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Über die Anzahl der Valenzstrukturen
mit ineffektiven Bindungen bei organischen Molekülen

von O. Mäder und O. Klement

Einleitung

In der Entwicklung der Heitler-Rumer-Weyl-Variante der Meso-
meriemethode 1 zur Berechnung von Bindungsenergien und
Elektronenverteilungen stößt man schon bei mäßig großen Molekülen auf die
Schwierigkeit, daß linear unabhängige Spinfunktionen beziehungsweise

die entsprechenden Valenzdispositionen in sehr großer Anzahl
vorhanden sind und dementsprechend die Säkulardeterminante einen
so hohen Grad annimmt, daß eine strenge Behandlung des Problems
nicht in Frage kommt und man sich mit Näherungen behelfen muß.

Im Fall von einfachen Systemen bestehend aus Atomen mit je
einem Valenzelektron wurde schon früh eine Näherung benutzt, die
in der « Vernachlässigung angeregter Strukturen » besteht2. Dabei
versteht man unter einer unangeregten Valenzstruktur ein Valenzbild,

dessen sämtliche Valenzstriche, auch effektive Bindungen
genannt, je zwei Nachbaratome des Moleküls verbinden. Allgemein ist
eine k-fach angeregte Valenzstruktur (k 0,1,2,..) eine solche, die

genau k ineffektive Bindungen, das sind Bindungen zwischen
Nichtnachbaratomen, aufweist. Später wurde diese Vereinfachung auch auf
die Energieberechnung von Molekülen bei Berücksichtigung aller
Valenzelektronen übertragen. Berechnet man die Bindungsenergie
aus einer vereinfachten Säkulargleichung, in welche nur Valenzstruk-

1 W. Heitler, Handbuch der Radiologie Bd. VI, 2, 485 (1934) ; M.Born, Ergebnisse

d. ex. Naturwiss. 10, 387 (1931).
2 L. Pauling and G. W. Wheland, J. Chem. Phys. 1, 362 (1933); J. Sherman,

J. Chem. Phys. 2, 488 (1934). - Den Ausdruck «excited structures» geben wir mit
« angeregte Strukturen » wieder. Eine Verwechslung mit « angeregten Zuständen »

eines Systems ist nicht zu befürchten.
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turen mit einer beschränkten Anzahl ineffektiver Bindungen
aufgenommen werden, so erhält man, wie Resultate zeigen, noch gute
Annäherungen an die Experimentalwerte 1.

Bei dieser Sachlage ist es wünschenswert zu wissen, wie viele
Valenzstrukturen mit 0,1,2,... Bindungen zwischen Nichtnachbaratomen
in einer einmal gewählten Basis linear unabhängiger Spinfunktionen
vorkommen. Wir legen stets eine Rumersche Basis von Spinfunktionen

zugrunde 2. Um diese aufzustellen, werden die Atome des Moleküls

auf einer sich nicht überschneidenden geschlossenen Kurve, etwa
auf einem Kreis, dem sogenannten Rumerkreis, angeordnet und alle
jene Spinfunktionen, in deren Valenzbildern sich keine Valenzstriche
kreuzen, als Basiselemente erklärt. Die Basis ist somit durch das Molekül

noch nicht festgelegt, sondern erst durch die Reihenfolge, in der die
Atome auf dem Rumerkreis angeordnet werden.

Es stellt sich also die Aufgabe, bei gegebenen Nachbarschaftsbeziehungen

der Atome im Molekül und bei gegebener Anordnung der
Atome auf dem Rumerkreis zu bestimmen, wie viele der kreuzungslosen

Valenzstrukturen genau 0,1,2,.. ineffektive Bindungen aufweisen.
Diese Frage ist für den Fall, daß jedes Atom mit einem einzigen
Valenzelektron versehen ist bzw. daß bei jedem Atom ein einziges
Valenzelektron berücksichtigt wird, von Wheland 3 behandelt worden. Über
eine Erweiterung der Methode und der Resultate auf den Fall, daß

jedes Atom zwei Valenzelektronen hat, wurde in den Helvetica Chimica
Acta berichtet 4. Im Vorliegenden sind die Beweise sämtlich
durchgeführt. Im ersten Abschnitt wird die Aufgabe bezüglich der offenen
Ketten abschließend behandelt. Dabei dient die reduzierte offene Kette
als Konstruktionsmittel. Im zweiten Abschnitt werden weitere
Konstruktionsmittel eingeführt, worauf wir im dritten Abschnitt die
Aufgabe bezüglich des geschlossenen Ringes und der übrigen Systeme zu
Ende führen. Während sich in der Arbeit von Wheland 3 geschlossene
Ausdrücke finden, erwies es sich bei dem Problem mit zweivalentigen
Atomen als vorteilhafter, sich mit rekurrenten Formeln zu begnügen.

1 B.Felder, Diss. Univ. Freiburg, Beitrag zur Kenntnis der Mesomerie, 1961;
O. Klement, O. Mäder et S. Huwyler, Helv. Chim. Acta, 43, 2172 (1960).

2 G. Rumer, Göttinger Nachr. 1932, S. 337 ; G. Rumer, E.Teller, H. Wevl,
Göttinger Nachr. 1932, S. 499.

3 G. Wheland, J. Chem. Phys. 3, 356 (1935).
4 O. Klement et O. Mäder, Helv. Chim. Acta 4d, 1 (1963).
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I. Die offene Kette

Es liegt stets eine auf dem Rumerkreis gegebene Atomanordnung
vor mit der zusätzlichen Angabe, welche Atome Nachbarn sind und
welche nicht. Wir führen mit Whelaxd das Polynom

ko+kjZ ik2z2+.. + k11zn

ein, wobei der Koeffizient k, von F angibt, wieviele j-fach angeregte
Strukturen unter den sämtlichen kreuzungslosen Valenzstrukturen des

Moleküls vorkommen.
Wenn es sich um eine offene Kette handelt, so ordnen wir die Atome

in der durch Nachbarschaft gegebenen Reihenfolge auf dem Rumerkreis

an. Das Polynom das eine offene Kette von N Atomen mit je
zwei Valenzelektronen beschreibt, bezeichnen wir mit PN. Es ist, wie
man unmittelbar durch Konstruktion feststellt

P2 1 ; P3 - z;P4= 1 + z + z2

Als Hilfsmittel unserer Überlegungen werden wir auch Ketten von
N nicht durchwegs zweivalentigen Atomen betrachten, nämlich solche,
deren erstes und letztes Atom je ein Valenzelcktron haben, die übrigen
je zwei. Wir sprechen dann von einer reduzierten offenen Kette und
bezeichnen das dazugehörige Polynom mit QN. Man findet durch direkte
Konstruktion

Q-2 l ; Q3 - i ; Q* l+z
Wir merken an, daß die Gleichung besteht

Q4 - P3+P2

und werden sofort durch vollständige Induktion beweisen, daß allgemein

Q.N P.X-l*-Px-2 (N^4) (1)

gilt. Zu diesem Zweck teilen wir die Strukturen der reduzierten offenen
Kette a,b,...r,s ein in solche, die den Valenzstrich [as] haben 1 und
solche, die ihn nicht haben. Erstere bilden eine Gesamtheit, zu der das

1 Wir können ohne Gefahr eines Mißverständnisses vom Valenzstrich "as] »

sprechen, obwohl das Symbol [as] den durch das Vorhandensein des Valenzstriches
bedingten Faktor A+S.
bezeichnet.
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Polynom zPx_2 gehört. Zur letzteren Gesamtheit gehört ein Polynom,
das wir vorläufig mit Q' bezeichnen ; es gilt also

Qx zP*-2+Q' (2)

Das Polynom Q' vergleichen wir mit dem Polynom PN.a einer offenen
Kette, deren Atome b', c',...r', t' heißen sollen. Die Atome b',...r'
entsprechen den Atomen b,...r und dasselbe gilt bezüglich der Valenzstriche

zwischen diesen. Dem Atom t' entsprechen die beiden ein-
valentigen Atome a und s in der Weise, daß den von t' ausgehenden
Valenzstrichen die von a und von s ausgehenden Valenzstriche unter
Wahrung der Kreuzungslosigkeit zugeordnet sind. Somit entspricht
jeder Valenzstruktur in a,b,c,...r,s bei verbotenem Valenzstrich [as]
eine Valenzstruktur in b', c',...r', t' und umgekehrt. Die beiden
Polynome Q/ und Psj.j sind aber einander nicht gleich, weil einerseits a
Nachbaratom von b und Nichtnachbaratom von r, andererseits t'
Nichtnachbaratom von b' und Nachbaratom von r' ist. Um die
Differenz Q'-P^-i zu bestimmen, muß man also auf die Valenzstrukturen
achten, in denen [ab] oder [ar] vorkommt. Zu denen mit [ab] gehört das

