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Zur Grundlage der Elektrodynamik

von P. SieEGFrRIED HoTz
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1. Problem und Programm

Allgemein werden der deduktiven Darstellungsart der klassischen
Elektrodynamik die vier Maxwellschen Gleichungen zugrunde gelegt,
deren FeldgréBen in der Relativitiatstheorie die formale Einheit des
vierdimensionalen elektromagnetischen Feldtensors bilden. Die relati-
vistischen Transformationsformeln fiir den elektrischen Anteil dieses
Tensors lauten im Vakuum und in dreidimensionaler Schreibweise :

Ex = Ex,
B = —— (Ey— 8 H)), (1)
= (B
G- ——— [By + B )
Vg

Zu diesem Gleichungssystem bemerkt Einstein in seiner grundlegenden
Arbeit ': «Ist ein punktférmiger elektrischer Einheitspol in einem elek-
tromagnetischen Felde bewegt, so ist die auf ihn wirkende Kraft gleich
der an dem Orte des Einheitspoles vorhandenen elektrischen Kraft

(E’), welche man durch Transformation des Feldes auf ein relativ zum

1 A. EINSTEIN : Zur Elektrodynamik bewegter Koérper. Ann. d. Physik 17, 910, 1905.
Die in Klammern stehenden Ausdriicke sind im Originaltext nicht vorhanden.
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elektrischen Einheitspol ruhendes Koordinatensystem erhilt ». « Man
sieht, daB3 in der entwickelten Theorie die elektromotorische Kraft

Cc
tihrung dem Umstande verdankt, dafl die elektrischen und magne-

tischen Krifte keine von dem Bewegungszustande des Koordinaten-
systems unabhdngige Existenz besitzen. » Da diese Hilfskraft im Ruhe-
system der Einheitsladung verschwindet, und da in ihm nur die Cou-
lombsche Feldstirke wirkt, liegt der Gedanke nahe, als Grundgesetz
der gesamten Elektrizitdtslehre die Kraftgleichung zwischen ruhenden
Ladungen anzunehmen. Alle elektrischen Ladungen sind aber ganz-
zahlige Vielfache der Elementarladung. Dieser Tatsache schenken wir
von Anfang an die gebiihrende Beachtung, wenn wir die vorerst als
punktférmig betrachtete und im Vakuum sich befindende Elementar-
ladung als Quelle des elektrischen Feldes einfiihren.

Im folgenden wird nun gezeigt, daf die einzige Ursache der sich mut
Lichtgeschwindigkeit fortpflanzenden elektrischen Wirkungen die loventz-
tnvariante Elementarladung mit ihrem Coulombschen Felde ist, und dafs
sich die Geselze der Elektrodynamik mat Einschluf der Maxwellschen
Gleichungen aus dieser physikalischen Gegebenheit mit Hilfe der Lorentz-
Transformation der Relativititstheorie ableiten lassen.

Ruht die Elementarladung e beziiglich des Beobachters, befinden wir
uns also in ihrem Ruhesystem, das immer als gestrichenes System be-
zeichnet wird, so besitzt ihr elektrostatisches Feld nach dem Coulomb-
schen Gesetz die Feldstirke

(V X ﬁ) nur die Rolle eines Hilfsbegriffes spielt, welcher seine Ein-

@:%? (2a)
Daraus folgt das skalare Potential
¥ = (2b)

Die Aequipotentialflichen sind konzentrisch um die Elementarladung
gelegte Kugelflichen mit dem Radius
2 =x"2 4+ y'2+ 22,

Um das Feld der bewegten Elementarladung behandeln zu kénnen,
wollen wir die Transformationsformeln fiir Krdfte aus rein mechanischen
Uberlegungen ableiten. Man erhilt z. B. mit Hilfe des Tolmanschen
Gedankenexperimentes ! die relativistische Kraftgleichung

1 G. Joos : Lehrbuch der theoretischen Physik 1942, S. 224 f,
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s

~d myv
dt  dty1 —g2’

o
2|

i

Es sei K’ die Kraft im Ruhesystem des Probekoérpers, der im folgenden
immer die elektrische Einheitsladung sein wird, und < seine Eigenzeit,
fir welche die Transformationsgleichung

dr = V1 —p% dt
gilt. Fiir den uns interessierenden IFall, dal die Relativgeschwindig-

keit v parallel zur positiven x-Achse liegt, ist infolge des Additions-
theorems der Geschwindigkeiten

vidva= IV g _pndvi+v,
v dvg
1+ 5
¢
also dvx = (1 — B?) dvg.

Die Transformationsgleichung fiir die x-Komponente der Kraft lautet
daher :

( dv/
Vi — g T

Ky

Langs der x-Achse wirkt also auf den Probekérper im bewegten System
die gleiche Kraft wie im Ruhesystem.

Bei der Transformation von dv; auf das ungestrichene System gilt
als Folge des Additionstheorems der Geschwindigkeiten die Formel
dvy V1 —p?
v dvy

C2

dvy = — VTR av),.

L -5

Fir die y-Komponente der Kraft finden wir somit die Transforma-
tionsgleichung '

~

m, dvy . dv I

I{ = p— . ) / = 2 :-___ 2 4
Y 11_@2 dt mo‘rl B dr \/1 B K.‘y"

Auf gleiche Weise erhdlt man

K, = V1 —p® K.
Es ergibt sich also die Kraft K, die in einem Koordinatensystem ge-
messen wird, gegen das sich der Probekorper mit der Geschwindig-
keit v lings der x-Achse bewegt, aus der im Ruhesystem wirkenden

Kraft K’ auf Grund der Formeln
Ki=Kz; Ky=yv1—p Kj; K,=11—p% K;. (3)
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Das Relativitiatsprinzip fordert, dafl dieses Transformationsgesetz fiir
alle Krifte gilt, gleich welcher Herkunft sie sind. Es ist daher auch
auf die elektrischen Krifte und deshalb auch auf die elektrische Feld-
stirke anwendbar, die sich durch Division der elektrischen Kraft mit
der lorentz-invarianten elektrischen Ladung ergibt.

