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Zur Grundlage der Elektrodynamik

von P. Siegfried Hotz
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1. Problem und Programm

Allgemein werden der deduktiven Darstellungsart der klassischen

Elektrodynamik die vier Maxwellschen Gleichungen zugrunde gelegt,
deren Feldgrößen in der Relativitätstheorie die formale Einheit des

vierdimensionalen elektromagnetischen Feldtensors bilden. Die
relativistischen Transformationsformeln für den elektrischen Anteil dieses

Tensors lauten im Vakuum und in dreidimensionaler Schreibweise :

F' - F*-x -t-x i

E-^vT=F(Ey~ßHz)' (1)

Zu diesem Gleichungssystem bemerkt Einstein in seiner grundlegenden
Arbeit1 : « Ist ein punktförmiger elektrischer Einheitspol in einem
elektromagnetischen Felde bewegt, so ist die auf ihn wirkende Kraft gleich
der an dem Orte des Einheitspoles vorhandenen elektrischen Kraft
(E'), welche man durch Transformation des Feldes auf ein relativ zum

1 A. Einstein : Zur Elektrodynamik bewegter Körper. Ann. d. Physik 17, 910, 1905.
Die in Klammern stehenden Ausdrücke sind im Originaltext nicht vorhanden.
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elektrischen Einheitspol ruhendes Koordinatensystem erhält ». « Man

sieht, daß in der entwickelten Theorie die elektromotorische Kraft

- x Hl nur die Rolle eines Hilfsbegriffes spielt, welcher seine

Einführung dem Umstände verdankt, daß die elektrischen und magnetischen

Kräfte keine von dem Bewegungszustande des Koordinatensystems

unabhängige Existenz besitzen. » Da diese Hilfskraft im
Ruhesystem der Einheitsladung verschwindet, und da in ihm nur die Cou-
lombsche Feldstärke wirkt, liegt der Gedanke nahe, als Grundgesetz
der gesamten Elektrizitätslehre die Kraftgleichung zwischen ruhenden

Ladungen anzunehmen. Alle elektrischen Ladungen sind aber
ganzzahlige Vielfache der Elementarladung. Dieser Tatsache schenken wir
von Anfang an die gebührende Beachtung, wenn wir die vorerst als

punktförmig betrachtete und im Vakuum sich befindende Elementarladung

als Quelle des elektrischen Feldes einführen.
Im folgenden wird nun gezeigt, daß die einzige Ursache der sich mit

Lichtgeschwindigkeit fortpflanzenden elektrischen Wirkungen die lorentz-
invariante Elementarladung mit ihrem Coulombschen Felde ist, und daß
sich die Gesetze der Elektrodynamik mit Einschluß der Maxwellschen

Gleichungen aus dieser physikalischen Gegebenheit mit Hilfe der Lorentz-

Transformation der Relativitätstheorie ableiten lassen.

Ruht die Elementarladung e bezüglich des Beobachters, befinden wir
uns also in ihrem Ruhesystem, das immer als gestrichenes System
bezeichnet wird, so besitzt ihr elektrostatisches Feld nach dem Coulombschen

Gesetz die Feldstärke

E' -% (2a)

Daraus folgt das skalare Potential

9'-p- (2b)

Die Aequipotentialflächen sind konzentrisch um die Elementarladung
gelegte Kugel flächen mit dem Radius

r'2 x'2 + y'2 + z'2

Um das Feld der bewegten Elementarladung behandeln zu können,
wollen wir die Transformationsformeln für Kräfte aus rein mechanischen
Überlegungen ableiten. Man erhält z. B. mit Hilfe des Tolmanschen
Gedankenexperimentes 1 die relativistische Kraftgleichung

1 G. Joos : Lehrbuch der theoretischen Physik 1942, S. 224 f.
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K dmv
dt dt yi — ßa

'

Es sei K' die Kraft im Ruhesystem des Probekörpers, der im folgenden
immer die elektrische Einheitsladung sein wird, und t seine Eigenzeit,
für welche die Transformationsgleichung

dr Vi - ß2 dt

gilt. Für den uns interessierenden Fall, daß die Relativgeschwindigkeit

v parallel zur positiven x-Achse liegt, ist infolge des Additionstheorems

der Geschwindigkeiten

v + dvx
dVx + J (1 - ß2) dv'+v,V uvv

also dvx (l - ß2) dvx

Die Transformationsgleichung für die x-Komponente der Kraft lautet
daher :

K - m° ËÏÏ - m ÉÏÏ _ K'lvx — 3 ji ~ IIlo ~3 — rvxyi _ ßa3 dt dT

Längs der x-Achse wirkt also auf den Probekörper im bewegten System
die gleiche Kraft wie im Ruhesystem.

Bei der Transformation von dvy auf das ungestrichene System gilt
als Folge des Additionstheorems der Geschwindigkeiten die Formel

v dvx
v r y

Für die y-Komponente der Kraft finden wir somit die
Transformationsgleichung

T_ m0 dvT dvyK^ FT^W ~à* m°vl -ß2 ~&= Vi ~ß2 K**

Auf gleiche Weise erhält man

kz yi-ß2K£.
Es ergibt sich also die Kraft K, die in einem Koordinatensystem
gemessen wird, gegen das sich der Probekörper mit der Geschwindigkeit

v längs der x-Achse bewegt, aus der im Ruhesystem wirkenden

Kraft K' auf Grund der Formeln

Kx Kx ; Ky vT^F Ky ; Kz */T^F Ki (3)
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Das Relativitätsprinzip fordert, daß dieses Transformationsgesetz für
alle Kräfte gilt, gleich welcher Herkunft sie sind. Es ist daher auch
auf die elektrischen Kräfte und deshalb auch auf die elektrische
Feldstärke anwendbar, die sich durch Division der elektrischen Kraft mit
der lorentz-invarianten elektrischen Ladung ergibt.

