Zeitschrift: Bulletin de la Société Fribourgeoise des Sciences Naturelles = Bulletin

der Naturforschenden Gesellschaft Freiburg

Herausgeber: Société Fribourgeoise des Sciences Naturelles

Band: 46 (1956)

Artikel: Die Optik des Kupfervitriols

Autor: Eberhard, Emil

DOI: https://doi.org/10.5169/seals-308344

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

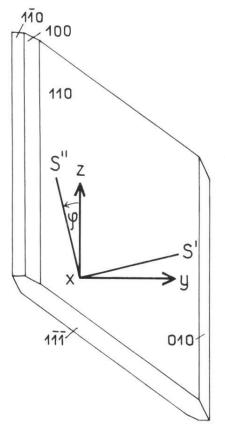
Die Optik des Kupfervitriols

von Emil Eberhard

INHALTSÜBERSICHT

1.	Die	Auslöschungsrichtu	ngen d	ler I	Ebene	110						*	*	*	103
2.	Die	Lage der optischer	n Achs	en											108
3.	Die	Differenz der Gesc	hwindi	gkei	tsquad	lrate									120
4.	Die	angenäherten Hau	ptlicht	gesch	hwindi	gkeit	squa	adra	ite						122
5.	Die	ausgeglichenen opt	ischen	Kon	nstant	en de	es E	Cupi	ferv	ritı	rio	ls			124
Zu	ısamı	menfassung													130
		urverzeichnis													130

Im Anschluß an L. Webers Arbeit über die Prismenmethode hatte J. Maeder versucht, für die optischen Konstanten des Kupfervitriols dadurch genauere Werte zu bekommen, daß er an selbstgezüchteten Kristallen die Lichtgeschwindigkeit in möglichst vielen, nicht komplanaren Richtungen nach der Prismenmethode ermittelte und beim anschließenden Ausgleichungsverfahren die Doppelbrechung, die sich erfahrungsgemäß zuverlässiger bestimmen läßt als die Lichtbrechung, stark ins Gewicht fallen ließ. Da er sich bei den Messungen am Refraktometer einer Heliumgasentladungsröhre bediente, berechnete er die Polarisationskonstanten a_{ik} für die Linien 5876 Å (gelb), 5016 Å (grün) und 4471 Å (violett). Wiewohl seine Resultate für diese Farben ganz unabhängig voneinander gewonnen wurden, zeigen sie eine recht erfreuliche gegenseitige Übereinstimmung und bilden eine wertvolle Ergänzung der spärlichen optischen Daten älterer Forscher. Nach MAEDERS eigener Auffassung dürften von allen errechneten Zahlen die für grünes Licht mit der größten Unsicherheit behaftet sein. Augenscheinlicher Beweis dafür ist die beträchtliche, unregelmäßige Dispersion des von den optischen Achsen eingeschlossenen spitzen Winkels 2V.


	gelb	grün	violett
2V	$56^{\circ} \ 13^{-1}/_{2}'$	58° 52′	57° 4 1/3'

Um Maeders Angaben über Gestalt und Lage der Indikatrix des Kupfervitriols womöglich zu verbessern, wurde im folgenden versucht, durch sorgfältige Messung der Auslöschungsrichtungen auf der Fläche 110 und durch konoskopische Lagebestimmung der beiden optischen Achsen vorerst die Lage der Indikatrix genau zu orientieren und hierauf durch die regelmäßigsten der Maederschen $(q_1^2-q_2^2)$ -Werte auch die Hauptbrechungsindizes zu verbessern.

1. Die Auslöschungsrichtungen der Ebene 110

Zur Untersuchung gelangten kleine, selbstgezüchtete Kupfervitriolkristalle, die nach dem Pinakoid 110 ausgesprochen tafelig waren, in Richtung der c-Achse 3-4 mm maßen und eine Dicke von 0,2 bis 0,4 mm hatten. Die kristallographische Ausbildung variierte wenig. Neben dem stark ausgebildeten 110-Pinakoid waren die Formen 010,

Fig. 1. Häufigste Gestalt der untersuchten Kupfervitriolkristalle. Orthogonale Projektion auf 110. Orientierung der Schwingungsrichtungen S' und S'' gegenüber der x-u. y-Achse (Auslöschungsschiefe φ).

100 und 110 immer als schmale Fazetten zu erkennen. Als obere und untere Endbegrenzung zeigte sich meistens nur 111; andere Flächen, wenn überhaupt ausgebildet, waren sehr klein. Fig. 1 stellt einen

naturgetreu gezeichneten Kristall dieser Ausbildung dar. Die beherrschende Bedeutung des Flächenpaares 110, das der Zeichenebene parallel gestellt ist, tritt klar hervor.

Die [001]-Zone des Kupfervitriols neigt zur Bildung von Vizinalflächen. Die besser gebildete Fläche des Pinakoides 110 besteht wohl immer aus zwei Teilen von nahezu gleicher Breite, die zueinander um mehr als 2° geneigt sein können und als solche schon von bloßem Auge erkennbar sind. Die Gegenfläche, mit welcher der Kristall während des Wachstums aufgelegen hatte, ist nur selten gut ausgebildet, gibt aber auf dem Goniometer trotzdem ein einheitliches, wenngleich etwas verschwommenes Bild.

Damit alle diese Unebenheiten und Unvollkommenheiten der Flächenbeschaffenheit die optischen Beobachtungen so wenig als möglich stören, wurden die Kristalle auf einem Objektträger in Kanadabalsam eingebettet und mit einem Deckgläschen geschützt. Zur Erzielung hinreichender Planparallelität der obern und untern Glasebene wurden zu beiden Seiten des Kristalls Deckglasstücken aufeinandergeschichtet. Jedes so hergerichtete Präparat wurde für die Untersuchung in einen Kreuzschlitten gespannt, um notwendige Lageveränderungen durch bloße Parallelverschiebung ohne jede Drehung sicherzustellen.

Vorerst ging es darum, das Azimut der c-Achse zu ermitteln. Dazu wurde bei mittelstarker Vergrößerung ein scharf ausgebildetes, nicht endständiges [001]-Kantenstück der Reihe nach mit den vier Richtungen des Fadenkreuzes — sie werden nachstehend mit f_1 , f_2 , f_3 , f_4 bezeichnet — parallel gestellt. Die jeweilige Stellung des Mikroskoptisches wurde sorgfältig abgelesen. Hernach wurde ein zweiter, dritter . . . Kantenteil dieser Richtung eingestellt. Trotzdem sie alle parallel sein sollten, zeigten sich Richtungsunterschiede von mehreren Minuten, die sich durch Vizinalflächenbildung erklären dürften. Tab. 1 gibt genaueren Einblick in die tatsächlichen Verhältnisse. Als mittleres Azimut der c-Achse wird für das gewählte Beispiel 53.11° errechnet.

Tab. 1. Azimut der c-Kanten eines Kupfervitriolkristalls in Parallelstellung zu den vier Richtungen des Fadenkreuzes

	Kante I	Kante II	Kante III	Kante IV
f_1	53.05°	53.15°	53.000	$53.20^{\rm o}$
f_2	143.05	143.15	143.05	143.20
f_3	233.05	233.15	233.00	233.20
f_4	323.10	323.15	323.00	323.20

Bei der Messung der Auslöschungsschiefe dienten als Lichtquelle Na- und Tl-Spektrallampen (Osram) mit vorgeschalteter Drosselspule und eine Quecksilbermikroskopierlampe (Zeiß). Durch drei verschiedene Filter wurden bei der letzteren die Linien gelb, grün und violett ausgesiebt. Die rote Linie durfte vernachlässigt werden, da sie vom Kupfervitriol total absorbiert wird. Die Untersuchungen wurden daher mit fünf verschiedenen Wellenlängen ausgeführt, nämlich Na-gelb (5893 Å) ¹, Hg-gelb (5791 Å), Hg-grün (5461 Å), Tl-grün (5349 Å) und Hg-violett (4358 Å).

Um für die Auslöschungsrichtungen möglichst einwandfreie Zahlen zu erhalten, wurde ein Wrightsches Okular der Firma Leitz gebraucht, mit Halbschattenapparaten nach Nakamura, Macé de Lépinay und Wright (ebenfalls von Leitz).

Die Lage des Fadenkreuzes gegenüber den Nicolhauptschnitten wurde mit einem Spaltungsblättchen von Gips in der Weise geprüft, daß die Auslöschungsschiefe auf der einen und andern Pinakoidfläche gemessen wurde. Gegenüber der durch Spaltbarkeit gegebenen Richtung war im einen Fall nach links, im andern nach rechts zu drehen. Die Einstellung war sehr scharf und die Winkelgrößen stimmten völlig überein. Somit war an der Nicol- und Fadenkreuzstellung des verwendeten Mikroskops keine Korrektur anzubringen.