2. Das Feld der gleichformig bewegten Elementarladung
a) Das Coulombsche Feld

Die Prinzipien der speziellen Relativititstheorie fithren auf die
Loventz-Kontraktion, nach der sich die Abmessungen eines beziiglich
des Beobachters bewegten Systems in der zur Relativgeschwindigkeit

u parallelen Richtung um den Faktor

B 2 S 5
\/1 — % _ y1 g verkiirzen.

Die kugelsymmetrischen Aequipotentialfidgchen der ruhenden Ladung
werden durch die Relativbewegung zu Flichen eines Rotationsellip-
soides mit einer in der Bewegungsrichtung liegenden verkiirzten Haupt-
achse abgeplattet (IFig. 1). Diese Ilachen bleiben Aequipotentialflichen
fiir Ladungen, die sich mit der gleichen Geschwindigkeit wie die feld-
erzeugende Ladung bewegen, da sich ja die Ladungen auf einer be-
wegten geladenen Metallkugel nicht verschieben. Wenn wir die x-Achse
unseres Bezugssystems in die Richtung der Relativgeschwindigkeit
legen, und wenn r’ der Radius einer Potentialfliche im Ruhesystem
der Ladung ist, so hat die Fliche des entsprechenden Rotationsellip-
soides die auf den Koordinatenachsen liegenden Hauptachsen

s=rV1—08; 1 ;1. (4)
Die Fliche selbst, die wir s-Fliche nennen wollen, gehorcht der Glei-
chung

x2 Yz 72
A—p) PP 9

oder X2+ (1 — B2) (y? + 22) — 2. (5b)

Die Verteillung der Cowulombschen Feldlinien einer bewegten Ele-
mentarladung bleibt im ungestrichenen System infolge der Lorentz-
Kontraktion nicht mehr kugelsymmetrisch. Die Feldlinien bewahren
zwar die radiale Richtung, aber ihre Dichte nimmt gegen die zur



P(o,r,0)=Plo,r.0)
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Fig. 2

Lorentz-Kontraktion des Coulombschen
Feldes einer gleichférmig bewegten Ele-
mentarladung.

g, 1

Bewegungsrichtung senkrechten Aequatorebene hin zu (Fig. 1). Doch
verdndert sich dabei ihre Anzahl 4 = e nicht. Das folgt aus der In-
varianz der Elementarladung und des von ihr erzeugten Kraftflusses
4 m e gegeniiber Lorentz-Transformation. Daher bleibt auch im Falle
der bewegten Elementarladung die Dichte der Feldlinien ein Maf fiir
die Coulombsche Feldstirke.

Da die Coulombschen Feldlinien und daher auch die Coulombsche
Feldstdirke im ungestrichenen System die radiale Richtung beibehalten,
so gilt im Punkte P (x, v, z)

EX:EF:EZ:x:y:z,
oder x=kx;, Ey=ky; E;=kz,
wenn sich die Elementarladung im Punkte P (o, 0, 0) befindet. Zur
Bestimmung der Konstante k fiir die Punkte einer s-Fliche geniigt

es, ihren Wert fiir einen dieser Punkte zu finden. Aus Fig. 2 ergibt
sich, da die Coulombsche Feldstirke in P (s, o, 0) des ungestrichenen
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Systems gleich derjenigen im entsprechenden Punkt P’ (1, o, 0) des
Ruhesystems ist, da ja in beiden Punkten dieselbe Feldliniendichte
herrscht. Es ist also

E (s, 0,0) = E' (', 0, 0) .
Nun aber gilt

E’ (', 0, 0) = riz
und laut Lorentz-Kontraktion

8% = (1 —B?) 2.

Daher erhalten wir

E(s,0,0) = (1 —B%) 5 = (1-B%) 5 s
oder, da im Punkte P (s, 0,0) s = x 1st,

E (x,0,0) = (1B 5 x

und k=(1—@2)533.

Deshalb lautet die Coulombsche Feldstiarke, d. h. die auf eine ruhende
Einheitsladung wirkende elektrische Kraft, in den Punkten einer

s-Fldache (cf. Fig. 2)
% — 5 T (6)
S \/1 B 1_1—2 r
C

b) Die dynamische Feldstivke und die Loventz-Feldstirke

Dynamasche Feldstirke ]_E’d wollen wir die elektrische Kraft nennen,
die 1m ungestrichenen System auf eine relativ zu ithm mit der Ge-

schwindigkeit v bewegten positiven Einheitsladung wirkt. Die Diffe-
renz zwischen der dynamischen und der Coulombschen Feldstirke

heille Lorentz-Feldstirke : EI = ]:fd _E.

Im Spezialfall, daBl Elementarladung und Einheitsladung die gleiche
Relativgeschwindigkeit haben, mul3 Ed senkrecht auf den abgeplatte-
ten Aequipotentialflichen der Fig. 1 stehen, und es 1af3t sich zeigen,
daB ]_*fl eine bezliglich der Relativgeschwindigkeit senkrechte Lage
besitzt.
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Wir wollen uns aber sogleich mit dem allgemeinen Fall befassen,
wo die Geschwindigkeit v der Einheitsladung und die Geschwindig-

keit u der Elementarladung verschiedene Richtung haben. Die Ab-
leitung der Lorentz-Feldstirke vereinfacht sich, wenn wir die x-Achse

und die mit thr zusammenfallende x’-Achse parallel zu v und die
y-Achse so wihlen, dall die Bahn der Elementarladung in die xy-Ebene
zu liegen kommt, da3 also u, - O ist. In Fig. 3 bewegt sich die Ele-
mentarladung im ungestrichenen System auf der Geraden durch A,
und A,, wdhrend sich die Einheitsladung momentan im Punkte B
befindet.

