwerfen.
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14. Die Untersuchung von Wachstumseinwirkungen zweier Vitamine bei Pilzen
(Mit dem Student-Test)

Nach Linder wurde der Einfluß der Vitamine Bx und H auf das

Wachstum des Pilzes « Trichophyton album» untersucht. Man erhielt
folgende Meßserien :

1) Ohne Zusatz: Xi 18 ; 14,5 ; 13,5 ; 12,5 ; 23 ; 24 ; 21 ; 17 ; 18,5 ;

9,5 ; 14 ;

2) Mit Vitamin B1 : yk 27 ; 34 ; 20,5 ; 29,5 ; 20 ; 28 ; 20 ; 26,5 ; 22 ;

24,5 ; 34 ; 35,5 ; 19 ;

3) Mit Vitamin H : z1 21,5 ; 20,5 ; 19 ; 24,5 ; 16 ; 13 ; 20 ; 16,5 ; 17,5 ;

19 ;

Zunächst untersuchen wir den Einfluß des Vitamines 3V Dazu
haben wir die beiden Stichproben <Xj> mit g 11 und <yk> mit h 13

zu vergleichen.
Die Berechnung der erforderlichen Ausdrücke nach (8;1), (8;2) und

(8;3) ergibt die folgenden Werte :

x 16,86 ; y 26,19 ; s2 27,86 ; S2 - 4,68.

Daraus ist jetzt die Testgröße (8;4) zu bilden :

t D/S - (26,19 - 16,86)/2,16 4,32

In der Tafel findet man zur Zahl der Freiheitsgrade

f=n—2-g+h— 2-11 + 13 — 2 22

und zu den gebräuchlichen Testniveaus die folgenden Schranken für
zweiseitiges Testen :

0,05 - 5 °/„ mit ta 2,074
0,02 - 2 % mit ta 2,508
0,01 1 % mit ta 2,819
0,001 - 0,1 °/„ mit ta - 3,792

Ergebnis : Der berechnete Wert t 4,32 überschreitet auf allen
angeführten Testniveaus die zugehörigen kritischen Schranken. Der zu
untersuchende Effekt (Einfluß des Vitamins B1 auf das Wachstum)
ist also sehr gut gesichert.

Anmerkung : Üblicherweise bezeichnet man einen Effekt als «schwach»

gesichert, wenn man zweiseitig nur auf dem 5 °/o**Niveau (entsprechend
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einseitig auf dem 2,5 %-Niveau) zum Verwerfen von H0 gelangt. Bei
Verwerfung auf dem 2 %-Niveau spricht man von « guter » Sicherung
des Effektes und schließlich bei Verwerfung auf dem 0,1 %-Niveau von
« sehr guter » Sicherung.

Will man nun noch den Einfluß des Vitamins H auf das Wachstum
prüfen, so hat man die entsprechenden Rechnungen mit den beiden
Stichproben <Xj> und <zx> durchzuführen. In diesem Falle erhält man
zu den Mittelwerten x 16,86 und z 18,75 als Wert der Testgröße
t 1,09.

Für f 11 + 10 — 2 19 liefert die Tafel schon auf dem schwachen
zweiseitigen 5 %-Niveau eine kritische Schranke von ta 2,093.

Ergebnis : Der Einfluß des Vitamines H kann also nicht einmal als
schwach gesichert angesehen werden.

15. Die Untersuchung der Brenndauer von Glühlampen mit dem X-Test

Es seien zwei Sorten von Glühlampen miteinander zu vergleichen,
um etwa die Wirksamkeit einer neuen Füllgasmischung, einer neuen
Legierung für die Siprale oder eines abgeänderten Produktionsverfahrens

zu testen. Unter H0 wird man annehmen, daß die durchschnittlichen

Lebenszeiten beider Sorten gleich sind. Von der ersten Sorte wurden

g 10 Exemplare bis zum Durchbrennen beheizt ; von der zweiten
Sorte waren es h 12 Stück. Die in Stunden gemessenen Lebenszeiten
betrugen :

Xi : 625 ; 637 ; 710 ; 770 ; 820 ; 843 ; 856 ; 920 ; 1070 ; 1225 ;

yk: 630 ; 683 ; 780 ; 830 ; 889 ; 970 ; 1028 ; 1150 ; 1210 ; 1470 ;1520 ;

2090 ;

Daraus entnimmt man folgende Rangordnung :

x y x y xx yxyxxyxyyxyyxyyy.
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Die zugehörigen Summanden der Testgrößen (12;3) und (12;4)
entnimmt man der Tabelle :

x,, -1,71 +0,16
-1,12 +0,51
-0,78 + 0,94
-0,64
-0,39

+ 1,61

-0,16
-0,05

-4,85
1-1,61

X -3,24

-1,36 +0,05
-0,94 +0.28
-0,51 +0,39
-0,28 t0,64

-3,09 + 0,78
+ 1,12
+ 1,36
+ 1,71

+ 6,33

-3,09

Y +3,24

(Rechenkontrolle : X + Y -3,24 + 3,24 - 0)

Die Tafel liefert für a 2,5 % und einseitiges Testen als kritische
Schranke den Wert Xa 4,06.