Polynom Qvl und ihnen entsprechen in der Kette b', c',..r', t' die
Strukturen mit [f b'], zu denen das Polynom zQx-1 gehört. Die Strukturen

mit [ar] haben notwendigerweise auch den Valenzstrich [rs] ;

es gehört zu ihnen das Polynom zPx_3 und es entsprechen ihnen in der
Kette b', c',...r', t' die Strukturen mit dem zweimal vorhandenen
Valenzstrich [r't']. zu denen das Polynom Px_3 gehört. Valenzstrukturen
die weder [ab] noch [ar] haben, tragen zu der Differenz Q'-Px.i nichts
bei. Somit erhalten wir die Gleichung

y _ys-i**"z"N-3= "n-i-zys-i~"s-3>
anders geschrieben

Q' PN.1+(l-Z)QN.1+(z-l)PN.3 (3)

Aus (2) und (3) folgt durch Addition

Qs zPN.2+PN.1+(l-z)QN.1+(z-l)PN.3.

Durch Hinzufügung von — PN.2 auf beiden Seiten und einer leichten
Umformung folgt

Q^-P^-Pk.2 (1-z)[Qk-i-PN-2-P*-3] (4)

Mit Q4—P3—P2 0 und (4) ist die Gleichung (1) durch vollständige
Induktion bewiesen.
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Um die Polynome PN rekursiv zu erhalten, bedürfen wir, da in der
Gleichung (1) die Polynome Qs vorkommen, einer weiteren Gleichung.
Wir betrachten wieder eine reduzierte offene Kette mit N Atomen a,

b,c,..q,r,s, deren Valenzstrukturen wir in N-2 Klassen einteilen, je
nachdem sie den Valenzstrich [ab], [ad],., oder [as] enthalten. Ein
Valenzstrich [ac] ist wegen der geforderten Kreuzungslosigkeit unmöglich.

Der Valenzstrich [ab] entspricht einer Bindung von Nachbaratomen,

[ad],... [as] entsprechen Bindungen von Nichtnachbaratomen.
Die Strukturen der erstgenannten Klasse bestehen aus der Bindung

[ab] und den Strukturen der Kette b,c,...r,s. Diese ist, da von dem
Atom b noch ein Valenzelektron verfügbar ist, eine reduzierte offene
Kette von N-l Atomen. Die Strukturen dieser Klasse liefern also zu
dem Polynom QN den Beitrag Qxl.

Betrachten wir nun die Strukturen mit einem Valenzstrich [ak],
wobei k in der Reihenfolge der Atome a,b,...r,s die Nummer j hat.
Wir sagen, daß dem Atom k das Atom i vorausgeht und das Atom 1

nachfolgt. Die Strukturen dieser Klasse bestehen erstens aus dem
Valenzstrich [ak] von Nichtnachbaratomen, zweitens aus Bindungen
zwischen den Atomen b bis i, alle mit zwei Valenzelektronen, drittens
aus Bindungen zwischen den Atomen k bis s, wobei k,s ein Valenzelektron,

die übrigen Atome zwei Valenzelektronen haben. Bindungen
zwischen einem Atom b,..i und einem Atom l,..s können nicht
vorkommen, da sie sich mit [ak] kreuzen müßten. Indem nun b die Nummer

2 und i die Nummer j-1 hat, durchläuft der zweite Bestandteil die
Strukturen einer offenen Kette von j-2 Atomen. Indem k die Nummer
j und s die Nummer N hat und k,s nur ein Valenzelektron haben,
durchläuft der dritte Bestandteil die Strukturen einer reduzierten
offenen Kette von N + l-j Atomen. Dem zweiten Bestandteil ist somit
das Polynom Pj.2 zugeordnet, dem dritten Bestandteil das Polynom
Qu+i-i und dem ersten Bestandteil das Polynom mit dem einzigen
Glied z. Die Berücksichtigung aller drei Bestandteile ergibt als Beitrag
zu dem Polynom QN das Produkt zPj.2QN+1.j Läßt man daraufhin k
die Atome d,....r, das heißt läßt man j die Werte 4,....N-l durchlaufen,
so ergibt sich für die Gesamtheit aller Klassen mit Ausnahme der
ersten und der letzten als Beitrag die Summe

N-l
.2 z Pj.2QN+i-j-
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Die letzte Klasse, das ist die der Strukturen mit dem Valenzstrich [as],
ergibt offenbar zPv2, während wir für die erste Klasse Q^ festgestellt
haben. Somit ist die Hilfsformel gewonnen

Qn - Qx-i-z[P2QN,3+P3Qx.4-...-PN.3Q2+Px-2](N^5) (5)

Mittelst der Gleichung (1) ist es möglich, aus der Gleichung (5) die
Polynome Q zu entfernen. Schreiben wir N+1 statt N, so lautet diese,

wenn wir auch noch den letzten Summand aus der Klammer
herausnehmen und voranstellen

Qx+i ¦QH+zPs.1+z[P,QM+P,QM+..+PMQ4+PMQ,+PMQ1]

Wenden wir auf alle Qv mit v^4 die Gleichung (1) an und beachten
außerdem Q3 Q2 1 P2, so erhalten wir

PH+ PH., - PN-X + PN.2 + ZPN-1 +

+ z[P2(PN.3TPN.4) + ...TPx.4(P3 + P2) + PN.3P2+PN.2]

und daraus

PN zPN.1+(l+z)PN.2+z*S P,P*.w+z S*PjP^i (6)
i=2 i 2

Die Gleichung (6) gilt für N^4, wenn man die Summen in den Fällen,
wo die obere Summationsgrenze kleiner ist als die untere, als
nichtexistent betrachtet. Somit hat man

P4 zP3+(l + z)P2 1 + z + z2

P5 zP4+(l + z)P3+zP2P2 3z + 2z2+z3

P6 zP5+(l+z)P4+z(P2P3+P3P2) + zP2P2 l + 3z + 7z2 + 3z3+z*

Eine weiter geführte Tabelle der Polynome PN enthält Anhang 1.

Eine Rekursionsformel für die Q allein ist auf Grund der Gleichungen

(6) und (1) entbehrlich 1. Es läßt sich aber aus Gleichung (5) eine
Formel für die Q ableiten, die mit

Pn Qx+i-Qx + Qn-i- +- + (-1)NQ3 (la)

zusammen ein System rekurrenter Gleichungen zur Berechnung der
Polynome PN, Qy bildet. Wenn man auf das erste Glied Q^_t rechter-

1 Die Formeln (6), (7) der Veröffentlichung Helv. 46, 1 (1963) sind hier durch die
einfacheren Gleichungen (1), (6) ersetzt worden.
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hand in (5) wieder die Gleichung (5) anwendet, so ergibt sich der
Ausdruck

Qx Qv-2+z[P2Q^4+P3QN.5+... + Px.4Q2+PN.3] +

+z[P2QN,3+P3Qx-4+P4QK.6+... + PN-3Q21* Pn-2]

Mit Berücksichtigung von

P* - i - Q3 ; p2+p3 Q4 ; ». pw+p^ - Qm :

"n-4" P.N-3 Wx-2 > "x-3 "x-2 «X-l
gewinnt man leicht die Umformung zu der Gleichung

Qx - zQ*.i+ (l+z)QM+zS QjQx-j (7)
j — 3

Gleichung (7) gilt für N^5, wenn man im Falle N 5 die Summe als

nichtexistent betrachtet.

II. Die mehrfach offene Kette

Eine Atomanordnung auf dem Rumerkreis, die, anschaulich
gesprochen, aus mehreren offenen Ketten besteht, nennen wir eine mehrfach

offene Kette. Die mehrfach offene Kette gibt nicht die
Nachbarschaftsbeziehungen der Atome eines Moleküls wieder, denn die
Gesamtheit der Atome zerfällt ja in getrennte Abschnitte von solchen
zwischen denen Nachbarschaft im Molekül besteht. Das Studium der
mehrfach offenen Kette ist darum nur ein Hilfsmittel zur Behandlung
komplizierterer Moleküle.