Viel schwieriger war die Messung der Auslöschungsschiefe auf 110 der Kupfervitriolkristalle. Genaue Einstellungen schienen unmöglich zu sein. Die Erscheinungen waren so, als ob die beiden Schwingungsrichtungen für eine bestimmte Wellenlänge nicht genau senkrecht aufeinander ständen. Offenbar ging das Licht nicht streng achsenparallel durch das Mikroskop. Darum wurde eine direkte Beleuchtung versucht. Hierbei wurde der Mikroskoptubus in horizontale Lage gebracht und das von der Lampe herkommende Licht, durch eine Linse parallelstrahlig gemacht, direkt auf den Polarisator gelenkt. Mit Hilfe der Bertrandschen Linse, welche die Lichtquelle anzuvisieren erlaubte, gelang es, den Lichtstrahl recht genau senkrecht auf den Kristall fallen zu lassen. Die feinere Einstellung geschah durch geringes Hin- und Herschieben des Mikroskopes, bis die beiden Schwingungsrichtungen praktisch senkrecht aufeinander standen. Nun wurden Mikroskop und Lichtquelle in dieser Stellung fixiert. Aus diesem

¹ Mittel der beiden Linien 5890 Å und 5896 Å.

Grunde konnten einzig die Messungen mit den drei Quecksilberlinien unmittelbar nacheinander vorgenommen werden. Für die andern war eine Neueinstellung der Apparatur notwendig; das erschwerte die Arbeit merklich.

Für die Na- und Tl-Linien geschah die Einstellung der Auslöschungsrichtung photographisch. Von bloßem Auge wurde der Kristall vorerst so gut wie möglich auf gleiche Dunkelheit der beiden Okularhälften gestellt und photographiert. Dann wurde er um ¹/₁₀° bzw. ²/₁₀° nach links und ebensoviel nach rechts gedreht und in jeder dieser vier Stellungen wiederum photographiert. Nach Drehung des Mikroskoptisches um 90°, 180° und 270° wurde das Verfahren wiederholt. Für jede der vier Auslöschungslagen S₁, S₂, S₃, S₄ ergaben sich auf diese Weise fünf Bilder, welche die Gleichheit oder Verschiedenheit der Helligkeit beider Gesichtsfeldhälften deutlicher erkennen ließen, als es von bloßem Auge möglich war. Es kam sogar vor, daß die eigentliche Dunkelstellung auf eine Zwischenlage fiel. Von diesen vier ermittelten Auslöschungsstellungen wurde das Mittel genommen. Näheres ist aus Tab. 2 ersichtlich, wo die photographisch ausgewiesene Gleichheit der Dunkelstellung beider Gesichtsfeldhälften fett gedruckt ist und auf 66.25° führt.

Tab. 2. Photographische Bestimmung der Auslöschungslagen eines tafeligen Kupfervitriolkristalls

	S_1	S_2	S_3	S_4
S_{-2}	66.00	156.0^{o}	246.00	336.0°
S_{-1}	66.1	156.1	246.1	336.1
S_0	66.2	156.2	246.2	336.2
S_{+1}	66.3	156.3	246.3	336.3
S_{+2}	66.4	156.4	246.4	336.4

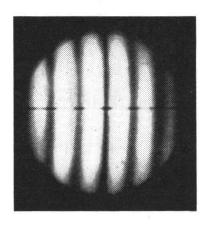
Für die drei Wellenlängen der Quecksilberlampe wurde von dieser zeitraubenden Einstellung abgesehen, da die schlechte Ausbildung der Bezugskante eine weit größere Fehlerquelle bildet und die überaus feine Einstellung fast sinnlos macht.

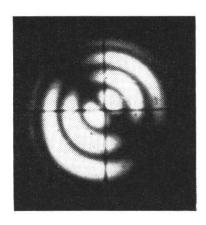
Da sich die Winkelangaben von Tab. 1 und Tab. 2 auf den nämlichen Kristall 22 beziehen, ist die gesuchte Auslöschungsschiefe die Differenz der beiden Mittel, d. h. 13.14°. Das Vorzeichen der Einzelbeobachtung ist verschieden, je nachdem 110 oder $\overline{110}$ oben liegt. Es war ein für allemal zu bestimmen.

Für Na-Licht wurde an 37, für die übrigen Wellenlängen an je 30 Kristallen die Größe der Auslöschungsschiefe φ gemessen. Die gefundenen Resultate sind in Tab. 3 zusammengestellt. Da die ersten im Na-Licht gemessenen Kristalle in Nelkenöl eingebettet waren und sich nach einiger Zeit mit einer schmutzigen Schicht bedeckten, erwiesen sie sich für die späteren Messungen mit den andern Wellenlängen als unbrauchbar. Daher rührt es, daß nur vier Kristalle (Nr. 20,

Tab. 3. Auslöschungsschiefe φ der Fläche 110 (vgl. Fig. 1)

M	$13.200^{\rm o}$	M	13.027^{o}	M	13.183°	$13.055^{\rm o}$	12.443°
40	13.20	74	12.86	76	13.35	13.22	12.72
39	13.15	66	12.98	75	13.22	13.14	12.76
38	13.37	65	13.04	74	12.90	12.83	11.89
37	13.10	64	12.75	71	13.19	13.09	12.75
35	$13.14 \\ 13.40$	62	13.03	69	13.25	13.15	12.41
$\frac{33}{34}$	$13.20 \\ 13.14$	61	13.10	68	13.38	13.16	12.61
32	13.15	60	12.81	67	13.40	13.23	12.60
30	13.15	58	13.11	66	13.40	13.31	12.40
29	13.37	57	12.62	65	13.00	12.82	12.27
$\frac{27}{28}$	$13.25 \\ 12.90$	56	13.09	64	13.14	13.02	12.30
26	$\frac{13.25}{42.25}$	55	13.15	63	12.86	12.75	12.22
25	13.17	54	13.15	62	13.29	13.22	12.61
$\frac{24}{24}$	13.03	52	13.05	61	13.15	13.02	12.58
$\frac{22}{23}$	$\frac{13.14}{13.00}$	50	13.10	60	13.03	12.79	12.16
$\frac{21}{22}$	$13.10 \\ 13.14$	49	13.15	59 60	12.97	12.96	12.12
20	12.95	48	13.30	58	13.34	13.20	12.69
19	13.12						
18	13.20	46	13.12	57	12.97	13.42 12.81	12.17
17	$13.30 \\ 13.25$	45	13.10	56	13.44	13.42	12.87
15 16	$\frac{12.90}{13.30}$	44	13.05	51	12.98	12.85	12.55
14	13.25	43	13.15	50	13.48	13.26	12.66
13	13.30	42	12.82	49	13.20	13.10	12.35
$\frac{1}{2}$	13.40	41	13.03	48	12.97	12.83	12.20
11	$13.25 \\ 13.20$	32	13.15	46	13.20	13.10	12.25
$\frac{9}{10}$	$\begin{array}{c} 13.25 \\ 13.25 \end{array}$	30	12.90	44	13.50	13.40	12.84
8	13.25	24	13.05	42	13.07	12.83	12.35
7	13.20	21	13.23	41	13.31	13.11	12.38
6	13.30	20	13.00	32	13.06	12.92	12.43
4 5	$\begin{array}{c} 13.45 \\ 13.23 \end{array}$	19	12.70	30	13.30	13.22	12.35
3	13.15	12	13.10	24	12.97	12.87	12.43
2	13.400	11	13.13^{o}	20	13.18^{o}	13.02^{o}	12.36^{o}
Nr.	Ausl.	Nr.	Ausl.	Nr.	Ausl.	Ausl.	Ausl.
	Va-gelb		l-grün		Hg-gelb	Hg-griin	Hg-viol.
	I		IV		II	III	V


24, 30, 32) mit allen Wellenlängen untersucht wurden. Zu den Messungen mit Quecksilberlicht dienten für alle Farben die nämlichen Kristalle. Ihre Nummern wurden daher in Tab. 3 nur einmal notiert. Von ihnen kamen — die vier oben genannten nicht mitgerechnet — 17 auch für die Untersuchung im Tl-Licht zur Verwendung. Nr. 11, 12, 19 beschränken sich auf die beiden Reihen des Na- und Tl-Lichtes.


