Zeitschrift: Bulletin de la Société Fribourgeoise des Sciences Naturelles = Bulletin

der Naturforschenden Gesellschaft Freiburg

Herausgeber: Société Fribourgeoise des Sciences Naturelles

Band: 46 (1956)

Artikel: Morphologie und Optik des Kupfervitriols

Autor: Strässle, P. Deicola

Kapitel: Optischer Teil

DOI: https://doi.org/10.5169/seals-308342

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Optischer Teil

1. Für den senkrechten Lichteinfall geeignete Prismen

Die Wellennormalengeschwindigkeit q des Kupfervitriols konnte, bei Beschränkung auf die Prismenmethode mit senkrechtem Lichteintritt, an 38 verschiedenen Kristallen untersucht werden. Einige derselben eigneten sich sogar für Messungen nach mehr als einer Richtung, nämlich 7 für je zwei und 1 für drei Fortpflanzungsrichtungen, sodaß die Lichtablenkung an 47 Prismen geprüft wurde. Da als Prismenflächen einfach die aus den Lösungen erhaltenen Kristallebenen — natürlich nur die am besten gebildeten — verwendet wurden, fallen die in Frage stehenden Lichtfortpflanzungsrichtungen mit den Normalen gewisser Wachstumsflächen zusammen, jenen nämlich, die als Eintrittsebenen dienten. Im Ganzen sind es derer neun. Samt der zugeordneten Prismenorientierung und einigen Besonderheiten, die späterhin Erwähnung finden, wurden sie in Tab. 12 zusammengestellt.

Ist der brechende Winkel kleiner als 40°, so sollten sich Ein- und Austrittsebene der Kupfervitriolprismen vertauschen lassen. Es könnte also jedes Prisma für die Ermittlung der Lichtgeschwindigkeiten nach zwei verschiedenen Richtungen hin verwendet werden. In Wirklichkeit war aber diese Umstellung nur bei je 3-4 Individuen der Prismengruppen I, II, VII und VIII ausführbar. Denn damit das Licht, welches senkrecht zur ersten Fläche eintritt, durch die zweite wieder austrete, muß sich mindestens ein Teil der Austrittsebene auf das durch die Kristallbegrenzung gegebene Polygon der Eintrittsfläche orthogonal projizieren lassen. Soll das Prisma in verdrehter Stellung ebenfalls verwendbar sein, so muß dieser Bedingung auch bei vertauschter Rolle der beiden Grenzflächen Genüge geschehen. Kommen die Flächen wegen des Dazwischentretens anderer Fazetten nicht zum direkten Schnitt, so wird wegen des eigenartigen Habitus der Substanz die Doppelforderung nur ausnahmsweise erfüllt sein. Ja, es braucht sogar einiges Glück, um überhaupt mehrere Prismen zu finden, welche der erforderlichen Bedingung wenigstens für eine Fortpflanzungsrichtung entsprechen. Da die Flächen zudem noch einheitlich spiegeln sollen, wird verständlich, daß die Absicht, die Lichtgeschwindigkeiten einer bestimmten Richtung an jeweils sechs Individuen zu messen,

Tab. 12. Orientierung und Eigenart der benutzten optischen Prismen

Lichtwe	g Gruppe	Prismenfläche E : A	LNr.	Menge des LösGen.	
001	Ι	001:011	1-6	1.5 g KNO_3	Die Kristalle 1, 10, 15 und 18 kehren in II wieder.
011	II	011:001	7-12	$1.5~\mathrm{g~KNO_3}$	Umkehrung von I. Vier Kr. schon für I benutzt. K 28 findet sich auch unter VII und VIII.
	III	011:021	13-16	4-8 g NaCl	Gleichgerichteter Lichtweg wie in II, aber länger; II und III sind in Tab. 17 zusammengenommen.
$0\overline{1}1$	IV	$0\overline{1}1:00\overline{1}$	17-22	$1.5~\mathrm{g~KNO_3}$	Eintrittsfläche klein.
121	V	121:111	23-27	$0.7~\mathrm{g~KNO_3}$	Langer Lichtweg. Ein Kristall infolge zweifelhafter Rechnungsergebnisse weggelassen.
021	VI	021:011	28	4-8 g NaCl	Lichtweg lang. Zur Berechnung der Indikatrix nicht herange- zogen.
110	VII	110: 100	29-34	$1.5~\mathrm{g~KNO_3}$	Hat die K 28, 78, 93 mit VIII gemeinsam. K 28 schon bei II erwähnt. Sehr geringe Schwankungen der q²-Werte. Mäder fand aber bedeutend größere Zahlen.
100	VIII	100: 110	35-40	$1.5~\mathrm{g~KNO_3}$	Umstellung von VII; 3 Kristalle gemeinsam. K 28 gehört auch zu II, K 75 zu X. LNr. 38, 39 geben anscheinend zu hohe q²-Werte und wurden für die Durchschnittsbildung nicht berücksichtigt, obwohl LNr. 38 Mäders Messungen bestätigt.
120	IX	120: 110	41-46	$1.5~\mathrm{g~KNO_3}$ $4~\mathrm{g~NaCl}$	Langer Lichtweg.
110	X	110:100	47	$1.5~\mathrm{g~KNO_3}$	Nur ein einziger Kristall (K 75), schon für VIII gebraucht.

auf Schwierigkeiten stieß und für die Gruppen III, V (die Messungen an einem sechsten Individuum führten nur auf unbefriedigende Zahlen), VI und X überhaupt nicht zu verwirklichen war (vgl. Tab. 12).

2. Das Instrument und das Messungsverfahren

Alle Messungen erfolgten mit einem Fueßschen Goniometer II, das gerade von der gründlichen Revision zurückgekommen war. Leider zeigten sich während der Arbeit einige störende Fehler. Die Scheiben mit der Gradteilung und den beiden Nonien waren nicht vollkommen zentriert. Das hatte zur Folge, daß die Größe einer Drehung an den beiden Nonien verschieden abgelesen wurde. Die Differenz lag, je nach der gegenseitigen Stellung, zwischen $-8^{1/4}$ und $+5^{1/2}$. Für die einzelne Drehung war natürlich das Mittel beider Ablesungen zu nehmen. Sollte aber von einer gegebenen Lage aus eine Drehung um einen bestimmten Winkel vorgenommen werden, so lagen die Verhältnisse schwieriger. Um sukzessive Annäherungen zu vermeiden, wurde für eine volle Umdrehung, in Abständen von 5° zu 5°, die Differenz der beiden Noniusablesungen in geeignetem Maßstab auf Millimeterpapier aufgetragen. Aus den so erhaltenen Kurven konnte dann für jedes Azimut die zugehörige Korrektur sofort abgelesen werden.