Als einzelne Abschnitte der mehrfach offenen Kette können die
offenen und die reduzierten offenen Ketten, mit denen wir uns bisher
befaßt haben, auftreten, aber außerdem offene Ketten die sozusagen
nur an einem Ende reduziert sind und deshalb eine ungerade Gesamtzahl

von Valenzelektronen aufweisen. Solche Ketten besitzen keine
Valenzstrukturen derart, daß jedes Valenzelektron mit einem anderen
Valenzelektron durch einen Valenzstrich verbunden ist. Sie besitzen
daher auch keine Polynome wie P, Q. Wir müssen die Betrachtungen
verallgemeinern und zwar betrifft die Verallgemeinerung alle drei
Arten offener Ketten.

Wir betrachten Valenzstrukturen der Abschnitte, bei denen eine
Anzahl Valenzstriche außerhalb des Abschnittes endigen. Diese Anzahl
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ist, falls der Abschnitt eine offene oder eine reduzierte offene Kette ist,
gerade (null einbegriffen), und falls derAbschnitt eine einseitig reduzierte
offene Kette ist, ungerade. Wir verabreden, daß p stets eine ungerade
und q stets eine gerade Zahl bezeichnet.

n<i(A-)> (q 0,2,4,...) setzt voraus, daß A eine offene oder eine
reduzierte offene Kette ist. üq(A) ist das Polynom der Gesamtheit jener
Valenzstrukturen von A, bei denen q Valenzstriche außerhalb A endigen.

Zur Bildung des Polynoms IIq(A) werden nur die innerhalb A
verlaufenden Valenzstriche herangezogen. Wenn im Lauf der
Überlegungen auch mit den außerhalb A endigenden Valenzstrichen operiert
wird, gilt die Forderung der Kreuzungslosigkeit auch für diese. Es ist
demnach II0(A) - Px bzw. Qs, wenn A eine offene bzw. reduzierte
offene Kette von N Atomen ist.

Ilp(A), (p 1,3,5,..) setzt voraus, daß A eine einseitig reduzierte
offene Kette ist. Alles übrige gilt analog zu üq(A).

Die Polynome zqIIq(A), zpIIp(A), die in den Überlegungen oft
auftreten werden, kann man so interpretieren, daß Valenzstriche die
außerhalb A endigen, wie Valenzstriche zwischen Nichtnachbaratomen

mitberücksichtigt werden. Spezielle Polynome bezeichnen wir in
leichtverständlicherweise mit IIq(2m), llq(12ml), IIp(12J oder IIp(2ml).

Wir entwickeln nun Formeln, welche die Ausdrücke einer
gegebenen Kette durch die Ausdrücke kürzerer Ketten, das heißt durch
Ketten mit kleinerer Gesamtzahl von Valenzelektronen zu berechnen

gestatten.
1. Um IIp(2ml) zu erhalten, betrachten wir die Ausgangssituation,

daß von einer Kette (2m) p+1 Valenzstriche weggehen. Die Atome der
Kette mögen a,b,...r heißen. Die Ausgangssituation wird demnach
beschrieben durch das Polynom

z»+inp+1 (2j.
Es wird an dem Polynom nichts geändert, wenn man sich vorstellt,

daß sich ein Atom s mit einem einzigen Valenzelektron anschließend
an r befindet, aber zu r nicht benachbart ist und daß - bei jeder der
vorkommenden Strukturen - ein durch die Foi derung der Kreuzungslosigkeit

ganz bestimmter von a,b,....r weggehender Valenzstrich bei s

endigt.
Gehen wir nun zu einer intermediären Situation über, indem s an r

herangerückt, das heißt daß in jeder der vorkommenden Strukturen
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ein etwa vorhandener Valenzstrich [rs] aus einem langen in einen kurzen

verwandelt wird, so ergibt das ein Zusatzpolynom

(i-z)z"np(2in.1i).

Jetzt unterliegen die Valenzstriche die von s ausgehen können, noch
der Einschränkung, daß sie bei a,b,...r endigen, also die (neuentstandene)

Kette (2ml nicht verlassen.
Gehen wir durch Aufhebung dieser Einschränkung zur Endsituation
über, bei der von der Kette (2ml) p Valenzstriche weggehen, so ergibt
das ein Zusatzpolynom

z-zp-lnp.1(2m).

Das Polynom der Endsituation aber ist z''IIp(2ml), folglich gilt
z^np(2mi) - z')^np+1(2m)+(i-z)zpnp(2n,1i)+zpnp.1(2m)

und nach Kürzung durch zp

np(2mi) znp+1(2j+(i-z)np(2m.1i)+np.1(2m). (8)

Damit jeder in Gl. (8) vorkommende Ausdruck einen Sinn hat, ist
bezüglich p, m vorauszusetzen

p l,3,...2m-l
Daher ist zur Ergänzung beizufügen

n2m+1(2ml) 1 (8a)

welche Gleichung ohne ausdrücklichen Beweis klar ist.
2. Um nq(2m4_1) zu erhalten, betrachten wir die Ausgangssituation,

daß von einer Kette (2ml) q + 1 Valenzstriche weggehen. Die Atome
der Kette mögen a,b,...k,r heißen, von denen r ein Valenzelektron hat,
die übrigen zwei. Die Ausgangssituation wird demnach beschrieben
durch das Polynom

Zi+1nq+1(2mi).

Es wird an dem Polynom nichts geändert, wenn man sich vorstellt,
daß sich ein Atom s mit einem Valenzelektron anschließend an r
befindet, aber zu r nicht benachbart ist und daß ein durch die Forderung
der Kreuzungslosigkeit ganz bestimmter von a,b,....k,r weggehender
Valenzstrich bei s endigt.

Gehen wir nun zur ersten intermediären Situation über, indem alle
Strukturen weggelassen werden, die den Valenzstrich [rs] haben, so

ergibt das ein Zusatzpolynom
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-z*zqnq(2j.

Gehen wir zur zweiten intermediären Situation über, indem die
beiden Valenzelektronen, die den Atomen r,s, anhafteten, als Elektronen
eines einzigen zu k benachbarten Atoms (rs) betrachtet werden, so ist
nunmehr ein Valenzstrich [ks] ebenso wie [kr] Valenzstrich einer
Nachbarbindung und das ergibt das Zusatzpolynom (mit [ks] ist immer
auch [kr] vorhanden)

(i-z)zonq(2m.1).

Es besteht noch die Einschränkung, daß von s ausgehende Valenzstriche

in a,b,....k endigen. Gehen wir durch Aufhebung dieser
Einschränkung zur Endsituation über, bei der von der Kette (2m+1) q
Valenzstriche weggehen, so ergibt das ein Zusatzpolynom

z-z^*1nq.1(2mi).

Das Polynom der Endsituation aber ist zqIIq(2m+1), folglich gilt

zt>nq(2m+1)^z^inq+1(2mi)-z('+inq(2m)+(i-z)zqnq(2m.1)+zqnq.1(2mi)

und nach Kürzung durch z9

nq(2m+1) - znq+1(2mi)-znq(2j+(i-z)nq(2m.1)+nq.1(2mi).

Man kann noch auf das zweite und vierte Glied rechts die Gl. (8) mit
q p+1 anwenden :

-znq(2m)+nq.1(2mi) - (i-z)nq.1(2m.1i)+nq.2(2j

und hat dann

nq(2m+1) znq+1(2mi)+(i-z)nq(2m.1)+(i-z)nq.1(2m.1i)+nq.2(2j (9)

Damit jeder in Gl. (9) vorkommende Ausdruck einen Sinn hat, ist
bezüglich q,m vorauszusetzen

q 2,4,6,..2m-2

Daher ist zur Ergänzung beizufügen

n2m(2m+1) - m ; n2m+2(2m+1) 1. (9a)

3. Bleibt noch der Ausdruck für IIq(12ml). In der Überlegung die
zu Gl. (8) führte, kann man vor dem Atom a noch ein Atom mit einem
Valenzelektron annehmen, dann erhält man an Stelle der Gleichung (8)

nq(i2mi) znq+1(i2j.(i-z)nq(i2m.]i).nq.](i2m) (io)
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Wir bemerken, daß für jeden Index p die Polynome IIp(2ml), Ilp(12m)
dieselben sind. Es lassen sich aber die Polynome für (12ml) auf
Polynome für (2m) allein zurückführen, was zur Berechnung derselben von
Vorteil ist.

