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Uber die Anzahl der Valenzstrukturen
mit ineffektiven Bindungen bei organischen Molekiilen

von O. MADER und O. KLEMENT

Einleitung

In der Entwicklung der HEITLER-RUMER-WEYL-Variante der Meso-
meriemethode ! zur Berechnung von Bindungsenergien und Elektro-
nenverteilungen st6Bt man schon bei midBig groBen Molekiilen auf die
Schwierigkeit, dafl linear unabhingige Spinfunktionen beziehungs-
weise die entsprechenden Valenzdispositionen in sehr groler Anzahl
vorhanden sind und dementsprechend die Sikulardeterminante einen
so hohen Grad annimmt, dal3 eine strenge Behandlung des Problems
nicht in IFrage kommt und man sich mit Niherungen behelfen muf.

Im Fall von einfachen Systemen bestehend aus Atomen mit je
einem Valenzelektron wurde schon frith eine Ndherung benutzt, die
in der « Vernachlissigung angeregter Strukturen» besteht 2. Dabei
versteht man unter einer unangeregten Valenzstruktur ein Valenz-
bild, dessen sdmtliche Valenzstriche, auch effektive Bindungen ge-
nannt, je zwel Nachbaratome des Molekiils verbinden. Allgemein ist
eine k-fach angeregte Valenzstruktur (k - 0,1,2,..) eine solche, die
genau k ineffektive Bindungen, das sind Bindungen zwischen Nicht-
nachbaratomen, aufweist. Spiater wurde diese Vereinfachung auch auf
die Energieberechnung von Molekiilen bei Beriicksichtigung aller
Valenzelektronen iibertragen. Berechnet man die Bindungsenergie
aus einer vereinfachten Sikulargleichung, in welche nur Valenzstruk-

! W. HeErrLer, Handbuch der Radiologie Bd. VI, 2, 485 (1934) ; M. Born, Ergeb-
nisse d. ex. Naturwiss. 10, 387 (1931).

? L. PavrLing and G. W. WHELAND, J.Chem. Phys. 1, 362 (1933) ; J. SHERMAN,
J. Chem. Phys. 2, 488 (1934). — Den Ausdruck «excited structures» geben wir mit
«angeregte Strukturen» wieder. Eine Verwechslung mit « angeregten Zustinden»
eines Systems ist nicht zu befiirchten.
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turen mit einer beschriankten Anzahl ineffektiver Bindungen aufge-
nommen werden, so erhdlt man, wie Resultate zeigen, noch gute An-
niherungen an die Experimentalwerte 1.

Bei dieser Sachlage ist es wiinschenswert zu wissen, wie viele Va-
lenzstrukturen mit 0,1,2,... Bindungen zwischen Nichtnachbaratomen
in einer einmal gewdhlten Basis linear unabhédngiger Spinfunktionen
vorkommen. Wir legen stets eine Rumersche Basis von Spinfunktio-
nen zugrunde 2. Um diese aufzustellen, werden die Atome des Mole-
kiils auf einer sich nicht iiberschneidenden geschlossenen Kurve, etwa
auf einem Kreis, dem sogenannten Rumerkreis, angeordnet und alle
jene Spinfunktionen, in deren Valenzbildern sich keine Valenzstriche
kreuzen, als Basiselemente erkliart. Die Basis ist somit durch das Mole-
kiil noch nicht festgelegt, sondern erst durch die Reithenfolge, in der die
Atome auf dem Rumerkreis angeordnet werden.

Es stellt sich also die Aufgabe, bei gegebenen Nachbarschaftsbe-
ziehungen der Atome im Molekiil und bei gegebener Anordnung der
Atome auf dem Rumerkreis zu bestimmen, wie viele der kreuzungs-
losen Valenzstrukturen genau 0,1,2,.. ineffektive Bindungen aufweisen.
Diese Frage ist fiir den Fall, daB jedes Atom mit einem einzigen Valenz-
elektron versehen ist bzw. dall bei jedem Atom ein einziges Valenz-
elektron beriicksichtigt wird, von WHELAND 3 behandelt worden. Uber
eine Erweiterung der Methode und der Resultate auf den Fall, daB
jedes Atom zwei Valenzelektronen hat, wurde in den Helvetica Chimica
Acta berichtet . Im Vorliegenden sind die Beweise simtlich durch-
gefiihrt. Im ersten Abschnitt wird die Aufgabe beziiglich der offenen
Ketten abschlieBend behandelt. Dabei dient die reduzierte offene Kette
als Konstruktionsmittel. Im zweiten Abschnitt werden weitere Kon-
struktionsmittel eingefiihrt, worauf wir im dritten Abschnitt die Auf-
gabe beziiglich des geschlossenen Ringes und der iibrigen Systeme zu
Ende fithren. Wihrend sich in der Arbeit von WHELAND 2 geschlossene
Ausdriicke finden, erwies es sich bei dem Problem mit zweivalentigen
Atomen als vorteilhafter, sich mit rekurrenten Formeln zu begniigen.

1 B. FELDER, Diss. Univ. Freiburg, Beitrag zur Kenntnis der Mesomerie, 1961;
O. KLEMENT, O. MADER et S. HUWYLER, Helv. Chim. Acta, 43, 2172 (1960).

® G. RuMER, Gottinger Nachr., 1932, S.337; G. Rumer, E. TELLER, H. WEYL,
Gottinger Nachr. 1932, S. 499.

3 G. WHELAND, J. Chem. Phys. 3, 356 (1935).

4 O. KLEMENT et O. MADER, Helv. Chim. Acta 46, 1 (1963).



I. Die offene Kette

Es liegt stets eine auf dem Rumerkreis gegebene Atomanordnung
vor mit der zusidtzlichen Angabe, welche Atome Nachbarn sind und
welche nicht. Wir fithren mit WHELAND das Polynom

- . 2 , n
kot kz+koz%+.. +k 2

ein, wobei der Koeffizient k; von z' angibt, wieviele j-fach angeregte
Strukturen unter den simtlichen kreuzungslosen Valenzstrukturen des
Molekiils vorkommen.

Wenn es sich um eine offene Kette handelt, so ordnen wir die Atome
in der durch Nachbarschaft gegebenen Reihenfolge auf dem Rumer-
kreis an. Das Polynom das eine offene Kette von N Atomen mit je
zwel Valenzelektronen beschreibt, bezeichnen wir mit Py. Es ist, wie
man unmittelbar durch Konstruktion feststellt

P,-1;P;-2;P,=1+z+22

Als Hilfsmittel unserer Uberlegungen werden wir auch Ketten von
N nicht durchwegs zweivalentigen Atomen betrachten, nimlich solche,
deren erstes und letztes Atom je ein Valenzelektron haben, die iibrigen
je zwel. Wir sprechen dann von einer reduzierten offenen Kette und
bezeichnen das dazugehorige Polynom mit Q. Man findet durch direkte
Konstruktion

Qr=1;Q5~1;Q,=1+z
Wir merken an, dal3 die Gleichung besteht
Q, = P+ Py

und werden sofort durch vollstindige Induktion beweisen, dal} allge-
mein

Qg = Py + Py, (NN4) (1)

~ .

gilt. Zu diesem Zweck teilen wir die Strukturen der reduzierten offenen
Kette a,b,...1,s ein in solche, die den Valenzstrich [as] haben ! und
solche, die 1thn nicht haben. Erstere bilden eine Gesamtheit, zu der das

I Wir kéonnen ohne Gefahr eines Mi3verstindnisses vom « Valenzstrich [as]» spre-
chen, obwohl das Symbol [as] den durch das Vorhandensein des Valenzstriches be-
dingten Faktor A S.-A.S_ in der zur Valenzstruktur gehorigen Spinfunktion
bezeichnet.
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Polynom zP,_, gehort. Zur letzteren Gesamtheit gehért ein Polynom,
das wir vorlaufig mit Q" bezeichnen ; es gilt also

Qy = 2Py +Q (2)
Das Polynom Q" vergleichen wir mit dem Polynom Py, einer offenen
Kette, deren Atome b’, ¢’,...r", t" heilen sollen. Die Atome b’,...r" ent-
sprechen den Atomen b,...r und dasselbe gilt beziiglich der Valenz-
striche zwischen diesen. Dem Atom t’ entsprechen die beiden ein-
valentigen Atome a und s in der Weise, daBB den von t’ ausgehenden
Valenzstrichen die von a und von s ausgehenden Valenzstriche unter
Wahrung der Kreuzungslosigkeit zugeordnet sind. Somit entspricht
jeder Valenzstruktur in a,b,c,...r,;s bei verbotenem Valenzstrich [as]
eine Valenzstruktur in b’, ¢’,...r", t" und umgekehrt. Die beiden Poly-
nome Q" und P, sind aber einander nicht gleich, weil einerseits a
Nachbaratom von b und Nichtnachbaratom von r, andererseits t’
Nichtnachbaratom von b’ und Nachbaratom von r’ ist. Um die Dif-
ferenz Q'-P,; zu bestimmen, mull man also auf die Valenzstrukturen
achten, in denen [ab] oder [ar] vorkommt. Zu denen mit [ab] gehort das
Polynom Q,, und ihnen entsprechen in der Kette b’, ¢’,..r", t' die
Strukturen mit [t" b’], zu denen das Polynom zQ, ; gehort. Die Struk-
turen mit [ar] haben notwendigerweise auch den Valenzstrich [rs];
es gehort zu ihnen das Polynom zP ; und es entsprechen ihnen in der
Kette b, ¢’,...r", t' die Strukturen mit dem zweimal vorhandenen Va-
lenzstrich [1't’]. zu denen das Polynom P, gehort. Valenzstrukturen
die weder [ab] noch [ar] haben, tragen zu der Differenz Q’-P.; nichts
bei. Somit erhalten wir die Gleichung