Der genannte Zentrierungsfehler hatte noch weitere unangenehme Folgen. Beim Drehen des Kristalls oder des Fernrohrs entfernte sich bald der eine, bald der andere Nonius vom Limbus auf einen Abstand, der im ungünstigsten Falle etwa ein Drittel des Intervalles zweier benachbarter Skalateilchen erreichte. An anderer Stelle schienen sich die beiden Ränder etwas zu reiben. Die Enden der Teilstriche verloren dadurch an Schärfe. Auch paßten sich die Noniusteilchen nicht überall genau den Limbusteilen richtig an. Diesen Fehlern des Instrumentes mag es zuzuschreiben sein, daß sich bei besten Spektren, je nach Stellung, Ablenkungsunterschiede bis zu 1/2 ergaben.

Die Messung der Prismenwinkel bietet keine Schwierigkeit. Es sind die an den beiden Nonien erhaltenen Differenzen einfach zu mitteln. Im übrigen wurde jeder Prismenwinkel mindestens dreimal, meistens aber fünfmal bestimmt, und zwar bei jeweils veränderter Stellung des Limbus. Die hieraus gemittelten Werte sind in Tab. 15 zusammengestellt. Daß sie großen Schwankungen unterliegen, ist nach allem, was über die Kristallographie des Kupfervitriols feststeht, nicht sehr erstaunlich. Die kleinste und größte Schwankung zeigt sich mit ungefähr 8' und 33' an den Prismengruppen VII und VIII. Wegen der verhältnismäßigen Kleinheit des Prismenwinkels Γ beeinflußt ein bei

seiner Bestimmung unterlaufener Fehler d Γ die Lichtgeschwindigkeit stärker, als wenn Γ größer wäre.

Um die Eintrittsebene des Prismas normal zum auffallenden Lichtstrahl zu bringen, wurde nach Zentrierung und Justierung des Kristalls, bei festgeschraubtem Teilkreis das Fernrohr auf den Kollimatorspalt eingestellt und, nach Ablesung des Winkels, in geeignetem Sinne gegen den Kollimator hingedreht, bis das an der Eintrittsebene reflektierte Spaltbild genau auf das Fadenkreuz zu liegen kam. Der Winkel nun, um den der Kristall bei arretiertem Fernrohr dem einfallenden Licht entgegengedreht werden muß, damit senkrechte Inzidenz eintritt, ist gleich dem halben Supplement der Differenz von Direkt- und Reflexionsstellung des Fernrohrs. Um diesen Wert ist die mittlere Reflexionsablesung an den beiden Nonien zu verkleinern, bzw. zu vergrößern. Der errechnete Winkel ist durch den der gezeichneten Korrekturkurve zu entnehmenden halben Fehlbetrag dieses Azimuts, unter Berücksichtigung des Vorzeichens, zu ergänzen. Das Rechnungsschema der Tab. 13 veranschaulicht die Methode.

Tab. 13. Rechnungsschema für die Normalstellung der Eintrittsfläche

	1. Nonius	2. Nonius	1. Nonius gemittelt
1. Direkter Durchgang	$165^{\circ}24^{-1}/_{2}{'}$	345°16 1/4'	$165^{\circ}20^{-3}/_{8}{'}$
2. Reflexionsstellung	$235^{o}55^{1}/_{4}{'}$	$55^{\circ}51^{-3}/_{4}{'}$	$235^{\circ}53^{1}/_{2}{'}$
3. Differenz	$70^{\circ}30^{3}/_{4}{'}$	$70^{\circ}35^{1}/_{2}{'}$	70°33 1/8′
4. Supplementswinkel			$109^{\circ}26^{7/8}$
5. Kristalldrehung			54043 7/16
6. Theoret. Normalst.	$181^{\circ}10^{-1}/_{16}{'}$	$1^{\circ}10^{-1}/_{16}{'}$	$181^{\circ}10^{-1}/_{16}{'}$
7. Korrektur n. Kurve	$+ 3 \frac{3}{4}'$	$-3^{3}/_{4}'$	
8. Berechn. Normalst.	$181^{\circ}13^{13}/_{16}{'}$	$1^{\circ}06^{5}/_{16}'$	
9. Kontrollablesung	$181^{\circ}13^{-3}/_{4}{}'$	1006 1/4'	

Gelingt die Senkrechtstellung nicht mit hinreichender Genauigkeit, so weicht der gemessene Ablenkungswinkel $\Delta_{\rm g}$ um eine Kleinigkeit vom theoretischen Wert $\Delta_{\rm t}$ ab. Zur Abklärung der Größenordnung dieser Variation δ wurde für einige kleine Auffallswinkel i₁ der Unterschied $\delta = \Delta_{\rm g} - \Delta_{\rm t}$ berechnet. Natürlich ist ein isotropes Medium vorausgesetzt und mit Rücksicht auf die obwaltenden Verhältnisse n = 1,55 und $\Gamma = 25^{\rm o}$ angenommen. Über die Rechnungsergebnisse orientiert Tab. 14. Darin bedeutet r₁ den leicht zu bestimmenden Brechungswinkel an der Eintrittsebene. Für den entsprechenden Winkel

 $Tab.\ 14.\ \ Variation\ \delta$ des Ablenkungswinkels \varDelta bei kleiner Abweichung i_1 von senkrechter Inzidenz

i_{1}	r_1	\mathtt{i}_2	8
00'	00'00''	40°55′27′′	00'00''
$+ 15' \\ - 15'$	09'41''	40°37′28′′ 41°13′29′′	$-\ 02'59'' + 03'02''$
$+ 10' \\ - 10'$	06'27''	40°43′28′′ 41°07′27′′	-01'59'' + 02'00''
$^{+\ 05'}_{-\ 05'}$	03'14''	40°49′26′′ 41°01′28′′	$-\ 01'01'' + 01'01''$
$+ 04' \\ - 04'$	02 ′ 35′′	40°50′39′′ 41°00′15′′	$-\ 00'48'' + 00'48''$
$^{+\ 03'}_{-\ 03'}$	01'56''	40°51′51′′ 40°59′02′′	$-\ 00'36'' + 00'35''$
$^{+02'}_{-02'}$	01'18''	40°53′02′′ 40°57′52′′	$-\ 00'25'' + 00'25''$
$^{+\ 01'}_{-\ 01'}$	00'39''	40°54′14′′ 40°56′39′′	-00'13'' + 00'12''
$+\ ^{1/_{2}^{\prime }}-\ ^{1/_{2}^{\prime }}$	00'19''	40°54′51′′ 40°56′02′′	$-\ 00'06'' + 00'05''$

an der Austrittsebene kommt $r_2 = \Gamma - r_1$. Mit ihm wird i_2 erhalten. Da die Beziehung $i_1 + i_2 = \Gamma + \Delta$ unschwer Δ_g liefert, ergibt sich wegen $\Delta_t = 15^o 55' 27''$ sofort die gesuchte Differenz δ . Werden i_1 und i_2 vom zugehörigen Grenzebenenlot aus gegen die brechende Kante hin gemessen, so sind sie mit dem Minuszeichen zu behaften ; r selber hat das gleiche Vorzeichen wie i. Wird nun mit dem für $i_1 = \pm 15'$ angegebenen Winkel i_2 der Brechungsindex nach der für senkrechte Inzidenz gültigen Formel berechnet, so kommt 1,54063 bzw. 1,55936. Der Fehler beträgt also je etwa 9 Einheiten der dritten Dezimale. Die entsprechenden Geschwindigkeitsquadrate sind 0,421312 und 0,411251. Die Variation gegenüber dem Sollwert 0,416233 erreicht somit ungefähr 5 Einheiten der dritten Dezimale.