Addiert man nämlich zu der Gleichung(lO) die mit —1 multiplizierte
Gleichung (9)

-nq(2m+1)--znq+1(2mi)+(z-i)nq(2m.1)+(z-i)nq.1(2m.1i)-nq.2(2j,

außerdem auf beiden Seiten —Uq(2m)
und, um unerwünschte Glieder wegzubringen, die sich aus (8)

ergebende Gleichung
o -nq„1(2mi)+znq(2m)+(i-z)nq.1(2m.1i)+nq.2(2m),

dann ergibt sich

nq(i2mi)-nq(2m+1)~nq(2j (i-z)[nq(i2m.1i)-nq(2j-n,(2m.1)]
Diese Gleichung läßt von m auf m+1 schließen und beweist

nq(i2ffii)^nq(2m+1)+nq(2j (ii)
sobald dies für die kleinsten möglichen m bewiesen ist.

Wir brauchen den Beweis bezüglich aller Zahlen

q 2,4,....2m+2.

Bezüglich q 0 ist mit Rücksicht auf Gleichung (1) nichts zu ergänzen.

Die Gleichung, die zu (11) führte, verlangt aber

q 2,4,...2m-2.

Es ist daher beizufügen

n2m(12ml) m+l ; n2m+2(12ml) 1 (IIa)

Aus (IIa) und (9a) ergibt sich die Anfangsaussage der vollständigen
Induktion.

Die ersten Polynome IIq(2m), IIp(2ml) bringen wir in Anhang 3.

Nachdem wir uns alle Polynome IIq(A), np(B) usw. verschafft
haben, bleibt zu zeigen, wie sich aus diesen das Polynom P(A|B|C|...)
einer mehrfach offenen Kette aufbaut.

Der einfachste Fall ist der einer zweifach offenen Kette. Es ist zu
unterscheiden, ob die Gesamtelektronenzahl jedes Abschnittes A,B
gerade oder ungerade ist. Im ersten Fall haben die verschiedenen
Strukturen keinen Valenzstrich oder 2 oder 4,.. Valenzstriche zwischen
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A und B, im zweiten Fall sind es 1,3,5,.. Valenzstriche. Die Polynome
bilden sich in folgender Weise

p(a|b) - n0(A)n0(B)+z2n2(A)n2(B)+z*1n4(A)n4(B)+.. (12)

bzw.

P(A|B) zn1(A)n1(B)+z3n3(A)n3(B)+z5n5(A)n5(B)+.. (i3)
womit der Fall einer zweifach offenen Kette bereits erledigt ist.

Für eine mehrfach offene Kette aus beliebig vielen Abschnitten ließe
sich folgendes grundsätzliche Verfahren angeben. Wir merken uns
zuerst die Gesamtelektronenzahl zA,zB,zc, jedes Abschnittes an. Dann
ist die Zahl der Valenzstriche, die von einem bestimmten Abschnitt
A, B,.. irgendwohin ausgehen, je eine Zahl aus den Zahlenreihen

zA, zA-2, zA-4,..
zb> zB—z, zB—4,..

zc> zo—2> z0—4,..

Eine derartige Zahlenreihe endigt mit 1 oder 0, je nachdem z ungerade
oder gerade ist. Eine Auswahl von Zahlen

wA zA-2tA ; wB zB-2tB ; w0 - z0-2t0 ;..

wollen wir mit (w) bezeichnen. Durch die Auswahl (w) ist eindeutig
bestimmt, wie viele Valenzstriche innerhalb jedes Abschnittes
verlaufen und zwar sind es im Abschnitt A jene Valenzstriche welche die
Strukturengesamtheit mit dem Polynom nWA(A) beschreiben und so
weiter. Ebenso ist durch die Auswahl (w) eindeutig bestimmt,- wie viele
Valenzstriche überhaupt von einem Abschnitt zu einem anderen

Abschnitt verlaufen ; es sind deren -(wA+wB+w0+..). Dagegen ist durch
Â

die Auswahl (w) nicht immer eindeutig bestimmt, wie viele Valenzstriche

von einem bestimmten Abschnitt zu einem bestimmten
Abschnitt verlaufen. Dies zeigt das Beispiel

wA 6 ; wB 4 ; w0 3 ; wD =5
bei dem die Möglichkeiten der zwischen den Abschnitten verlaufenden
Valenzstriche folgende sind

A B A=B A-=B A—B

D C D C D—C D C
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Zugleich ist aus diesem Beispiel die Verallgemeinerung ersichtlich. Die
Anzahl der möglichen Arten, wie sich Valenzstriche kreuzungslos
zwischen den Abschnitten verteilen können, bei gegebener Auswahl (w),
das heißt bei gegebenen Anzahlen wA, wB w0 der von den
Abschnitten A, B, C,... ausgehenden Valenzstriche bestimmt sich auf
dieselbe Weise wie die Anzahl der linear unabhängigen Spinfunktionen
eines Moleküls bei gegebener Anzahl der Valenzelektronen jedes
Atoms.

Damit ist der Aufbau des Polynoms P(A|B|C|..) schon geleistet. Wir
wollen die Anzahl der möglichen Arten, wie sich Valenzstriche
zwischen den Abschnitten verteilen können, Lw nennen, zum Beispiel
Lw 4 bei (w) (6,4,3,5). Wenn man die Überlegung in eine Formel
bringt, so lautet sie

^ 5(wA+wB+w0 +
P(A|B|C|..) (S Lw-z2 nwA(A)IïwB(B)IIw0(C)..

(1*4)
Erprobt man jedoch die Methode an dem Beispiel

zA 6 ; zB - 4, z0 3, zD 5

so erhält die Formel (14) 60 Glieder, weshalb man die Methode nicht
als brauchbar bezeichnen kann.

Eine leichter anwendbare Methode wird durch Verallgemeinerung
der Gleichungen (12), (13) gewonnen, indem man an Stelle des
Abschnittes A mehrere Abschnitte A, B,.. annimmt und ebenso an Stelle
des Abschnittes B mehrere Abschnitte K, L,... Es läßt sich IIq(A|B...)
(q 0,2,4,...) bzw. IIp(A|B..) (p 1,3,5,...) wörtlich so definieren wie

nq(A) bzw. np(A) bei einem einzigen Abschnitt A. Dann gilt folgende
Verallgemeinerung der Gleichungen (12), (13)

P(A|B..K|L..)=n0(A|B..)n0(K|L..)+z2n2(A|B..)n2(K|L..) + ..(15)
bzw.

P(A|B..K[L..)=zni(A|B..)ni(K|L..)+z3n3(A|B..)n3(K|L..)+..(16)

Gleichung (15) ist in dem Fall anzuwenden, wenn die Gesamtelektronen-
zahl der Abschnitte A,B,.. und damit auch die der Abschnitte K, L,..
gerade ist, Gleichung (16), wenn die beiden Gesamtelektronenzahlen
ungerade sind.

Nun ist noch zu zeigen, wie man sich die Polynome

nq(A
np(A

B...), nq(K[L...). (q 2,4...) bzw.

B.„), np(K|L...), (p 1,3...), die in den Gleichungen (15), (16)
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auftreten, verschafft. Wir teilen die vielen Abschnitte A, B,... in zwei
Reihen von Abschnitten ab ; die erste Reihe beginne mit A, die zweite
etwa mit C (es muß die Reihenfolge der Abschnitte auf dem Rumerkreis

gewahrt werden). Wir müssen aus den Definitionen Gleichungen
herleiten, welche die Polynome I1(A|...C|..) auf die Polynome II(A|...)
und n(C|...) zurückführen. Nun besteht Ilq(A|...C|...) aus allen Strukturen,

bei denen q Valenzstriche die Gesamtheit der beiden Reihen
von Abschnitten, der mit A beginnenden Reihe und der mit C

beginnenden, verlassen. Dabei bestehen verschiedene Möglichkeiten, erstens
wie viele der q Valenzstriche von A,... und wie viele von C,....
weggehen und zweitens, wie viele Valenzstriche zwischen A,.... und C,....
verlaufen. Entsprechendes gilt für IIp(AJ...C|...).