Um die Lorentz-Feldstirke El zu bestimmen, verwenden wir die
Transformationsgleichungen fiir Krifte (Gl 3). Mit ihnen liBt sich

der Zusammenhang zwischen der dynamischen Feldstirke E E EI

im ungestrichenen System und der elektrischen Kraft E’ ausdriicken,
die im Ruhesystem der Einheitsladung auf diese wirkt und daher eine
Coulombsche Feldstiarke ist. Dabei geht folgendes Gleichungssystem
hervor :

Ex + Ex = Eg,

Ey + Ejy = \/1 ~‘£ B, (7a)

E, + I~,17~\/1~~Ef.

Es stellt sich vorerst die Aufgabe, E’ zu berechnen. Da E’ eine Cou-
lombsche Feldstirke ist, gilt fiir sie die Gl. 6, wobei bemerkt sei, dal3
fiir eine bestimmte Lage der Einheitsladung die s-Fliche im unge-
strichenen System das gleiche r’ besitzt wie die entsprechende s-Flache
im gestrichenen System, weil infolge unserer Wahl des Koordinaten-
systems u, = O ist, und sich somit laut Gl. 4 die parallel zur z-Achse
liegende Hauptachse der s-Fliache nicht verindert. Ferner seien die
Komponenten des von der Elementarladung nach der Einheitsladung

hinweisenden Fahrstrahles ; im ungestrichenen System mit Ax, Ay,

Az, im gestrichenen mit Ax’, Ay’, Az" bezeichnet, und es bedeute u’
die Geschwindigkeit der Elementarladung im Ruhesystem der Ein-

heitsladung. Nach diesen Angaben ersetzen wir in Gl. 7a E’ durch GI. 6
und erhalten



EX+E]X= —;—3AX’,
u’21‘
1-=
2
V1-5
. c? e , _
Ey + Lly — Ay (/b)

Wir miissen nun die GréBen u’, Ax’, Ay’ und Az’ auf das ungestrichene

System transformieren.
Nach dem Additionstheorem der Geschwindigkeiten gilt fiir unseren

Kall ¢
Vi
u P E——
s ufy = | g us =0
* | UxV y | UxV “
c? e
und u’® = uz? + ug?.

Daraus folgt die Gleichung

1 2

——— = = : = (8)

Die Transformation von Ax’, Ay’ und Az’ geschehe unter den fol-
genden, in Fig. 3 dargestellten Bedingungen. Der Koordinatenursprung
des gestrichenen Systems falle zur Zeit t’ = O mit dem des unge-
strichenen zur Zeit t = O zusammen. Es befinde sich in diesem Zeit-
punkt die Einheitsladung im Punkte B = B’ der yz-Ebene, so dal3
t,=t, = O ist. Im Zeitpunkt t’ = O herrsche zwischen der Lage B’
der Einheitsladung und jener A; der Elementarladung Gleichzeitigkeit.

Es gilt also t; = O. Im ungestrichenen System entspricht der Lage A]
laut Lorentz-Transformation die Punktlage A, mit

/!
gy B (9a)

VZ
\/1“§



und mit

tﬂl = = _= Xal . (9b)

Da fiir den in Fig. 3 dargestellten Fall x,; und daher auch t, negativ
sind, so befand sich die Elementarladung in einem um t,, friiheren Zeit-
punkt in A, als die Einheitsladung in B. Im ungestrichenen System

y B=B'
e || v
A
) |
Ay I
A Ax = |
X l
uAt |
u, At by |
|
" —_— A ! —
Al U,AI‘ Al: X' X I
—_— e = al —t-+-

Fig. 3. Zur Ableitung der elektrischen Feldstirke, die von der sich im ungestrichenen

System auf der Geraden A;A, mit der Geschwindigkeit : bewegenden Elementar-
ladung erzeugt wird und die auf die sich momentan im Punkte B befindliche, mit der

Geschwindigkeit v bewegte Einheitsladung wirkt.

besteht daher Gleichzeitigkeit zwischen der Lage der Elementarladung
und jener der Einheitsladung fiir die um At = —t,, spitere Punkt-
lage A, der Elementarladung. Man erhilt A,, indem man zur Lage A,
den Vektor u At anfiigt. Zur Zeit t| = t, = O gelten laut Fig. 3 und
Gl. 9 die folgenden Beziehungen :

AX = —x}y = {2
X =—Xgq = —Xan reE

Ax = — X9 = — Xa; — UxAt = — %y, (1 = V) (9c)




AR = Ax
1 — O ~
CZ
ferner
’ Uy v
Ay’ = Ay + uy At = Ay — 2 Xar
und durch Ersetzen von x,, nach Gl 9c
Uy V
Ay’ = Ay + ___uxVAX
1~ 2

(10a)

(10b)

Da beziiglich der z-Achse keine Relativbewegung stattfindet, ist

Az" = Az .
Wir setzen nun GIl. 8 und GIl. 10 in GI. 7b ein und erhalten
Ey + Epx = — —?3 Ax = Ey
T
Vi-%
(&)

Ux

” 5 xV . Uy v
Ity + Ely = l",y - 7 I'Ly ~+

C2

,EXJ

= = 5 Ux V
E, % Bl = B2 B,
C

Daraus folgen die Gleichungen fiir die Lorentz-Feldstirke :

Uy V Ux V 5

Ex=0; Ey = —'z—:z—Ex_ P Ey; Ep=— o2 Ez,
oder in Vektordarstellung :
BV (YaE).
C &

Fir die dynamische Feldstirke erhdlt man

= = vV u | o=
Ed=h+ﬁ><(—><}_‘,).
(@ i

(10c)

(12)

In GIL. 11 und Gl. 12 ergeben sich die Lorentz-Feldstiarke und die dyna-
mische Feldstirke als Funktion der von der mit der konstanten Relativ-
geschwindigkeit u bewegten Elementarladung erzeugten und mitge-



— 177 —

fiihrten und vom ruhenden Beobachter festgestellten Coulombschen
Feldstirke E der Geschwindigkeit u und der beziiglich des gleichen
Beobachters bestehenden Geschwindigkeit v der Einheitsladung, auf
die die Feldstirken E, und E, einwirken.