2. Das Feld der gleichförmig bewegten Elementarladung

a) Das Coulombsche Feld

Die Prinzipien der speziellen Relativitätstheorie führen auf die
Lorentz-Kontraktion, nach der sich die Abmessungen eines bezüglich
des Beobachters bewegten Systems in der zur Relativgeschwindigkeit

u parallelen Richtung um den Faktor

vA — yi — ß2 verkürzen.
c

Die kugelsymmetrischen Aequipotentialflächen der ruhenden Ladung
werden durch die Relativbewegung zu Flächen eines Rotationsellip-
soides mit einer in der Bewegungsrichtung liegenden verkürzten Hauptachse

abgeplattet (Fig. 1). Diese Flächen bleiben Aequipotentialflächen
für Ladungen, die sich mit der gleichen Geschwindigkeit wie die
felderzeugende Ladung bewegen, da sich ja die Ladungen auf einer
bewegten geladenen Metallkugel nicht verschieben. Wenn wir die x-Achse
unseres Bezugssystems in die Richtung der Relativgeschwindigkeit
legen, und wenn r' der Radius einer Potentialfläche im Ruhesystem
der Ladung ist, so hat die Fläche des entsprechenden Rotationsellip-
soides die auf den Koordinatenachsen liegenden Hauptachsen

s r' V'l -ß2 ; r'; r' (4)

Die Fläche selbst, die wir s -Fläche nennen wollen, gehorcht der Glei-

chung
X2 v2 z2il l (5a)r'2 (1 -- ß2) r'2 r'2

oder x2 + (1 - ß2) (y2 + z2) s2. (5b)

Die Verteilung der Coulombschen Feldlinien einer bewegten
Elementarladung bleibt im ungestrichenen System infolge der Lorentz-
Kontraktion nicht mehr kugelsymmetrisch. Die Feldlinien bewahren
zwar die radiale Richtung, aber ihre Dichte nimmt gegen die zur
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P(o,rlo)=Pïo,r',ol

P(s,o,o) P'Cr',o,o3

Fig- 2

Lorentz-Kontraktion des Coulombschen
Feldes einer gleichförmig bewegten Ele¬

mentarladung.

Fig. 1

Bewegungsrichtung senkrechten Aequatorebene hin zu (Fig. 1). Doch
verändert sich dabei ihre Anzahl 4 tt e nicht. Das folgt aus der
Invarianz der Elementarladung und des von ihr erzeugten Kraft flusses
4 ti e gegenüber Lorentz-Transformation. Daher bleibt auch im Falle
der bewegten Elementarladung die Dichte der Feldlinien ein Maß für
die Coulombsche Feldstärke.

Da die Coulombschen Feldlinien und daher auch die Coulombsche
Feldstärke im ungestrichenen System die radiale Richtung beibehalten,
so gilt im Punkte P (x, y, z)

Ex : Ey : Ez x : y : z

Oder Ex k x ; Ey k y ; Ez k z

wenn sich die Elementarladung im Punkte P (o, o, o) befindet. Zur
Bestimmung der Konstante k für die Punkte einer s-Fläche genügt
es, ihren Wert für einen dieser Punkte zu finden. Aus Fig. 2 ergibt
sich, daß die Coulombsche Feldstärke in P (s, o, o) des ungestrichenen
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Systems gleich derjenigen im entsprechenden Punkt P' (r', o, o) des

Ruhesystems ist, da ja in beiden Punkten dieselbe Feldliniendichte
herrscht. Es ist also

E (s, o, o) E' (r', o, o)

Nun aber gilt
E' (r', c

v e

und laut Lorentz-Kontraktion

s2 (1 - ß2) r'2

Daher erhalten wir

E (s, o, o) - (1 - n } - d -ß2)
e
S33

oder, da im Punkte P (s, o, o) s x ist,

E (x, o, o) - (1 - ß2)J*

und k= (1--Mp.
Deshalb lautet die Coulombsche Feldstärke, d. h. die auf eine ruhende

Einheitsladung wirkende elektrische Kraft, in den Punkten einer
s-Fläche (cf. Fig. 2)

E=(l-ß')gr= ,— ;*£,?¦ (6)

v/^r
b) Die dynamische Feldstärke und die Lorentz-Feidstärke

Dynamische Feldstärke Ed wollen wir die elektrische Kraft nennen,
die im ungestrichenen System auf eine relativ zu ihm mit der

Geschwindigkeit v bewegten positiven Einheitsladung wirkt. Die Differenz

zwischen der dynamischen und der Coulombschen Feldstärke

heiße Lorentz-Feidstärke : Ej Ed — E.
Im Spezialfall, daß Elementarladung und Einheitsladung die gleiche

Relativgeschwindigkeit haben, muß Ed senkrecht auf den abgeplatteten

Aequipotentialflächen der Fig. 1 stehen, und es läßt sich zeigen,

daß E, eine bezüglich der Relativgeschwindigkeit senkrechte Lage
besitzt.
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Wir wollen uns aber sogleich mit dem allgemeinen Fall befassen,

wo die Geschwindigkeit v der Einheitsladung und die Geschwindigkeit

u der Elementarladung verschiedene Richtung haben. Die
Ableitung der Lorentz-Feldstärke vereinfacht sich, wenn wir die x-Achse

und die mit ihr zusammenfallende x'-Achse parallel zu v und die

y-Achse so wählen, daß die Bahn der Elementarladung in die xy-Ebene
zu liegen kommt, daß also uz O ist. In Fig. 3 bewegt sich die

Elementarladung im ungestrichenen System auf der Geraden durch A1
und A2, während sich die Einheitsladung momentan im Punkte B
befindet.