Um die Gleichungen nicht zu unübersichtlich zu gestalten, können
wir uns auf den Fall beschränken, daß die erste Reihe von Abschnitten
aus dem einzigen Abschnitt A und die zweite Reihe von Abschnitten
aus dem einzigen Abschnitt C besteht. Wie man sich leicht überzeugt,
ist diese Beschränkung unwesentlich ; es kann in den folgenden
Gleichungen jederzeit A durch A|B... und C durch C|D... eisetzt werden.
Die ersten Gleichungen lauten

n0(A|C) P(A|C) wie Gleichungen (12), (13),
n^AJc) n0(A)n1(C)+zn2(A)n1(C)+z2n2(A)n3(C)-i-

+ z3n4(A)Il3(C) + bzw. mit vertauschten Indizes an 11(A),

n(C)

n2(A|c) - n0(A)n2(C)+n2(A)n0(C)+zn2(A)n2(C)+z2[n2(A)n4(C)+
+n4(A)n2(C)]+z3n4(A)n4(C)+z*1[n4(A)n6(C)+n6(A)n4(C)]+
+z5n6(A)n6(C)+...

bzw.

n2(A|Q nx(A) n1(C)+z[n1(A) n3(C)+n,(A)n1(C)]+z2n3(A)n3(C)+
+z3[n3(A)n5(C)+n5(A)n3(C)]+....

n,(A|c) n0(A)n3(C)+n2(A)n1(C)+z[n2(A)n3(C)+n4(A)n1(C)]+
+z2[n2(A)n6(C)+n4(A)n3(C)]+
+z3[n4(A)n5(C) + n6(A)II3(C)] + bzw. mit vertauschten
Indizes an 11(A), 11(C)

n4(A|c) - n0(A)n4(C)+n2(A)n2(C)+n4(A)n0(C)+
+z[n2(A)n4(C)+n4(A)rr2(C)] +

+z2[n2(A) ne(C)+n4(A) n4(C)+n6(A) n2(C)]+
+z3[n4(A)n0(C)+n6(A)n4(C)]+...
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bzw.

n4(A|c) - n1(A)n3(C)+n3(A)n1(C)+z[n1(A)n5(C)+n3(A)n3(C)+
+ n5(A) n4(Q]+z2[n3(A) nB(C)+n5(A) n3(Q] +

+z3[n3(A)n7(C)+n5(A)n5(C)+n7(A)n3(C)]+...

Allgemein besteht üq(A|C) bei gerader Elektronenzahl von A und
von C aus Gliedern

zenp+a(A)np+q.a(C),

wobei a bei geradem p die Zahlen 0,2,... q, bei ungeradem p die Zahlen
1,3,... q-1 durchläuft. Bei ungerader Elektronenzahl von A und von C

besteht IIq(A|C) aus ebensolchen Gliedern, wobei a bei geradem p die
Zahlen 1,3,... q-1, bei ungeradem p die Zahlen 0,2 q durchläuft.
np(A|C) besteht bei gerader Elektronenzahl von A und ungerader
Elektronenzahl von C aus Gliedern

zPnp+a(A)np+p.a(C)

wobei oc bei geradem p die Zahlen 0,2,... p-1, bei ungeradem p die Zahlen
1,3,... p durchläuft.

Das vorhin genannte Beispiel mit zA 6, zB 4, zc 3, zD 5 kann
nun in folgender Weise bearbeitet werden. Für
nq(A), ITq(B), np(C), np(D) schreiben wir kürzer Aq, Bq, Cp, Dp und
haben dann

n0(A
n,(A
n4(A
n6(A
n8(A

B) A0B0+z2A2B2+z4A4B4
B) A0B2+A2B0+zA2B2+z2[A2B4+A4B2] + z3A4B4+z4A6B4

B) A0B4+A2B2+A4B0+z[A2B4+A4B2]+z2[A4B4+A6B2]+z3A6B4
B) A2B4+A4B2+A6B0+z[A4B4+A6B2] + z2A6B4

B) - A4B4+A6B2^zA6B4

Nicht gebraucht wird II10(A|B) A6B

n0(c
n2(C
n4(c
nc(c
n8(c

i
D) zC1D1 + z3C3D3

D) C^j + ZfC^g+CgDJ+Z-^CgDg+zSCgDg
D) C1D3+C3D1 + z[C1D5+C3D3] + z2C3Dä

D) C1D5 + C3D3+zC3D5

D) C3D5

Diese Ausdrücke sind als Polynome in z zu schreiben, worauf man
nach Gleichung (15), mit der abgekürzten Schreibweise (A|B)q, (C|Dq)

statt nq(A|B), nq(C|D) erhält
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P(A|B|C|D) - (A|B)0(C|D)0+z*(A|B)2(C|D)2+z4(A|B)4(C|D)4 +

+z6(AJB)6(C|D)6+z8(AJB)8(C|D)8

Wenn man, statt bis z auszurechnen, nur bis A Bq, C Dp ausrechnet,

so erhält man den Ausdruck (14), was allenfalls zur Kontrolle
dienen kann.

III. Nachbarbindungen

Die Aufgabe die wir in diesem Abschnitt behandeln, könnte man
anschaulich dahingehend beschreiben, Nichtnachbarbindungen in
Nachbarbindungen zu verwandeln.

Hieher gehört die spezielle Aufgabe, die einfach offene Kette zu
schließen, so daß man das Polynom eines Ringmoleküls erhält. Wir
werden die Lösung dieser Aufgabe aus den folgenden allgemeinen
Überlegungen ohne weitere Mühe erhalten.

Es ist nicht ganz leicht, eine allgemeine Regel anzugeben, wie die
Atome eines beliebigen Moleküls auf dem Rumerkreis angeordnet werden

sollen. Wenn sich die Atome in einem Streckenzug von
Nachbarbindungen durchlaufen lassen, liegt es nahe, diesen Streckenzug, oder
falls es deren mehrere gibt, einen dieser Streckenzüge auf dem Rumerkreis

aufzutragen. Wenn das nicht der Fall ist, wird man die Atome in
möglichst wenig Streckenzügen von Nachbarbindungen zu durchlaufen

suchen und die Streckenzüge in einer der Natur des Moleküls
angepaßten Reihenfolge auf dem Rumerkreis als Abschnitte einer mehrfach

offenen Kette auftragen. Es sind dann sicher noch Nachbarbindungen

da, die zum Zeichen der Streckenzüge nicht verwendet wurden.
Durch diese Nachbarbindungen werden dann im Rumerkreis die
Abschnitte der mehrfach offenen Kette untereinander verbunden. Wir
nennen diese Nachbarbindungen kritische Bindungen.

Den einen Fall ausgenommen, daß es sich um die Schließung einer
offenen Kette handelt, laufen die kritischen Bindungen durch das

Innere des Rumerkreises. Wenn eine kritische Bindung einen oder
zwei Valenzstriche aufnimmt, nennen wir diese Valenzstriche kritische

Striche. Die kritischen Bindungen können sich kreuzen. Wenn
sich kritische Bindungen kreuzen, heißt das einfach, daß in einer Ru-
merschen Valenzstruktur kritische Striche, die der einen Bindung
angehören, nicht zugleich mit kritischen Strichen, die der anderen Bindung
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angehören, vorkommen können. Wir sagen, daß ein kritischer Strich
vor der Berücksichtigung der kritischen Bindung ein langer Strich
und mit Berücksichtigung der kritischen Bindung ein kurzer Strich ist.
Das Problem liegt darin, anzugeben, wie sich das Ausgangspolynom,
das ist das Polynom der Strukturen vor der Berücksichtigung der
kritischen Bindungen, also je nach dem konkreten Fall entweder das

Polynom einer mehrfach offenen Kette oder einer einfach offenen Kette
oder einer geschlossenen Kette bei der Berücksichtigung der kritischen
Bindungen abändert. Es stört unsere Überlegungen nicht, daß wir den
Ausdruck für das Polynom Rx einer geschlossenen Kette von N Atomen

noch nicht kennen. Dagegen machen wir vorläufig zwei
einschränkende Annahmen über die Moleküle und die Anordnung ihrer
Atome auf dem Rumerkreis. Es sollen sich erstens keine kritischen
Bindungen kreuzen und es soll zweitens von einem Atom nicht mehr als
eine kritische Bindung ausgehen. Diese Voraussetzungen sind zum
Beispiel bei Naphthalin, Anthrazen usw. erfüllt. In der Behandlung
aller derartigen Moleküle wird man auf dem Rumerkreis einen
geschlossenen Ring annehmen, der dann durch die kritischen Bindungen
in zwei, drei usw. Ringe untergeteilt wird.