Q' —Qyxa—2Py3 = Pyy—2Qyx1— Py,
anders geschrieben

Q" = Pyt (1-2)Qya + (z-1) Py (3)
Aus (2) und (3) folgt durch Addition

Oy = 2Pyo+ Py +(1-2)Qxa+ (2-1) Py
Durch Hinzufiigung von —Py, auf beiden Seiten und einer leichten
Umformung folgt

Ox—Pyx1—Px = (1-2)[Qx1—Pyx.o— Py (4)
Mit Q,—P,—P, = 0 und (4) ist die Gleichung (1) durch vollstindige
Induktion bewiesen.
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Um die Polynome Py rekursiv zu erhalten, bediirfen wir, da in der
Gleichung (1) die Polynome Q. vorkommen, einer weiteren Gleichung.
Wir betrachten wieder eine reduzierte offene Kette mit N Atomen a,
b,c,..q,r,s, deren Valenzstrukturen wir in N-2 Klassen einteilen, je
nachdem sie den Valenzstrich [ab], [ad],.. oder [as] enthalten. Ein Va-
lenzstrich [ac| ist wegen der geforderten Kreuzungslosigkeit unmog-
lich. Der Valenzstrich [ab] entspricht einer Bindung von Nachbar-
atomen, [ad],... [as] entsprechen Bindungen von Nichtnachbaratomen.

Die Strukturen der erstgenannten Klasse bestehen aus der Bindung
[ab] und den Strukturen der Kette b,c,...r,s. Diese ist, da von dem
Atom b noch ein Valenzelektron verfiigbar ist, eine reduzierte offene
Kette von N-1 Atomen. Die Strukturen dieser Klasse liefern also zu
dem Polynom Q, den Beitrag Oy ;.

Betrachten wir nun die Strukturen mit einem Valenzstrich [ak],
wobei k in der Reihenfolge der Atome a,b,...r,s die Nummer j hat.
Wir sagen, dall dem Atom k das Atom 1 vorausgeht und das Atom 1
nachfolgt. Die Strukturen dieser Klasse bestehen erstens aus dem
Valenzstrich [ak] von Nichtnachbaratomen, zweitens aus Bindungen
zwischen den Atomen b bis 1, alle mit zwel Valenzelektronen, drittens
aus Bindungen zwischen den Atomen k bis s, wobei k,s ein Valenzelek-
tron, die iibrigen Atome zwei Valenzelektronen haben. Bindungen
zwischen einem Atom b,..1 und einem Atom 1,..s kénnen nicht vor-
kommen, da sie sich mit [ak] kreuzen miiBten. Indem nun b die Num-
mer 2 und 1 die Nummer j-1 hat, durchlduft der zweite Bestandteil die
Strukturen einer offenen Kette von j-2 Atomen. Indem k die Nummer
] und s die Nummer N hat und k,s nur ein Valenzelektron haben,
durchlduft der dritte Bestandteil die Strukturen einer reduzierten
offenen Kette von N+1-] Atomen. Dem zweiten Bestandteil ist somit
das Polynom P;, zugeordnet, dem dritten Bestandteil das Polynom
Oyxi14 und dem ersten Bestandteil das Polynom mit dem einzigen
Glied z. Die Bertiicksichtigung aller drei Bestandteile ergibt als Beitrag
zu dem Polynom Q das Produkt zP;,Q. ;. LaBt man daraufhin k
die Atome d,....r, das heil3t 146t man j die Werte 4,....N-1 durchlaufen,
so ergibt sich fiir die Gesamtheit aller Klassen mit Ausnahme der er-
sten und der letzten als Beitrag die Summe

N-1
]_544 z PioOxi1g-



— 46

Die letzte Klasse, das ist die der Strukturen mit dem Valenzstrich [as],
ergibt offenbar zP, ,, wiahrend wir fiir die erste Klasse Q_; festgestellt
haben. Somit ist die Hilfsformel gewonnen

Ox = Qx1+2[PaQy 5+ PaOxg oo+ Py Qs+ Py o] (N=5) (5)

Mittelst der Gleichung (1) ist es moglich, aus der Gleichung (5) die
Polynome Q zu entfernen. Schreiben wir N+1 statt N, so lautet diese,
wenn wir auch noch den letzten Summand aus der Klammer heraus-
nehmen und voranstellen

Oxi1 = Ox+2Pyq+2[PoQx o+ PyQxat ..+ Py gQa+ Py sQs+ Py 2 Qo]
Wenden wir auf alle Q, mit v=>4 die Gleichung (1) an und beachten
aullerdem Q; = Q, = 1 = P,, so erhalten wir

PetPry = Pyt P t8P o+
+2[Py(Py g+ Py y) +..+ Py y(Pa+ Py) + Py 3Py + Py o]

und daraus
N-3 N-4
Py = 2Py, (1+Z)PN-2+Z_22PiP x1it2 2 PPy, (6)
Fa= i=2

Die Gleichung (6) gilt fiir N>>4, wenn man die Summen in den Fillen,
wo die obere Summationsgrenze kleiner ist als die untere, als nicht-
existent betrachtet. Somit hat man

P, = 2P+ (142)Py = 1+z+2?

P; = zP,+(1+2)Ps+2zP,P, = 3z+22%+23
Pg = zP;+ (1+2)P,+2(PyPy+ PyPy) + 2P, Py = 1+32+722+ 323+ 2%

ooooo

Eine weiter gefiihrte Tabelle der Polynome Py enthilt Anhang 1.

Eine Rekursionsformel fiir die Q allein ist auf Grund der Gleichun-
gen (6) und (1) entbehrlich . Es 1aft sich aber aus Gleichung (5) eine
Formel fiir die Q ableiten, die mit

Py = QN+1“QN+QN-1_+---+(‘1)NQa (1a)

zusammen ein System rekurrenter Gleichungen zur Berechnung der
Polynome P, O bildet. Wenn man auf das erste Glied Q, rechter-

! Die Formeln (6), (7) der Verdffentlichung Helv. 46, 1 (1963) sind hier durch die ein-
facheren Gleichungen (1), (6) ersetzt worden.
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hand in (5) wieder die Gleichung (5) anwendet, so ergibt sich der Aus-
druck

Ox = Ou2+2[PeQx s+ PaQy s+ + Py g Qo+ Pys] +
+2[PyQx.g+ P3Qn st PyQxst oo+ PygQat Py
Mit Beriicksichtigung von
Py=1-0;5; Po+Py = Qy; oo Prs+Pyy = Qns;
Pis+Pys = Oxei Pys+Pyo = Oxa

gewinnt man leicht die Umformung zu der Gleichung

Qs - 2+ (1+2)Qu2+2 3, 000, )

Gleichung (7) gilt fir N5, wenn man im Falle N = 5 die Summe als
nichtexistent betrachtet.

II. Die mehrfach offene Kelite

Eine Atomanordnung auf dem Rumerkreis, die, anschaulich ge-
sprochen, aus mehreren offenen Ketten besteht, nennen wir eine mehr-
fach offene Kette. Die mehrfach offene Kette gibt nicht die Nachbar-
schaftsbeziehungen der Atome eines Molekiils wieder, denn die Ge-
samtheit der Atome zerfillt ja in getrennte Abschnitte von solchen
zwischen denen Nachbarschaft im Molekiil besteht. Das Studium der
mehrfach offenen Kette ist darum nur ein Hilfsmittel zur Behandlung
komplizierterer Molekiile.

Als einzelne Abschnitte der mehrfach offenen Kette konnen die
offenen und die reduzierten offenen Ketten, mit denen wir uns bisher
befal3t haben, auftreten, aber auBBerdem offene Ketten die sozusagen
nur an einem Ende reduziert sind und deshalb eine ungerade Gesamt-
zahl von Valenzelektronen aufweisen. Solche Ketten besitzen keine
Valenzstrukturen derart, dall jedes Valenzelektron mit einem anderen
Valenzelektron durch einen Valenzstrich verbunden ist. Sie besitzen
daher auch keine Polynome wie P, Q. Wir miissen die Betrachtungen
verallgemeinern und zwar betrifft die Verallgemeinerung alle drei
Arten offener Ketten.