3. Das Feld der beliebig bewegten Elementarladung

Bei der Berechnung des Feldes der beschleunigten Elementarladung
gehen wir von der in der Einleitung ausgesprochenen Tatsache aus,
daB sich die elektrischen Wirkungen mit Lichtgeschwindigkeit, d. h.
unbeschleunigt fortpflanzen. Wir haben beim Feld der unbeschleu-
nigten Ladung gesehen, dal3 diese Wirkungen durch den Bewegungs-
zustand der aussendenden Ladung mitbestimmt sind. Die diesbeziig-
lichen Formeln haben eine so einfache Gestalt, weil die Geschwindig-
keit der Elementarladung bei der Emission gleich ihrer Geschwindig-
keit beim Eintreffen der elektrischen Wirkung im Aufpunkt geblieben
1st. Bei der beschleunigten Elementarladung trifft dies nun nicht mehr
zu. Um den Zusammenhang zwischen Ursache und Wirkung herzu-
stellen, miissen wir daher in diesem Falle die elektrischen FeldgréBen
als Funktion des Ortes und der Geschwindigkeit, welche die Ladung
im Zeitpunkt ihrer Emission besal}, ausdriicken. Es ist zweckmaibBig,
zuerst die entsprechenden Formeln fiir die unbeschleunigte Elementar-
ladung mit Hilfe der elektrischen Potentiale abzuleiten.

a) Die Potentialgleichungen fiir das von der gleichformig bewegten
Elementarladung erzeugte Coulombsche Feld

Ist die Geschwindigkeit u der Elementarladung in der x-Achse ge-
legen, so lautet die y-Komponente der Coulombschen Feldstirke im
Punkte P (o, y, o) nach Gl. 6 und GI. ba

1 e
Ey: = _——

c2
Im gleichen Punkt erhdlt man unter Beriicksichtigung von Gl. bb fiir
das skalare Potential ¢ den Ausdruck

! - (13a)

e
uty s
\/1%2

(P:
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Da fiir eine bestimmte s-Fliche s und e konstant sind, haben wir so-
mit das skalare Potential aut der ganzen Fliche gefunden und diirfen
nach Gl. 5b schreiben :

e

? = = .
=
\/Xz " (1 *?2) (y*+27)

4

(13b)

Um aus diesem Potentialausdruck die Coulombsche Feldstirke E

zu berechnen, mull man zu dessen Gradient ein Zusatzglied Z bei-
fligen, so dal3 folgender Ausdruck erhalten wird :

E:—gradcp+72. (14)

Die y- und z-Komponenten von Z sind gleich Null, da sich die Be-

. o
ziehungen —

(94

= Ey und — Ofcz = E, ergeben.
o

Daher ist

. é u?\ e e u? e u? é
Z=ZX=}LX+—CP= 1 — — Ax——x=——‘—x=——c?-,
ox c2/ s8 s3 c2 g c? 6x

Es gilt aber mit Riicksicht darauf, dal u, = u, = O 1ist,

> o 8 é ¢
ugradcp:uxrq—) +uy—cP +uzTcP:u—;?
ox oy 0z ox

und somit

Z =Cizuﬁgradcp.

Da Z die Richtung von u hat, erhalten wir die Vektorbeziehung

1

2igs
Zz(?z

u (u grad g) . (15)
Die Feldfunktion ¢ (x, vy, z, t) gehort zu einer gleichféormig bewegten
Elementarladung und wird mit der gleichen konstanten Geschwindig-
keit mitgefithrt. Deshalb hat sie zur Zeit t am Orte x, y, z denselben
Wert, welchen sie zur Zeit t —dt an der Stelle x —u_ dt, y —u, dt,
z —u, dt gehabt hat. Es gilt also die Identitit

P (X, v, Z, t) = Q@ (X'uxdt, Y-Uydt, Z‘uzdt, t"dt) :
Daraus folgt

0 0 0 ¢
.—ip=_(uxr_cp+uy7q‘3+uz£)
ot oy

ox oz

oder in Vektorschreibweise

cQ —
E=—ugradzp. (16)
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Setzen wir diesen Ausdruck in G1. 15 ein und nehmen wir die Konstante

-

Y unter das Differentialzeichen, so erhalten wir

C

16

Cc

?

olel

Ny

t

o5 ]

Der mit ¢ dimensionsgleiche, aber vektorielle Ausdruck

olel

A=-—o (17)
wird Vektorpotential genannt. Nach Gl. 14 erhidlt man fiir die Cou-
lombsche Feldstirke einer bewegten Elementarladung die Gleichung

- 1 6A

b) Die retardierten Potentiale

. e e
Die Formel o ==

. B (cf. Gl 13)
\/x2 + (1 —%} (v + 2?)

beschreibt das skalare Potential im Aufpunkt P(x, vy, z, t) im Zeit-
punkt t, wo die gleichféormig bewegte Elementarladung gerade durch
den Koordinatenursprung B(o, o, o, t) geht. Wir suchen nun das ska-

POLy.z.l)

Fig. 4. Zur Ableitung der
retardierten PPotentiale.

—

A (-ut,,0,0,

-1) B(0,0,0.)

lare Potential als Funktion des Abstandes r, den die Elementarladung
zur Zeit der Emission ihrer elektrodynamischen Wirkung vom Auf-

punkt besal}, d. h. zur Zeit t—t, = t—g (cf. Fig. 4).
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Nach GI. 5b und Fig. 4 148t sich s folgendermaflen umformen :
52=x2+y2+z2—%z(y2+22)=_1:§(f;xg)z. (19)

C

Aus Fig. 4 ergibt sich r, =1 —r

olel

i

und o xu=rxu.
Es gilt daher (f, x u)2=(rxu)2=r2u?—(ru)?.