Ergebnis : Da weder X noch Y größer als 4,06 ist, kann die Annahme
gleicher durchschnittlicher Lebensdauer für die beiden Lampenarten

H0) nicht verworfen werden. Der Effekt ist also nicht einmal schwach

gesichert.
Zu demselben Ergebnis würde man auch unter Verwendung des

Wilcoxon-Testes gelangen. (Vgl. Hemelrijk und Wabeke)
Um eventuell noch eine ganz schwache Sicherung des Effektes zu

bekommen, könnte man noch auf dem allerdings ungebräuchlichen
Niveau von 10 % zweiseitig bzw. 5 % einseitig prüfen. Hier erhält man
als zugehörige Schranke den Wert Xa 3,45. Da auch hier weder X
noch Y größer als 3,45 ist, kann man H0 noch immer nicht verwerfen.

16. Die Untersuchung von Titrationen mit dem Zeichentest

Ein Chemiker führte eine gewisse Anzahl von Titrationen doppelt
aus. (Vgl. Hemelrijk und Wabeke). Jede zu titrierende Lösung wurde
nach ihrer Herstellung auf zwei Kolben verteilt. Während der Inhalt
des ersten Kolbens sofort titriert wurde, ließ man bis zur Titration des

zweiten eine gewisse Zeit verstreichen. Es war zu untersuchen, ob die
Wartezeit einen Einfluß auf das Ergebnis der Titration hat. Man wird
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also H0 (kein Einfluß) testen gegenüber der Alternative Ha, nach der
ein Einfluß vorhanden ist.

Die Ergebnisse der an 12 Lösungen vorgenommenen Titrationen
lauteten : Vorzeichen

Lösung Erste Zweite der Differenz
Nr.: Titration : Titration : 2.- 1. Titration:
1 21,24 cm3 25,83 cm4 +
2 16,84 17,35 +
3 15,52 16,12 +
4 25,68 28,54 +
5 24,04 24,58 +
6 19,77 27,42 +
7 11,92 14,73 +
8 28,83 27,52 —

9 17,38 14,91 —

10 11,01 19,87 +
1 1 23,43 24,38 +
12 17,16 20,55 +

Die Anzahl der positiven Differenzen beträgt also N 10. Der Tafel
entnimmt man für n 12 und zu einem Testniveau von 2a 0,05
die kritische Schranke Na 9.

Ergebnis : Die beiden Stichproben liegen im Verwerfungsbereich,
so daß man H0 abzulehnen hat zugunsten der Annahme, daß die Wartezeiten

das Ergebnis der Titrationen beeinflussen. Die zweite
spätere) Titration liefert systematisch größere Titerwerte.

17. Vergleich zweier Produktionsverfahren mittels X-Test, Wilcoxon-Test
und Student-Test

Bei der Entwicklung von geeigneten Verfahren zur Herstellung von
Halbleitern war ein Qualitätsvergleich zwischen zwei vorläufigen
Produktionsverfahren durchzuführen. Es lagen die folgenden beiden Reihen

von Qualitätskoeffizienten vor :

Xi 27,1 ; 15,7 ; 34,3 ; 24,9 ; 19,4 ; 31,9 ;

yk= 47,2 ; 34,8 ; 79,7 ; 35,0 ; 27,8 ;

Diese n gib. 6z5 ii Stichprobenwerte ergeben die folgende
Rangordnung :

x2 x6 x4 x, y5 x6 x3 y2 y4 yt y3,
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oder ohne Indizes :

xxxxyxxyyyy.
Zur Anwendung des Wilcoxon-Tests ermittelt man die Anzahl der

Inversionen xnachy) dieser Rangordnung zu u 2. Für die
Stichprobenumfänge (g;h) (6;5) bzw. (5;6) entnimmt man der Tabelle
die folgende Testwahrscheinlichkeit :

p(u) P(U^2 ; H„) 0,87 %.

Ergebnis: Wegen 0,87 %<1 % können wir H0 verwerfen und den
Effekt als gut gesichert betrachten. D. h. : Das Verfahren « Y » ist
besser als das Verfahren « X ».

Zur Anwendung des X-Testes hat man zunächst wieder die
Testgrößen X und Y zu bestimmen :

:r. =-i,38 0,00 Y*k - -0,21 +0,43
-0,97 ^0,21 +0,67
-0,67 + 0,21 +0,97
-0,43 + 1,38

-3,45 + 3,45
+ 0,21 -0,21

X -3,24 Y +3,24

(Rechenkontrolle : X - Y - -3,24 + 3,24 - 0)

Der Tabelle entnimmt man folgende kritischen Schranken :

Einseitig auf dem 2,5 %-Niveau : Xa 2,72

Einseitig auf dem 1 %-Niveau : Xa 3,20

Einseitig auf dem 0,5 %-Niveau : Xa 3,40

Ergebnis : Es wird nicht nur die 2,5 %-Schranke, sondern auch die
1 %-Schranke überschritten. Man kann also den Unterschied als gut
gesichert betrachten

Zur Anwendung des Student-Tests ist zunächst folgendes zu bemerken

: Bei der Betrachtung der beiden Stichproben kommt man zu der

Vermutung, daß die zugehörigen Grundgesamtheiten möglicherweise
nicht normal verteilt sind und ungleiche Streuungen besitzen. Es ist
also sehr fraglich, ob die Voraussetzungen des Student-Tests überhaupt
erfüllt sind.