Trotz der relativ hohen Genauigkeit der Einzelbestimmung — besonders für Na- und Tl-Licht — weichen die verschiedenen Auslöschungslagen beträchtlich voneinander ab (für Hg-violett sogar um 0.98°). Der Grund für diese Winkelschwankungen ist wesentlich in der mangelhaften Ausbildung der Bezugskante [001] zu suchen; er mag auch in der verhältnismäßig schlechten Beschaffenheit der 110-Fläche gelegen sein. Wenn sich das Licht senkrecht zur einen oder andern Vizinalen, aus denen sich 110 zusammensetzt, im Kristall fortpflanzt, ergeben sich kleine Abweichungen in der Auslöschungsschiefe. Ausgehend von der Lage der optischen Achsen läßt sich berechnen, daß bei einer Änderung der 110-Normalen um 1º nach links oder rechts die Auslöschungsschiefe sich um 2 1/4' bis 2 1/2' ändert. Wegen der Einbettung der Kristalle in Öl war aber diese Fehlerquelle zum Teil ausgeschaltet. Es wäre jedoch denkbar, daß 110 zur obern Fläche des Objektträgers etwas schief gelegen und mit ihr einen kleinen, von Präparat zu Präparat veränderlichen Winkel eingeschlossen hätte. Immerhin beträgt, trotz aller Abweichungen der Einzelbeobachtung, der mittlere wahrscheinliche Fehler aller Messungen für jede Wellenlänge nur + 2'. Bei der Mittelbildung wurden Messungen, deren Fehler mehr als das Dreifache des mittleren Fehlers einer Einzelbeobachtung betrugen, außer acht gelassen.

Der regelmäßige Abfall der Auslöschungsschiefe von 13.200° für Na-gelb bis 12.443° für Hg-violett verdient Beachtung. Er kommt jedoch in Tab. 3 nicht voll zur Geltung, weil die Tl-Kolonne vorausgenommen wurde. Die römischen Ziffern I-V sollen auf die physikalische Reihenfolge der fünf Kolonnen hinweisen.

2. Die Lage der optischen Achsen

Viele der in Tab. 3 erwähnten Präparate wurden zwischen die Kugeln eines vierkreisigen Leitzschen Universaltisches geschraubt und bei eingeschobener Bertrandscher Linse mit einem Leitzschen UM-Objektiv (gewöhnlich Nr. 2) im homogenen Licht der 5 genannten Wellenlängen geprüft. Sofort wurden die Kurven gleichen Gangunterschiedes sichtbar (Fig. 2). Bei geschicktem Drehen um passende Achsen des Universaltisches zeigte es sich, daß die Ausstichpunkte der beiden optischen Achsen genau ins Zentrum des Gesichtsfeldes gebracht werden können. Die A₂-Achse steht allerdings recht schief zu 110. Der Kristall ist deshalb auf dem Tisch so zu orientieren, daß die Fixier-

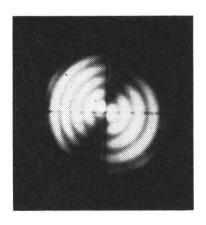


Fig. 2. Interferenzfiguren eines nach 110 tafeligen Kupfervitriolkristalls im Fedorow-Apparat. Die A_1' -Achse hat weniger Ringe als die zur Grenzfläche schiefer gelegene A_2 -Achse.

schrauben der oberen Kugel bei der Neigung des Tisches nicht an das Objektiv stoßen und es dadurch verunmöglichen, A_2 in den Mittelpunkt des Fadenkreuzes zu rücken. Da jene Achsenenden, die den von n_{γ} halbierten Winkel einschließen, allgemein mit dem gleichen (positiven) Vorzeichen behaftet werden, erhält die zu 110 weniger geneigte Achse, welche mit A_2 den von n_{α} halbierten Winkel bildet, das negative Vorzeichen. Sie möge mit A_1' bezeichnet werden.

Die Bilder der Fig. 2 gehören zum gleichen Kristall. Da A_2 die Platte schiefer durchquert als A_1' , hat das Licht, dessen Fortpflanzungsrichtung zu ihr parallel oder nur wenig geneigt ist, einen größeren Weg im Kristall zu durchlaufen als bei A_1' . Demgemäß sind die A_2 -Ringe enger geschart als die um A_1' .

Um die gegenseitige Lage der scheinbaren optischen Achsen in der Luft (bzw. Kugel) festzulegen, wurde die J-Achse des Drehtisches ¹ genau parallel zum Querfaden des Achsenkreuzes gestellt. Hernach

¹ Über die hier gebrauchte Achsenbezeichnung vgl. Lit. 1.

wurde der innerste Tischring um seine N-Achse so gedreht, daß die optische Achse auf den vertikalen Faden des Achsenkreuzes zu liegen kam. Durch Neigung des Präparates um J konnte der Achsenausstichpunkt ins Zentrum des Fadenkreuzes gerückt werden. Die Positionen von J(y) und N(w) wurden notiert. Begonnen wurde mit A₁. Hierauf wurde genau gleich mit A2 verfahren. Nachher wurde der innerste Kreis des Fedorow-Apparates um 180º gedreht und die Einstellung der Achsen A' und A₂ von neuem gemacht. Um J mußte nun im entgegengesetzten Sinn gedreht werden. Alle diese Operationen wurden noch zweimal wiederholt. So standen für beide Achsen je sechs Ablesungspaare zur Verfügung. Um eine mögliche Dezentrierung des Mikroskopes auszugleichen, wurde dessen Tisch um 180° gedreht. Daraufhin wurden die beschriebenen Messungen neuerdings vorgenommen. Auch einer eventuellen Dezentrierung der oberen Glaskugel war Rechnung zu tragen. Zu dem Zweck wurde ihr Träger vom Universaltisch losgeschraubt (aber so, daß das Präparat selber keine Verschiebung erlitt) und mit vertauschten Löchern wiederum festgeklemmt. Mit dieser neuen Lage der oberen Kugel wurden alle 12 vorgenannten Messungen wiederholt. So standen schließlich für jede optische Achse 24 Messungen zur Verfügung. Aus ihnen wurden die in Tab. 6 aufgenommenen Mittelwerte berechnet.

Als Beispiel einer solchen Messungsreihe dient Tab. 4, welche die ersten sechs Ablesungen für A_1' und A_2 des Präparates 44 (Tl-grün) zusammenfaßt. Die Unterschiede für y_i , die sich bei Drehung um J

Tab. 4. Erste Ablesungsreihe zur Lagebestimmung von A_1' und A_2 Kristall 44, Tl-grün

A_1'	-	134.0° 39.0				134.05° 37.83
A_2	-	23.7 59.5				

nach vorn oder hinten ergeben und einen Nullpunktsfehler von ungefähr 1.3° anzeigen, beruhen wesentlich auf einer mangelhaften Markierung der Nullstellung von J. Wird nämlich J auf den angemerkten Nullpunkt gestellt, so zeigt die Tischplatte vorn und hinten eine deutlich meßbare Abstandsdifferenz gegenüber der Unterlage im Betrag

von mindestens $^{3}/_{4}$ mm. Hiezu kommt als weitere Fehlerquelle die besondere Art und Weise der Drehtischbefestigung auf der Mikroskopplatte, vor allem aber die mit dem Einschieben der Bertrandschen Linse gegebene Achsenverlagerung des ganzen optischen Systems.

Die Differenz der beiden Winkel w_1' und w_1'' der Tab. 4 ist in Tab. 6 als w_1 vermerkt. Bei der Mittelwertsberechnung der Winkel w_1' , w_1'' ist es natürlich gleichgültig, von welchem der um 180° verschiedenen Azimuten ausgegangen wird. Die einmal getroffene Wahl ist dann aber konsequent zu beachten.

Unter Mitbenutzung der H-Achse, die bei den bisherigen Messungen immer in der Nullstellung belassen wurde, konnte die Ebene, welche durch die austretenden scheinbaren optischen Achsen bestimmt ist (nicht streng identisch mit der wirklichen Ebene der optischen Achsen), senkrecht zur J-Achse gestellt und durch entsprechende Winkelablesungen festgehalten werden. An den Wrightschen Bügeln wurde der Winkel w_2 gemessen. Dieser gibt an, wie stark die betrachtete Ebene von der vertikalen Lage abweicht. Durch Drehung um J wurden die beiden optischen Achsen nacheinander ins Zentrum gebracht. So werden die Winkel d_1 und d_2 erhalten. Die Summe $d_1 + d_2$ ergibt den von n_{α} halbierten, scheinbaren Winkel w der optischen Achsen. Wie die Gerade verläuft, in welcher die scheinbare Achsenebene von

Tab. 5. Scheinbarer Winkel der optischen Achsen und Lage der zugeordneten Ebene. Erste Ablesungsreihe an Kristall 44 für Tl-Licht

W_2	38.00	38.10	38.0^{o}	38.00	37.90	38.10	Mittel	38.02^{o}
d_1	1.7	1.6	1.6	4.5	4.5	4.5))	3.07
d_2	53.5	53.4	53.4	51.0	51.0	51.0))	52.22

110 geschnitten wird, läßt sich bei diesen Beobachtungen nicht sehr genau bestimmen. Da aber diese Richtung durch den Winkel φ feststeht (vgl. S. 107), wurde von der Ablesung unbrauchbarer Näherungswerte abgesehen.