Nun bietet sich zunächst folgendes Verfahren der Berücksichtigung
der kritischen Bindungen dar. Die kritischen Striche seien irgendwie
numeriert, sagen wir von 1 bis 1. Eine Valenzstruktur, welche eine

Anzahl f kritischer Striche enthält, hat vor der Berücksichtigung der
kritischen Bindungen mindestens f lange Striche. Das Polynom der
Gesamtheit aller Valenzstrukturen die genau f kritische Striche
enthalten ist daher von der Gestalt z£Sf.

Somit zerlegt sich das Ausgangspolynom - wir nehmen den Fall einer
geschlossenen Kette an - in 1+1 Summanden

Rx - S0+zS1+zsS,+...+zIS1. (17)

Mit der Berücksichtigung der kritischen Bindungen geht das Polynom

Ky in ein Polynom R über, für welches die Gleichung gilt

R S0+S1+S2+... + S1. (18)

So übersichtlich die Gleichungen (17), (18) sind, so verwickelt wird
die Anwendung bei mehr als zwei kritischen Strichen. Der Grund liegt,
wie wir sehen werden, in der Beschaffenheit der Polynome S«.
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Wir wollen aber den Fall eines Zwei-Ringmoleküls genauer betrachten,

um zu einer duichführbaren Methode zu kommen
a

m Atome 1 m' Atome (19)

Es bestehe, wie (19) zeigt, zwischen den Atomen a und b eine kritische
Bindung. Es sind also zwei kritische Striche vorhanden, mit 1,2,
bezeichnet. Links von dem kritischen Strich 1 liegen m Atome auf dem

Rumerkreis, rechts von dem kritischen Strich 2 liegen m' Atome.
S2 ist leicht zu bilden. Denn da S2 das Vorhandensein beider Striche

1, 2 voraussetzt, so sind bei den Strukturen, deren Gesamtheit durch
das Polynom S2 beschrieben wird, Valenzstriche zwischen den m
linksgelegenen Atomen und den m' rechtsgelegenen Atomen verboten,
weil sie sich mit 1, 2 kreuzen würden. S2 ist daher das Produkt der

Polynome der zwei offenen Ketten von m bzw. m' Atomen :

S2 =*¦ PmPm, (20)

S4 zerlegt sich in zwei Summanden. Der eine Summand ist das

Polynom der Gesamtheit der Strukturen, die den kritischen Strich 1,

aber nicht den kritischen Strich 2 haben. Diesen Summand wollen wir
mit (1) bezeichnen. Auch hier sind Valenzstriche zwischen den m Atomen

links und den m' Atomen rechts verboten. Das Polynom (1) ist
daher wie S2 ein Produkt zweier Polynome. Der eine Faktor ist Pm,

der andere Faktor ist das Polynom einer reduzierten offenen Kette von
m' + 2 Atomen abzüglich des Polynoms der Gesamtheit jener Strukturen,

die einen Valenzstrich zwischen den beiden einvalentigen Atomen

haben. Man erhält somit den Ausdruck

(1) - Pm(Qn. + 2-zPm,) (21)

und ebenso

(2) - (Qm+2-zPJPm, (22)

Addition von (21) und (22) ergibt

^l Pmym/ + 2+Pm^ym+2^2zPmPm, (23)

Die Bestimmung von S0 läßt sich umgehen, denn aus Gin. (17), (18)

folgt, da N m+m'+2 zu setzen ist
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R Rm+m,+2+(i-z)s1+(i-z2)S2

Dann ergibt sich aus den Ausdrücken (23), (20) nach geringer
Umformung

R - Rm+m,+2+(i-z)[PmQm,+2+Pm,Qm+2] + (i-z)2PmPm, (24)

Die Gleichung (24) läßt sich zu einer durchführbaren Methode
verallgemeinern.

Dazu bezeichnen wir in Analogie zu Gin. (21), (22) die Glieder die in
Gl. (24) mit dem Faktor 1-z auftreten, mit einem in eckige Klammer
gesetzten kritischen Strich,

[1] PmQm,+2 (25)
[2] - Qm+2Pm, (26)

Die Summe bezeichnen wir mit T1; also

T1-=[l] + [2] PmQm/+2+Qm+2Pm, (27)

Wir konstatieren bezüglich des konkreten Falles (19) :

Erstens, man erhält den Ausdruck (1), indem die Atomanordnung
längs des kritischen Striches 1 in zwei Atomanordnungen zerschnitten
wird und das Polynom der linksstehenden Atomanordnung mit dem
der rechtsstehenden Atomanordnung multipliziert wird, wobei aber
von letzterer nur jene Strukturen berücksichtigt werden, die den
kritischen Strich 2 nicht haben.

Zweitens, man erhält den Ausdruck [1], indem die Atomanordnung
längs des kritischen Striches 1 in zwei Atomanordnungen zerschnitten
wird und das Polynom der linksstehenden Atomanordnung mit dem
der rechtsstehenden Atomanordnung multipliziert wird, wobei alle
Strukturen berücksichtigt werden und der kritische Strich 2 als langer
Strich gerechnet wird.

Das wird verallgemeinert. Es seien à1( X2, A£ irgendwelche Nummern

kritischer Striche einer Atomanordnung. Längs dieser kritischen
Striche wird die Atomanordnung zerschnitten, so daß f+1 Atomanordnungen

entstehen. In jeder dieser Teil-Atomanordnungen können
noch weitere kritische Striche vorkommen. Bildet man die Polynome
der Teil-Atomanordnungen, das eine Mal so, daß die Strukturen mit
kritischen Strichen nicht zugelassen sind, das andere Mal so, daß alle
Strukturen berücksichtigt sind und etwa vorkommende kritische
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Striche als lange Striche gerechnet werden, so erhält man das eine
Mal das Polynom (X1X2...Xf), das andere Mal das Polvnom [A^...
AJ.

Klammerausdrücke mit gleich viel kritischen Strichen werden zu den
Summen S, T zusammengefaßt in der Weise

S4 - (l) + (2) + ..+(l) ; S2 - (12)+(13) + + (1-1,1) ;...
S, (12...1);T1=[l] + [2] + + (l];
T2= [12] + [13] + + [1-1,1] ; ....T, [12...1].

S0 ist das Polynom der Gesamtheit aller Strukturen der ursprünglichen

Atomanordnung, die keine kritischen Striche haben. T0 ist das

Polynom der ursprünglichen Atomanordnung, also T0 P(AJB|C|....)
bzw. T0 PN bzw. T0 Rx. Es ist außerdem Sj T,.

Es wird nun behauptet

R T0+(l-z)T1+(l-z)2T2+... + (l-z)1TI (28)

und ist somit zu beweisen, daß der Ausdruck von Gleichung (28) mit
dem von Gleichung (18) übereinstimmt.

Der Beweis beruht auf der Tatsache, daß jedes Polynom Tf von der
Form ist

Um dies zu zeigen und zugleich die Zahlenkoeffizienten a.1:... aH zu
erhalten, überlegen wir : Der erste Summand [12..f] von Tt besteht
erstens aus dem Glied (12...f), weil jede Struktur, die zur Bildung von S,

zugelassen ist, auch zu [12...f] beiträgt, zweitens falls f^l-1. aus den mit
z multiplizierten Gliedern (12...f,f+l), (12...f,f+2),..(12..f,l-l), (12..fl),
weil in den Strukturen, aus denen [12...f] gebildet ist, auch Strukturen
mit je einem kritischen Strich vorkommen, diese kritischen Striche aber
als lange Striche gerechnet werden. Drittens kommen in den Strukturen
aus denen [12..f] gebildet ist, falls f^l-2, alle Strukturen mit je zwei
als lange gerechneten kritischen Strichen vor, das ergibt die mit z2

multiplizierten Glieder (12...f,f+l,f+2),...(12...f,l-l,l) und so weiter.
Weil nun die Ausdrücke T, S bezüglich der kritischen Striche

symmetrisch gebaut sind, bleibt die Überlegung richtig, wenn man den

Summand [12...f] durch (})"*% ersetzt, (12...f) durch (f)_1Sf, jeden der

*jf) Ausdrücke (12...f,f+l)... durch ^M^S^, jeden der (l'^\ Ausdrücke
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(12..f,f+l,f+2)... durch (f+2)"1S£+2 und so weiter. Man kommt so zum

Ergebnis
Tf St /l-f\ Sf+i /l-f\ 2 Sf+2 1-f \ i.M Si-i Mc

was sich vereinfacht zu

T£ Sf + (f+1)zSJ+1+(f-22)z2S£+2+.. + (11f)z'-{S1. (29)

Einsetzen von Gleichung (29) in Gleichung (28) führt zu Gleichung
(18).