Um die Lorentz-Feldstärke E, zu bestimmen, verwenden wir die

Transformationsgleichungen für Kräfte (Gl. 3). Mit ihnen läßt sich

der Zusammenhang zwischen der dynamischen Feldstärke Ed E + E[

im ungestrichenen System und der elektrischen Kraft E' ausdrücken,
die im Ruhesystem der Einheitsladung auf diese wirkt und daher eine
Coulombsche Feldstärke ist. Dabei geht folgendes Gleichungssystem
hervor :

Ex + Elx Ex

Ey + Ely y/l-^Ey, (7a)

ïu - y/i -E. + Ei, t/i-ï-E£

Es stellt sich vorerst die Aufgabe, E' zu berechnen. Da E' eine
Coulombsche Feldstärke ist, gilt für sie die Gl. 6, wobei bemerkt sei, daß
für eine bestimmte Lage der Einheitsladung die s-Fläche im
ungestrichenen System das gleiche r' besitzt wie die entsprechende s-Fläche
im gestrichenen System, weil infolge unserer Wahl des Koordinatensystems

uz 0 ist, und sich somit laut Gl. 4 die parallel zur z-Achse

liegende Hauptachse der s-Fläche nicht verändert. Ferner seien die
Komponenten des von der Elementarladung nach der Einheitsladung
hinweisenden Fahrstrahles r im ungestrichenen System mit Ax, Ay,
Az, im gestrichenen mit Ax', Ay', Az' bezeichnet, und es bedeute u'
die Geschwindigkeit der Elementarladung im Ruhesystem der

Einheitsladung. Nach diesen Angaben ersetzen wir in Gl. 7a E' durch Gl. 6

und erhalten
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Ex + Elx ,J _ J-, Ax'

0-S"
\AJ*, ^ pi A/ (ft)

E, + E|2 -7, Az'

0-5
Wir müssen nun die Größen u', Ax', Ay' und Az' auf das ungestrichene
System transformieren.

Nach dem Additionstheorem der Geschwindigkeiten gilt für unseren
Fall:

ux-v UV c2

1 _ Ux v i Ux v
c2 c2

u', 0

und u'2 ux2 + uy2.

Daraus folgt die Gleichung

1 u*v
1 c2

/ u'2 /, V2 / u2
(8)

Die Transformation von Ax', Ay' und Az' geschehe unter den
folgenden, in Fig. 3 dargestellten Bedingungen. Der Koordinatenursprung
des gestrichenen Systems falle zur Zeit t' O mit dem des
ungestrichenen zur Zeit t O zusammen. Es befinde sich in diesem
Zeitpunkt die Einheitsladung im Punkte B B' der yz-Ebene, so daß

tb t'b 0 ist. Im Zeitpunkt t' O herrsche zwischen der Lage B'
der Einheitsladung und jener Aj der Elementarladung Gleichzeitigkeit.
Es gilt also t'Rl O. Im ungestrichenen System entspricht der Lage A^
laut Lorentz-Transformation die Punktlage Ax mit

xai —ß= (9a)
/ V2
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Zi Aal

\/*
(9b)

Da für den in Fig. 3 dargestellten Fall xal und daher auch tal negativ
sind, so befand sich die Elementarladung in einem um tal früheren
Zeitpunkt in Ax als die Einheitsladung in B. Im ungestrichenen System

B=B

i

Ay

ÛX

üAf
Ay'u„A

Ax
A\iM

x,

x x'

Fig. 3. Zur Ableitung der elektrischen Feldstärke, die von der sich im ungestrichenen

System auf der Geraden AXA2 mit der Geschwindigkeit u bewegenden Elementarladung

erzeugt wird und die auf die sich momentan im Punkte B befindliche, mit der

Geschwindigkeit v bewegte Einheitsladung wirkt.

besteht daher Gleichzeitigkeit zwischen der Lage der Elementarladung
und jener der Einheitsladung für die um At - tal spätere Punktlage

A2 der Elementarladung. Man erhält A2, indem man zur Lage Aj
den Vektor u At anfügt. Zur Zeit tb
Gl. 9 die folgenden Beziehungen :

tb 0 gelten laut Fig. 3 und

Ax' - xfu — xal i/1

Ax — xa2 — xal — uxAt — (9c)
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und durch Elimination von xa.

v/ !_X!

ferner

Ax Ax ; (10a)
1 u*v

c2

Ay' Ay + Uy At Ay —
c-

und durch Ersetzen von xal nach Gl. 9c

Ay' Ay + Ax (10b)
ux v v '

Da bezüglich der z-Achse keine Relativbewegung stattfindet, ist

Az' Az (10c)

Wir setzen nun Gl. 8 und Gl. 10 in Gl. 7b ein und erhalten

l e
Ex + Eix — -,: Ax Ex

/ u2 C-

|C UX V Uy V
Ey + Ely Ey - —j- Ey + -^- EX

i-Zz -r iZ.\z — Ü.Z « l^z -

c2

Daraus folgen die Gleichungen für die Lorentz-Feldstärke :

E, O • E, -"xZe- — E * E, - _ "^ Ec-lx - *-* r-ly -5- -c-x
c2 r-j r-lz - c2

£-z

oder in Vektordarstellung :

% - | x (| x È) (11)

Für die dynamische Feldstärke erhält man

Éd Ê + -x/-xÊj. (12)

In Gl. 11 und Gl. 12 ergeben sich die Lorentz-Feldstärke und die
dynamische Feldstärke als Funktion der von der mit der konstanten
Relativgeschwindigkeit u bewegten Elementarladung erzeugten und mitge-
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führten und vom ruhenden Beobachter festgestellten Coulombschen

Feldstärke E, der Geschwindigkeit u und der bezüglich des gleichen

Beobachters bestehenden Geschwindigkeit v der Einheitsladung, auf

die die Feldstärken Ej und Ed einwirken.