Die Ablenkung Δ wurde an jedem der 47 Prismen mit mindestens drei verschiedenen Normalstellungen der Eintrittsebene bestimmt. Als Lichtquelle diente eine Heliumgasentladungsröhre mit den drei wahrnehmbaren Linien 5876 Å (gelb), 5016 Å (grün) und 4471 Å (violett). Für jede Stellung eines beliebigen Prismas wurde Δ von n_{α}' -gelb bis

zu n''_-violett und wieder zurückkehrend von n''_-violett nach n'_a-gelb gemessen. Die gewonnenen Winkel — im ganzen mindestens sechs für jede Spektrallinie — wurden gemittelt und als Durchschnittsgrößen in Tab. 15 aufgenommen ¹. Da bei gegebener Farbe die Lichtgeschwindigkeit für alle Prismen gleicher Orientierung konstant ist oder wenigstens konstant sein sollte, muß, wie sich aus der selbstverständlichen Beziehung q sin $(\Gamma + \Delta) = \sin \Gamma$ leicht zeigen läßt, Δ mit wachsendem Γ zunehmen. Tab. 15 bezeugt das, von wenigen Ausnahmen abgesehen (z. B. L.-Nr. 19 und 21), geradezu glänzend. Doch dürfen kleine Unregelmäßigkeiten im Zuwachsverhältnis nicht übersehen werden.

3. Die Variation der Lichtgeschwindigkeit bei vorgegebener Richtung

Mit Rücksicht auf die späteren Berechnungen wurden nicht die einfachen Lichtgeschwindigkeiten, sondern deren Ouadrate ermittelt. Nimmt Δ bei festem Γ um eine Viertelsminute zu, so nimmt q^2 im extremsten, bei Kupfervitriol noch möglichen Fall um etwa 6 Einheiten der fünften Dezimale ab. Daraus folgt, daß Δ sehr genau sein muß, damit q² auf einige Einheiten der fünften Dezimale richtig bekommen wird. Zur Verhütung weiterer Ungenauigkeiten, die sich bei den späteren Rechnungen durch Abrundungsfehler einschleichen könnten, wurden alle q²-Werte auf sechs Dezimalen angegeben. Tab. 17, deren fortlaufende Numerierung mit der von Tab. 15 völlig übereinstimmt, enthält die ermittelten Werte. Um gewisse Vergleiche zu erleichtern, sind auch die K-Nummern aufgeführt. Für jede Fortpflanzungsrichtung wurde außerdem das arithmetische Mittel M der 6-10 zusammengehörigen q²-Werte für alle Farben berechnet und in Tab. 17 ebenfalls vermerkt. Seine Abweichungen v von den einzelnen «Beobachtungsgrößen » können als Maß für die vielgestaltigen, bei der Einstellung, Ablesung usw. unterlaufenen Zufallsfehler gelten. Mit der Zunahme von v vermindert sich die Zuverlässigkeit der q²-Durchschnitte. Darum wurde diesen der mittlere Fehler m_M in Einheiten

¹ In dieser Tabelle hat jede Messungsreihe ihre eigene, bereits in Tab. 12 genannte Laufnummer (L-Nr. 1-47). Die danebenstehende K-Zahl bezeichnet die Nr. des Kristalls, an welchem die Messung ausgeführt wurde. Kehrt K wieder, so bedeutet das, daß der betreffende Kristall zur Bestimmung der q-Werte für zwei, bzw. drei Richtungen diente.

Tab. 15. Prismenwinkel Γ und Ablenkungswinkel Δ der verschiedenen Farben für senkrechte Inzidenz

$violett_2$	20°30,417' 31,833'	28,583 16,000'	17,750′	28,396′		20°28,708	26,875	15,125'	28,083	30,479	45,479'		$12^{\circ}03,771'$	$11^{\circ}53,750'$	12007,208	$12^{\circ}02,844'$		$18^{\circ}16,969'$	28,333	30,000	28,000′	32,625	29,417
$violett_1$	19°26,208′ 26,500′	23,333 11,958'	13,625'	24,042		19°53,750'	52,229'	40,875	54,125'	55,813'	20009,938		$11^{0}45,750'$	36,438	48,500′	44,260′		$19^{\circ}22,114'$	32,229	34,146'	32,250'	36,271,	33,833
$\operatorname{gr\ddot{u}n_2}$	20016,792' 17,500'	13,958 $02,042'$	03,417	14,375′		20014,708	11,833′	01,042'	13,458'	16,292'	30,938		$11^{\circ}57,563'$	46,604	59,354	55,146'		$18^{\circ}04,906'$	15,646'	17,458'	15,208'	20,000′	17,396′
$\operatorname{gr\ddot{u}n}_1$	19013,188' 14,042'	10,625 00,083	01,375	11,375′		19040,875'	38,375	27,750′	39,500	42,167	56,583′		$11^{\circ}38,583'$	29,333	41,375	37,594		17010,781	20,813	22,583	20,521	24,792	22,469′
gelb_2	20001,375′ 20001,667′	19958,000	48,000,	58,667		19058,917	56,333′	45,792'	58,042	$20^{\circ}00,229'$	20014,917		11048,479′	38,750′	51,250′	46,771'		17°51,208′	$18^{\circ}01,583'$	03,521'	00,917	06,021'	03,229'
gelb_1	18°59,958′ 19°00,125′	18°37,083 46,333′	47,542	57,417		$19^{\circ}26,000'$	23,396′	13,375'	25,083	27,438	41,708′		$11^{\circ}30,896'$	21,667	33,833	29,479		16°58,740′	17008,479	10,188′	07,708	12,313'	10,375'
IJ	29°43,375′ 44,219′	40,375 29,563'	30,750′	41,438′		29043,375	40,250′	30,750	41,438′	44,219'	58,113'		$20^{\circ}04,417'$	19050,425'	20008,525	20002,125		27033,475	44,375	46,104'	43,625	48,708	46,325′
E:A	$001:0\overline{11}$				111	$011:00\bar{1}$						III	$011:0\overline{21}$				IV	$0\bar{1}1:00\bar{1}$					
K	15 18 18	27	10	1		15	17	10	1	18	28		20	34	41	35		33	29	30	31	32	33
L-Nr	च दा इ	6 4	5	9		^	∞	6	10	11	12		13	14	15	16		17	18	19	20	21	22