Zur Durchführung der Rechnung hat man zunächst wieder die
Werte nach (8;1), (8;2) und (8;3) zu bestimmen.
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Die Ergebnisse sind

D y-x 44,9 -25,6 19,3
s2 220,47 ; S2 80,84 und S 8,99.

Daraus ergibt sich als Wert der Testgröße :

t - D/S 2,147.

Ergebnis: Da die Tabelle für f n-2 9 Freiheitsgrade zum
einseitigen Testniveau a 2,5 % eine kritische Schranke ta 2,262
liefert, kann H0 nicht verworfen werden. Der Unterschied in der Qualität
der beiden Produktionsverfahren läßt sich mit Hilfe des Student-Tests
also nicht einmal schwach sichern.

Dieses Beispiel zeigt deutlich, daß man bei Unsicherheit über das

Vorliegen der Voraussetzungen des Studentschen t-Tests besser ein

verteilungsfreies Verfahren anwendet.

Anhang

Auswahlgesichtspunkte für die verschiedenen Testverfahren

Im § 2 des Abschnittes A wurde bereits auf die Bedeutung der Güteoder

Machtfunktion eines Tests hingewiesen. Dazu ist zu bemerken,
daß sich die Untersuchungen hierzu meist auf den Fall normal
verteilter Grundgesamtheiten beschränken. Die Berechnung der
Gütefunktion im Falle nicht normal verteilter oder gar unbekannt verteilter
Grundgesamtheiten bereitet im allgemeinen erhebliche Schwierigkeiten.

Setzt man einmal - um einen angemessenen Vergleich mit dem
parametrischen Student-Test zu erhalten - für die zu vergleichenden beiden
Stichproben normal verteilte Grundgesamtheiten mit verschiedenen
Mittelwerten und gleichen Streuungen voraus, so kann man die in dieser

Arbeit behandelten Testverfahren (abgesehen vom Zeichentest) in
folgender Rangordnung nach abnehmender Güte anführen :

1) Student-Test
2) X-Test von Van der Waerden
3) Wilcoxon-Test
4) Iterationen-Test von Wald und Wolfowitz.
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Für den Zeichentest lassen sich aufgrund der Binomialverteilung
besondere Überlegungen anstellen.

Läßt man nun aber die Voraussetzung der Normalverteilung fallen,
um in das eigentliche Anwendungsgebiet der nicht-parametrischen oder
verteilungsfreien Testverfahren zu kommen, so können die letzteren
unter Umständen erheblich mächtiger sein als der parametrische
Student-Test. Am Beispiel des § 17 wurde das sehr deutlich.

Abschließend soll daher folgendes festgestellt werden : Wenn die
beiden Grundgesamtheiten annähernd normal verteilt sind und ziemlich

gleiche Streuungen haben, dann ist der t-Test als der mächtigste
von allen vorzuziehen.

In allen anderen Fällen wird man verteihmgsfreie Testverfahren
anwenden.

Für große Stichprobenumfänge ist der Wilcoxon-Test annähernd
so mächtig wie der X-Test und mit erheblich weniger Rechenaufwand
durchzuführen. — Das Argument des geringeren Rechenaufwandes
trifft auch für die parameterfreien Methoden in ihrer Gesamtheit
gegenüber dem Student-Test zu.

Für kleine Stichprobenumfänge ist der X-Test unbedingt dem
Wilcoxon-Test vorzuziehen, weil er auch dort die genaue Abgrenzung des

zu einem bestimmten Testniveau gehörenden Verwerfungsbereiches
gestattet. Beim Wilcoxon-Test ist das mit den Permutationen kleinerer
Rangordnungen nicht immer möglich.

Der Iterationen-Test ist trotz seiner etwas geringeren Güte besonders
dann zu empfehlen, wenn sich beide Grundgesamtheiten nicht nur in
einem der Charakteristika wie Mittelwert, Streuung, Symmetrie der

Verteilung usw. unterscheiden, sondern gleichzeitig in mehreren.

Die Anwendung des Zeichentests empfiehlt sich besonders dann,
wenn man zwei Behandlungsmethoden an denselben Objekten zu
erproben hat. Bei häufiger Anwendung mag auch sein sehr geringer
Rechenaufwand von Bedeutung sein.

Ein besonderer Vorteil der parameterfreien Rangtests liegt schließlich

noch in der Tatsache, daß man sie im Unterschied zum Student-
Test auch dann anwenden kann, wenn die zu untersuchenden
Eigenschaften numerisch überhaupt nicht zu messen sind, sondern lediglich
Vergleiche mit « größer als » und « kleiner als » gestatten. Im Bereich
der Verhaltensforschung trifft man häufig auf derartige Probleme.
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