3. Das Feld der beliebig bewegten Elementarladung

Bei der Berechnung des Feldes der beschleunigten Elementarladung
gehen wir von der in der Einleitung ausgesprochenen Tatsache aus,
daß sich die elektrischen Wirkungen mit Lichtgeschwindigkeit, d. h.

unbeschleunigt fortpflanzen. Wir haben beim Feld der unbeschleunigten

Ladung gesehen, daß diese Wirkungen durch den Bewegungszustand

der aussendenden Ladung mitbestimmt sind. Die diesbezüglichen

Formeln haben eine so einfache Gestalt, weil die Geschwindigkeit

der Elementarladung bei der Emission gleich ihrer Geschwindigkeit

beim Eintreffen der elektrischen Wirkung im Aufpunkt geblieben
ist. Bei der beschleunigten Elementarladung trifft dies nun nicht mehr
zu. Um den Zusammenhang zwischen Ursache und Wirkung
herzustellen, müssen wir daher in diesem Falle die elektrischen Feldgrößen
als Funktion des Ortes und der Geschwindigkeit, welche die Ladung
im Zeitpunkt ihrer Emission besaß, ausdrücken. Es ist zweckmäßig,
zuerst die entsprechenden Formeln für die unbeschleunigte Elementarladung

mit Hilfe der elektrischen Potentiale abzuleiten.

a) Die Potentialgleichungen für das von der gleichförmig bewegten

Elementarladung erzeugte Coulombsche Feld

Ist die Geschwindigkeit u der Elementarladung in der x-Achse
gelegen, so lautet die y-Komponente der Coulombschen Feldstärke im
Punkte P (o, y, o) nach Gl. 6 und Gl. 5a

*/• u2 y
c"2

Im gleichen Punkt erhält man unter Berücksichtigung von Gl. 5b für
das skalare Potential cp den Ausdruck

1 e e

•/' u2y s

c2

(13a)
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Da für eine bestimmte s-Fläche s und e konstant sind, haben wir
somit das skalare Potential auf der ganzen Fläche gefunden und dürfen
nach Gl. 5b schreiben :

e

S- !~5)
(13b)

Um aus diesem Potentialausdruck die Coulombsche Feldstärke E

zu berechnen, muß man zu dessen Gradient ein Zusatzglied Z
beifügen, so daß folgender Ausdruck erhalten wird :

E — grad9 + Z (14)

Die y- und z-Komponenten von Z sind gleich Null, da sich die

Beziehungen — -^ ET und — -F- Ez ergeben.° oy J ex

Daher ist

Es gilt aber mit Rücksicht darauf, daß uy uz O ist,

09 c(p ccp 09
u gi au 9 ux

und somit

u grad cp ux -

<?x dy cz ex

Z — u u erad 9c2

Da Z die Richtung von u hat, erhalten wir die Vektorbeziehung

Z -2 u (ugradcp) (15)

Die Feldfunktion cp (x, y, z, t) gehört zu einer gleichförmig bewegten
Elementarladung und wird mit der gleichen konstanten Geschwindigkeit

mitgeführt. Deshalb hat sie zur Zeit t am Orte x, y, z denselben

Wert, welchen sie zur Zeit t - dt an der Stelle x-uxdt, y-uydt,
z - uz dt gehabt hat. Es gilt also die Identität

9 (x, y, z, t) =9 (x-uxdt, y-Uydt, z-uzdt, t-dt)
Daraus folgt

09 / êq> c<a crû
Fr - ux -£ + Uy -Ï + uzJz
cx \ ox J dy oz

oder in Vektorschreibweise

— =-ugrad9. (16)
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Setzen wir diesen Ausdruck in Gl. 15 ein und nehmen wir die Konstante

- unter das Differentialzeichen, so erhalten wir
c

a e~ 9
1 — iSl.c et

Der mit cp dimensionsgleiche, aber vektorielle Ausdruck

A =l<f (17)

wird Vektorpotential genannt. Nach Gl. 14 erhält man für die
Coulombsche Feldstärke einer bewegten Elementarladung die Gleichung

Ë--gradÇ-i^. (18)

b) Die retardierten Potentiale

Die Formel 9 | e

^
(cf. Gl. 13)

Vx, + (1-S) (y2"z2)

beschreibt das skalare Potential im Aufpunkt P(x, y, z, t) im
Zeitpunkt t, wo die gleichförmig bewegte Elementarladung gerade durch
den Koordinatenursprung B(o, o, o, t) geht. Wir suchen nun das ska-

P(x,y,z,M

r c

Fig. 4. Zur Ableitung der
retardierten Potentiale.

A C-uf,,0,0,1-1,) B(o,o,o,h

lare Potential als Funktion des Abstandes r, den die Elementarladung
zur Zeit der Emission ihrer elektrodynamischen Wirkung vom
Aufpunkt besaß, d. h. zur Zeit t — tj t— (cf. Fig. 4).
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Nach Gl. 5b und Fig. 4 läßt sich s folgendermaßen umformen

u
x2 + y2 + z2-^ (y2 + z2) r2-(r0 x ^ J (19)

c-

Aus Fig. 4 ergibt sich T0 =F~ r - (20)

und r0 x u r x u

Es gilt daher (r0 x u) 2 (7 x u) 2 r2 u2 - (r uj 2.

Setzt man diese Ausdrücke in Gl. 19 ein, so erhält man die Formel

2 I ™s2 r
\ c

in der s als Funktion des Abstandes und der Geschwindigkeit, welche

die Elementarladung zur Zeit t — besaß, dargestellt ist.