Wir betrachten Valenzstrukturen der Abschnitte, bei denen eine
Anzahl Valenzstriche aullerhalb des Abschnittes endigen. Diese Anzahl
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ist, falls der Abschnitt eine offene oder eine reduzierte offene Kette 1st,
gerade (null einbegriffen), und fallsder Abschnitt eine einseitig reduzierte
oftene Kette ist, ungerade. Wir verabreden, dal} p stets eine ungerade
und q stets eine gerade Zahl bezeichnet.

IT,(A), (@ = 0,2,4,...) setzt voraus, dall A eine offene oder eine redu-
zierte offene Kette ist. IT (A) ist das Polynom der Gesamtheit jener
Valenzstrukturen von A, bei denen q Valenzstriche aullerhalb A endi-
gen. Zur Bildung des Polynoms II (A) werden nur die innerhalb A
verlaufenden Valenzstriche herangezogen. Wenn im Lauf der Uber-
legungen auch mit den aulerhalb A endigenden Valenzstrichen operiert
wird, gilt die Forderung der Kreuzungslosigkeit auch fiir diese. Es ist
demnach II,(A) = Py bzw. O., wenn A eine offene bzw. reduzierte
offene Kette von N Atomen ist.

I1,(A), (p = 1,3,5,..) setzt voraus, da A eine einseitig reduzierte
offene Kette ist. Alles iibrige gilt analog zu II (A).

Die Polynome z%II (A), z°II,(A), die in den Uberlegungen oft auf-
treten werden, kann man so interpretieren, dall Valenzstriche die
aullerhalb A endigen, wie Valenzstriche zwischen Nichtnachbarato-
men mitberiicksichtigt werden. Spezielle Polynome bezeichnen wir in
leichtverstandlicher Weise mit IT (2,), 11 (12,,1), IT,(12,) oder IT(2,1).

Wir entwickeln nun Formeln, welche die Ausdriicke einer gege-
benen Kette durch die Ausdriicke kiirzerer Ketten, das heil3t durch
Ketten mit kleinerer Gesamtzahl von Valenzelektronen zu berechnen
gestatten.

1. Um II,(2,1) zu erhalten, betrachten wir die Ausgangssituation,
daf3 von einer Kette (2,) p+1 Valenzstriche weggehen. Die Atome der
Kette mogen a,b,...r heilen. Die Ausgangssituation wird demnach
beschrieben durch das Polynom

2P HL,, (2,).

Es wird an dem Polynom nichts geindert, wenn man sich vorstellt,
daB sich ein Atom s mit einem einzigen Valenzelektron anschlieBend
an r befindet, aber zu r nicht benachbart ist und dal3 — bei jeder der
vorkommenden Strukturen — ein durch die Forderung der Kreuzungs-
losigkeit ganz bestimmter von a,b,....r weggehender Valenzstrich bei s
endigt.

Gehen wir nun zu einer intermediiren Situation iiber, indem s an r
herangeriickt, das heit dalB in jeder der vorkommenden Strukturen



ein etwa vorhandener Valenzstrich [rs] aus einem langen in einen kur-
zen verwandelt wird, so ergibt das ein Zusatzpolynom

(1-z)z"II,(2,,11).

Jetzt unterliegen die Valenzstriche die von s ausgehen konnen, noch
der Einschrinkung, dal sie bei a,b,...r endigen, also die (neuentstan-
dene) Kette (2,,1) nicht verlassen.

Gehen wir durch Aufhebung dieser Einschrinkung zur Endsituation
iber, bei der von der Kette (2,1) p Valenzstriche weggehen, so ergibt
das ein Zusatzpolynom

v/l | M N B

Das Polynom der Endsituation aber ist z'II (2 1), folglich gilt
zPI1,(2,1) = 2P, 4(2,) + (1-2)2P 11 (2,4 1) + 210 (2,)

und nach Kiirzung durch z"
I,(2,1) = 211, 1(25) + (1-2) 1T, (2, 1) + I, 1 (2,,). (8)

Damit jeder in Gl. (8) vorkommende Ausdruck einen Sinn hat, ist
beziiglich p, m vorauszusetzen

p-13,..2m-1
Daher ist zur Ergidnzung beizufiigen
H2m+1(2m1) s 1 (88')

welche Gleichung ohne ausdriicklichen Beweis klar ist.

2. Um II(2,, ) zu erhalten, betrachten wir die Ausgangssituation,
daBl von einer Kette (2,1) q+1 Valenzstriche weggehen. Die Atome
der Kette mdégen a,b,...k,r heilen, von denen r ein Valenzelektron hat,
die iibrigen zwei. Die Ausgangssituation wird demnach beschrieben
durch das Polynom

Zq+1nt1+l(2n11)'

Es wird an dem Polynom nichts gedndert, wenn man sich vorstellt,
dal} sich ein Atom s mit einem Valenzelektron anschlieBend an r be-
findet, aber zu r nicht benachbart ist und daf} ein durch die Forderung
der Kreuzungslosigkeit ganz bestimmter von a,b,....k,r weggehender
Valenzstrich bei s endigt.

Gehen wir nun zur ersten intermedidren Situation iiber, indem alle
Strukturen weggelassen werden, die den Valenzstrich [rs] haben, so
ergibt das ein Zusatzpolynom

m-1

b



-z- 211 (2,).

Gehen wir zur zweiten intermedidren Situation tiber, indem die bei-
den Valenzelektronen, die den Atomen r,s, anhafteten, als Elektronen
eines einzigen zu k benachbarten Atoms (rs) betrachtet werden, so ist
nunmehr ein Valenzstrich [ks] ebenso wie [kr] Valenzstrich einer Nach-
barbindung und das ergibt das Zusatzpolynom (mit [ks] ist immer
auch [kr] vorhanden)

(1-z)z%11,(24.1)-
Es besteht noch die Einschrankung, dall von s ausgehende Valenz-
striche in a,b,....k endigen. Gehen wir durch Aufhebung dieser Ein-

schrinkung zur Endsituation iiber, ber der von der Kette (2,.,) q
Valenzstriche weggehen, so ergibt das ein Zusatzpolynom

22154 (2,.1)-
Das Polynom der Endsituation aber ist z%II,(2,,,), folglich gilt
20 (2, 14) = 29I (2, 1) —2%F T (2,) + (1-2)2900 (2, ) + 201, 4 (2,,1)
und nach Kiirzung durch z*
I, (204 1) = 21T, 1(2,1) =210 (2,) + (1-2) 1T (2,1) + 1T 1 (21).

Man kann noch auf das zweite und vierte Glied rechts die GIL. (8) mit
q = p41 anwenden :

2T (2,)+ Tga(21) = (12) gy (20 1)+ T, (2,
und hat dann
M (2m41) = 21144(20) + (1-2) 1T (2004) + (1-2) 1 1 (2001 1) + T 0 (200) (9)

Damit jeder in Gl. (9) vorkommende Ausdruck einen Sinn hat, ist
beziiglich q,m vorauszusetzen

q = 2,4,6,..2m-2
Daher ist zur Ergdnzung beizufiigen
H2m(2m—+—1) =m,; H2m+2(2m+1) =. 1. (9&)

3. Bleibt noch der Ausdruck fiir IT(12,,1). In der Uberlegung die
zu Gl. (8) fithrte, kann man vor dem Atom a noch ein Atom mit einem
Valenzelektron annehmen, dann erhidlt man an Stelle der Gleichung (8)

I, (12,1) - 210, 1 (12,) + (1-2) [T, (12, 11) + T4 (12,,) (10)



Wir bemerken, daB fiir jeden Index p die Polynome II(2,1), I1,(12,)
dieselben sind. Es lassen sich aber die Polynome fiir (12,1) auf Poly-

nome fir (2,) allein zuriickfithren, was zur Berechnung derselben von
Vorteil ist.

Addiert man nédmlich zu der Gleichung(10) die mit —1 multiplizierte
Gleichung (9)

(2 g) = 210 2+ (D) (200) + (2D T (20 1)~ T (20),

auBerdem auf beiden Seiten —II (2,)
und, um unerwiinschte Glieder wegzubringen, die sich aus (8) er-
gebende Gleichung

0 = —II,,(2,1) +2IT (2,) + (1-2)I1 1(211) + T10(2,) ,
dann ergibt sich
TL(12,0) Ty (20 ) TT4(2,) = (1) Ty (12,0, 1) ~T1,(2,) 1,20 1))
Diese Gleichung 14t von m auf m +1 schlieBen und beweist
I, (12,1) = I1 (2,4 q) + I1,(2,) (11)

sobald dies fiir die kleinsten moglichen m bewiesen ist.
Wir brauchen den Beweis beziiglich aller Zahlen

q = 2,4,..2m+2.

Beziiglich q = 0 ist mit Riicksicht auf Gleichung (1) nichts zu ergéan-
zen. Die Gleichung, die zu (11) fiithrte, verlangt aber

q = 2,4,...2m-2.
Es ist daher beizufiigen

Mo (12,1) = m+1 ; My, 5(12,1) = 1 (11a)

Aus (11a) und (9a) ergibt sich die Anfangsaussage der vollstindigen
Induktion.