													,	J															
$violett_2$	13012,583'	14,250	13,063'	13,167		$12^{\circ}03,813'$		17013,313	10,438	16,833′	11,521'	16,188′	10,333′		17014,604	11,917	11,479'	11,875′	15,063'	$16^{\circ}47,646'$		14°06,917′	06,688	08,688	02,771	03,813	00,438		22°08,979′
$violett_1$	12°52,000′ 58 354′	50,563	49,688	50,083		11058,313'		16°39,375′	36,646	43,042	37,917	42,229'	37,208		16°18,708′	16,375′	16,306	16,375′	18,646'	$15^{\circ}53,958'$		$13^{\circ}26,250'$	26,417'	27,917	22,229'	23,083	19,979		20°42,063'
grün ₂	13°07,708′	05,938	04,938	05,125		11055,708		$17^{\circ}01,833'$	$16^{\circ}58,792'$	17005,771	00,396	04,729	16°59,583′		17003,083	16°59,917'	59,833	17000,729	$17^{\circ}03,042'$	$16^{\circ}36,354'$		$13^{\circ}57,958'$	57,583	59,313	52,688	54,188	51,250'		21°51,438′
$gr\ddot{u}n_1$	12°44,125′	42,458	41,396′	41,708′		11049,292		16°27,833′	25,167	31,708′	26,521	30,917	26,021		$16^{\circ}08,229'$	05,521'	05,229'	06,063	07,917	$15^{\circ}43,104'$		$13^{\circ}18,292'$	17,875′	19,479′	13,313′	14,792'	11,708′		20°27,167
gelb_2	12°58,563′	12°56.990′	56,042	56,125'		11047,396′		16°49,167'	46,125'	53,146′	47,875	52,333′	46,938		16°50,479′	47,500′	47,271	48,125	50,750′	24,146'		13047,958	47,583	49,250′	42,667	44,271′	41,104′		21034,063'
gelb_1	12°35,750′	34,135	33,073	33,375'		11041,167		$16^{\circ}15,750'$	13,063	19,646'	14,521	18,958'	13,646'		15°56,792′	54,063	53,958	54,583	56,792'	32,146'		$13^{\circ}09,333'$	09,042	10,583'	04,438	05,875	02,896		20°11,688′
Ľ	21039,875'	37,500	36,208	36,375'		$20^{\circ}01,125'$		26017,988	14,800'	22,775'	16,700′	21,613'	15,625'		26017,988	15,125'	14,775'	16,700′	21,613'	48,250		22037,125	36,500	38,625	30,292	31,900′	28,575		20°55,550′
$\mathbf{E}:\mathbf{A}$ V	$\overline{1}21:1\overline{1}\overline{1}$				VI	$021:0\overline{11}$	VII	$110:\overline{100}$						VIII	$100:\overline{110}$						IX	120:110						×	$1\overline{10}:\overline{100}$
K	65	70	71	69		77		93	91	84	78	28	67		93	96	80	78	28	75		53	50	92	90	98	79		75
L-Nr.	23	25	$\frac{2}{26}$	27		28		29	30	31	32	33	34		35	36	37	38	39	40		41	4.2	6 43	77	45	94		47

der 6. Dezimale beigeschrieben. Die Kleinheit überrascht, denn der Fehler mancher Einzelmessung ist beträchtlich größer als 3 m_M . Genauer als die Lichtgeschwindigkeit sollte nach allgemeiner Erfahrung die Doppelbrechung zu bestimmen sein. Das trifft denn auch zahlenmäßig nachweisbar zu. An Ausnahmen fehlt es indessen nicht. Zur Orientierung sind in Tab. 16 neben die m_M -Durchschnitte noch die Durchschnitte der mittleren Fehler von $q_1^2-q_2^2$ gesetzt. Und allen diesen Zahlen geht der Durchschnitt der mittleren Fehler m der Einzelmessungen voran. Das starke Ansteigen gegen violett hin ist wegen der schwierigen Einstellbarkeit dieser Linien verständlich.

Tab. 16. Fehler der Geschwindigkeitsquadrate und ihrer Differenzen in Abhängigkeit von der Farbe

	gelb				grün	i	violett			
	q_{1}^{2}	q_2^2	$q_1^2 - q_2^2$	q_1^2	q_{2}^{2}	$q_1^2 - q_2^2$	q_1^2	q_{2}^{2}	${\bf q_1^2\!-\!q_2^2}$	
Einzelwerte	58	60	35	65	55	42	93	104	84	
Endwerte	23	24	15	26	28	17	37	41	34	

Auf Schärfe der Spektren und Anpassung ihrer Helligkeit an die Empfindlichkeit des Auges wurde streng geachtet. Bei den Prismen der Gruppen III, V und VI hatte das Licht einen verhältnismäßig langen Weg im Kristall zurückzulegen. Es wurde dadurch stärker als sonst absorbiert. Helligkeitsverminderung ergab sich aber auch bei geringer Ausdehnung der Eintrittsfläche, mochte diese nun von Natur aus klein gewesen sein oder wegen ihrer Unvollkommenheiten eine gewisse Bedeckung mit Tusche erfahren haben. In allen diesen Fällen zeigten vorab die gelben und violetten Linien eine spürbare Beeinträchtigung ihrer Einstellschärfe. Aber in den Resultaten lassen sich keine besonderen Abweichungen nachweisen. Das berechtigt zur Annahme, daß die Beschaffenheit der Spektrallinien keine überdurchschnittlichen Fehler veranlaßt habe.

Trotz aller Schwankungen, die Tab. 17 aufzeigt, liegen die q^2 -Werte überraschend nahe an ihren Durchschnittszahlen. Keine 20 % der festgestellten Abweichungen beeinflussen die vierte Dezimale mit einer