Somit folgen das retardierte skalare Potential

9t ^j (2la)
rur_"rHL c J t —

und das retardierte Vektorpotential

*•-: r u
r

— c-

(21b)

c) Berechnung des Feldes der beschleunigten Elementarladung

Wir schreiben die Gl. 21 in der Form

* » ©* und Ä » fé), (21C)

mit den Abkürzungen s r — — und t t — - und setzen sie in die
c c

Gl. 18 ein, die zwar für gleichförmig bewegte Ladungen abgeleitet
wurde, die aber auch auf eine beschleunigte Elementarladung anwendbar

ist, wenn wir deren Ort und deren Geschwindigkeit im Zeitpunkt t
der Emission der elektrischen Wirkung in Rechnung setzen, wie dies

tatsächlich durch die retardierten Potentiale geschieht. Die Beschleunigung

geht durch die zeitliche Ableitung des Vektorpotentials in die
Formel ein. Auf diese Weise erhalten wir
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Tt e e u o' s e d uE -r grad s -i—s—= s —-
s2 8 c2 s2 S t c2 s <9 t

Nach bekannten Methoden 1 lassen sich die Ausdrücke grad s, 7— und° dt
— für die Lage der Elementarladung zur Zeit t berechnen. Es ergibt

sich folgende Gleichung mit u*
o U

F~x

1 - i (7~r z) (* -1)+ zh7x [ {7~r z)x "• ] * (22)

Alle auf der rechten Seite auftretenden Größen gelten für die Lage

der Elementarladung zur Zeit t t — während E für den

Zeitpunkt t erhalten wird.
Das durch Gl. 22 beschriebene Feld setzt sich additiv aus zwei

Teilfeldern Ex und E2 zusammen, von denen nur E2 die Beschleunigung u*

enthält.
Unter Berücksichtigung von Gl. 20 wird

c2/ sE1- 1-?)?r°- (22a)

Vergleichen wir Ej mit der Gl. 6, so stellen wir fest, daß E1 die

Coulombsche Feldstärke einer mit der gleichförmigen Geschwindigkeit u

bewegten Elementarladung ist. In unserem Fall bedeutet r0 den Vektor

BP (cf. Fig. 4), wobei B der Ort ist, den die Elementarladung bei

Beibehaltung der im Moment der Emission innegehabten Geschwindigkeit

u im Zeitpunkt des Eintreffens der Wirkung im Aufpunkt P

erreichen würde. Das durch Ex dargestellte Feld hat somit den Charakter
eines Coulombschen Feldes, das sich mit der ihm im Zeitpunkt der
Emission eingeprägten Geschwindigkeit konstant durch den Raum
bewegt, welches auch nachher die Geschwindigkeit der Elementarladung

sei.

Dem zweiten, die Beschleunigung enthaltenden Anteil läßt sich
folgende Form geben :

E^^r^ (r0xu-). (22b)

1 Cf. R. Becker : Theorie der Elektrizität 1933 Bd. II, 64 ff. ; 1957 Bd. I, 204.
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Die Feldstärke E2 steht also senkrecht auf dem Radius r, längs dem
sie sich mit Lichtgeschwindigkeit fortpflanzt. Sie wird daher von der

i
Ladung nicht mitgeführt. Da sie ferner nach außen hin wie - abfällt,
besitzt sie den Charakter einer von der Elementarladung ausgehenden
transversalen elektrischen Welle.

Die durch Gl. 22 dargestellte Feldstärke wirkt auf die bezüglich des

Beobachters ruhende Einheitsladung. Um die dynamische Feldstärke

zu erhalten, müssen wir beachten, daß sich der Anteil E1 mit der

mitgeführten Geschwindigkeit u, der Anteil E„ mit Lichtgeschwindigkeit
im Räume fortbewegt. Nach Gl. 12 gilt daher

Ed Ex + E2 + - x - x Ej + - x E2 (23)

Unter Berücksichtigung von Gl. 20 und Gl. 22a ist - x Et - x Ëj.

Da ferner - - ist, wird Gl. 23 zur Gleichung

Ëd=Ë + ^x(ïxÊJ =Ê + ^x(j kê). (24)

In dieser Gleichung bedeutet E die von einer beliebig bewegten
Elementarladung erzeugte elektrische Feldstärke, die auf eine im
Aufpunkt ruhende Einheitsladung wirkt und durch Gl. 22 dargestellt
wird, Ed die von der mit der Geschwindigkeit v bewegten Einheitsladung

im gleichen Punkte wahrgenommene dynamische Feldstärke,

r den Radiusvektor, der von der im Moment der Emission von der
Elementarladung eingenommenen Punktlage zum Aufpunkt weist, und

c die mit r gleichgerichtete Lichtgeschwindigkeit.
Abschließend sei noch eine wichtige Eigenschaft des elektrischen

Feldes betont. Da sich die beiden Anteile Ej und E2, die von der
beschleunigten Elementarladung erzeugt werden, im Räume unbeschleunigt

fortpflanzen, sind sie nach der Emission von der aussendenden

Elementarladung unabhängig. Infolge ihrer Eigengeschwindigkeit
bringen diese Feldgrößen in den Punkten des Raumes, die sie

überstreichen, die elektrischen Wirkungen hervor. Dies muß logischerweise
auch für das Feld der gleichförmig bewegten Elementarladung gelten.

In Gl. 11 für die Lorentz-Feldstärke bedeutet daher u nicht nur die
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Geschwindigkeit der felderzeugenden Elementarladung, sondern in
einem tieferen Sinn die Geschwindigkeit des von der bewegten
Elementarladung mitgeführten Coulombschen Feldes. Diese Überlegungen
stützen und erklären die Nahewirkungstheorie der elektrischen Kräfte.