Die ersten Polynome II (2,), I1,(2,1) bringen wir in Anhang 3.

Nachdem wir uns alle Polynome II (A), IT (B) usw. verschafft ha-
ben, bleibt zu zeigen, wie sich aus diesen das Polynom P(A[BIC|...)
einer mehrfach offenen Kette aufbaut.

Der einfachste Fall ist der einer zweifach offenen Kette. Es ist zu
unterscheiden, ob die Gesamtelektronenzahl jedes Abschnittes A,B
gerade oder ungerade ist. Im ersten IFall haben die verschiedenen
Strukturen keinen Valenzstrich oder 2 oder 4,.. Valenzstriche zwischen



A und B, im zweiten Fall sind es 1,3,5,.. Valenzstriche. Die Polynome
bilden sich in folgender Weise

P(A[B) = IT1o(A)IT4(B)+z211,(A) [Ty(B) + 211, (A)IT,(B) +.. (12)
bzw.
P(A[B) - zI1,(A)IT,(B) + z31I5(A) I4(B) + 2515 (A) [1;(B) +..  (13)

womit der Fall einer zweifach offenen Kette bereits erledigt ist.

Fiir eine mehrfach offene Kette aus beliebig vielen Abschnitten lieBe
sich folgendes grundsidtzliche Verfahren angeben. Wir merken uns
zuerst die Gesamtelektronenzahl z, ,z;,z., jedes Abschnittes an. Dann
1st die Zahl der Valenzstriche, die von einem bestimmten Abschnitt
A, B,.. irgendwohin ausgehen, je eine Zahl aus den Zahlenreihen

Zy, Zy—2, Zy,—4,..
ZB’ ZB_Q’ ZB_4’..
Zo, Zg—2, Zg—h,..

Eine derartige Zahlenreihe endigt mit 1 oder 0, je nachdem z ungerade
oder gerade ist. Eine Auswahl von Zahlen

wollen wir mit (w) bezeichnen. Durch die Auswahl (w) ist eindeutig
bestimmt, wie viele Valenzstriche innerhalb jedes Abschnittes ver-
laufen und zwar sind es im Abschnitt A jene Valenzstriche welche die
Strukturengesamtheit mit dem Polynom Ilw,(A) beschreiben und so
weiter. Ebenso ist durch die Auswahl (w) eindeutig bestimmt; wie viele
Valenzstriche iiberhaupt von einem Abschnitt zu einem anderen Ab-

schnitt verlaufen ; es sind deren %(WA +Wy +Wg+..). Dagegen ist durch

die Auswahl (w) nicht immer eindeutig bestimmt, wie viele Valenz-
striche von einem bestimmten Abschnitt zu einem bestimmten Ab-
schnitt verlaufen. Dies zeigt das Beispiel

Wy, =6; Wy =4;wW;=3; W, =5
bei dem die Mdoglichkeiten der zwischen den Abschnitten verlaufenden

Valenzstriche folgende sind
A—B A—B A=—R A
1l

vs

| T

I
D=(C D=C D

O
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Zugleich ist aus diesem Beispiel die Verallgemeinerung ersichtlich. Die
Anzahl der moglichen Arten, wie sich Valenzstriche kreuzungslos zwi-
schen den Abschnitten verteilen konnen, bei gegebener Auswahl (w),
das heilt bei gegebenen Anzahlen w,, w, w,... der von den Ab-
schnitten A, B, C,... ausgehenden Valenzstriche bestimmt sich auf die-
selbe Weise wie die Anzahl der linear unabhidngigen Spinfunktionen
eines Molekiils bei gegebener Anzahl der Valenzelektronen jedes
Atoms.

Damit ist der Aufbau des Polynoms P(A’B'C‘..) schon geleistet. Wir
wollen die Anzahl der moglichen Arten, wie sich Valenzstriche zwi-
schen den Abschnitten verteilen kénnen, L nennen, zum Beispiel
L, = 4 bei (W) = (6,4,3,5). Wenn man die Uberlegung in eine Formel
bringt, so lautet sie

;])-(\V_\_'{‘VV_B -f—WC-lr..)

=L,z My (A) Ty (B) T (C)..

P(A[B|C|..) = 2
(14)

Erprobt man jedoch die Methode an dem Beispiel

-

2, =6;24=4,2,=-3, 25 =5

so erhdlt die Formel (14) 60 Glieder, weshalb man die Methode nicht
als brauchbar bezeichnen kann.

Eine leichter anwendbare Methode wird durch Verallgemeinerung
der Gleichungen (12), (13) gewonnen, indem man an Stelle des Ab-
schnittes A mehrere Abschnitte A, B,.. annimmt und ebenso an Stelle
des Abschnittes B mehrere Abschnitte K, L,... I£s 1a63t sich Hq(A|B...)
(q = 0,2,4,...) bzw. Hp(A1B..) (p = 1,3,5,...) wortlich so definieren wie
II,(A) bzw. II ,(A) bei einem einzigen Abschnitt A. Dann gilt folgende
Verallgemeinerung der Gleichungen (12), (13)

P(AlB..KlL..)= HO(AEB..)HO(KlL..)+Z2H2(A[B..)H2(K‘L..)+..(15)
bzw.

P(A[B..K|L..)=zIT,(A[B..)IT,(K|L..)+z*IT4(A|B..) II5(K|L..)+..(16)
Gleichung (15)ist in dem Fall anzuwenden, wenn die Gesamtelektronen-
zahl der Abschnitte A B,.. und damit auch die der Abschnitte K, L,..
gerade ist, Gleichung (16), wenn die beiden Gesamtelektronenzahlen
ungerade sind.

Nun ist noch zu zeigen, wie man sich die Polynome
II,(AB...), II(K|L...), (q = 2,4...) bzw.

II,(A|B...), II(K|L...), (p=13...), die in den Gleichungen (15), (16)

p



auftreten, verschafft. Wir teilen die vielen Abschnitte A, B,... in zwel
Reihen von Abschnitten ab ; die erste Reihe beginne mit A, die zweite
etwa mit C (es mull die Reihenfolge der Abschnitte auf dem Rumer-
kreis gewahrt werden). Wir miissen aus den Definitionen Gleichungen
herleiten, welche die Polynome I1(A|.. C1 ) auf die Polynome 11 At
und II(C|...) zuriickfiihren. Nun besteht IT (A|...C|...) aus allen Struk-
turen, bei denen q Valenzstriche die Gesamthelt der beiden Reihen
von Abschnitten, der mit A beginnenden Reihe und der mit C begin-
nenden, verlassen. Dabei bestehen verschiedene Méglichkeiten, erstens
wie viele der q Valenzstriche von A,... und wie viele von C,.... weg-
gehen und zweitens, wie viele Valenzstriche zwischen A,.... und C,....
verlaufen. Entsprechendes gilt fiir I1,(A|...C|...).

Um die Gleichungen nicht zu uniibersichtlich zu gestalten, kénnen
wir uns auf den Fall beschrinken, dal3 die erste Reihe von Abschnitten
aus dem einzigen Abschnitt A und die zweite Reihe von Abschnitten
aus dem einzigen Abschnitt C besteht. Wie man sich leicht iiberzeugt,
ist diese Beschrankung unwesentlich ; es kann in den folgenden Glei-
chungen jederzeit A durch A[B... und C durch C|D... ersetzt werden.
Die ersten Gleichungen lauten

HO(A‘C) = P(A‘C) wie Gleichungen (12), (13),
A[C) = TIy(A)I1(C)+2ITy(A)IL; (C) +2°1Ty(A) T5(C) +
+2z3I1,(A)I14(C) +..., bzw. mit vertauschten Indizes an II(A),
I(C)
IT5(A|C) = T1o(A)15(C) + Iy(A)IT(C) + 2IT5(A) Ty (C) + 2% 1T4(A) T4 (C) +
+ 11 (A) 15 (C)] + 24 (A) T4 (C) + 2% [TT (A) T (C) + I (A) T, (C) ]+
+28T15(A)II4(C) +...

bzw.

[T5(A|C) = I, (A)IT(C) +2[IT; (A)IT5(C) + IT5(A)IT; (C)] + 22 IT5(A) IT5(C) +
+z3[I15(A) IT5(C) + 1, (A) [15(C)] +...

TT(A[C) = a0+ Ty AN L)« 2T AN 1(C)+ L&) T C)

+2*[TT(A) 5(C) + I14(A) TT5(C)] +

+z3[ﬂ( JI1;(C) + I14(A)II4(C)] +...., bzw. mit vertauschten
Indizes an II(A), I1(C)

IT4(A[C) = Hp(A)IT,4(C) + ITy(A)ITy(C) + IT,(A) ITy(C) +
+2[ T (A) T, (C) + 14 (A) T (C)] +
+ 2% [T(A)IT(C) + T4 (A)TT, (C) + T (A) I, (C)] +
+2z3[I1,(A)IT4(C) + IT4(A) IT,(C)] +...



bzw.