 $^{^1}$ Berechnet nach der Formel $m^2 = [\mathrm{vv}] : (n-1).$ Dementsprechend ist $m_M^2 = [mm] : n.$

vollen Einheit oder gar mehr. Für gelbes und grünes Licht sind es sogar nur 12,8 bzw. 11,7 %, während für die violetten Linien naturgemäß ein größerer Anteil festgestellt wird, nämlich 35,1 %. Abgesehen vom Sonderfall der nicht in Rechnung gezogenen L-Nr. 38, 39, beträgt die größte Differenz nur 2,58 Einheiten der vierten Dezimale. Gleichwohl haben unter den 258 gemittelten Geschwindigkeitsquadraten 91 einen Fehler, der, wenn er zuweilen nicht allzu beträchtlich ist, doch die Größe 3m des mittleren Fehlers einer Einzelbeobachtung überschreitet. Solche überdurchschnittliche Abweichungen sind aber nicht an gewisse Prismen gebunden, sondern finden sich regellos über alle Beobachtungsreihen zerstreut. Darum lassen sich nur zwei Prismen namhaft machen (L-Nr. 7, 31), bei denen die Abweichungen > m alle sechs Spektrallinien erfassen, und bloß drei (L-Nr. 9, 20, 46), wo sie sich über mindestens fünf Linien erstrecken. Im Mittel trifft es auf ein Prisma bloß 2,6 q²-Werte mit überdurchschnittlichem Fehler. Es ist darum wahrscheinlich, daß auch die größeren Schwankungen der Geschwindigkeitsquadrate zumeist bloßen Zufallscharakter haben. Aus dem Umstand aber, daß unterdurchschnittliche Fehler bei acht Prismen über alle Linien durchhalten und daß bei elf weiteren Prismen von den sechs Linien nur eine einzige einen überdurchschnittlichen Fehler ergab, darf auf eine erfreuliche Güte der Messungen geschlossen werden. Übrigens wurden an mehreren Prismen, die zu auffallenden Schwankungen der Resultate führen, die Messungen wiederholt, ohne daß sich aber Anlaß zu merklichen Korrekturen geboten hätte (L-Nr. 2, 6, 10, 38, 39).

Ein gegensätzliches Verhalten zeigen die zehn Prismen mit der Eintrittsebene 011. Sechs von ihnen (L-Nr. 7-12) haben 00 $\overline{1}$, vier (L-Nr. 13-16) $0\overline{2}\overline{1}$ als Austrittsebene. Sie sollten alle die gleichen q^2 -Werte ergeben. Nun sind aber die der ersten Gruppe im Durchschnitt um 1,2 Einheiten der vierten Dezimale größer als die der zweiten, wobei der Unterschied gegen kürzere Wellenlänge hin von 1,7 auf 0,8 abnimmt. L-Nr. 10 fällt aus dem Rahmen heraus und bildet gewissermaßen das Bindeglied zwischen den beiden Gruppen.

Geringfügig sind die Messungsfehler in den Prismenreihen IV, V und VII. Umso mehr überrascht es, daß im letzteren Fall J. Mäder an drei Kristallen Werte erhielt, die unter sich teilweise recht gut übereinstimmen, aber im Vergleich zu den neuen Werten um ca. 3,8 Einheiten der vierten Dezimale höher sind — ein Unterschied, wie

Tab. 17. Die Dezimalstellen der Lichtgeschwindigkeitsquadrate mit ihren Mittelwerten M und deren zugehörigen mittleren Fehlern m_M

	L-Nr.	K	E : A	q_1^2 -gelb	q_2^2 -gelb	q_1^2 - grün	q_2^2 - grün	q_1^2 - violett	q_2^2 - violett
I	1	15	$001:0\overline{1}\overline{1}$	435254	422050	432334	418871	429502	416106
	2	18		379	178	336	916	628	6010
	3	25		230	086	232	784	459	5867
	4	27		247	035	165	837	540	5957
	5	10		238	043	141	816	438	5864
	6	1		391	183	303	935	541	6082
	\mathbf{M}			435290	422096	432252	418860	429518	415981
	m_{M}			30	28	35	24	28	42
II	7	15	$011:00\bar{1}$	429547	422561	426359	419297	423641	416450
	8	17		417	406	198	193	266	125
	9	10		493	510	366	310	553	401
	10	1		315	313	222	123	132	145
	11	18		425	477	274	163	399	283
	12	28		446	526	316	275	548	372
III	13	20	$011:0\overline{2}\overline{1}$	345	302	241	131	382	334
	14	34		225	277	083	147	207	332
	15	41		293	348	262	181	432	150
	16	35		285	342	004	046	339	057
	\mathbf{M}			429379	422406	426233	419187	423390	416265
	$\boldsymbol{m}_{\boldsymbol{M}}$			32	33	36	27	51	43
IV	17	3	$0\overline{1}1:00\overline{1}$	435114	422021	432074	418732	429182	415878
	18	29		107	2016	1994	681	9153	718
	19	30		062	1943	1940	646	9068	723
	20	31		129	2000	1893	609	8973	621
	21	32		115	1941	1980	643	9137	710
	22	33		064	2063	2019	712	9196	908
	\mathbf{M}			435099	421997	431983	418671	429118	415760
	$\mathbf{m}_{\mathbf{M}}$			12	19	26	19	34	45
V	23	65	$\overline{1}21:1\overline{1}\overline{1}$	430042	421802	426985	418575	424144	415831
	24	56		165	774	7037	585	102	680
	25	70		012	737	6966	573	036	670
	26	71		064	735	7010	585	011	742
	27	69		095	848	7042	661	011	849
	\mathbf{M}			430076	421779	427008	418596	424061	415754
	$\mathbf{m}_{\mathbf{M}}$			26	21	15	16	27	37
VI	28	77	$021:0\overline{1}\overline{1}$	424293	421816	421067	418549	417533	415405
VII	29	93	$110:\bar{1}00$	429086	420184	425825	416903	422755	413971
	30	91		074	235	797	6941	733	3956

	L-Nr.	K	E : A	q_1^2 -gelb	q_2^2 - gelb	q_1^2 - grün	q_2^2 -grün	q_1^2 - violett	q_2^2 - violett
	31	84	$110: \overline{1}00$	429146	420265	425907	417010	422906	414198
	32	78		120	221	877	6972	840	4125
	33	28		061	205	847	7006	849	4090
	34	67		108	215	760	6930	757	4176
	\mathbf{M}			429099	420221	425836	416960	422807	414086
	$\boldsymbol{m}_{\boldsymbol{M}}$			13	11	22	18	28	42
VIII	35	93	$100:\overline{1}\overline{1}0$	434300	419842	431140	416581	428283	413644
	36	96		4393	19951	1216	6727	8248	3656
	37	80		4340	19929	1215	6666	8185	3686
	38*	78		4615	20155	1435	6886	8419	4035
	39*	28		5144	20617	2070	7439	9146	4375
	40	75		4302	19839	1176	6576	8122	3600
	\mathbf{M}			434334	419890	431187	416638	428210	413647
	$\boldsymbol{m}_{\boldsymbol{M}}$			22	29	18	36	36	18
IX	41	53	$1\bar{2}0:\bar{1}10$	432817	419681	429706	416394	426975	413489
	42	50		760	645	691	357	759	403
	43	92		763	636	679	335	790	301
	44	90		789	693	685	375	606	083
	45	86		695	570	583	294	724	157
	46	79		893	775	804	408	940	401
	\mathbf{M}			432786	419667	429691	416361	426799	413306
	$\mathbf{m}_{\mathbf{M}}$			27	28	29	17	56	64
\mathbf{X}	47	75	$1\bar{1}0:\bar{1}00$	435835	419707	432696	416665	429724	413282

er, von L-Nr. 38, 39 abgesehen, am jetzigen Beobachtungsmaterial überhaupt nie gefunden wurde. Interessanterweise stimmt aber das Mittel von L-Nr. 7-16 für gelb mit den Weberschen Messungen bis auf 3 bzw. 5 Einheiten der sechsten Dezimale überein.