Auch zur Lageermittlung der Ebene der scheinbaren optischen Achsen wurden die beiden um 180° verdrehten Stellungen des innersten Tischringes, des Mikroskoptisches und der oberen Glaskugel berücksichtigt. Wegen der dreimaligen Wiederholung der Messungen ergaben sich schließlich für jede Achse 24 Wertepaare. Wie genau diese übereinstimmen, zeigt das Beispiel der Tab. 5 (zu d_i vgl. y_i von S. 110 f.).

Tab. 6. Lagebestimmung der optischen Achsen A_1' und A_2

Na-gelb

Kr. Nr.	y_1	y_2	$\mathbf{w_1}$	W_2	d_1	$\mathbf{d_2}$	w
5	36.280	59.700	69.840	36.770	3.20^{o}	50.950	54.150
11	36.66	59.18	70.29	36.74	4.18	50.11	54.29
12	38.55	60.62	69.28	38.45	3.00	51.65	54.65
16	37.24	59.68	70.27	37.20	3.48	51.23	54.71
18	37.55	59.59	69.94	37.53	3.66	50.88	54.54
19	37.40	60.06	70.64	37.50	3.90	50.88	54.78
20	37.83	60.38	69.68	38.20	4.00	50.93	54.93
24	37.43	60.13	69.94	37.28	3.28	51.50	54.78
25	37.40	60.49	69.31	37.50	3.25	51.55	54.80
27	36.90	59.58	70.23	36.98	3.60	51.18	54.78
30	37.58	60.03	70.05	37.63	3.93	50.85	54.78
32	37.28	60.10	69.83	37.38	3.30	51.38	54.68
34	36.58	59.35	70.60	36.53	4.30	50.50	54.80
35	36.55	59.18	70.33	36.70	4.28	50.20	54.48
37	38.18	60.58	69.75	38.33	3.75	51.23	54.98
40	36.95	59.55	70.53	36.93	4.25	50.53	54.78
41	37.28	59.78	60.69	37.38	3.30	51.16	54.46
42	38.19	60.58	69.33	38.18	3.08	51.73	54.81
44	37.75	60.39	69.56	37.69	3.13	51.76	54.89
46	38.14	60.83	69.36	38.05	2.58	52.21	54.79
48	37.40	60.05	69.98	37.36	3.91	50.75	54.66
50	37.41	60.35	69.74	37.49	3.08	51.78	54.86
\mathbf{M}	370	$60^{\rm o}$	690	370	30	51°	540
	23'17''	03'10''	$55^{\prime}01^{\prime\prime}$	$26^{\prime}42^{\prime\prime}$	33'54"	$08^{\prime}02^{\prime\prime}$	41'56"
Korr.	4'58"	1'53''	$-1^{\prime}44^{\prime\prime}$	-7 ' 22 ''	2'27''	-39"	1'48"
End-	37°	60 °	69 º	37°	3 º	51 °	54 °
wert	28'15"	05'03''	53'17''	19'20"	36'21''	$07^{\prime}23^{\prime\prime}$	43'44"
			F	Ig-gelb			
11	36.750	59.140	70.25^{o}	36.750	4.300	50.030	54.330
12	37.24	60.04	69.99	37.21	3.95	50.94	54.89
20	38.10	60.35	69.85	38.15	4.26	50.59	54.85
24	36.96	60.28	70.11	37.21	3.08	51.93	55.01
30	36.99	59.89	70.23	36.94	4.04	50.88	54.92
32	36.78	59.34	70.55	36.81		51.01	54.64
41	37.18	59.80	69.71	37.26	3.35	51.15	54.50
42	38.01	60.51	69.51	38.06	3.09	51.80	54.89

Kr. Nr.	y_1	y_2	$\mathbf{w_1}$	W_2	$\mathbf{d_1}$	$\mathbf{d_2}$	W
44	37.76	60.28	70.09	37.68	3.31	51.61	54.92
46	38.30	60.86	69.13	38.26	2.70	52.16	54.86
48	37.09	60.95	69.93	37.09	3.91	50.81	54.72
49	37.54	60.38	69.89	37.60	3.46	51.16	54.62
50	37.30	60.31	69.66	37.27	3.05	51.91	54.96
51	37.23	59.85	69.84	37,28	3.44	51.28	54.72
56	37.16	60.16	70.05	37.26	2.95	51.86	54.81
57	37.05	59.60	70.09	37.10	4.13	50.35	54.48
59	36.86	59.68	70.18	36.89	4.09	50.58	54.67
62	37.89	60.38	69.40	38.06	3.13	51.43	54.56
63	37.45	60.06	69.89	37.45	3.25	51.35	54.60
64	36.84	59.71	70.08	36.60	3.78	50.73	54.51
65	37.06	60.06	70.10	37.14	3.13	51.59	54.72
66	38.05	60.44	69.21	37.74	3.35	51.29	54.64
\mathbf{M}	370	60°	690	370	30	51°	$54^{\rm o}$
	$20^{\prime}42^{\prime\prime}$	06'18''	$53^{\prime}42^{\prime\prime}$	22'18"	31'01''	12'07''	43'08"
Korr.	4'38"	16"	-1'00''	-5'54''	1'16''	36''	1'52"
End-	37 °	60°	69 º	37 º	3 º	51 °	54 º
	25′20′′					12'43''	
			Н	Ig-grün			
11	36.600	59.140	70 470	36.55°	<i>t</i> 200	50.080	57 200
12	37.06	60.06	70.24	37.08	3.98	50.08° 51.01	54.99
20	38.09	60.38	69.70	38.04	4.08	50.88	54.96
24	36.93	60.35	70.40	37.00	2.99	52.08	55.07
30	38.83	59.89	70.35	36.86	4.05	50.93	54.98
32	36.59	59.43	70.69	36.63	3.66	51.08	54.74
41	37.05	59.76	70.10	37.15	3.40		54.60
42	37.90	60.55	69.63	38.95	3.05	51.91	54.96
44	37.18	60.34	70.15	37.43	3.24	51.74	54.98
46	38.15	61.93	69.50	38.29	2.73	52.30	55.03
48	36.99	59.91	70.09	36.94	3.93	50.91	54.84
49	37.45	60.45	69.99	37.41	3.43	51.38	54.81
50	37.15	60.35	70.15	37.19	3.14	51.99	55.13
51	37.08	59.85	70.25	37.14	3.48		54.81
56	37.05	60.19	70.21	37.09	3.05	51.87	54.94
57	36.85	59.56	70.45	36.78	3.85		54.64
59	36.71	59.70	70.11	36.71	4.00		
62	37.93	60.39	69.51	37.99	3.10	51.54	
63	37.36	60.06	69.88	37.45		51.35	

Kr. Nr.	y_1	y_2	$\mathbf{w_1}$	W_2	d_1	$\mathbf{d_2}$	w
64	36.30	59.53	70.35	36.28	4.08	50.71	54.79
65	36.98	60.10	70.03	37.01	3.14	51.70	54.84
66	37.55	60.55	69.35	37.65	3.50	51.21	54.71
21							
\mathbf{M}	370	600	700	370	30	510	540
	15'47''	$07^{\prime}28^{\prime\prime}$	$04^{\prime}23^{\prime\prime}$	15'18''	31'12''	18'07''	49'19"
Korr.	3'25"	- 01''	-1'40''	-4'50''	2'11''	30''	2'41''
End-	37 °	60 °	70 °	37 °	3 º	51 °	54 °
wert	19'12''	$07^\prime 27^{\prime\prime}$	02'43''	10'28''	33'23''	18'37''	52'00"
			ı	îl-grün			
11	36.520	59.52°	70.63°	36.550	3.830	50.650	54.480
12	37.22	60.13	70.12	37.13	3.83	51.13	54.96
19	36.95	60.05	70.15	36.93	3.40	51.67	55.07
20	37.12	60.39	70.29	37.19	3.59	51.51	55.10
24	37.05	60.42	70.24	37.09	3.04	52.03	55.07
30	37.10	60.06	70.33	37.20	3.94	51.17	55.11
32	36.90	59.84	70.39	36.86	3.46	51.43	54.89
41	37.13	59.85	70.06	37.19	3.56	51.41	54.97
42	37.50	60.70	69.90	37.07	3.25	51.82	55.07
43	37.69	60.70	69.92	37.45	2.88	52.17	55.05
44	38.46	60.90	69.47	37.46	2.93	52.25	55.18
45	37.07	60.30	70.25	37.05	3.47	51.70	55.17
46	37.79	60.90	69.46	38.00	2.92	52.20	55.12
47	37.74	60.58	69.98	37.61	3.47	51.64	55.11
48	37.19	59.86	70.19	37.19	3.81	51.05	54.86
49	37.18	60.08	70.04	37.31	3.84	51.09	54.93
50	37.29	60.55	69.89	37.39	3.29	52.05	55.34
51	36.61	59.87	70.31	36.80	3.28	51.68	54.96
52	37.25	60.29	70.31	37.29	3.72	51.41	55.13
53	37.16	60.32	70.61	37.11	3.39	51.75	55.14
54		60.56	70.01	0	3.57		55.02
55	36.87	60.09	70.72	36.91	3.32	51.74	55.06
\mathbf{M}	370	$60^{\rm o}$	70°	37°	30	51°	55°
	$13^{\prime}55^{\prime\prime}$	04'49''	$08^{\prime}56^{\prime\prime}$	11'17''	$26^{\prime}42^{\prime\prime}$	$35^{\prime}28^{\prime\prime}$	02'10''
Korr.	1'21''	1'40''	- 42 ′′	$-3^{\prime}28^{\prime\prime}$	57 ′′	-1'09''	$-12^{\prime\prime}$
End-	37 °	60°	70 º	37 °	3 º	51 °	55°
wert	15'16''	06'29''	08'14"	07'49''	27'39''	34'19''	01'58''