IT,(A[C) = TT,(A)IT4(C) + IT,(A)IT, (C) + 211, (A)IT5(C) + ITy(A) TT,(C) +
T (A) T, (C)] + 22T (A)TT,(C) + IT,(A) Iy ()] +
+ 2Ty A)IT; () + I, (A)T(C) + T, (A) IT,(C)] +...

Allgemein besteht Hq(A|C) bei gerader Elektronenzahl von A und
von C aus Gliedern

anp+oc(A)Hp+ q—Ot(C)’

wobel o bel geradem p die Zahlen 0,2,... q, bei ungeradem p die Zahlen
1,3,... q-1 durchlauft. Bei ungerader Elektronenzahl von A und von C
besteht H([(A]C) aus ebensolchen Gliedern, wobei « bei geradem p die
Zahlen 1,3,... g-1, bei ungeradem p die Zahlen 0,2 ... q dvrchliuft.
HD(A|C) besteht bei gerader Elektronenzahl von A und ungerader
Elektronenzahl von C aus Gliedern

anp+oc(A) Hp+p-oc(C)

wobeia bei geradem p die Zahlen 0,2,... p-1, bei ungeradem p die Zahlen
1,3,... p durchlauft.

Das vorhin genannte Beispiel mit z, = 6, z; = 4, z; = 3, 2z, = b kann
nun in folgender Weise bearbeitet werden. Fiir
1,(A), I1,(B), II,(C), II,(D) schreiben wir kiirzer A,, B,, C,, D, und
haben dann

I1,(AB) = A B,+22A,B,+2z%A,B,
IT,(A|B) = A;B,+A,By+zA, B2+z2[A +By+A,B,]+23A,B,+z!AB,
,(A|B) = A;B,+A,By+A,By+2[A,B,+A,B,]+2zA B4+A B,]+2%A,B,
[I,(AB) = A,B,+A,B,+ABy+2[A,B,+AB,y| +22A B,

II,(A|B) = AB,+AB,+zA:B,

Nicht gebraucht wird II,,( A‘B = A,B,

HO(C D) = zC D, +23C;D,

I1,(C|D) = C;D;+z[C4 D3+C D,]+2z23CyDg+23CoDy
IT,(C|D) = C;Dg+C,Dy+2[CiDs+CsDyg] +2%C, D
IIi(C|D) = CD +CyDy+2C3Dy
I,(C|D) -

Diese Ausdriicke sind als Polynome in z zu schreiben, worauf man
nach Gleichung (15), mit der abgekiirzten Schreibweise (A‘B)q, (CD,)
statt HQ(AIB), IT,(C|D) erhilt
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P(AlBlCID) = (A}B)O(C‘D)O+z2(A{B)2(C]D)2+z4(A|B)4(C\D)4+
+ZG(A[B)6(C|D)G+28(A}B)8(C]D)8

Wenn man, statt bis z auszurechnen, nur bis A, B, C,, D, ausrech-
net, so erhdlt man den Ausdruck (14), was allenfalls zur Kontrolle
dienen kann.

III. Nachbarbindungen

Die Aufgabe die wir in diesem Abschnitt behandeln, kénnte man an-
schaulich dahingehend beschreiben, Nichtnachbarbindungen in Nach-
barbindungen zu verwandeln.

Hieher gehort die spezielle Aufgabe, die einfach offene Kette zu
schlieBen, so daB man das Polynom eines Ringmolekiils erhilt. Wir
werden die Losung dieser Aufgabe aus den folgenden allgemeinen
Uberlegungen ohne weitere Miihe erhalten.

Es 1st nicht ganz leicht, eine allgemeine Regel anzugeben, wie die
Atome eines beliebigen Molekiils auf dem Rumerkreis angeordnet wer-
den sollen. Wenn sich die Atome in einem Streckenzug von Nachbar-
bindungen durchlaufen lassen, liegt es nahe, diesen Streckenzug, oder
falls es deren mehrere gibt, einen dieser Streckenziige auf dem Rumer-
kreis aufzutragen. Wenn das nicht der Fall ist, wird man die Atome in
moglichst wenig Streckenziigen von Nachbarbindungen zu durchlau-
fen suchen und die Streckenziige in einer der Natur des Molekiils ange-
palten Reihenfolge auf dem Rumerkreis als Abschnitte einer mehr-
fach offenen Kette auftragen. Es sind dann sicher noch Nachbarbin-
dungen da, die zum Zeichen der Streckenziige nicht verwendet wurden.
Durch diese Nachbarbindungen werden dann im Rumerkreis die Ab-
schnitte der mehrfach offenen Kette untereinander verbunden. Wir
nennen diese Nachbarbindungen kritische Bindungen.

Den einen Fall ausgenommen, dal3 es sich um die Schliefung einer
offenen Kette handelt, laufen die kritischen Bindungen durch das
Innere des Rumerkreises. Wenn eine kritische Bindung einen oder
zwel Valenzstriche aufnimmt, nennen wir diese Valenzstriche kriti-
sche Striche. Die kritischen Bindungen konnen sich kreuzen. Wenn
sich kritische Bindungen kreuzen, heiB3t das einfach, daBl in einer Ru-
merschen Valenzstruktur kritische Striche, die der einen Bindung ange-
horen, nicht zugleich mit kritischen Strichen, die der anderen Bindung
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angehoren, vorkommen kénnen. Wir sagen, dal3 ein kritischer Strich
vor der Beriicksichtigung der kritischen Bindung ein langer Strich
und mit Berticksichtigung der kritischen Bindung ein kurzer Strich ist.
Das Problem liegt darin, anzugeben, wie sich das Ausgangspolynom,
das ist das Polynom der Strukturen vor der Berilicksichtigung der
kritischen Bindungen, also je nach dem konkreten Fall entweder das
Polynom einer mehrfach offenen Kette oder einer einfach offenen Kette
oder einer geschlossenen Kette bel der Beriicksichtigung der kritischen
Bindungen abindert. Es stort unsere Uberlegungen nicht, daB wir den
Ausdruck fiir das Polynom R, einer geschlossenen Kette von N Ato-
men noch nicht kennen. Dagegen machen wir vorliufig zwei ein-
schrinkende Annahmen iiber die Molekiile und die Anordnung ihrer
Atome auf dem Rumerkreis. Es sollen sich erstens keine kritischen Bin-
dungen kreuzen und es soll zweitens von einem Atom nicht mehr als
eine kritische Bindung ausgehen. Diese Voraussetzungen sind zum
Beispiel bei Naphthalin, Anthrazen usw. erfiillt. In der Behandlung
aller derartigen Molekiile wird man auf dem Rumerkreis einen ge-
schlossenen Ring annehmen, der dann durch die kritischen Bindungen
in zwei, drei usw. Ringe untergeteilt wird.

Nun bietet sich zunichst folgendes Verfahren der Beriicksichtigung
der kritischen Bindungen dar. Die kritischen Striche seien irgendwie
numeriert, sagen wir von 1 bis 1. Eine Valenzstruktur, welche eine
Anzahl f kritischer Striche enthilt, hat vor der Beriicksichtigung der
kritischen Bindungen mindestens f lange Striche. Das Polynom der
Gesamtheit aller Valenzstrukturen die genau f kritische Striche ent-
halten ist daher von der Gestalt z'S; .

Somit zerlegt sich das Ausgangspolynom — wir nehmen den FFall einer
geschlossenen Kette an —in 1+1 Summanden

R, = Sy+zS, +2%S, +... +Z'S,. (17)

Mit der Berticksichtigung der kritischen Bindungen geht das Polynom

Ry in ein Polynom R iiber, fiir welches die Gleichung gilt

]

R = S;+5;+S,+...+5,. (18)

So iibersichtlich die Gleichungen (17), (18) sind, so verwickelt wird
die Anwendung bei mehr als zwei kritischen Strichen. Der Grund liegt,
wie wir sehen werden, in der Beschaffenheit der Polynome S; .
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Wir wollen aber den Fall eines Zwei-Ringmolekiils genauer betrach-
ten, um zu einer durchfithrbaren Methode zu kommen

a
gt
m Atome 1|2 m’ Atome (19)
B
b

Es bestehe, wie (19) zeigt, zwischen den Atomen a und b eine kritische
Bindung. Es sind also zwei kritische Striche vorhanden, mit 1,2, be-
zeichnet. Links von dem kritischen Strich 1 liegen m Atome auf dem
Rumerkreis, rechts von dem kritischen Strich 2 liegen m’ Atome.
S, ist leicht zu bilden. Denn da S, das Vorhandensein beider Striche
1, 2 voraussetzt, so sind bei den Strukturen, deren Gesamtheit durch
das Polynom S, beschrieben wird, Valenzstriche zwischen den m
linksgelegenen Atomen und den m’ rechtsgelegenen Atomen verboten,
weil sie sich mit 1, 2 kreuzen wiirden. S, ist daher das Produkt der
Polynome der zwei offenen Ketten von m bzw. m’ Atomen :