Ganz absonderlich verhält sich die Gruppe VIII. Vier Prismen lieferten gut übereinstimmende Werte, die beiden andern aber (L-Nr. 38, 39) sehr stark abweichende. Der Unterschied gegenüber dem jeweils kleinsten q²-Wert beträgt durchschnittlich 3,28 bzw. 8,69 Einheiten der vierten Dezimale. Obgleich Nachmessungen die abnormen Zahlen bestätigten, erschien es nicht statthaft, die Resultate aller Prismen dieser Gruppe einfach zu mitteln. Darum wurden L-Nr. 38, 39 kurzweg außer acht gelassen und durch einen Stern gekennzeichnet. Ob zu Recht? J. Mäder hat für die gleiche Fortpflanzungsrichtung an zwei Kristallen Werte erhalten, die im Mittel noch um 1,5 Einheiten der vierten Dezimale höher liegen als die der Zahlenreihe L-Nr. 38. Mäders Werte fallen also zwischen L-Nr. 38 und L-Nr. 39.

Aufschlußreich sind die q²-Schwankungen der Prismen mit vertauschten Ein- und Austrittsebenen. L-Nr. 40, 47 (K 47) fallen außer Diskussion, weil keine Kristalle gewonnen werden konnten, die zu L-Nr. 47 Vergleichszahlen geliefert hätten. Von den übrigen Kristallen zeigen Spektrallinien, für die in der einen Orientierung überdurchschnittliche q²-Fehler erhalten werden, in der anderen Stellung vorzugsweise kleine bis mittlere Abweichungen (L-Nr. 6, 10 und 29, 35). Sind in L-Nr. 7 die Geschwindigkeitsquadrate durchwegs mit sehr großen Abweichungen behaftet, so ergibt L-Nr. 1, mit Ausnahme der stärkst abgelenkten Welle, recht geringe Differenzen. Ähnlich, wenn auch weniger regelmäßig, ist das Verhalten von L-Nr. 5, 9, während dem unruhigen Fehlerverlauf des Prismas L-Nr. 2 erstaunlicherweise die ideale Brechung von L-Nr. 11 gegenübersteht. Noch idealer ist L-Nr. 32 als Gegenstück der ausgeschlossenen Orientierung L-Nr. 38. Dem singulären Prisma L-Nr. 39 sind L-Nr. 12, 33 zugeordnet. Beide Prismen verzeigen zwar zwei überdurchschnittliche Fehler. Für das erstere bewegen sie sich einigermaßen um den Mittelwert der ganzen Gruppe, beim zweiten macht sogar die Höchstdifferenz nur 46 Einheiten der letzten Dezimale aus. So bestätigt sich an L-Nr. 33, 39 von neuem (vgl. L-Nr. 2, 11), daß bei vertauschten Rollen der Flächen eines Prismas ein Wechsel von reichlich fehlerhaften q²-Bestimmungen zu sehr zuverlässigen möglich sein kann.

Abschließend läßt sich sagen, daß die Variation, der q² für eine gegebene Richtung von Kristall zu Kristall unterliegt, sich ziemlich restlos durch mancherlei Messungszufälligkeiten erklärt. Wegen der Vizinalflächen, welche für den Kupfervitriol charakteristisch sind, werden überhaupt nicht streng übereinstimmende Richtungen miteinander verglichen. Und daß schon kleine Richtungsänderungen die Geschwindigkeitsquadrate merklich zu beeinflussen vermögen, folgt aus der Tatsache, daß es in der zu n_{β} senkrechten Ebene Richtungen gibt, wo eine Änderung von einem halben Grad — bei der Neigung des Kupfervitriols zu Vizinalen oft erfüllt — q² um mehr als eine Einheit der vierten Dezimale größer oder kleiner macht. Da die Vizinalen selber eine gewisse Wölbung der Kristallflächen verursachen, kann auch der Prismenwinkel von Stelle zu Stelle etwas variieren. Mäder maß an ausgezeichneten Flächen Unterschiede von nahezu einer Minute! Des weiteren ist zu beachten, daß bei dickern Kristallen, sobald das Fernrohr nicht streng auf unendlich eingestellt ist, wegen

des nichtparallelen Strahlenganges merkliche Messungsfehler unterlaufen. Überkreuzen sich die Spektren oder kommen sich die Linien sonstwie nahe, so sind scharfe Einstellungen erschwert, selbst wenn das eine Liniensystem mit vorgehaltenem Nicol ausgelöscht wird. Schließlich sollten auch Kontrastwirkungen nie unterschätzt werden. Von der Prismengruppe VIII abgesehen, dürften sich auf diese Weise alle Fehler und Besonderheiten verstehen lassen, ohne daß stoffliche Verschiedenheiten (wechselnder Wassergehalt, Beimengung der Lösungsgenossen usw.) anzunehmen wären.

Selbst die ungewöhnlichen Differenzen in der Prismengruppe VIII und die beträchtlichen Abweichungen gegenüber den Mäderschen Messungen für die Inzidenzen senkrecht zu 110 und 100 können aus der Vizinalenbildung verstanden werden. Die Kristalle, an denen die vorliegenden Messungen ausgeführt wurden, entstammen ja ganz anderen Lösungsbedingungen als die Mäderschen. Der Winkel 110: 100 weicht am neuen Material um mehrere Minuten von jenem ab, den MÄDER festgestellt hat. Das deutet darauf hin, daß je nach den Kristallisationsbedingungen andere Vizinalen ausgebildet werden, sodaß also gar nicht die gleichen Fortpflanzungsrichtungen untersucht wurden. Da es aber unmöglich ist zu sagen, welche Vizinale die richtige 110oder 100-Fläche ist, besteht auch kein Grund, das eine oder das andere Meßresultat als richtiger zu bezeichnen. Jedenfalls legen die in der Mäderschen und vorliegenden Arbeit festgestellten großen Schwankungen in den Lichtgeschwindigkeiten gleicher Richtungen den Schluß nahe, daß deren Ursache nicht in rein subjektiven Meßfehlern begründet sei.

4. Berechnung der Polarisationskonstanten

Obwohl die optischen Konstanten des Kupfervitriols schon verschiedentlich bestimmt wurden, scheint es trotzdem von Interesse zu sein, nochmals darauf zurückzukommen. Denn als Durchschnittsergebnisse mehrerer Prismen verbürgen die q²-Werte der Tab. 17 eine innere Sicherheit, die bisher wohl kaum je erreicht worden ist. Überdies werden die für alle Farben sich gleichbleibenden Fortpflanzungsrichtungen des Lichtes die Rechnungen wesentlich vereinfachen.