Unsere Methode, « Nichtnachbarbindungen in Nachbarbindungen
zu verwandeln », besteht demnach in Folgendem. Man bezeichne jede
kritische Bindung mit zwei kritischen Strichen und numeriere diese.

Unter der Voraussetzung, daß sich keine kritischen Bindungen kreuzen

und daß jedes Atom an höchstens einer kritischen Bindung teilhat,

bilde man zu jeder Kombination von f kritischen Strichen Aj,
X2,...Aj(f 0,...1) den Ausdruck [A^.-.AJ, indem die genannten
kritischen Striche die Atomanordnung zerlegen und die Polynome aller
Bestandteile miteinander multipliziert werden. Die nicht genannten
kritischen Striche gelten dabei als lange Striche. Bedeutet T£ die Summe

aller Ausdrücke [A^-.AJ mit f Strichen, dann ergibt die Gleichung
(28) das gesuchte Polynom.

Nun können wir die Aufgabe der Schließung eines Ringes lösen, das
heißt das Polynom Rx eines geschlossenen Ringes angeben. Gehen wir
von der offenen Kette von N Atomen aus, dann ist nach unseren
Definitionen T0 PN. Heißen die Atome a,b,...r, dann besteht zwischen
den Atomen a und r eine kritische Bindung. Bezeichnet man die
Elektronen von a und r in der Reihenfolge a1,a2..r2,r1, dann kann man
den kritischen Strich 1 von ax nach r4 gehend annehmen und den
kritischen Strich 2 von a2 nach r2 gehend. Es ist dann [1] Qx ; [2] zPx_2,
also Tj QN+zPN_2. Außerdem ist T2 PN_2. Gleichung (28) ergibt

RN PWl-z)(QN + zPN.2)+(l-z)2Px.2

oder auch

Rn Pw+(1-z)Qn+(1-z)Pn-2 (30)

Die ersten Polynome RN werden wir in Anhang 2 angeben.
Es bleiben nur noch die zwei Umstände zu beachten, daß sich

kritische Bindungen kreuzen können und daß ein Atom an mehr als einer
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kritischen Bindung teilhaben kann. Beides hat nur die Vereinfachung

zur Folge, daß gewisse T£ aus weniger als Lj Gliedern bestehen. Denn

wenn etwa die mit den kritischen Strichen 1,2 bezeichnete Bindung
sich mit der mit den kritischen Strichen 3,4 bezeichneten Bindung
kreuzt, so entfallen die Glieder [13], [14], [23], [24], was außerdem den
Ausfall der Glieder [135] und anderen nach sich zieht.

Die Folgen des zweiten Umstandes macht man sich klar, wenn man
auf die Valenzelektronen auf dem Rumerkreis achtet. Es möge von a
eine kritische Bindung nach b und eine nach c gehen. Numeriert man
die Elektronen in der Reihenfolge a4, a2, blt b2, c,, c2 und die kritischen
Striche in der Weise : Strich 1 von a4 nach b2, Strich 2 von a2 nach b1;

Strich 3 von a4 nach c2, Strich 4 von a2 nach cv dann stellt man fest,
daß [14] ausfällt, weil die kritischen Striche sich kreuzen würden.
Aber auch [13] fällt aus, weil das Elektron a4 nicht in der gleichen
Struktur mit b2 und mit c2 verbunden sein kann. Ebenso fällt [24] aus.
Die Vereinfachung ist somit ganz erheblich.

Anhang 1. Die ersten Polynome PN nach Gleichung (6)

P2 =l
P3 z

P4 1+z + z2

P5 3z + 2z2 + z3

P6 l + 3z+7z2+3z3+z*
P, 6z + 12z3 + 13z*' + 4z<+z5
P8 l + 6z+26z2 + 31z3 + 21z4+5z5 + z8

P9 10z + 40z2i-80z3+64z4+31z5+6z6 + z7

P10 l + 10z+70z2 + 160z3 + 196z4+115z5+43z8+7z7+z8
Pu 15z + 100z2 + 325z3+480z"+411z5+188z6 + 57z7+8z8+z9
P12 l + 15z + 155z2+575z3+1135z1+1191z5 + 771z8+287z' + 73z8 + 9z9 + z10

P13 21z + 210z2 + 1015z3+2380z4+3241z5 + 2582z8 + 1331z7+416z8 + 91z9+10z10 +
+ Z11

P14 l + 21z + 301z2 + 1645z3+4809z1-r7861z5-7981z6+5061z7+2155z8+
+ 579z9+lllz10+llz11+z12

P15 28z + 3922 + 2646z3+9016z1+18032z5 J-22008z6+l 7557z7 + 9176z84-3316z9 +

+ 780z10+133z11+12z12+z13
P16 l + 28z+532z2+4018J-z3+16366z4+38416zs+56728z8+54307z7+35353z8 +

+ 15636z9+4896z10+1023z11+157z12+13z13+z"
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P17 36z+672z2T6048z3+28224z4+78204z5 + 13557z6 + 155772z7+121328z8+

+ 66304z9+25332z10+6986z11+1312z12+183z13+14z»-z16
P18 l + 36z + 876z2+8736z3+473764+151116z5+307020z6+413316z7+383896z8+

+ 250176z9+117316z10+39358z11 + 9686z12 + 1651z13+211z14+15z15+z16
P19 45z + 1080z2+12510z3+76608z4+281484z5+658224z«+1032984z7+

+ 1121040z8+866512z9+482932z10+197737z11+59032z12+13105z13+
+ 2044z14-241z15+16z18 + z17

P20 « l + 45z + 1365z2+17370z3+121122z4+504252z5+1351692z6+2437128z7+
+ 3069804z8 + 2764048z9+1818708z10+882211z11+319879z12 + 85917z13+

+ 17361z"+2495z16+273z16+17z17+z18

Anhang 2. Die ersten Polynome R^ nach Gleichung (30)

R2 1

R3 1

R4 3

R5 l + 5z

R„ 3 + 6z + 6z2

R7 l + 14z+14z2+7z3
R„ - 3 + 16z+40z2 + 24z3+8z4

R„ l + 27z+72z2 + 87z3+36z4+9z5
R10 3 + 30z + 140z2 + 210z3 + 160z4+50z5+10z6
Ru l + 44z + 220z2 + 495z3+484z4 + 264z5+66z8 + llz7
R12 3 + 48z+360z2+980z3 + 1362z4+960z5+404z6ï-84z7+12z8
RI3 l + 65z+520z2+1885z3+3250z4 + 3159z5+1716z6+585z7+104z8+13z9
R14 3+70z + 770z2T3290z3+7294z4+8834z5-6482z6 + 2842z7+812z8+126z9+

+ 14z10

Ru 1 + 90z-1050z2 + 5600z3+14910z4+22806z5t20810z6+12135z7t4440z8+
+ 1090z9+150z10+15z11

R16 3 + 96z+1456z2+8960z3+29064z4+53536z5 + 60944z«+44016z7-!-21160z8+
+ 6624z9 + 1424z1»+176z11+16z12

R17 l + 119z + 1904z2 + 14042z3+53312z4+118286z5+161840z6 + 144449z7-'-

+ 85612z8+34867z9+9520z1°+1819z11+204z12 + 17z13

R18 - 3 + 126z-r2520z2+21084z3 + 94248z4+245196z5 + 401016z8+428670z7+
+ 311544z8 + 155718z9+54864z10+13266z11+2280z12f234z13+18z14

R19 l + 152z+3192z2^31122z3 + 159600z4+485184z5+928872z6^1179672z7+
+ 1022732z8-622744z9+268128z1»+83087z11+18012z12 + 2812z13+266z14 +
+ 19z15

R20 « 3 + 160z-4080z2- 44520z3 r262500z4+916608z54-2103240z6 + 3024480z7+
+ 3099020z8+2242080z9+1169408z10+441100z1, + 121830z12+23920z13+

+ 3420z14f300z15f-20z16
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Anhang 3. Die ersten Polynome IIq(2m), IIp(2ml)

n„ (2X) o n0 (22) i n0 (2.) z

n2 (20 i n2 (2.) i n2 (23) 3

n4 (2.) i n4 (23)

ns (23)