Hg-violett

Kr. Nr.	У1	y_2	$\mathbf{w_1}$	$\mathbf{w_2}$	$\mathbf{d_1}$	$\mathbf{d_2}$	w
11	35.69^{o}	59.190	71.130	35.69°	4.15°	50.78^{o}	54.93°
12	36.25	60.11	70.80	36.19	3.80	51.59	55.39
20	37.36	60.41	70.36	37.31	3.98	51.39	55.37
24	36.13	60.30	70.84	36.14	3.00	52.56	55.56
30	36.00	59.91	71.08	35.98	4.00	51.48	55.48
32	35.75	59.45	71.74	35.65	3.51	51.70	55.21
41	36.35	59.81	70.76	36.41	3.35	51.75	55.10
42	37.05	60.64	70.38	37.00	2.89	52.50	55.39
44	36.65	60.30	70.94	36.74	3.21	52.24	55.45
46	37.46	60.00	69.93	37.40	2.66	52.76	55.42
48	36.13	59.96	70.81	36.15	3.86	51.40	55.26
49	36.48	60.44	70.05	36.53	3.28	51.93	55.21
50	36.36	60.40	70.63	36.40	2.94	52.46	55.40
51	36.04	59.80	71.36	36.10	3.29	51.96	55.25
56	36.39	60.16	70.67	36.33	2.94	52.43	55.37
57 .	36.98	59.68	70.58	36.00	3.98	51.15	55.13
59	35.83	59.66	71.08	35.79	3.74	51.41	55.15
62	36.94	60.26	70.30	37.04	3.25	52.04	55.29
63	36.56	60.13	70.70	36.59	3.16	52.16	55.32
64	35.41	59.58	71.46	35.50	3.91	51.43	55.34
65	36.19	60.08	70.54	36.18	3.09	52.06	55.15
66	36.73	60.58	70.10	36.79	3.30	51.94	55.24
\mathbf{M}	36^{o}	60°	700	36^{o}	30	51°	55°
	$23^{\prime}49^{\prime\prime}$	$02^{\prime}08^{\prime\prime}$	44'17"	$21^{\prime}36^{\prime\prime}$	$25^{\prime}23^{\prime\prime}$	$52^{\prime}08^{\prime\prime}$	17'31''
Korr.	$2^{\prime}22^{\prime\prime}$	4'19''	46''	-3'40''	$-1^{\prime}29^{\prime\prime}$	$-2^{\prime}40^{\prime\prime}$	-4'09',
		60°				51°	55°
wert	26 11	06'27''	45 03	17.96	23 54	49'28''	13 22

Alle diese Messungen wurden für sämtliche 5 Wellenlängen an je 22 Kristallen durchgeführt. Hierzu wurden die geeignetsten der in Tab. 3 genannten ausgelesen. Die Ergebnisse sind oben in der fünfgliedrigen Tab. 6 zusammengestellt. M ist der Mittelwert der Beobachtungsgrößen. Zu seiner Berechnung wurden Messungen, deren Fehler mehr als das Dreifache des mittleren Fehlers betrugen, außer acht gelassen. Die Variationsbreite gewisser Winkel darf nicht überraschen; denn es war nicht leicht, genau den Ausstichpunkt der opt. Achsen einzustellen, da sich das Achsenbild nicht in der gewohnten symmetrischen Orientierung befand (Fig. 2). Es mag auch sein, daß die

Kristalle gegen die Enden hin etwas auskeilten. Im übrigen ist es Erfahrungstatsache, daß die Brechungsverhältnisse des Kupfervitriols mitunter merkwürdige Differenzen aufweisen, die mit der Menge und Beschaffenheit des Kristallwassers in Zusammenhang gebracht wurden (vgl. auch S. 108).

Die Mittelwerte M der beobachteten Winkel $y_1, y_2 \dots w_2$ (Tab. 6, $w = d_1 + d_2$) sind nicht unabhängig voneinander, sondern müssen, wie aus Fig. 3, a ersichtlich ist, drei Bedingungsgleichungen genügen. Damit sie das wirklich tun, sind an ihnen kleine Korrekturen anzubringen. Diese mögen mit $\eta_1, \eta_2 \dots z_2$ bezeichnet sein. Zu welchen Winkeln $y_1, y_2 \dots$ die Korrekturen $\eta_1, \eta_2 \dots$ im einzelnen gehören, sei durch die Zuordnung

bestimmt. Die drei Bedingungsgleichungen lassen sich, wegen der Kleinheit der anzubringenden Korrekturen, unschwer linear machen. Unter Vernachlässigung der Glieder vom zweiten Grad der Korrekturen ergeben sich nach dem sphärischen Cosinussatz aus den Dreiecken PNA₁ und P'NA₂ (Fig. 3, a) die Gleichungen:

$$\begin{aligned} F_1 &\equiv -\eta_1 \sin y_1 + \delta_1 \sin d_1 \cos w_2 + z_2 \cos d_1 \sin w_2 + \cos y_1 - \cos d_1 \cos w_2 = 0 \\ F_2 &\equiv -\eta_2 \sin y_2 + \delta_2 \sin d_2 \cos w_2 + z_2 \cos d_2 \sin w_2 + \cos y_2 - \cos d_2 \cos w_2 = 0 \end{aligned}$$

Ähnlich kommt aus dem Dreieck A'NA₂:

$$\begin{aligned} \mathbf{F_3} &\equiv \eta_1 \left(\sin \mathbf{y_1} \cos \mathbf{y_2} - \cos \mathbf{y_1} \sin \mathbf{y_2} \cos \mathbf{w_1} \right) + \eta_2 \left(\cos \mathbf{y_1} \sin \mathbf{y_2} - \sin \mathbf{y_1} \cos \mathbf{y_2} \cos \mathbf{w_1} \right) \\ &+ \mathbf{z_1} \sin \mathbf{y_1} \sin \mathbf{y_2} \sin \mathbf{w_1} - \delta_1 \sin \mathbf{w} - \delta_2 \sin \mathbf{w} + \cos \mathbf{w} - \cos \mathbf{y_1} \cos \mathbf{y_2} \\ &- \sin \mathbf{y_1} \sin \mathbf{y_2} \cos \mathbf{w_1} = 0 \end{aligned}$$

Unter den unendlich vielen Lösungsmöglichkeiten sind nach der Ausgleichungsrechnung jene Werte $\eta_1, \eta_2 \dots z_2$ die wahrscheinlichsten, deren Quadratsumme zum Minimum wird. Wenn also k_i unbestimmte Konstanten sind, müssen die 6 partiellen Ableitungen von

$$F \equiv \eta_1^2 + \eta_2^2 + \delta_1^2 + \delta_2^2 + z_1^2 + z_2^2 - 2k_1F_1 - 2k_2F_2 - 2k_3F_3$$

einzeln verschwinden. Dieselben geben unmittelbar η_1 , η_2 ... z_2 als lineare Funktion der drei k_i . Es ist also $\eta_1 = L_1(k_i)$; $\eta_2 = L_2(k_i)$; etc. In den drei F_i können also η_1 , η_2 ... z_2 durch die k_i ersetzt werden. Auf diese Weise wird ein lineares symmetrisches Gleichungssystem erhalten mit den Unbekannten k_i . Nach dem Gauss'schen Verfahren läßt es sich leicht lösen. Die sechs Korrekturen $\eta_1 = L_1(k_i)$... sind,

auf Minuten und Sekunden umgerechnet, in der zweituntersten Querreihe jeder Abteilung der Tab. 6 aufgeführt. Die korrigierten Endwerte sind am Fuß der Tabellen in Fettdruck vermerkt.