Dem Verfahren, das sich weitgehend auf Mäders Arbeit stützt, wird ein gewöhnliches Rechtssystem zugrunde gelegt, dessen x-Achse die Außennormale der 110-Fläche ist, während die y-Achse in 110 selber liegt und nach rechts zeigt und die z-Achse mit der positiven c-Achse des Kristalls zusammenfällt.

Aus der Indikatrixgleichung

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{23}yz + 2a_{31}zx = 1$$
 (1)

folgen die beiden Ausdrücke:

$$\begin{array}{l} q_{1}^{2}+q_{2}^{2}=L_{11}\psi_{1}^{2}+L_{22}\psi_{2}^{2}+L_{33}\psi_{3}^{2}+2L_{12}\psi_{1}\psi_{2}+2L_{23}\psi_{2}\psi_{3}+2L_{31}\psi_{3}\psi_{1}\\ q_{1}^{2}q_{2}^{2}=P_{11}\psi_{1}^{2}+P_{22}\psi_{2}^{2}+P_{33}\psi_{3}^{2}+2P_{12}\psi_{1}\psi_{2}+2P_{23}\psi_{2}\psi_{3}+2P_{31}\psi_{3}\psi_{1} \end{array} \tag{2}$$

Darin werden durch ψ_i die Richtungscosinus der Wellennormalenrichtungen bezeichnet. Da sie mit Senkrechten zu Wachstumsflächen

Tab. 18. Quadrate und Produkte der Richtungscosinus des Lichtweges durch die Prismen

	Inzid.	ψ_1^2	ψ_2^2	ψ_3^2	$\psi_1\psi_2$	$\psi_2\psi_3$	$\psi_3\psi_1$
I	001	0,035135	0,057232	0,907633	$\overline{0}$, 044842	$\overline{0}$, 227917	0,178576
III	011	0,218913	0,031387	0,749700	0,082892	0,153399	0,405116
IV	$0\overline{1}1$	0,014162	0,328354	0,657486	0,068191	$\overline{0}$,464638	$\overline{0},096493$
V	$\overline{1}21$	0,000943	0,554703	0,444355	$\overline{0}$,022868	0,496473	$\overline{0},020467$
VII	110	1,000000	***************************************	-	40		-
VIII	100	0,806224	0,193776	-	$\overline{0}$,395256	-	
IX	$1\overline{2}0$	0,032381	0,967619	-	$\overline{0}$,177009		
X	$1\overline{1}0$	0,294243	0,705757		$\overline{0}$,455702		

des Kupfervitriols identisch sind, lassen sie sich aus den Barkerschen Werten leicht berechnen (Tab. 18). L_{ik} und P_{ik} sind einfache Funktionen der Polarisationskonstanten, nämlich

MÄDER hat dafür Werte bekommen, die den neuen Messungen nicht mehr voll entsprechen (Tab. 19), aber als gute Näherungswerte zweifelsohne genügen. An jeder Konstante a_{ik} ist die kleine Verbesserung α_{ik} anzubringen. Sind v_1 und v_2 die zugehörigen, ebenfalls kleinen Ände-

rungen von q_1^2 und q_2^2 , so ergibt sich nach Linearmachung des zweiten Ausdrucks (2) das Gleichungssystem:

$$\begin{array}{l} v_1 + v_2 &= A_{11}\alpha_{11} + A_{22}\alpha_{22} + \dots A_{31}\alpha_{31} + A \\ q_2^2 v_1 + q_1^2 v_2 &= B_{11}\alpha_{11} + B_{22}\alpha_{22} + \dots B_{31}\alpha_{31} + B \end{array}$$

Die Auflösung nach v_1 und v_2 liefert die Fehlergleichungen:

$$\begin{array}{l} {\rm v_1} = {\rm C_{11}}\,\alpha_{11} + {\rm C_{22}}\,\alpha_{22} + \ldots , {\rm C_{31}}\,\alpha_{31} + {\rm C} \\ {\rm v_2} = {\rm D_{11}}\alpha_{11} + {\rm D_{22}}\alpha_{22} + \ldots , {\rm D_{31}}\alpha_{31} + {\rm D} \end{array}$$

Solcher Gleichungspaare, deren Koeffizienten zu $q_1^2 - q_2^2$ umgekehrt proportional sind, gibt es acht. Die sechs α_{ik} , die aus ihnen derart zu bestimmen sind, daß [vv] ein Minimum wird, verändern die Mäderschen a_{ik} nicht für alle Farben in gleicher Weise, sondern für gelb am schwächsten und für grün am stärksten (bis 6 Einheiten der

Tab. 19. Die Polarisationskonstanten
I. Mäder, II. korrigiert

		a_{11}	a_{22}	a_{33}	a_{12}	a_{23}	a_{31}
Ι	gelb	0,4296232	0,4287565	0,4208554	0,0060283	0,0019776	0,0034111
	grün	0,4269575	0,4258932	0,4175649	0,0060311	0,0017731	0,0032985
	violett	0,4239222	0,4228282	0,4146782	0,0061576	0,0017802	0,0033494
II	gelb	0,4294067	0,4286219	0,4207634	0,0060661	0,0020556	0,0033607
	grün	0,4263503	0,4253587	0,4175118	0,0061712	0,0020180	0,0034002
	violett	0,4235060	0,4225256	0,4143877	0,0061137	0,0018497	0,0034786

4. Dezimale). Die Kleinheit der α_{ik} ist Gewähr dafür, daß sie vom wahrscheinlichen Fehler der Differenz $q_1^2-q_2^2$ nicht allzu störend beeinflußt werden.

Die verbesserten a_{ik} sind in Tab. 19 als Gruppe II den Mäderschen Werten gegenübergestellt. Die Verbesserungen α_{ik} , welche in der Tabelle nicht vermerkt sind, ergeben sich als Differenzen entsprechender Werte von II und I.