S, = PP (20)

m— m/

S, zerlegt sich in zwei Summanden. Der eine Summand ist das
Polynom der Gesamtheit der Strukturen, die den kritischen Strich 1,
aber nicht den kritischen Strich 2 haben. Diesen Summand wollen wir
mit (1) bezeichnen. Auch hier sind Valenzstriche zwischen den m Ato-
men links und den m’ Atomen rechts verboten. Das Polynom (1) ist
daher wie S, ein Produkt zweier Polynome. Der eine Faktor ist P,
der andere Faktor ist das Polynom einer reduzierten offenen Kette von
m’+2 Atomen abziiglich des Polynoms der Gesamtheit jener Struk-
turen, die einen Valenzstrich zwischen den beiden einvalentigen Ato-
men haben. Man erhilt somit den Ausdruck

(1) = Pm(erlf+2_ZPmI) (21)
und ebenso

(2) - (Qm%—‘J_ZPm)PmI (22)
Addition von (21) und (22) ergibt

S1 - PQOf—{-2'}'meQm+2_’?‘ZPumr (23)

Die Bestimmung von S, li3t sich umgehen, denn aus Gln. (17), (18)
folgt, da N = m+m’+2 zu setzen ist
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R = Rupmrg2t+ (1-2)51+(1-2%)S,

Dann ergibt sich aus den Ausdriicken (23), (20) nach geringer Um-
formung

##

R = Rm-i—mf 4ot (1-2) [PQO,+2+ meQm+2] + (1_Z)2Pmpm! (24)

Die Gleichung (24) l1dBt sich zu einer durchfiihrbaren Methode ver-
allgemeinern.

Dazu bezeichnen wir in Analogie zu Gln. (21), (22) die Glieder die in
Gl (24) mit dem Faktor 1-z auftreten, mit einem in eckige Klammer
gesetzten kritischen Strich,

[1] = PQOf—i—2 (25)

[2] - Qm+2me (26)
Die Summe bezeichnen wir mit T,, also

Tl - [1]+[2] - PQOf-l—2+Qm+2Pmr (27)

Wir konstatieren beziiglich des konkreten Ifalles (19) :

Erstens, man erhidlt den Ausdruck (1), indem die Atomanordnung
langs des kritischen Striches 1 in zwei Atomanordnungen zerschnitten
wird und das Polynom der linksstehenden Atomanordnung mit dem
der rechtsstehenden Atomanordnung multipliziert wird, wobei aber
von letzterer nur jene Strukturen beriicksichtigt werden, die den kriti-
schen Strich 2 nicht haben.

Zweitens, man erhdlt den Ausdruck [1], indem die Atomanordnung
langs des kritischen Striches 1 in zwei Atomanordnungen zerschnitten
wird und das Polynom der linksstehenden Atomanordnung mit dem
der rechtsstehenden Atomanordnung multipliziert wird, wobei alle
Strukturen beriicksichtigt werden und der kritische Strich 2 als langer
Strich gerechnet wird.

Das wird verallgemeinert. Es seien Ay, %,, ... %; irgendwelche Num-
mern kritischer Striche einer Atomanordnung. Lings dieser kritischen
Striche wird die Atomanordnung zerschnitten, so dal3 f+1 Atomanord-
nungen entstehen. In jeder dieser Teil-Atomanordnungen konnen
noch weitere kritische Striche vorkommen. Bildet man die Polynome
der Teil-Atomanordnungen, das eine Mal so, dafl die Strukturen mit
kritischen Strichen nicht zugelassen sind, das andere Mal so, da} alle
Strukturen beriicksichtigt sind und etwa vorkommende kritische



Striche als lange Striche gerechnet werden, so erhilt man das eine
Mal das Polynom (A %,...%), das andere Mal das Polynom [A;2%,...
2.

Klammerausdriicke mit gleich viel kritischen Strichen werden zu den
Summen S, T zusammengefal3t in der Weise

S; = (D)+(2)+..+(1) ; S, = (12)+(13)+..+(1-1,l)

S = (12..d) ; Ty = [1]+[2]+. (1] :
T, = [12]+[13] 4.4 L] ; ... T, = [12...]].

Sp ist das Polynom der Gesamtheit aller Strukturen der urspriing-
lichen Atomanordnung, die keine kritischen Striche haben. T, ist das
Polynom der urspriinglichen Atomanordnung, also T, = P(A|B[C|....)
bzw. T, = Py bzw. T, = Ry. Es ist aulerdem S, = T,

Es wird nun behauptet

R = Tyt (1-2)Ty+ (1-2)2Ty ...+ (1-2)'T, (28)
und ist somit zu beweisen, dall der Ausdruck von Gleichung (28) mit
dem von Gleichung (18) iibereinstimmt.

Der Beweis beruht auf der Tatsache, dafl jedes Polynom T; von der
Form ist

_ 2 1-f
T; = S¢+2,2S5; 1+2,2%5; o +..+a,Z2 7S,

Um dies zu zeigen und zugleich die Zahlenkoeffizienten a,,... a;; zu
erhalten, tiberlegen wir : Der erste Summand [12..f] von T; besteht er-
stens aus dem Glied (12...f), weil jede Struktur, die zur Bildung von §;
zugelassen ist, auch zu [12...f] beitriigt, zweitens falls {="1-1, aus den mit
z multiplizierten Gliedern (12...f,f+1), (12...f,{+2),..(12..1,1-1), (12..1]),
weil in den Strukturen, aus denen [12...f] gebildet ist, auch Strukturen
mit je einem kritischen Strich vorkommen, diese kritischen Striche aber
als lange Striche gerechnet werden. Drittens kommen in den Strukturen
aus denen [12..f] gebildet ist, falls f<"1-2, alle Strukturen mit je zwei
als lange gerechneten kritischen Strichen vor, das ergibt die mit z2
multiplizierten Glieder (12...f,f+1,f+2),...(12...f,1-1,]) und so weiter.
Weil nun die Ausdriicke T, S beziiglich der kritischen Striche sym-
metrisch gebaut sind, bleibt die Uberlegung richtig, wenn man den

Summand [12...f] durch (1>'1T ersetzt, (12...f) durch (1>‘15f, jeden der
Gf) Ausdriicke (12...1,f+1)...durch <f+1) S¢41,jedender (1 f) Ausdriicke



(12..1,f+1,f+2)... durch <f52>'15f+2 und so weiter. Man kommt so zum
Ergebnis

£=Sf_{.<1'f> Z(Sf“ +(1'f) g2 otz 1 )ZI-HKSH £

O ) B N 0

was sich vereinfacht zu

T, - sf;ﬁ(fgi)zsfm(f59)225f+2+..+(l}f)z’-fsl. (29)

Einsetzen von Gleichung (29) in Gleichung (28) fiihrt zu Gleichung
(18).

Unsere Methode, « Nichtnachbarbindungen in Nachbarbindungen
zu verwandeln », besteht demnach in Folgendem. Man bezeichne jede
kritische Bindung mit zwei kritischen Strichen und numeriere diese.
Unter der Voraussetzung, dal} sich keine kritischen Bindungen kreu-
zen und dal} jedes Atom an hochstens einer kritischen Bindung teil-
hat, bilde man zu jeder Kombination von f kritischen Strichen 2,
Ag,... 0(f = 0,...1) den Ausdruck [ R,...7], indem die genannten
kritischen Striche die Atomanordnung zerlegen und die Polynome aller
Bestandteile miteinander multipliziert werden. Die nicht genannten
kritischen Striche gelten dabei als lange Striche. Bedeutet T, die Sum-
me aller Ausdriicke [A;2,..2;] mit f Strichen, dann ergibt die Gleichung
(2R8) das gesuchte Polynom.

Nun kénnen wir die Aufgabe der SchlieBung eines Ringes losen, das
hei3t das Polynom Ry eines geschlossenen Ringes angeben. Gehen wir
von der offenen Kette von N Atomen aus, dann ist nach unseren Defi-
nitionen T, - P. Heilen die Atome a,b,...r, dann besteht zwischen
den Atomen a und r eine kritische Bindung. Bezeichnet man die
Elektronen von a und r in der Reihenfolge a,,a,..r,,r;, dann kann man
den kritischen Strich 1 von a; nach r; gehend annehmen und den kri-
tischen Strich 2 von a, nach r, gehend. Esist dann [1] = Qy; [2] = 2Py,
also T; = Oy +2zPy,. Aullerdem ist T, - P ,. Gleichung (28) ergibt

Ry = Py+(1-2)(Qu+2Py.0) + (1-2)*Py 5

oder auch

Ry = Py+(1-2)Qx + (1-2) Py (30)

Die ersten Polynome Ry werden wir in Anhang 2 angeben.
Es bleiben nur noch die zweil Umstinde zu beachten, daB sich kri-
tische Bindungen kreuzen kénnen und daf3 ein Atom an mehr als einer
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kritischen Bindung teilhaben kann. Beides hat nur die Vereinfachung
zur Folge, dal3 gewisse T; aus weniger als G) Gliedern bestehen. Denn

wenn etwa die mit den kritischen Strichen 1,2 bezeichnete Bindung
sich mit der mit den kritischen Strichen 3,4 bezeichneten Bindung
kreuzt, so entfallen die Glieder [13], [14], [23], [24], was auBerdem den
Ausfall der Glieder [135] und anderen nach sich zieht.