Setzt man diese Ausdriicke in GI. 19 ein, so erhilt man die Formel

[ ru)?
s? = (r — T) ,
in der s als Funktion des Abstandes und der Geschwindigkeit, welche
die Elementarladung zur Zeit t —(E: besal3, dargestellt ist.
Somit folgen das retardierte skalare Potential
€
P = ==
[ ru

r——
c t-——f
C

(21a)

und das retardierte Vektorpotential

o (21b)
¢ ru
Bl -
¢) Berechnung des I'eldes der beschleunigten Elementarladung
Wir schreiben die Gl. 21 in der Form
o — (Z)T und A - (%)T (21¢)

—_—aa

. e 1, . w '
mit den Abkiirzungen s-r— % und 7 -t— und setzen sie in die
C

Gl. 18 ein, die zwar fiir gleichféormig bewegte Ladungen abgeleitet
wurde, die aber auch auf eine beschleunigte Elementarladung anwend-
bar ist, wenn wir deren Ort und deren Geschwindigkeit im Zeitpunkt =«
der Emission der elektrischen Wirkung in Rechnung setzen, wie dies
tatsdchlich durch die retardierten Potentiale geschieht. Die Beschleuni-
gung geht durch die zeitliche Ableitung des Vektorpotentials in die
Formel ein. Auf diese Weise erhalten wir
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=

— eu 0s e o
E = zgrddS'F—z—é;nt#’ér

—+

s ¢

Nach bekannten Methoden ! lassen sich die Ausdriicke grad s, ; und

—

berechnen. Es ergibt

(22)

Alle auf der rechten Seite auftretenden GrofBlen gelten fiir die Lage
der Elementarladung zur Zeit 7 - t—g, wihrend E fiir den Zeit-
punkt t erhalten wird.

Das durch Gl. 22 beschriebene Feld setzt sich additiv aus zwe: Tezl—

feldern E und I:, zusammen, von denen nur E die Beschleunigung u
enthilt.
Unter Beriicksichtigung von Gl. 20 wird

=3 u?\ e —
b‘l — (1 -—-C2) Sr3" Iy . (22&)

Vergleichen wir E1 mit der Gl. 6, so stellen wir fest, dal3 El die Cou-
lombsche Feldstarke einer mit der gleichformigen Geschwindigkeit u
bewegten Elementarladung ist. In unserem Fall bedeutet r, den Vek-

tor BP (cf. Iig. 4), wobei B der Ort ist, den die Elementarladung bei
Beibehaltung der im Moment der Emission innegehabten Geschwindig-

keit u im Zeitpunkt des Eintreffens der Wirkung im Aufpunkt P er-

reichen wiirde. Das durch I—fl dargestellte IFeld hat somit den Charakter
eines Coulombschen Feldes, das sich mit der thm im Zeitpunkt der
Emission eingepriagten Geschwindigkeit konstant durch den Raum
bewegt, welches auch nachher die Geschwindigkeit der Elementar-
ladung sei.

Dem zweiten, die Beschleunigung enthaltenden Anteil 146t sich fol-
gende Form geben :

e — — —

B = T % (Ty % U°) . (22b)

C2 83

1 Cf. R. BECKER : Theorie der Elektrizitit 1933 Bd. 11, 64 ff. ; 1957 Bd. I, 204.
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Die Feldstirke ]_1:2 steht also senkrecht auf dem Radius T, lings dem
sie sich mit Lichtgeschwindigkeit fortpflanzt. Sie wird daher von der

Ladung nicht mitgefiihrt. Da sie ferner nach aullen hin wie % abfillt,

besitzt sie den Charakter einer von der Elementarladung ausgehenden
transversalen elektrischen Welle.

Die durch Gl. 22 dargestellte Feldstirke wirkt auf die beziiglich des
Beobachters ruhende Einheitsladung. Um die dynamische Feldstdirke

zu erhalten, miissen wir beachten, dal} sich der Anteil El mit der mit-
gefithrten Geschwindigkeit u, der Anteil E, mit Lichtgeschwindigkeit
im Raume fortbewegt. Nach Gl. 12 gilt daher

== = =x g u = £ & -
IL(1=L1+1L2+E><(E><111+6><I.:2). (23)
Unter Beriicksichtigung von Gl 20 und Gl 22a ist - = Elzg « E,.
Da ferner g = ; ist, wird Gl. 23 zur Gleichung
P*fd—l?*‘:+vx({><]_?:) E + 2 x (CXE). (24)
@ AT G c

In dieser Gleichung bedeutet E die von einer beliebig bewegten Ele-
mentarladung erzeugte elektrische Feldstirke, die auf eine im Auf-
punkt ruhende Einheitsladung wirkt und durch Gl. 22 dargestellt

wird, Ed die von der mit der Geschwindigkeit v bewegten Einheits-
ladung 1im gleichen Punkte wahrgenommene dynamische Feldstirke,

r den Radiusvektor, der von der im Moment der Emission von der
Elementarladung eingenommenen Punktlage zum Aufpunkt weist, und
¢ die mit r gleichgerichtete Lichtgeschwindigkeit.

AbschlieBend sei noch eine wichtige Eigenschaft des elektrischen
FFeldes betont. Da sich die beiden Anteile EI und ]_1:,2, die von der be-
schleunigten Elementarladung erzeugt werden, im Raume unbeschleu-
nigt fortpflanzen, sind sie nach der Emission von der aussendenden
Elementarladung unabhingig. Infolge ihrer KEigengeschwindigkeit
bringen diese IFeldgréBen in den Punkten des Raumes, die sie iiber-
streichen, die elektrischen Wirkungen hervor. Dies mul} logischerweise
auch fiir das Feld der gleichférmig bewegten Elementarladung gelten.

In GIl. 11 fir die Lorentz-Feldstirke bedeutet daher E nicht nur die
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Geschwindigkeit der felderzeugenden Elementarladung, sondern in
einem tieferen Sinn die Geschwindigkeit des von der bewegten Elemen-
tarladung mitgefiihrten Coulombschen Feldes. Diese Uberlegungen
stiitzen und erkldren die Nahewirkungstheorie der elektrischen Krifte.