Diese für den Luftraum gültigen Zahlen bleiben beim Übergang des Lichtes zur Kugel unverändert, da die opt. Achsen zur Grenze beider Medien senkrecht sind. Wie aber diese Achsen gegenüber 110 liegen, ist leicht zu finden. Denn da die wirklichen optischen Achsen sicher den Ebenen xA_1' und xA_2 (Fig. 3, b) angehören, muß die Schwingungsrichtung S' (Fig. 1) den Winkel $A_1'xA_2 = w_1$ halbieren.

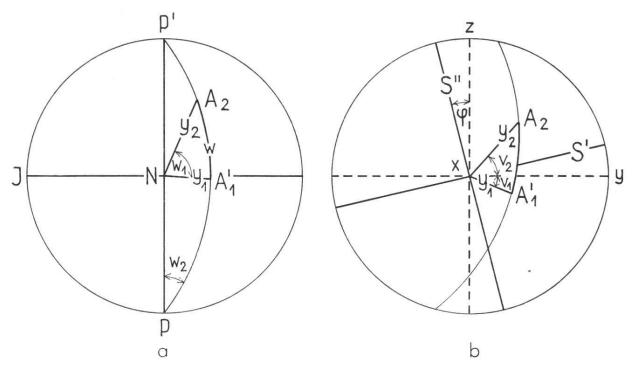


Fig. 3. a) Lage der in die Glaskugel austretenden optischen Achsen, bezogen auf die J- und N-Achse des Drehtisches. b) Die gleichen Achsenlagen, aber auf das xyz-System bezogen; dazu die Schwingungsrichtungen S' und S'' der Kristallplatte.

Demnach muß, um die kristallographisch richtige Lage zu erhalten, Fig. 3, a in ihrer Ebene derart um sich selber gedreht werden, daß die Winkelhalbierende von A'NA₂ mit xS' von Fig. 3, b zusammenfällt. Mit Maeder wird die [001]-Kante zur z-Achse gewählt. Senkrecht dazu, in 110 gelegen und nach rechts hin orientiert, liegt die y-Achse. Die positive x-Achse ist also die Normale zu 110 (Fig. 1 und 3, b).

Bisher handelte es sich um die scheinbaren optischen Achsen in der Luft und in der Glaskugel. Um die wirkliche Achsenrichtung im Kristall ermitteln zu können, muß neben der Größe n_3 auch das Bre-

chungsvermögen der Kugel bekannt sein. Dieses war von der Firma Leitz mit dem für offenbar mittlere Wellenlängen gültigen Wert n = 1,557 angegeben. Für den vorliegenden Fall ist es jedoch notwendig, die Lichtbrechung der Kugel für eine Reihe bekannter Wellenlängen genau zu bestimmen. In Betracht fiel die Prismenmethode. Um ein Prisma herzustellen, wurde von einem möglichst planparallelen Objektträger ein passend abgebrochenes Stück schief an die Kugel gelegt und auf deren Fassung unverrückbar festgekittet. Fig. 4 veranschaulicht die Verhältnisse. An der Berührungsstelle von Kugel und Objektträger sicherte ein Flüssigkeitstropfen von ungefähr gleichem Brechungsexponenten den ungestörten Lichtdurchgang. Her-

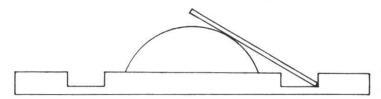


Fig. 4. Anwendung der Prismenmethode zur Bestimmung der Lichtbrechung des Kugelglases.

nach wurde der Objektträger zu einem großen Teil mit Tusche zugedeckt. Einzig an seinem Berührungspunkte wurde ein Fensterchen freigelassen. Auf diese Weise wurden mehrere Prismen konstruiert und verwendet. Für die Messung der Lichtablenkung diente abwechselnd der ebene Kugelschnitt und die Objektträgerfläche als Eintrittsbzw. Austrittsebene. Die in Tab. 7 aufgeführten Zahlen stellen Mittelwerte mehrerer Einzelbeobachtungen dar.

Tab. 7. Brechungsvermögen der oberen Glaskugel des Universaltisches

	Mittel	1.5545	1.5548	1.5565	1.5574_5	1.5679_5
	VI	1.5542			1.5573	
	V		1.5547	1.5562		1.5677
	IV	1.5544			1.5578	
	III		1.5549	1.5568		1.5682
	II	1.5546			1.5571	
	I	1.5548			1.5576	
	Prisma					
VI	45°34′50′′	28°26′35′′			28°37′30′′	
V	44027'22"		27°32′55′′	27°40′10′′		28°17′28″
IV	44007'13"	27°19′04′′			27°29'40"	
III	39°01′42′′		23°33′10′′	23°38′30′′		24°09′10″
II	35°14′34′′	20°52′06′′			21000'16"	
I	31°47′27′′	18°35′30′′			18°41′30′′	
	Prismenwinkel	Na-5893	Hg-5791	Hg-5461	T1-5349	Hg-4358

Von n_{β} lagen für die verwendeten Wellenlängen keine Werte vor. Werden aber die von Maeder für gelb (5876), grün (5016), violett (4471) bestimmten n_{β} -Werte als Funktion der Wellenlängen graphisch aufgetragen, so ergibt sich ungezwungenerweise ein flacher Parabelbogen. Es erscheint darum erlaubt, für das in Rede stehende Intervall

$$n = A + B\lambda + C\lambda^2$$

zu setzen, wo A, B, C Konstanten sind und λ die Wellenlänge bedeutet. Für die Rechnung ist es bequemer, λ nicht in Å, sondern in μ auszudrücken. Werden der Reihe nach die Maederschen Werte von n_3 , λ für die drei genannten Farben eingesetzt, so kommt

$$A = 1.671132$$
 $B = -0.426951$ $C = 0.3378961$

Hieraus werden für die 5 verwendeten Wellenlängen als angenäherte $n_{\beta}\text{-Werte}$ gefunden :

λ	0.5893	0.5791	0.5461	0.5349	0.4358
n_{β}	1.53682	1.53728	1.53898	1.53965	1.54946
b^2	0.423403	0.423150	0.422215	0.421848	0.416523

Diese Brechungsindizes sind kleiner als die zugehörigen der Kugel. Mithin werden die optischen Achsen beim Übertritt aus dem Glas zum Kristall vom Einfallslot weggebrochen. Wird dem Winkel y_i in der Kugel (bzw. Luft) der Winkel x_i im Kristall zugeordnet, so gelten nach der Gleichung n_{β} sin $x_i = n$ sin y_i , wo n der Brechungsindex der Kugel ist, die in Tab. 8 zusammengestellten Größen.

Tab. 8. Angenäherte Neigung x_1 und x_2 der optischen Achsen im Kristall gegenüber der Flächennormalen von 110 verglichen mit ihrer Lage y_1 und y_2 in der Glaskugel

	y_1	$\mathbf{x_1}$	y_2	$\mathbf{x_2}$
Na-gelb	37°28′15′′	37°58′40′′	60°05′03′′	61°15′06′′
Hg-gelb	37°25′20′′	37°55′42′′	60°06′34′′	61°15′57′′
Hg-grün	37°19′12′′	37°49′29′′	60°07′27′′	61°16′48′′
Tl-grün	37°15′16′′	37°45′30″	$60^{\rm o}06^{\prime}29^{\prime\prime}$	61°16′53′′
Hg-viol.	36°26′11′′	36°56′29′′	60°06′27′′	61°19′10′′

Gestützt auf Fig. 3, b können die cos der beiden Winkel, welche die optischen Achsen im Kristallinnern mit der y- und z-Richtung machen, sofort hingeschrieben werden.

$$\begin{array}{lll} \cos A_1'/y = \sin x_1 \cos v_1 & \cos A_1'/z = \sin x_1 \sin v_1 \\ \cos A_2/y = \sin x_2 \cos v_2 & \cos A_2/z = \sin x_2 \sin v_2 \end{array}$$

Hierin ist

$${\rm v_1} = {}^1\!/_2\,{\rm w_1} - \phi \qquad \qquad {\rm v_2} = {}^1\!/_2\,{\rm w_1} + \phi. \label{eq:v1}$$

Die numerischen Werte, welche sich mit diesen Formeln berechnen, sind in Tab. 9 aufgeführt.