4. Das Feld mehrerer Elementarladungen

Die Felder mehrerer Elementarladungen überlagern sich als vekto-
rielle Größen. Man erhält daher das Gesamtfeld durch Summierung
über die Einzelfelder. Nach Gl. 24 gilt für die dynamische
Gesamtfeldstärke die Formel

" \rE<i 2E + -r x2 rxE • (25>

Wir sehen aus dieser Gleichung, daß sich die auf eine ruhende

Einheitsladung wirkenden Feldanteile zu einer Gesamtfeldstärke S E
summieren, daß hingegen die Lorentz-Anteile verschieden bewegter
Elementarladungen nicht eine Funktion der eben genannten
Gesamtfeldstärke sind. Bei mehreren verschieden bewegten Elementarladungen

gehen die von jeder einzelnen Ladung erzeugten Feldstärken und
die entsprechenden Radiusvektoren in die Gl. 25 ein, und die gesamte
Lorentz-Feldstärke ist gleich der Vektorsumme der von den einzelnen

Ladungen auf die bewegte Einheitsladung ausgeübten Lorentz-Kräfte.
Es gibt praktisch sehr bedeutsame Fälle, wie z. B. stromdurchflossene
Leiter, bei denen sich die Coulombschen Feldstärken in einem geeignet
gewählten Koordinatensystem zu Null addieren, während sich ihre
Anwesenheit durch die elektrodynamischen Kräfte verrät.

In diesen Verhältnissen liegt der Grund, warum die traditionelle
Definition der elektrischen Feldlinien den physikalischen Gegebenheiten

nicht voll entspricht. Diesem Mangel wird abgeholfen, wenn
man die Feldlinien des Coulombschen Feldes ruhender oder
gleichförmig bewegter Ladungen trotz der Anwesenheit anderer Ladungen
als radial von den einzelnen Elementarladungen ausgehend und von
ihnen mitgeführt, jene der transversalen elektrischen Wellen als senkrecht

auf der Fortpflanzungsrichtung stehend und mit Lichtgeschwindigkeit

bewegt denkt. Die so definierten Feldlinien werden also durch
die Anwesenheit anderer Ladungen nicht deformiert. Dies gilt auch

von der Einheitsladung, mit der die Felder ausgemessen werden. Wie
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die von Milliarden Lichtquellen ausgestrahlten, nicht kohärenten
transversalen Lichtwellen durch den gleichen Punkt gehen können, ohne
miteinander zu interferieren, so bedeutet es keine Denkschwierigkeit,
wenn sich die von den einzelnen Elementarladungen ausgehenden
Feldlinien in den Punkten des Raumes ungestört kreuzen.

Im Lichte der Quantenphysik haben die so definierten Feldlinien
folgende Bedeutung. Im Falle des Coulombschen Feldes stellen sie

Linien dar, für welche die longitudinalen von der Elementarladung
ausgehenden und die Coulombschen Kräfte zwischen den elektrischen
Ladungen vermittelnden Wellen oder im Teilchenbild ausgedrückt
die longitudinalen Photonen tangentiale Lage haben. Im Fall des

transversalen WeUenfeldes gilt diese Eigenschaft bezüglich der
Schwingungsrichtung der transversalen Photonen.

Wir wollen nun Form und Verteilung dieser Feldlinien finden. Fig. 5

stellt die Verhältnisse für das Coulombsche Feld einer gleichförmig
bewegten Elementarladung dar. Eine solche bewege sich mit der

konstanten Geschwindigkeit u auf der x-Achse, die zugleich x'-Achse sei.

Im Zeitpunkt, wo sich die Elementarladung in A0 befindet, mögen
die Koordinatenursprünge beider Systeme mit A0 zusammenfallen. In
diesem Moment sende sie ein longitudinales Photon aus und zwar in
einer Richtung, die in ihrem Ruhesystem in der x'y'-Ebene liegt und
mit der x'-Achse den Winkel cp' bildet. Das Photon sei modellmäßig
durch einen kleinen Pfeil dargestellt. Für die Richtung cp' gilt die

Gleichung

x cx

wobei cx und c'Y die Komponenten der Lichtgeschwindigkeit des Photons

sind. Im ungestrichenen System bildet die Richtung des Photonpfeiles

infolge der Lorentz-Kontraktion mit der x-Achse den Winkel 9,
der durch die Beziehung

tg9-y- y' tg9'
X

x'y/i-^ y/i

bestimmt ist. Die Geschwindigkeit, mit der sich das Photon bewegt,
hat aber nicht mehr diese Richtung, sondern sie besitzt nach dem
Additionstheorem der Geschwindigkeiten die Komponenten
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l -,

+ u
CxU

C2

und ^v1^
l +

mit cî Cy

Nach Gl. 22a und Fig. 4 ist im ungestrichenen System die Richtung
der Photonenpfeile gleich der Richtung von r0, jene ihrer Fortpflanzung

gleich der Richtung von r ctr Nach der Zeit tj kommt das

im Moment t O vom Punkte A0 in der Richtung von r0 ausgesandte
Photon im Punkt P0 an, während die Elementarladung infolge ihrer
konstanten Geschwindigkeit den Punkt B0 =¦ A1 erreicht (Fig. 5). In
At sende die Ladung wiederum ein gleichgerichtetes longitudinales
Photon aus, das sich auf der Geraden A1Q1 fortpflanzt. Während der
Zeit At tj bewegt sich dieses Photon nach dem Punkt P1 und das

von A„ ausgesandte Photon von P0 nach Q0 ; usw. Auf diese Weise

/R

U3

a.=A
3 ¦ •!

Fig. 5.

Feldbild der gleichförmig
bewegten Elementarladung.

Fig. 6.