4. Das Feld mehrerer Elementarladungen

Die Felder mehrerer Elementarladungen tiberlagern sich als vekto-
rielle GroBen. Man erhdlt daher das Gesamifeld durch Summierung
tiber die Einzelfelder. Nach GI. 24 gilt fiir die dynamische Gesamt-
feldstarke die Formel

- NEL YN (D0E). (25)

Wir sehen aus dieser Gleichung, dall sich die auf eine ruhende Ein-

heitsladung wirkenden Feldanteile zu einer Gesamtfeldstirke X E
summieren, dall hingegen die Lorentz-Anteile verschieden bewegter
Elementarladungen nicht eine Funktion der eben genannten Gesamt-
feldstidrke sind. Bei mehreren verschieden bewegten Elementarladun-
gen gehen die von jeder einzelnen Ladung erzeugten Feldstirken und
die entsprechenden Radiusvektoren in die Gl. 25 ein, und die gesamte
Lorentz-Feldstarke ist gleich der Vektorsumme der von den einzelnen
Ladungen auf die bewegte Einheitsladung ausgeiibten Lorentz-Krifte.
Es gibt praktisch sehr bedeutsame Fille, wie z. B. stromdurchflossene
Leiter, bei denen sich die Coulombschen Feldstirken in einem geeignet
gewdhlten Koordinatensystem zu Null addieren, wihrend sich ihre
Anwesenheit durch die elektrodynamischen Krifte verrit.

In diesen Verhiltnissen liegt der Grund, warum die traditionelle
Definition der elektrischen Feldlinien den physikalischen Gegeben-
heiten nicht voll entspricht. Diesem Mangel wird abgeholfen, wenn
man die Feldlinien des Coulombschen Feldes ruhender oder gleich-
formig bewegter Ladungen trotz der Anwesenheit anderer Ladungen
als radial von den einzelnen Elementarladungen ausgehend und von
thnen mitgefiihrt, jene der transversalen elektrischen Wellen als senk-
recht auf der Fortpflanzungsrichtung stehend und mit Lichtgeschwin-
digkeit bewegt denkt. Die so definierten Feldlinien werden also durch
die Anwesenheit anderer Ladungen nicht deformiert. Dies gilt auch
von der Einheitsladung, mit der die Felder ausgemessen werden. Wie
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die von Milliarden Lichtquellen ausgestrahlten, nicht kohirenten trans-
versalen Lichtwellen durch den gleichen Punkt gehen konnen, ohne
miteinander zu interferieren, so bedeutet es keine Denkschwierigkeit,
wenn sich die von den einzelnen Elementarladungen ausgehenden
Feldlinien in den Punkten des Raumes ungestort kreuzen.

Im Lichte der Quantenphysik haben die so definierten Feldlinien
folgende Bedeutung. Im Falle des Coulombschen Feldes stellen sie
Linien dar, fiir welche die longitudinalen von der Elementarladung
ausgehenden und die Coulombschen Krifte zwischen den elektrischen
Ladungen vermittelnden Wellen oder im Teilchenbild ausgedriickt
die longitudinalen Photonen tangentiale Lage haben. Im Fall des
transversalen Wellenfeldes gilt diese Eigenschaft beziiglich der
Schwingungsrichtung der transversalen Photonen.

Wir wollen nun Form und Verteilung dieser Feldlinien finden. Fig. 5
stellt die Verhaltnisse fiir das Coulombsche Feld einer gleichformig
bewegten Elementarladung dar. Eine solche bewege sich mit der kon-

stanten Geschwindigkeit u auf der x-Achse, die zugleich x’-Achse sei.
Im Zeitpunkt, wo sich die Elementarladung in A  befindet, mdogen
die Koordinatenurspriinge beider Systeme mit A zusammenfallen. In
diesem Moment sende sie ein longitudinales Photon aus und zwar in
einer Richtung, die in threm Ruhesystem in der x'y’-Ebene liegt und
mit der x’-Achse den Winkel ¢ bildet. Das Photon sei modellmiig
durch einen kleinen Pfeil dargestellt. Fiir die Richtung ¢’ gilt die
Gleichung

Cy
tg@’i% =

wobei ¢, und c; die Komponenten der Lichtgeschwindigkeit des Pho-
tons sind. Im ungestrichenen System bildet die Richtung des Photon-
pfeiles infolge der Lorentz-Kontraktion mit der x-Achse den Winkel o,
der durch die Beziehung

y y’ tg @
tg@:iz u - o

% /‘1_: /’1ﬂ—
\’ €= \ G*

bestimmt ist. Die Geschwindigkeit, mit der sich das Photon bewegt,
hat aber nicht mehr diese Richtung, sondern sie besitzt nach dem
Additionstheorem der Geschwindigkeiten die Komponenten



mit td+ol=p",

Nach Gl. 22a und Fig. 4 ist im ungestrlchenen System die Richtung
der Photonenpfeile gleich der Rlchtung von 1, jene ithrer Fortpflan-
zung gleich der Richtung von r=ct,. Nach der Zeit t, kommt das

im Moment t = O vom Punkte A, in der Richtung von ;:) ausgesandte
Photon im Punkt P, an, wiahrend die Elementarladung infolge ihrer
konstanten Geschwindigkeit den Punkt B, — A, erreicht (Fig. 5). In
A, sende die Ladung wiederum ein gleichgerichtetes longitudinales
Photon aus, das sich auf der Geraden A Q, fortpflanzt. Wihrend der
Zeit At = t; bewegt sich dieses Photon nach dem Punkt P, und das
von A, ausgesandte Photon von P, nach O, ; usw. Auf diese Weise

02

AA A, A, B, ¢ As

Fig. 5. Fig. 6.
Feldbild der gleichférmig Feldbild der beschleunigten Elementarladung.
bewegten Elementarladung.

erhalten wir die zu den Punktlagen A, A,, A,, ... der Elementarladung
gehorenden Geraden A P,, A,Q,, A;R,, ..., auf denen die Photonen
liegen. Diese Geraden sind daher nichts anderes als die sich folgenden
Momentanbilder der zu den dargestellten longitudinalen Photonen ge-
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horenden Coulombschen Feldlinie, die sich mit der Geschwindigkeit
der unbeschleunigten Elementarladung mitbewegt.