Tab. 9. Die vorläufigen Richtungscosinus der optischen Achsen im Kristallinnern gegenüber dem Maederschen Achsenkreuz

	A_1'/x	A_{1}^{\prime}/y	${\rm A_1'}/{\rm z}$	A_2/x	A_2/y	A_2/z
Na-gelb	0.788249	0.571572	-0.227967	0.480965	0.585012	0.653019
Hg-gelb	0.788780	0.570693	-0.228332	0.480748	0.585338	0.652886
Hg-grün	0.789891	0.568716	-0.229426	0.480530	0.585950	0.652498
Tl-grün	0.790598	0.567387	-0.230273	0.480511	0.586178	0.652305
Hg-viol.	0.799250	0.553498	-0.234177	0.479926	0.589096	0.650106

3. Die Differenz der Geschwindigkeitsquadrate

J. Maeder hatte die Lichtgeschwindigkeitsquadrate q_1^2 und q_2^2 des Kupfervitriols in möglichst vielen Richtungen bestimmt und bei der Ausgleichungsrechnung, wie schon S. 102 bemerkt, besonders Gewicht auf die Differenz dieser Quadrate gelegt. Einer genauen Durchsicht seiner Tab. 11 können in der $q_1^2 - q_2^2$ -Kolonne kleine, unvermittelte Zu- und Abnahmen der letzten Dezimalen nicht entgehen. Diese zeigen sich deutlich, wenn Maeders Zahlen in geeignet gewähltem Maßstab graphisch dargestellt werden. Hierbei schienen 5 mm für 1° und 2 mm für die Einheit der vierten Dezimale von $q_1^2 - q_2^2$ günstig zu sein. Zwischen den erhaltenen Punkten hindurch wurde eine möglichst glatte Kurve gezogen, die dem Umstand Rechnung trägt, daß Messungen bei ungefähr symmetrischem Durchgang zuverlässiger sind als solche bei extremer Ablenkung. Da der große Maßstab für diese Kurven wesentlich ist, muß hier die verkleinerte Wiedergabe unterbleiben.

Von den vielen Messungen an Prismen, deren brechende Kante der c-Achse des Kristalls parallel ist, entsprechen die Punkte 7-10 keinem eindeutig verfolgbaren Kurvenverlauf. Die übrigen Punkte liegen, wie zu erwarten ist, teils oberhalb, teils unterhalb der gezeichneten Kurve. Am genauesten passen sich die Punkte von -40° bis -20° und von

25° bis 38° der Zeichnung an. Begreiflich! Der Prismenwinkel betrug hier immer mehr als 50°, sodaß der Lichtdurchgang von dem beim Minimum der Ablenkung nicht allzustark abweicht. Für das Intervall von –20° bis + 25° (Messungen 26-42) läßt sich keine befriedigende Kurve zeichnen, denn die Zahl der Punkte ist zu klein und bei dem hier vorherrschenden Prismenwinkel von ungefähr 25° wirken sich kleine, durch die Flächenbeschaffenheit bedingte Ablenkungsfehler des schief durchgehenden Lichtes ziemlich stark aus.

Da von den 85 Messungen Maeders auch alle jene, die dem streifenden Eintritt oder Ausfall nahe liegen, weggelassen wurden, ver-

Tab. 10. Die zur Bestimmung von a^2-c^2 benutzten Fortpflanzungsrichtungen und die $(q_1^2-q_2^2)$ -Werte in Einheiten der fünften bzw. sechsten Dezimale

Lf. Nr.	M'sche Nr.	Fort- pfl. r.	Na- 5893 extrap.	He- 5876 Kurve	Hg- 5791 interp.	Hg- 5461 interp.	T1- 5349 interp.	He- 5016 Kurve	He- 4471 Kurve	Hg- 4358 extrap.
1	1	$-95^{o}47'$	9827	983	9844	9907	9933	1002	1020	10243
2	3	-92°30'	10508	1051	10527	10598	10600	1071	1087	10906
3	5	-90	11006	1101	11022	11079	11117	1124	1136	11378
4	6	$-87^{\rm o}30'$	11497	1150	11512	11569	11597	1167	1183	11848
5	14	-40	16007	1601	16023	16079	16102	1618	1634	16358
6	17	-35	15556	1556	15577	15645	15669	1574	1586	15885
7	20	-30	14937	1494	14952	15008	15009	1510	1524	15273
8	22	-25	14167	1417	14181	14230	14248	1431	1443	14458
9	24	-20	13288	1329	13297	13333	13348	1340	1351	13537
10	43	25	3459	346	3465	3490	3495	353	361	3648
11	47	30	2859	286	2863	2883	2908	295	304	3073
12	51	35	2520	253	2540	2582	2598	265	275	2773
13	53	38	2547	255	2563	2616	2636	270	282	2847
14	55		7888	789	7898	7942	7951	801	814	8166
15	56		7659	766	7663	7690	7713	776	790	7936
16	57		7559	756	7563	7590	7606	766	779	7823
17	58		7269	727	7271	7287	7299	735	749	7528
18	59		6620	662	6622	6645	6659	672	688	6923
19	60		6220	622	6221	6242	6252	631	645	6488
20	61		5970	597	5972	5990	5996	605	620	6228
21	74		14980	1498	14985	15015	15019	1508	1524	15250
22	76		13919	1392	13931	13973	13964	1403	1420	14215
23	79	-	15038	1504	15051	15094	15099	1514	1521	15223
24	80		14959	1496	14965	14992	15002	1504	1512	15139
25	82		14660	1466	14663	14684	14695	1474	1485	14879
26	83	Market and a second	14610	1461	14614	14615	14635	1467	1476	14800

blieben nur noch 26 Richtungen mit anscheinend recht guten $(q_1^2 - q_2^2)$ -Werten. Sie sind in Tab. 10 zusammengestellt. Neben den laufenden Nummern (Lf. Nr.) in der ersten Kolonne stehen die der Maederschen Tab. 11 entsprechenden Nummern (M'sche Nr.). Durch sie werden Richtung und Geschwindigkeit der Lichtfortpflanzung eindeutig definiert. Die $(q_1^2 - q_2^2)$ -Werte sind den gezeichneten Kurven entnommen und weichen von den Maederschen Zahlen um eine Kleinigkeit ab. In Tab. 10 sind nur die Dezimalen notiert. Die erste, welche immer null ist, wurde stets weggelassen, ebenso fehlt die zweite, wenn sie zufälligerweise null wird. Aus den drei $(q_1^2 - q_2^2)$ -Werten für die He-Linien gelb, grün und violett wurden nach dem S. 119 geschilderten Verfahren die Quadratdifferenzen für die mehrfach genannten fünf Wellenlängen von Na, Tl und Hg interpoliert. Für die Prismenzone (Nr. 1-13) wurden im Interesse einer möglichst gleichmäßigen Verteilung die Fortpflanzungsrichtungen fast durchwegs im Winkelabstand von fünf zu fünf Grad genommen. Die entsprechenden Größen sind in der dritten Kolonne aufgeführt. Für die Nummern 14-26 blieb es bei Maeders Richtungen; aus Raumgründen konnten sie in der Tabelle nicht vermerkt werden.

4. Die angenäherten Hauptlichtgeschwindigkeitsquadrate

Bei bekannter Lage der optischen Achsen ist die Orientierung und, bei festgelegtem Charakter der Doppelbrechung, auch die Benennung der Indikatrixhauptachsen gegeben. Kupfervitriol ist optisch negativ. Daher ergibt sich n_x als Winkelhalbierende des spitzen und n_γ als Winkelhalbierende des stumpfen Winkels der optischen Achsen. n_β steht auf den letztern senkrecht. Hierauf soll aber vorläufig nicht weiter eingegangen werden.

Zur Bestimmung der Indikatrixhauptachsenlängen liefern die Differenzen der Lichtgeschwindigkeitsquadrate eine einfache und wichtige Beziehung. Es ist nämlich (falls φ_1 und φ_2 die Winkel der Fortpflanzungsrichtung mit den optischen Achsen bezeichnen)

$$a^2 - c^2 = \frac{q_1^2 - q_2^2}{\sin \phi_1 \, \sin \phi_2} \, .$$

Da bei gegebenem λ dieser Quotient für alle Fortpflanzungsrichtungen den gleichen Wert annehmen muß, ergibt sich zugleich ein gewisser Anhaltspunkt über die Orientierungsgenauigkeit der optischen Achsen.

Der Wert $a^2 - c^2$ wurde für die 26 ausgesuchten Richtungen mit den auf die fünf Wellenlängen bezogenen Differenzen $q_1^2 - q_2^2$ (Tab. 10) ermittelt. In Tab. 11, wo die gefundenen Werte zusammengestellt sind, können noch verschiedene Abweichungen festgestellt werden. Für violettes Licht betragen sie ungefähr eine Einheit der dritten Dezimale, für die andern Farben dagegen nur ungefähr die Hälfte. Es darf darum angenommen werden, daß die fettgedruckten Mittelwerte am Fuß der Tabelle bis auf etwa zwei Einheiten der vierten Dezimale genau seien.