5. Die Hauptachsen der Indikatrix

Sind die Polarisationskonstanten a_{ik} gefunden, so macht die Berechnung der Achsenlängen und Achsenlagen wohl noch einige Mühe, aber keine besonderen Schwierigkeiten. Bekanntlich sind die Hauptachsen eines Ellipsoides jene drei nicht komplanaren Halbmesser,

welche auf der zugehörigen Tangentialebene senkrecht stehen. Darnach sind im Achsenendpunkt die partiellen Ableitungen der Gleichung (1) den Koordinaten x, y, z des Berührungspunktes proportional. Unter der Voraussetzung, daß M der Proportionalitätsfaktor sei, wird also das lineare Gleichungssystem

$$(a_{11} - M)x + a_{12}y + a_{13}z = 0$$

$$a_{12}x + (a_{22} - M)y + a_{23}z = 0$$

$$a_{13}x + a_{23}y + (a_{33} - M)z = 0$$
(3)

erhalten. Seine Lösung ist nur möglich, wenn die dreigliedrige Determinante verschwindet. Somit wird

$$\begin{vmatrix} a_{11} - M & a_{12} & a_{13} \\ a_{12} & a_{22} - M & a_{23} \\ a_{13} & a_{23} & a_{33} - M \end{vmatrix} = 0$$
 (4)

Zur Auswertung von (4) wurden die neuen a_{ik} der Tab. 19 auf sechs Dezimalen gekürzt, die Rechnung aber mit voller Stellenzahl ausgeführt. Die Koeffizienten von Mⁿ umfassen demnach 18 — 6n Dezimalen. Durch sukzessive Annäherung lassen sich die Wurzeln M, welche die Quadrate der gesuchten Hauptlichtgeschwindigkeiten sind, mit beliebiger Genauigkeit finden. Bei Berechnung auf 8 Dezimalen erhält (4) einen Wert, dessen zwölf ersten Dezimalen null sind. Auf sechs Stellen abgerundet sind a², b², c² samt den Brechungsindizes und den zugehörigen Differenzen in Tab. 20 zusammengestellt.

Ein Vergleich dieser Zahlen mit den von andern Autoren ermittelten läßt sich nur für gelbes Licht mit einiger Zuverlässigkeit durchführen.

Tab. 20. Die Quadrate der Hauptlichtgeschwindigkeiten und die Hauptbrechungsindizes samt ihren Differenzen

	gelb		grün		violett
a^2	0,436069	3055	0,433014	2935	0,430079
$a^{2}-b^{2}$	12956		13161		12944
b^2	0,423113	3260	0,419853	2718	0,417135
$b^2 - c^2$	3503		3499		3930
C^2	0,419610	3256	0,416354	3149	0,413205
n_{α}	1,51434	533	1,51967	518	1,52485
$n_{\beta}-n_{\alpha}$	2301		2363		2347
$n_{oldsymbol{eta}}$	1,53735	595	1,54330	502	1,54832
$n_{\gamma}-n_{\beta}$	640		648		735
n_{γ}	1,54375	603	1,54978	589	1,55567

Sofort zeigt sich, daß die neuen Zahlen nicht über das bisherige Schwankungsintervall hinausgehen. Gegenüber Mäder weisen sie eine Vergrößerung der fünften Dezimale um durchschnittlich 27 Einheiten auf. Verglichen mit den Daten von Lavenir und Kohlrausch sind sie um 38, bzw. 49 zu hoch. Dafür bilden n_{α} und n_{γ} fast genau das Mittel der Zahlen von Mäder und Schwietring. Leider ist für n_{γ} der Vergleich nicht mehr möglich, weil sich der entsprechende Wert Schwietrings dem Mäderschen gegenüber merkwürdig verkleinert. Wie Dispersion und Doppelbrechung verraten, unterscheiden sich die neuen Brechungsindizes von den Mäderschen, die für nicht gelbes Licht allein in Betracht fallen, am auffälligsten für n_{β} -grün. Dafür scheinen sie für violettes Licht, trotz der schwierigeren Einstellung, besser herausgekommen zu sein. Sie sind aber wesentlich höher als die Mäderschen. Die Unregelmäßigkeit von n_{β} -grün spiegelt sich auch im Achsenwinkel. Es ist:

Mäders Werte sind zum Vergleich in Klammer beigesetzt. Die mittlere Differenz beträgt 1°38.

Ist M gefunden, so lassen sich mit Hilfe von $x^2 + y^2 + z^2 = 1$ aus (3) die Richtungscosinus der Hauptachsenrichtungen sehr einfach berechnen. Tab. 21 gibt über die gewonnenen Winkel hinreichenden

Tab. 21. Orientierung der Indikatrixhauptachsen

		X	У	Z
gelb	n_{α}	44009,45'	49°18,05′	75°48,67′
	n_{β}	52°02,40'	139°18,00′	77°29,75′
	\mathbf{n}_{γ}	109°05,20'	89044,33'	19°05,33′
grün	n_{α}	43°42,05′	49°41,80′	75°57,00′
	n_{β}	52°38,00′	$139^{\circ}41,05'$	77°02,63′
	\mathbf{n}_{γ}	109°16,63′	89°09,33′	19°17,83′
violett	n_{α}	43°27,20′	49°47,30′	76°17,60′
	n_{β}	53°13,63′	139°42,90′	$75^{\mathrm{o}}51,40'$
	n_{γ}	109°47,50′	87°58,00′	19°54,20′
Mittel	n_{α}	43°46,23′	49°35,70′	76°01,01′
	n_{β}	52°38,08'	139°33,98′	76°47,84′
	$n_{\boldsymbol{\gamma}}$	$109^{\mathrm{o}}23,11'$	88°57,22′	$19^{\circ}25,77'$

Aufschluß ¹. Die Schwankungen von einer Farbe zur andern sind nicht nur gering, sondern auch ziemlich regellos, so daß die Mittelwertbildung naheliegt und der Wirklichkeit wohl besser entspricht. Gegenüber den Mäderschen Mittelwerten sind die Unterschiede auffallend gering, nur 15-20'.

ZUSAMMENFASSUNG

- 1. Kristallisationsversuche mit Kupfervitriol aus reiner Lösung und aus Lösungen, die mit NaCl oder KNO₃ in verschiedenen Mengen versetzt waren, ergaben nicht nur völlig neue Kombinationen, sondern vor allem eine große Verschiedenheit des Habitus.
- 2. Die Messung der Zentraldistanzen und Größe der wichtigsten Kristallflächen erlaubte eine genaue Habitusbeschreibung.
- 3. Der neugefundene, nach der Basis tafelige Typus ermöglichte erstmals optische Messungen in bisher nie untersuchten Richtungen. Das gilt insbesondere für Prismen, deren brechende Kante der a-Achse parallel ist.
- 4. An gewissen Kristallen erreichen die Flächen $1\overline{1}0$ und $1\overline{2}0$ eine solche Größe, daß Messungen in einem Intervall, das J. MÄDER unzugänglich war, sich nunmehr durchführen ließen.
- 5. Die Hauptbrechungsindizes, die auf Grund weniger Lichtgeschwindigkeiten mit für alle Farben gleicher Fortpflanzungsrichtung ermittelt wurden, sind zwar wegen der Doppelbrechungsfehler mit einigen Mängeln behaftet, ordnen sich aber gut den von andern Autoren gefundenen Werten ein.

 $^{^1}$ Die drei Achsenrichtungen sind nicht als Rechtssystem orientiert, sondern so, daß sie auf der obern Projektionshalbkugel ausstechen. Um ein Rechtssystem zu erhalten, müßten z. B. für n_{β} überall die Supplementwinkel eingesetzt werden.