Die Folgen des zweiten Umstandes macht man sich klar, wenn man
auf die Valenzelektronen auf dem Rumerkreis achtet. Es moge von a
eine kritische Bindung nach b und eine nach c¢ gehen. Numeriert man
die Elektronen in der Reihenfolge a,, a,, by, by, ¢;, ¢, und die kritischen
Striche in der Weise : Strich 1 von a, nach b,, Strich 2 von a, nach b,,
Strich 3 von a; nach c,, Strich 4 von a, nach c;, dann stellt man fest,
dal3 [14] ausfillt, weil die kritischen Striche sich kreuzen wiirden.
Aber auch [13] fdllt aus, weil das Elektron a; nicht in der gleichen
Struktur mit b, und mit c, verbunden sein kann. Ebenso fillt [24] aus.
Die Vereinfachung ist somit ganz erheblich.

Anhang 1. Die ersten Polynome Py nach Gleichung (6)

=

= 2

= 1+z+22

= 8z+22z%+28

= 1+3z+72z2%+32z%+24

6z+1222+13z%+4z%+ 25

= 1+6z+2622+3123+212%+ 525+ 2%

- 10z+4022+802%+ 642443125+ 626+ 27

= 1+10z+7022+16023+19624+11525+432%+ 727+ 28

= 15z+1002%2+3252%+480z4+4112°5+1882°+ 5727+ 828+ z°

= 1+15z+15522+57523+11352%+119125+7712%+28727+ 7328+ 9z%+z1°

= 21z+21022+10152%+238024+324125+258228+133127+41628+91z°+102z1° 4-

+le

P,= 1+21z+30122+164523+ 4809244786125+ 798128+ 506127 +215528+
+579z°+1112104 112114 z12

Pis = 282z+392%2+264623+90162z%+1803225+220082%+1755727+917628+33162°+
+7802z10+1332114+122124 213

P = 1+282+53222+4018+23+163662z%+3841625+567282¢+ 5430727 +35353z8+

+15636z°+4896219+1023z11+157212+ 13213+ z14
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36z+6722%+60482z3+282242%4+7820425+135572%+15577227+121328z%+
+663042°+2533221°+ 6986211 +1312212+183218+ 142144 215
1+36z+87622+873623+473769+1511162°+3070202%+413316z7+383896z%+
+2501762%4+11731621°4-393582114- 96862124+ 1651219+ 2112144152154 z1¢
45z+108022+125102%+ 7660824+ 28148425+ 6582242%+103298427+
+112104028+8665122°+48293221°+197737211+59032212+13105z13+
+2044214+24125+162184- 217
1+45z+136522+1737023+12112224+50425225+13516922%+243712827+
+30698042z8+27640482°+181870821°+882211211+31987921%2+85917z13+
+4 2361214249621 4-2732184-1 72V 4218

Anhang 2. Die ersten Polynome Ry nach Gleichung (30)

1
1
3

= 1+5z

3+6z+ 622

= 14+14z+1472+ 728
= 3+16z+4022+-2423+ 824

1+27z+7222+872%+3624+9z°

3+30z+14022+21023+160z%+5025+102z¢

14+442+22022%+49523+ 48425+ 26425+662%+11z27
3+48z+36022+98023+13622%+96025+4042°%+ 8427 +1228
1+65z+52022+-188523+325024+315925+17162%+5852z7+1042z8+13z°
3+70z+77022+32902%+72942z%+ 883425+ 64822%+284227+ 81228 +1262°%+
+14z1°

1+90z+105022+56002%3+149102%+2280625+208102%+1213527+ 444023+
+10902z2+150z1%+152z11
3+96z+145622+896023+290642z%+5353625+609442°%+4401627+21160z8%+
+66242z°4-1424210+1762114+16212
1+1192+190422+1404223+5331229+11828625+1618402%+14444927+
+8561228+348672°+952021°+1819211+ 204212 +1 7218
3+1262+252022+2108423+9424824+24519625+4010162°%+42867027+
+311544284+1557182%+5486421°+13266211+2280212+ 234213+ 18214
1+1522z+319222+3112223+1596002%+48518425+9288722%+1179672z7+
+102273228+6227442°+26812821°+83087211+18012212+2812213+266214+
+19z15
3+160z+408022+4452023+2625002%+91660825+21032402%+3024480z7+
+309902028+22420802%4+-116940821°+441100211+121830212+23920213+
+342021%+300215+20z18
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Anhang 3. Die ersten Polynome 11 (2,),

sI=f=
-

1+83z+72z2+3z8%+2z4
6+18z+9z2+3z*
20+15z+522
2247z

15

5

=1

64

S
—_—
o
w
—_

[

HO =5
B;EB’ES

(=

(=]

e 2]

=F=R=3=R-1-~

7
7

7

7
7

T

11, (2,)
II, (2;) =
1, (27)
I, (2;) =
Il (2;) =
1(27) =
1,5(24)
H,(2,) =

7

14+62z+2622+31234+2124+ 525+ 26
10+60z+ 8422+ 602z3+152%+ 325

50+1102+902z2+2523+ 524
91+105z+3522+ 723
100+45z+92z2

65+11z

28

7

1

10z+40z2+80z3+ 6424+ 3125+ 628+ 27
15+90z+2072z2+18023+-902z%+ 1825+ 32¢
70+245z+26022+1402z34+3024+ 525

168+280z+17522+4223+ 7z

216+189z+ 5422 923

= 181+66z+1122

98+13z

= 36

1L, (2.1}

&

Il
—

= 3z+2z%+2°
= 6+6z+322
= 10+5z

= 6z+122%2+132%+4z%+ 25
10+30z+3622+1223+ 324

= 30+50z+202z2+523

= 49+28z+ 722

= 40+92
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1+10z+7022+16023+196z%+11525+4325+ 727428
15+1502z+40522+53523+3302%+12625+4- 2128+ 327
105+4552+ 72522+ 50023+200z%+ 3525+ 528

— 280+700z+59522+25923+ 4925+ 725
— 444+5852+29722+ 6325+ 92

Il

Il

II

|

I

I

li

I

441+308z+772z2+ 1123
301+91z+13z2
140+15z

45

9

1

15z+10022+32523+4802z%4+41125+18828+ 5727+ 828+ z*
21+210z+79822+12882z3+115524+54625+16828+2427 + 328
140+ 840z+16802z2+167523+8502%+2702%+402%+ 527
462+15122+185522+10642z%+3572z%+5625+7z%
840+1629z+115222+42323+ 7224+ 925
1001+1078z+4622%2+88z3+112z¢
812+468z+10422+13z3

470+120z+1522

192+17z

55

10

1

1+15z+15522+57523+11352%4+119125+ 77128 +28727+ 7328+ 92z%+ z10
21+315z+138622+2982z3+33032%+220525+8402%+21627+2728+32*

- 196+1400z+372022+465523+3325%+13302%+ 35028+ 4527+ 528

714+3108z+490722+395523+171524+46925+ 6328+ 727

= 1530+3969z+396922+19532%+ 56724+ 8125+ 928

2101+33112z+200222+63823+99z4+1125

= 2016+18202z+6762z2+1172z3+1324

1386+675z+1352%+152°

= 699+153z+1722

265+19z
66
1

IIy (245) = 212+21022+10152%+23802%+32412°+25822%+133127+4162%+912%+

+410z'%-21%

IT, (2,5) = 28+4202+239422+ 616023+ 88502%+73082%+38502%+122427+2702%+

+3029+ 3210

II, (2,5) = 252+2310z+74402%+1207523+107802%+59502%+19602%+44027 + 5028+

[>1]

+5z°
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Ho (214) -

Hz (214) =

Iy (244)

11, (214) =

Ho (215) -

Ha, (215) -
Hs (215) -
Hs (215) -

H1o(215) -

1092+5880z+120752%+1236223+73852%+257625+5952%+ 7027+ 728
- 2640+9009z+1171822+ 795923+ 302421+ 72925+ 9028+ 927
4191489322+ 75462%+32562%+ 83624+ 110z°+112°
4628-+6110z+32242%2+91023+1302%+1325
3732+2880z+9452%+15023+ 1524

2232+935z+17022+172%

1000+190z+19z22

330421z

78

1+21z+30122+164523+480924+ 786125+ 798128+506127+215528+
+5792%+1112z10+ 112114 212
28+588z+382222+1225023+2121024+2232325+145182%+ 628227+
+1710z8+3302z°%+33z1%+3z11

= 336+3570z+1431022+282152%+321302%+2205025+98702%+2760z7+

+54028+55z%+521°
1596+10710z+2705522+ 3542723+ 266072z%+1259325+36752%4- 73527+

+ 77284729
4422+189092+3168922+-2748923+1417524+ 440125+ 90928+9927+928

= 7931+22176z+244862%2+144102%+488424+105625+1212%+1127

10023 +18018z+1318222+50702%+117024+14325+132°%
9276+104852+490522+124523+16524+ 1525
6471+4335z+12752%2+18723+1724
3432+1254z+2092z2+192z3