Feldbild der beschleunigten Elementarladung.

erhalten wir die zu den Punktlagen Alt A2, A3, der Elementarladung
gehörenden Geraden A1POJ A2Q0, A3R0, auf denen die Photonen
liegen. Diese Geraden sind daher nichts anderes als die sich folgenden
Momentanbilder der zu den dargestellten longitudinalen Photonen ge-
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hörenden Coulombschen Feldlinie, die sich mit der Geschwindigkeit
der unbeschleunigten Elementarladung mitbewegt.

Im Fall der ungleichförmig bewegten Elementarladimg sind die
Coulombschen Feldlinien nicht mehr Geraden. In Fig. 6 ist der Spezialfall

dargestellt, wo die zuerst in A0 ruhende Elementarladung längs
der x-Achse konstant beschleunigt wird und zur Zeit tn die Punktlagen

An einnimmt. Man beachte, daß Punkt B3 jener Punkt ist, den
die Elementarladung beim Eintreffen der von ihr in A3 ausgesandten
elektrischen Wirkung in P3 erreichen würde, wenn sie sich von A3 aus
mit der in diesem Punkte innegehabten Geschwindigkeit gleichförmig
weiterbewegte. Nach Gl. 22a und Fig. 6 läßt sich die Richtung des

longitudinalen Photons in P3 bestimmen. Dieses Photon bewegt sich
auf der Geraden A3Q3. Auf gleiche Weise geht man für die übrigen
longitudinalen Photonen vor. Die in Fig. 6 eingezeichneten Photonen
stellen Tangenten an den Linien A„P0, A1P(), A2Q(„ A3R0, dar. Diese
sind daher die Momentanbilder der zu den genannten Photonen
gehörenden, von der beschleunigten Elementarladung ausgehenden
Coulombschen Feldlinie. In Fig. 6 sind auch für die Momente t4 und t5
die Feldlinien der von A3 im Zeitpunkt t3 ausgesandten kugelförmigen
Transversalwelle eingezeichnet. Sie sind nach Gl. 22b Meridiane, die

von dem auf der positiven Seite der x-Achse liegenden Pol nach dem
Gegenpol weisen. In den Polen selbst ist die Feldstärke der
transversalen Welle gleich Null. Im allgemeinen Fall, wo
Momentangeschwindigkeit und Beschleunigung der Elementarladung verschiedene

Richtung haben, werden die in Fig. 6 dargestellten Feldlinien
noch räumlich gekrümmt.

5. Das magnetische Feld und die Maxwellschen Gleichungen

a) Die magnetische Feldstärke

Die Gl. 11 für die Lorentz-Feldstärke enthält den Ausdruck - x E,
c

der in der klassischen Elektronentheorie die magnetische Feldstärke
eines mit der konstanten Geschwindigkeit u bewegten und geladenen
Teilchens bedeutet *. Ist die felderzeugende Elementarladung
beschleunigt, so finden wir als entsprechenden Ausdruck in Gl. 24

1 R. Becker : Theorie der Elektrizität 1957 Bd. I, 189.
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E, der nach der klassischen Theorie wiederum die magnetische
r
r
Feldstärke ausdrückt1. Wenn auch wir

ÏÎ - x Ê (26)

definieren, so müssen wir uns bewußt sein, daß dies im Lichte der
dargelegten Theorie eine rein formale Angelegenheit ist, daß daher die

eingeführte magnetische Feldstärke eine bloße Hilfsgröße darstellt, der
als solcher keine physikalische Realität entspricht, da uns kein innerer
Grund zur Einführung des neuen Begriffes zwingt. Darauf weist schon
der Umstand hin, daß wir das elektrische Feld einer gleichförmig oder
beliebig bewegten Elementarladung ableiten konnten, ohne das

magnetische Feld auch nur mit einem Worte zu erwähnen. Ferner hängt
die magnetische Feldstärke derart von der Relativgeschwindigkeit des

Beobachters ab, daß sie im Ruhesystem der felderzeugenden Ladung
ganz verschwindet, während dies bei der Coulombschen Feldstärke
nicht der Fall ist. Der formale Charakter des magnetischen Feldes
wird uns auch deutlich, wenn wir beachten, daß dessen Einführung
die Aufteilung der in den relativistischen Transformationsformeln je
für sich eine Einheit bildenden Ausdrücke

Ux V Uy V Uz V
c2 ' c2 ' c2

in die zwei Faktoren - und - voraussetzt, wie dies der Beweis für die
c c

Gl. 11 zeigt. Wenn schon nach Einstein die von ihm elektromotorische

Kraft genannte Lorentz-Feldstärke E1--x(-xEj nur die Rolle

eines Hilfsbegriffes spielt, wie wir in der Einleitung sahen, so gilt dies

umso mehr von der magnetischen Feldstärke, die in der entwickelten
Theorie nur eine andere Bezeichnung für den in der Gleichung der

Lorentz-Feldstärke vorkommenden Ausdruck x E darstellt. Da die
r

magnetische Induktion B durch räumliche Mittelwertbildung über die
elementaren magnetischen Feldstärken gewonnen werden kann, ist
auch sie eine reine Hilfsgröße. Wenn aber das magnetische Feld als

solches nicht existiert, so ist auch die Frage nach seinen realen Quellen
gegenstandslos. Damit hat das Fehlen von magnetischen Ladungen

1 R. Becker : Theorie der Elektrizität 1957 Bd. I, 204.
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die natürliche Erklärung gefunden. Das magnetische Moment der
Elementarteilchen ist daher auf die Eigenbewegung der nicht streng
punktförmigen Elementarteilchen zurückzuführen. Im besondern weist das

magnetische Moment des Neutrons auf eine ungleichmäßige Verteilung
der in ihm enthaltenen positiven und negativen Elementarladung hin.

Diese prinzipiellen Überlegungen wollen der Nützlichkeit der
magnetischen Feldgrößen keinen Eintrag tun, die darin besteht, daß der
in den praktischen Fällen außerordentlich komplizierte Ausdruck

2 - x E durch meßbare Größen ersetzt wird.