Im Fall der ungleichformig bewegten Elementarladung sind die Cou-
lombschen Feldlinien nicht mehr Geraden. In Fig. 6 ist der Spezial-
fall dargestellt, wo die zuerst in A, ruhende Elementarladung lings
der x-Achse konstant beschleunigt wird und zur Zeit t, die Punkt-
lagen A, einnimmt. Man beachte, dal3 Punkt B, jener Punkt ist, den
die Elementarladung beim Eintreffen der von ihr in A, ausgesandten
elektrischen Wirkung in P, erreichen wiirde, wenn sie sich von A, aus
mit der in diesem Punkte innegehabten Geschwindigkeit gleichférmig
weiterbewegte. Nach Gl. 22a und Fig. 6 1iBt sich die Richtung des
longitudinalen Photons in P, bestimmen. Dieses Photon bewegt sich
auf der Geraden A;Q,. Auf gleiche Weise geht man fiir die tibrigen
longitudinalen Photonen vor. Die in Fig. 6 eingezeichneten Photonen
stellen Tangenten an den Linien A P,, A, P, A,Q ., A;R,, ... dar. Diese
sind daher die Momentanbilder der zu den genannten Photonen ge-
horenden, von der beschleunigten Elementarladung ausgehenden Cou-
lombschen Feldlinie. In Fig. 6 sind auch fiir die Momente t, und t;
die Feldlinien der von A, im Zeitpunkt t, ausgesandten kugelférmigen
Transversalwelle eingezeichnet. Sie sind nach Gl. 22b Meridiane, die
von dem auf der positiven Seite der x-Achse liegenden Pol nach dem
Gegenpol weisen. In den Polen selbst ist die Feldstirke der trans-
versalen Welle gleich Null. Im allgemeinen Fall, wo Momentan-
geschwindigkeit und Beschleunigung der Elementarladung verschie-
dene Richtung haben, werden die in Iig. 6 dargestellten FFeldlinien
noch riumlich gekriimmt.

0’

5. Das magnetische Feld und die Maxwellschen Gleichungen

a) Die magnetische Feldstdirke

Die GI. 11 fiir die Lorentz-Feldstirke enthilt den Ausdruck g X E,
der in der klassischen Elektronentheorie die magnetische Feldstirke

eines mit der konstanten Geschwindigkeit u bewegten und geladenen
Teilchens bedeutet!. Ist die felderzeugende Elementarladung be-
schleunigt, so finden wir als entsprechenden Ausdruck in Gl. 24

1 R. BEckKER : Theorie der Elektrizitit 1957 Bd. I, 189.
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r = - ; . y y
. B, der nach der klassischen Theorie wiederum die magnetische

Feldstirke ausdriickt *. Wenn auch wir

H:;I:XE (26)

definieren, so miussen wir uns bewullt sein, dal3 dies im Lichte der
dargelegten Theorie eine rein formale Angelegenheit i1st, dal3 daher die
eingefiihrte magnetische Feldstirke eine blofe Hilfsgrofie darstellt, der
als solcher keine physikalische Realitdt entspricht, da uns kein innerer
Grund zur Einfithrung des neuen Begriffes zwingt. Darauf weist schon
der Umstand hin, dall wir das elektrische FFeld einer gleichférmig oder
beliebig bewegten Elementarladung ableiten konnten, ohne das ma-
gnetische Feld auch nur mit einem Worte zu erwdhnen. Ferner hangt
die magnetische Feldstiarke derart von der Relativgeschwindigkeit des
Beobachters ab, dal} sie im Ruhesystem der felderzeugenden Ladung
ganz verschwindet, wihrend dies bei der Coulombschen Feldstarke
nicht der Fall ist. Der formale Charakter des magnetischen Feldes
wird uns auch deutlich, wenn wir beachten, dall dessen Einfiihrung
die Aufteilung der in den relativistischen Transformationsformeln je
fiir sich eine Einheit bildenden Ausdriicke

Ux v Uy V u; v

2

g ' R T et

e —

. § % u Vv = . . i .
in die zwel Faktoren c und C voraussetzt, wie dies der Beweis fiir die

Gl. 11 zeigt. Wenn schon nach Einstein die von ithm elektromotorische

— — \

Kraft genannte Lorentz-Feldstirke El = Z x (; x }_f) nur die Rolle

eines Hilfsbegriffes spielt, wie wir in der Einleitung sahen, so gilt dies
umso mehr von der magnetischen Feldstarke, die in der entwickelten
Theorie nur eine andere Bezeichnung fiir den in der Gleichung der

-

Lorentz-Feldstirke vorkommenden Ausdruck E x E darstellt. Da die

magnetische Induktion B durch riumliche Mittelwertbildung iiber die
elementaren magnetischen Feldstirken gewonnen werden kann, ist
auch sie eine reine HilfsgroBe. Wenn aber das magnetische Feld als
solches nicht existiert, so ist auch die Frage nach seinen realen Quellen
gegenstandslos. Damit hat das IFehlen von magnetischen Ladungen

I R. BEckER : Theorie der Elektrizitit 1957 Bd. I, 204.
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die natiirliche Erklirung gefunden. Das magnetische Moment der Ele-
mentarteilchen ist daher auf die Eigenbewegung der nicht streng punkt-
formigen Elementarteilchen zuriickzufiihren. Im besondern weist das
magnetische Moment des Neutrons auf eine ungleichmiBige Verteilung
der in ihm enthaltenen positiven und negativen Elementarladung hin.