2

1

n„ (24) l^ZJ-Z2 n„ (25) 3z + 2z2 + z3

n2 (24) 3 + 3z n2 (2.) 6 + 6z+3z2
n4 (2.) 6 n4 (2.) 10+5z
n6 (24) 3 n6 (2.) 10

n8 (24) 1 n8 (2.)
n10(2,)

4

1

n„ (2.) l + 3z+7z2+3z3+z4 n„ (27) 6z + 12z2 + 13z3+4z4+z5
n2 (2.) 6 + 18z+9z2+3z3 n2 (2,) 10 + 30z + 36z2 + 12z3+3z4
n4 (2.) - 20+15z+5z2 n4 (2,) 30 + 50z+20z2+5z3
n6 (2.) 22+7z n. (2,) 49 + 28z + 7z2

n8 (2.) 15 n8 (27) 40 + 9z

-Liiot-^e) 5 n10(27) 21

n12(26) 1 n„(2T)
n14(27)

6

1

n„ (2.) l + 6zi-26z2+31z3+21z4+5z ' + z6

n2 (2,) 10 + 60z + 84z2 + 60z3+15z4J- :tz5

n4 (2.) 50 + 110z + 90z2+25z3+5z4
n6 (2.) 91 + 105z + 35z2+7z3

n8 (2.) - 100 + 45z + 9z2

n„(2.) 65+llz
n„(2.) 28

nM(2.) 7

n16(28) 1

n„ (2,) 10z+40z2 + 80z3+64z4+31z5 + 6z6+z 7

n2 (2.) 15 + 90z+207z2 + 180z3+90z 4+18z5+3z«

n4 (2.) 70 + 245z+260z2+140z3+30 z4+5z5

n6 (2,) 168 + 280z + 175z2+42z3+7z l
n8 (2.) 216 + 189z+54z2+9z3
nu(2.) 181 + 66z+llz2
n,2(29) 98+13Z
nM(2.) 36

nlc(29) 8

n„(2.) 1
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n6 (2u) 1092 + 5880z+12075z2+12362z3+7385z4+2576z5+595z'+70z7+7z8
n8 (213) 2640t9009z+11718z2-7959z3+3024z4+729z5+90z6 + 9z7

ni0(213) 4191 + 8932z+7546z2+3256z3+836z4+110z6+llz6
ni2(213) 4628 + 6110z+3224z2+910z3+130z4+13z6
ni4(213) 3732 + 2880z+945z2+150z3+15z4
ni6(213) 2232 + 935z+170z2+17z3
nis(213) 1000 + 190z+19z2
II20(213) 330 + 21Z

n22(213) 78

n24(213) 12

n26(213) i

n„ (214) - l + 21z+301z2Tl645z3-4809z4+7861z5r7981z6+5061z7i-2155z8+
+ 579z9+lllz10+llz11+z12

n2 (214) 28+588z+3822z2+12250z3+21210z4+22323z5-t-14518z6! 6282z7+
+ 1710z8 + 330z9+33z10+3z11

II4 (214) 336 + 3570z+14310z2+28215z3+32130z4+22050z5 + 9870z6 + 2760z7+
+ 540z8-r55z9A5z10

n6 (214) 1596 + 10710zJ-27055z2+35427z3+26607z4+12593z5 + 3675z6+735z7 +

+ 77z8 + 7z9

n8 (214) 4422 + 18909z+31689z2-r27489z3+14175z*+4401z5+909z6+99z7 + 9z8

ni0(214) 7931 + 22176z + 24486z2+14410z3+4884z4+1056z5+121z6^llz7
ni2(214) 10023 + 18018z+13182z2+5070z3+1170z4+143z5+13z8
ni4(214) 9276 + 10485z+4905z2+1245z3+165z4+15z5
ni6(214) 6471 + 4335z+1275z2-rl87z3+17z4
ni8(214) 3432 + 1254z+209z2+19z3
n20(214) 1386 + 231z + 21z2

n22(214) 418 + 23Z

n21(214) 91

n26(214) 13

n28(214) i

n0 (216) 28z+392z2+2646z3+9016z4+18032z5+22008z6+17557z7 + 9176z8+
+ 3316z9+780z10+133z11+12z12 + z13

n2 (216) 36 + 756z+6048z2+22680z3+48060z4+60966z5+49896z"+26568z7+
+ 9720z8+2310z9+396z10+36z11+3z12

n4 (216) - 420 + 5460z+25800z2+62325z3+86000z4+74340z5+41160z8+15450z7+
+ 3750z8+650z9+60z10+5z11

n6 (215) 2310 + 18480z+57365z2+91784z3+87024z4+51352z5+20090z6+5040z7H
+ 889z8+84z9+7z10

n8 (216) 7128 + 37719z+78192z2 + 86058z3+55944z4+23274z5+6120z6+1107z7+
+ 108z8+9z9

ni0(216) - 14443 + 50908z+72072z2+54296z3+24706z4+6930z5+1298z8+132z' +
+ llz8

ni2(216) - 20566 + 48516z+46488z2 + 24180z3+7410z4+1456z5+156z8+13z7
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ni4(216) 21645 + 33480z+21600z2+7500z3+1575z4+180z5 + 15ze

ni6(215) l7280 + 17000z + 7140z2 + 1649z3+204z4+17z5
ni8(215) 10648 + 6270z)-1672z2+228z3+19z"
n20(2i5) 5082 + 1638z+252z2+21z3
n22(2I5) 1871 + 276z+23z2
n21(215) 520 + 25Z

Ii26(215) - 105

n28(216) i4
n3„(2,5) i

n, (i) i n, (24i) i
n3 (2,i) i

n, (2,1)
na (2,1)
n6 (2,1)
n7 (2,1)

Hi (2.1)
n3 12.1)

Us (2.1)

II, (2.1)

n. (2.1)
Un (2.1)

n, (2,1)
n3 (2,1)
n5 (2,1)

n, (2,1)
n. (2,1)
nn '2,1)
nla (2,1)
n16 (2,1)

nx (2.1)
n3 (281)

n6 (2.1)
n7 (2,1)
n9 (2,1)

nu (2.1)

n„ (2.1)

n„ (2.1)

n„ (2.1)

2-, 2z

3 + 10z I 6z2! 2z3

14 + 12z + 4z2

19 + 6z
14

5

1

4 + 28z+47z2 + 36z3 + 10z4+2z5
30 + 76z + 66z2+20z3+4z4
69 + 84z + 30z2 + 6z3

85 + 40z+8z2
60+lOz
27
7

1

5 + 40z+105z2 + 104z3 + 55z4+12z5+2z6
40 + 156z + 184z2+104z3 + 24z4+4z5
U9 + 216z+141z2 + 36z3+6z4
176 + 160z + 48z2 + 8z3

160 + 60z + 10z2

92+12Z
35

1

U, (2,1) 2

n3 (22i) 2

n5 (2,i) 1

nx (24i) 3+4zH 2z2

n, (24i) - 8 + 4z

n. (2.1) 9

n, (2j) 4

n» (241) 1

Hi (2,1) 4-1 16zf21z2 !-8z3+2z4

n3 (2.1) 20t36zt-16z2l-4z3
n5 (2,1) 39 h24z+6za

n, (26i) 36 + 8z

n, (26i) - 20

nu(2,i) 6

n„(2,i) 1
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Anhang 4. Beispiele

Den in Helv. 46,1 (1963) angegebenen Beispielen sei beigefügt

S 25 + 429z+4785z2+29688z3 + 112599z4+265557z5+407661z6+415820z7 +

t 290976z8 J-140897z9 + 48593z10 + 11555z11-'-1984z12+202z13 + 16z14

S 31-r478zt4995z2+29958z3 + 112291z4+264638z5+407284z8+416494z7H
+ 291736z8t140990z9 + 48335z10 + 11396z11+ 1947z12 + 198z13+16z14

31+476z + 4974z2+29936z3 + 112338z4 + 264776z5+407225z6+416352z7 +
+291669z8 + 141084z9+48402z10 + 11392z11 + 1925z12 + 192z13+15z14

S 36+507z + 5184z2-r30888z3 + 114318z4+267051z5+408110z6+415140z7-!
+289365z8 + 139286z9 + 47595z1» + 11196z11 + 1904z,2 + 192z13+15z14



— 71 —

S 14 + 147z+1133z2+4855z**+13873z4+29340z5 + 46482z8 + 52782z7+42646z8 +
+23629z9+9504z1° + 2515z11+499z12+51z13+5z14
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