Um mit Hilfe der dargelegten Theorie zum elektromagnetischen
Feldtensor zu gelangen, brauchen wir aus ihr nur die für diesen
schiefsymmetrischen Tensor zweiter Stufe charakteristischen Transformationsformeln

abzuleiten. Zu diesem Zwecke wählen wir v parallel zur x-Achse
und setzen Gl. 26 in Gl. 24 ein. Durch Anwendung von Gl. 3 erhalten
wir die mit Gl. 1 identischen Transformationsformeln der elektrischen
Feldstärke :

Ex Ex

Ey^7~(Ey-ßH*). (27)

Ei fc=W (Ez + ßHy) ¦

Um die entsprechenden Formeln für das magnetische Feld abzuleiten,

ersetzen wir in Gl. 26 - durch - (cf. Gl. 24), betrachten die magnetische

Feldstärke im Ruhesystem der Einheitsladung und transformieren in
den so erhaltenen Gleichungen mit Hilfe des Additionstheorems der

Geschwindigkeiten und mit Gl. 3 die Größen der rechten Seite auf
das ungestrichene System. Es ergeben sich auf diese Weise die
Transformationsgleichungen für die magnetische Feldstärke :

Hx Hx

Hy - y=* (Hy + ßEz) (28)

Hi-VT=F(Hm_ßEy)-

Die Gleichungen 27 und 28 stellen die in dreidimensionaler Form
geschriebenen Transformationsgleichungen des elektromagnetischen Feld-
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tensors dar, der somit abgeleitet ist. Dieser Tensor faßt die
elektromagnetischen Feldgrößen zu einer mathematischen Einheit zusammen,
die ihren Grund in der Einführung der durch Gl. 26 definierten Hilfsgröße

H hat. Zum gleichen Tensor führen bekanntlich die Maxwellschen

Gleichungen. Das weist darauf hin, daß auch diese in der
dargelegten Theorie enthalten sind.

b) Ableitung der Maxwellschen Gleichungen

Wenn man die Raumladungsdichte p einführt, so folgt aus dem
Coulombschen Gesetz die Maxwellsche Gleichung

div E =- 4 tt p

Bildet man von dem durch Gl. 17 definierten Vektorpotential die Rotation,

so erhält man aus Gl. 21c mit bekannten Methoden *

rot A rot —
1 c s

Unter Berücksichtigung von Gl. 26 ist also H als Rotation des

Vektors A darstellbar. Darum gilt die Maxwellsche Gleichung

div H O

7t ISANach Gl. 18 ist der Ausdruck — Ë + - — der Gradient des Skalars
\ Cot/

cp ; daher verschwindet seine Rotation :

/- 1U\ =r 1 e rot A -rot I E + - —- rot E + O
V cot/ cot

Daraus folgt sofort die Maxwellsche Gleichung

rot E
c dt

Da sich Gl. 26 auch aus den Maxwellschen Gleichungen ableiten läßt 1,

enthält sie die letzte Maxwellsche Gleichung 2

,3 1 ó E 4tt^rot H - —- + — i
c d t c

1 R. Becker : Theorie der Elektrizität 1957 Bd. I, 204 und 1933 Bd. II, 64 ff.
2 Cf. Anmerkung 2 auf folgender Seite.
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Durch Einsetzen von Gl. 26 in Gl. 24 erhalten wir die Gleichung

Ëd E + - x H Aus ihr ergibt sich die Lorentz-Kraft

K=e E + -xH und das Induktionsgesetz für bewegte Leiter, die

beide in der Maxwellschen Theorie Fremdkörper darstellen.
Abschließend sei bemerkt, daß jene drei Maxwellschen Gleichungen,

in denen die Hilfsgröße H vorkommt, logischerweise nicht als

Grundgleichungen anzusehen sind. Die übrige Maxwellsche Gleichung
umschreibt die Tatsache, daß die elektrische Ladung Quelle des
Coulombschen Feldes ist. Diese Tatsache bildet zusammen mit den Prinzipien

der speziellen Relativitätstheorie die Grundlage der
Elektrodynamik 1.

SUMMARY

In the paper « On the Basis of Electrodynamics », a way other than the usual
one has been followed for the explanation of facts concerning electrodynamics.
This way leads to a deeper knowledge of the nature of electrodynamic phenomena.

It has namely been possible to show three-dimensionally that the only
cause for electric effects is the lorentz-invariant elementary charge with its
Coulomb field, and that the laws of electrodynamics, including the Maxwell
equations, can be deduced from the above physical fact using the Lorentz
transformation of the theory of relativity.

This introduces the following results : for the unaccelerated charge the
equations 6, 11 and 12, and for a charge moving in any manner the equations
22, 23, and 24 which express the electric field strengths that are generated by
the elementary charge and that act upon unit charges at rest or in motion. These

equations have been deduced without invoking in any way the magnetic field.
The discussion about the field generated by several elementary charges leads

to a corresponding definition of the electric field lines (See pages 183/186).
In order to discover the connection between the present theory and the

Maxwell theory, the magnetic field strength has been defined through equation
26. It must be noted, however, that this entity as well as the other magnetic
quantities proved to be merely auxiliary conceptions to which no physical
reality can be attributed as such (See page 187).

1 Die Anwendbarkeit der dargelegten Methoden auf das Gravitationsfeld wird in
einer weiteren Arbeit untersucht werden.

2 Für die gleichförmig bewegte Elementarladung läßt sich die vierte Maxwellsche

Gleichung aus Gl. 26 unter Berücksichtigung, daß in diesem Fall - x E — x E ist
r c

durch Rotorbildimg direkt und leicht ableiten.
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