Diese prinzipiellen Uberlegungen wollen der Niitzlichkeit der ma-
gnetischen FeldgroBen keinen Eintrag tun, die darin besteht, dall der
in den praktischen Fillen auBerordentlich komplizierte Ausdruck

e

N ; x E durch meBbare Grolen ersetzt wird.

Um mit Hilfe der dargelegten Theorie zum elektromagnetischen Feld-
tensor zu gelangen, brauchen wir aus ihr nur die fiir diesen schiefsym-
metrischen Tensor zweiter Stufe charakteristischen Transformations-

formeln abzuleiten. Zu diesem Zwecke wihlen wir v parallel zur x-Achse
und setzen Gl. 26 in Gl. 24 ein. Durch Anwendung von Gl. 3 erhalten
wir die mit Gl. 1 identischen Transformationsformeln der elektrischen
Feldstirke :

E;=E;
Ey = Viﬁ{ﬁ (Ey — BH,) , (27)
E; = ! E H

% 17(‘“_*32“ ( z + B Y) .

Um die entsprechenden Formeln fiir das magnetische Feld abzuleiten,

—

ersetzen wir in Gl. 26 ; durch 2 (cf. Gl. 24), betrachten die magnetische

Feldstirke im Ruhesystem der Einheitsladung und transformieren in
den so erhaltenen Gleichungen mit Hilfe des Additionstheorems der
Geschwindigkeiten und mit Gl. 3 die Grofen der rechten Seite auf
das ungestrichene System. Es ergeben sich auf diese Weise die Trans-
formationsgleichungen fiir die magnetische Feldstarke :

H;C = HX 3

’ 1 < 9
Hy =~ g (Hy + BB, (28)
H = 1 H E

z_”‘vﬂl‘—ﬁz( Z_B Y)'

Die Gleichungen 27 und 28 stellen die in dreidimensionaler Form ge-
schriebenen Transformationsgleichungen des elektromagnetischen Feld-
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tensors dar, der somit abgeleitet ist. Dieser Tensor fafit die elektro-

magnetischen Feldgréfen zu einer mathematischen Einheit zusammen,
die ihren Grund in der Einfithrung der durch Gl. 26 definierten Hilfs-

grole H hat. Zum gleichen Tensor fiihren bekanntlich die Maxwell-
schen Gleichungen. Das weist darauf hin, dall auch diese in der dar-
gelegten Theorie enthalten sind.

b) Ableitung der Maxwellschen Gleichungen

Wenn man die Raumladungsdichte p einfiihrt, so folgt aus dem
Coulombschen Gesetz die Maxwellsche Gleichung

divE=-4rp.

Bildet man von dem durch Gl. 17 definierten Vektorpotential die Rota-
tion, so erhilt man aus Gl. 21¢ mit bekannten Methoden !

- = —

— eu T =
rot A = rot | — =-x E .
&8s &

Unter Berticksichtigung von Gl. 26 1ist also H als Rotation des
Vektors A darstellbar. Darum gilt die Maxwellsche Gleichung

divH =0,

Nach GI. 18 1st der Ausdruck — (E + 8 A) der Gradient des Skalars

i

O] =

¢ ; daher verschwindet seine Rotation :

rot (E Jr1
i

Da sich Gl. 26 auch aus den Maxwellschen Gleichungen ableiten 140t 1,
enthalt sie die letzte Maxwellsche Gleichung 2

1 R. BECKER : Theorie der Elektrizitit 1957 Bd. I, 204 und 1933 Bd. II, 64 ff.
2 Cf. Anmerkung 2 auf folgender Seite.



— 190 —

Durch Einsetzen von Gl 26 in GIl. 24 erhalten wir die Gleichung

—)
_p —

-~ E+ — x H. Aus ihr ergibt sich die Lorentz-Kraft

K (E =% H) und das Induktionsgesetz fiir bewegte Leiter, die

beide in der Maxwellschen Theorie Fremdkorper darstellen.
Abschliefend sel bemerkt, daBl jene drei Maxwellschen Gleichungen,

in denen die HilfsgroBe H vorkommt, logischerweise nicht als Grund-
gleichungen anzusehen sind. Die iibrige Maxwellsche Gleichung um-
schreibt die Tatsache, dal3 die elektrische Ladung Quelle des Cou-
lombschen Feldes ist. Diese Tatsache bildet zusammen mit den Prinzi-
pien der speziellen Relativitiatstheorie die Grundlage der Elektro-
dynamik 1.

SUMMARY

In the paper « On the Basis of Electrodynamics », a way other than the usual
one has been followed for the explanation of facts concerning electrodynamics.
This way leads to a deeper knowledge of the nature of electrodynamic pheno-
mena. It has namely been possible to show three-dimensionally that the only
cause for electric effects is the lorentz-invariant elementary charge with its
Coulomb field, and that the laws of electrodynamics, including the Maxwell
equations, can be deduced from the above physical fact using the Lorentz trans-
formation of the theory of relativity.

This introduces the following results: for the unaccelerated charge the
equations 6, 11 and 12, and for a charge moving in any manner the equations
22, 23, and 24 which express the electric field strengths that are generated by
the elementary charge and that act upon unit charges at rest or in motion. These
equations have been deduced without invoking in any way the magnetic field.

The discussion about the field generated by several elementary charges leads
to a corresponding definition of the electric field lines (See pages 183/186).

In order to discover the connection between the present theory and the
Maxwell theory, the magnetic field strength has been defined through equation
26. It must be noted, however, that this entity as well as the other magnetic
quantities proved to be merely auxiliary conceptions to which no physical
reality can be attributed as such (See page 187).

1 Die Anwendbarkeit der dargelegten Methoden auf das Gravitationsfeld wird in
einer weiteren Arbeit untersucht werden.
® Fur die gleichformig bewegte Elementarladung laf3t sich die vierte Maxwellsche

Gleichung aus GIl. 26 unter Beriicksichtigung, dal3 in diesem Fall PxE=24E ist
T c
durch Rotorbildung direkt und leicht ableiten.
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