1386+231z+2122

418+23z

=91

13
1

28z+39222+26462%+90162%+1803225+220082%+1755727+ 917628+
+33162z%+ 780210+ 133211+ 122184 213

= 36+7562+604822+226802%+48060z%+609662°+498962°%+2656827+

+972028+23102°+39621°+ 36211+ 3212
420+5460z+2580022+6232523+860002%+7434025+411602%+1545027+
+375028+6502°+ 60210+ 5211
2310+18480z+5736522+917842%+870242z%+513522%+200902%+ 504027 +
+889z8-+842z°%+ 7210
7128+37719z+ 7819222+ 860582%+5594424+ 2327425+ 612028+110727+
+10828+9z°
14443+50908z+7207222+542962%+247062%+693025+12982%+13227 +
+112z8

I1,,(2,5) = 20566+485162+4648822+2418023+7410z4+145625+1562°%+1327
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= 21645+33480z+216002%+750023+15752%4+1802z5+15z"
= 17280+17000z+714022+1649234+-2042%+1725

= 10648+62702+167222+2282%+19z4

= 5082+1638z+2522%2+2123

1871427624232
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e

-
(=21
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94(2:5) = 920+252
26(215) = 105
2s(215) = 14
so(245) = 1
II, (1) =1 II; (2,1) =1 Il (2:,1) = 2
II; (2,1) =1 Hy (2,1) =2
II; (2,1) =1
I1; (2,1) = 2422 II; (2,1) = 3+4z+222
I, (2,1) =5 11, (2,1) = 8+4z
Il (2,1) = 3 I (2,1) = 9
II, (241) =1 II, (2,1) = 4
11, (2,1) = 1
II, (241) = 3+10z+6224223 I, (241) = 4+162+2122+823+ 224
11, (251) = 14+12z2+422 II, (261) = 20+36z+1622+42%
II; (251) = 19+62 II, (2,1) = 39+242z+622
1L, (2,1) = 14 IT; (241) = 36+8z
o, (24) = § IL, (241) = 20
Hn(Qsi) =1 I1,;(241) = 6
IT,5(241) = 1
II, (2,1) = 4+28z+4722+362%+102z%+22%
II, (2,1) = 30+76z+6622+2023+4z1
II, (2,1) = 69+84z+3022+623
II, (2,1) = 85+40z+ 822
II, (2,1) = 60+10z
II,,(2.,1) = 27
Dyl 21} =< 7
II5(2,1) =1
II, (241) = 5+40z+105224+10423+5524+1225+ 2z¢
II; (241) = 40+1562+184224+10423+242%+ 428
II; (241) = 119+2162+14122+ 3623+ 62*
II, (241) = 176+160z+482%+823
II, (241) = 160+60z+10z2
1I,,(241) = 92+12z
II,4(241) = 35
IT15(241) = 8
I1,5(241) = 1
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H (2,1) = 5+602+19522+ 28623+ 19525+ 7825+ 1428+ 227
I, (2,1) = 55+2762+48022+36023+15028+ 2825+ 425
H (2,1

II, (241) = 344+480z+ 25222+ 5623+ 82+
11y (241) = 376+270z+7022+1023
11(2 1) = 273+84z+1222
IL,5(2,1) = 133+ 14z
I1,5(2,1) = 44

)
)
) = 189+510z+46522+2102%+422%+62°
1)
1)

H17(291) =9

H19(291) =

II, (2,41) = 6+80z+35522+6562%+64024+32825+1052%+1627+22%

II, (2,01) = 70+4762z+106422+114023+6202%+20425+322%+ 427

115 (2,01) = 294+1056z+138022+84022+2912%+482%+ 628

11, (2,01) = 624+1280z+95222+3602%+ 6424+ 825

II, (2401) = 820+920z+40522+8023+10z*

I1,,(2,01) = 714+4202+9622+1223

I1,5(2,01) = 434+112z+1422

I1,5(2,01) = 184+162z

IT,7(2401) = 54

IT,4(2401) = 10

H21(210ﬂ =

IT; (2,41) = 6+1102+ 58522+ 1424234175224+ 12542°5+5112°+13627+182%+22°
II, (2,41) = 91+7562+222622+304423+23102%+98025+2662%+ 3627+ 428
IT; (2111) = 434+20642+351622+29902%+13652%+ 38425+ 542%+ 627

= 1660+2730z+171522+5602z3+90z%+1025
= 1715+1596z+60622+1082%+122*
I,5(2121) = 1246+6162+12622+142°

I1,5(2,41) = 654+1442+1622

II,,(2,,1) = 246+18z

1_119(211)1) = 65

I1,,(2441) =114

H23(2111) =q

)
)
)
II, (25,1) = 1086+3008z+315622+16242%+484z%+7225+ 828
)
)

II, (2401) = 74+1402+94522+280023+44452%+399625+ 223328+ 75227+17128+202°+
+2219
Il (2,51) = 112411762+425622+75202%3+72242%+420025+14562%+33627+402%+
+429
II; (24,1) = 630+37442z+828022+ 903623+ 565524+ 206425+4892%+ 6027+ 628
) = 1800+6560z+902422+639223+25282%+6242°+802°%+ 827
) = 3190+ 7140z+626522+28002%+73524+10025+102°
I1,,(2,51) = 3816+5208z+28322%2+8162%+1202%+1225
) = 3262+2576z+86122+14023+14z¢



I1,5(2,,1) = 2040+ 864z+16022+162°

11,,(2,,1) = 945+180z+18z2

I1,4(2441) = 320420z

H21(2121) =3

H23(2121) = 12

11,4(2,A) =1

II, (2451) = 7+1822+14352%+52642%+101852%+1164225+812728+370027+1059z%+
4210224222101 9211

I, (2451) = 140+17362z+778422+1686423+2062924+1506425+70562%+206427+
+41428+447%+ 4710

11, (2,41) = 882+6516z+1785622+249062%+1976124+974425+29612%+6062"+
+6628+62°

II, (2,51) = 2892+13280z+2354822+2144823+1148024+36962%+7802°%+ 8827+ 828

11, (2,51) = 5830+17150z+1977522+1204023+42152%+93025+1102+10z7

11,,(2,,1) = 8007+149522z+1128022+446423+10502%+13225+122%

11,4(2,41) = 7890+9156z+43892z2+11342z3+154z4 +142°

I1,5(2451) = 5772+39362+117622+17623+162*

11,,(2451) = 3177+1170z+19822+1823

I1,5(2,51) = 1320+220z+20z2

I1,,(2,,1) = 407422z

11,5(2531) = 90

Ip5(2451) = 13

H27(2131) =1

IT, (2,,1) = 8+42242+214222+929623+2198029+3052825+267892%+1515227+
+5796z%+14402°+253219+242z11 42222
II; (2,41) = 168+25202z+1344022+3564023+5319024+488882°+285602¢+1116027 +
- +282028+5002°+48210+ 4211
II; (2,,1) = 1218+108002+3636022+623202%+624122%+386402%+156802%+
+408027+735284+722%+621°
II; (2,,1) = 4488+255202+5623222+6501623+441282%+1898425+51602°+95227+

+962°%+-82°
IT, (2,,1) — 10252 +381602+5649022+4424023+207602%+ 600025 +11452°+12027+
+1028
I1,,(2,41) = 15938+391442+3883222+2077623+65402%+130825+1442%+1227
I1,5(2,41) = 17913 +285602+1890022+672023+143521+16825+142°
I1,5(2,,1) = 150484151202 +648022+152023+1922%+1625
I1,,(2,,1) = 9648+5760z+155722+2162%+182%
I1,5(2,,1) = 4752415402 +24022+2023
1,,(2,,1) = 1793+2642+2222
I1,5(2,,1) = 508+24z
I145(24,1) = 104
I1,,(2,,1) = 14
)



Anhang 4. Beispiele

Den in Helv. 46,1 (1963) angegebenen Beispielen sei beigefiigt

S = 25+4292+47852%2+2968823+11259924+2655572°5+4076612%+4158202"+
+2909762%+1408972° +4859321°+11555211+1984212 + 202213+ 16214

(L

S = 31+4782+499522+2995823+1122912%+-2646382%+4072842%+41649427 +
+29173628+1409902°+48335210+1139621*+1947212 4198213 +1624

L 0)

S = 31+4762+49742%2+299362%+11233824+26477625+4072252%4+41635227+
+29166928+1410842z°+4840221°4-11392211 41925212 +192213+15214

S =36+507z+518422+308882%+1143182%+2670512°%+4081102°+41514027 +
+28936528+1392862°+4759521°+11196211+1904212+19221% 15214



— M —
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:

S = 14+1472+11332%2+48552%+138732%+293402°+464822°%+5278227+4264628 +
+23629z°+95042'+2515211 +499212 + 51213 + 5214
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