Tab. 11. Werte von $a^2 - c^2$ für die in Tab. 10 angegebenen Fortpflanzungsrichtungen

Nr.	Na-gelb	Hg-gelb	Hg-grün	Tl-grün	Hg-violett
1	0.0166243	0.0166426	0.0167261	0.0167507	0.0170858
2	165892	166095	167014	166298	170049
3	164189	165552	166223	166640	169068
4	164923	165080	165733	165988	168255
5	164748	164954	165621	165915	169254
6	164343	164626	165461	165788	168997
7	164001	164232	164983	165066	169146
8	163725	163957	164693	165024	166900
9	163798	163997	164644	164967	168966
10	161377	161827	163326	163706	174936
11	162615	162910	163993	165295	176452
12	161249	162284	164350	164835	173500
13	161980	161156	167093	167610	176079
14	162835	163019	163909	164103	169198
15	163475	163508	163992	164465	169450
16	163882	163909	164377	164681	173052
17	164632	164544	164241	164951	170469
18	162213	162274	162901	163291	171132
19	166236	166242	166758	167120	177618
20	165262	165287	165100	165836	175184
21	165245	165332	165705	165771	168566
22	165464	165640	166210	166134	169465
23	164897	165120	165769	165950	168520
24	164806	164958	165417	165645	168045
25	164195	164281	164704	164927	167984
26	164286	164318	164575	164891	167731
Mittel:	0.0164097	0.0164289	0.0165156	0.0165477	0.0170726

Wird der von n_γ halbierte stumpfe Winkel der optischen Achsen 2V genannt, so gilt a^2-b^2

 $\sin^2 V = \frac{a^2 - b^2}{a^2 - c^2}$.

Mit Hilfe der bereits bekannten Werte a² — c² (Tab. 11) und b² (S. 119) wird vorerst a² und dann auch c² gefunden. In Tab. 12 sind die so berechneten Hauptlichtgeschwindigkeitsquadrate zusammen mit b² für alle fünf Farben angegeben.

Tab. 12. Die angenäherten Hauptlichtgeschwindigkeitsquadrate des Kupfervitriols

	a^2	b^2	C^2
Na-gelb	0.4362406	0.4234031	0.4198309
Hg-gelb	0.4359986	0.4231497	0.4195697
Hg-grün	0.4351232	0.4222154	0.4186076
Tl-grün	0.4347740	0.4218480	0.4182263
Hg-viol.	0.4298178	0.4165233	0.4127452

5. Die ausgeglichenen optischen Konstanten des Kupfervitriols

Die Zahlen der Tab. 9 und 12 können nur als erste Näherungswerte gelten, die noch mit mancherlei Unsicherheiten behaftet sind. Zunächst ist a² — c² als Mittel einer 26 gliedrigen Bestimmungsreihe wahrscheinlich genauer als der interpolierte Wert von b². a² selber stützt sich

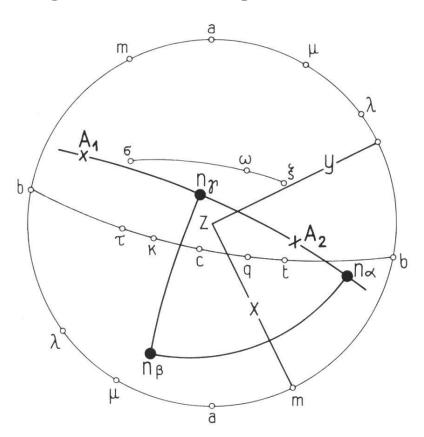


Fig. 5. Die kristallographische Orientierung des xyz-Systems und der Indikatrix. Von n₃ ist das negative Ende eingezeichnet.

auf b² und den damit gefundenen Winkel der optischen Achsen. So ist es notwendig, sowohl a², b², c² als auch die Lage der optischen Achsen zu korrigieren. Dabei sollen aber die ausgeglichenen Werte, welche die Lage der optischen Achsen in der Glaskugel bestimmen (Schlußzahlen der Tab. 6), völlig ungeändert bleiben.

Werden die S. 122 definierten Richtungen n_x , n_β , n_γ in einer stereographischen Projektion eingetragen (Fig. 5), so

läßt sich leicht finden, für welche Fortpflanzungsrichtungen in der xy-Ebene je eines der Geschwindigkeitsquadrate mit a^2 , b^2 , c^2 zusammenfällt. Nach dem Grundgesetz der Kristalloptik sind sie der Reihe nach zu den Ebenen $n_{\alpha}z$, $n_{\beta}z$ und $n_{\gamma}z$ senkrecht. Die zugehörigen Azimute sind in guter Annäherung -48° für a^2 , 39° für b^2 und $88^2/_3{}^{\circ}$ für c^2 und liegen im Bereich der von Maeder untersuchten Richtungen. a^2 ist Maximum und b^2 Minimum der Kurven für das größere q^2 und c^2 Minimum der Kurven für das kleinere q^2 . Da sich an allen drei Stellen der Kurvenverlauf nur unmerklich ändert, wurde auf das Mittel einiger benachbarter Messungen abgestellt. Aus den so gefundenen Werten für gelb, grün und violett des He-Lichtes wurden, wie S. 119 erklärt, die in Tab. 13 zusammengestellten Größen a_0^2 , b_0^2 , c_0^2 für

Tab. 13. Die aus Mäders Beobachtungswerten durch Interpolation errechneten Hauptlichtgeschwindigkeitsquadrate

	a_0^2	b_0^2	C_0^2
Na-gelb	0.4360253	0.4232753	0.4196255
Hg-gelb	0.4357665	0.4229834	0.4193372
Hg-grün	0.4347600	0.4218882	0.4182411
Tl-grün	0.4343597	0.4214641	0.4178124
Hg-viol.	0.4295215	0.4165547	0.4127665

die hier interessierenden fünf Farben errechnet. Sie haben als Beobachtungsgrößen zu gelten, sind durchwegs etwas kleiner als die entsprechenden Konstanten von Tab. 12 und mögen mit den Fehlern F_1 , F_2 und F_3 behaftet sein. Werden die kleinen Korrekturen von a, b und c mit α , β und γ bezeichnet, so ergeben sich drei Fehlergleichungen:

$$F_1 = a^2 - a_0^2 + 2a\alpha$$
; $F_2 = b^2 - b_0^2 + 2b\beta$; $F_3 = c^2 - c_0^2 + 2c\gamma$

 α , β , γ sind jedoch nicht unabhängig voneinander, sondern stehen in Beziehung zum Winkel der optischen Achsen. Da die ausgeglichenen Werte der Tab. 6 sich nicht ändern sollen, müssen die Verbesserungen ξ_1 und ξ_2 von x_1 , x_2 den Gleichungen

$$\xi_1 = \beta n \frac{\sin y_1}{\cos x_1}$$
 und $\xi_2 = \beta n \frac{\sin y_2}{\cos x_2}$

genügen. Andererseits berechnet sich aus der Beziehung (vgl. Fig. 3, a)

$$-\cos 2V = \cos x_1 \cos x_2 + \sin x_1 \sin x_2 \cos w_1$$
$$\sin^2 V = \frac{a^2 - b^2}{a^2 - c^2},$$

und

wo V den Winkel einer optischen Achse mit n_γ angibt, für jede Farbe eine Bedingungsgleichung von der Form

$$\beta = A\alpha + C\gamma$$
.

Hiermit werden nach dem Gauss'schen Verfahren der kleinsten Quadrate aus den drei F_i zunächst α und γ , dann β und schließlich ξ_1 und ξ_2 gefunden. Die numerischen Werte sind in Tab. 14 zusammengestellt. Die ersten drei ermöglichen, allerdings nicht durch bloße Addition, sondern auf dem Umwege über a, b und c, die Verbesserung der vorläufigen Werte von Tab. 12 und die Bestimmung der Hauptbrechungsindizes. Sie sind auf fünf Dezimalen gekürzt in Tab. 15 vermerkt. Mit

Tab. 14. Die Korrekturen a, β , γ und ξ_1 , ξ_2 von a, b, c, bzw. x_1 , x_2

	α	β	γ	ξ_1	ξ_2
Na-gelb	-0.0001620	-0.0001368	-0.0001277	-0.0001641	-0.0003831
Hg-gelb	-0.0002438	-0.0001703	-0.0001464	-0.0002040	-0.0004774
Hg-grün	-0.0002711	-0.0002711	-0.0002674	-0.0003239	-0.0007615
Tl-grün	-0.0003105	-0.0003109	-0.0003074	-0.0003708	-0.0008737
Hg-viol.	-0.0002174	-0.0000131	-0.0000463	-0.0000154	-0.0000374

Tab. 15. Die ausgeglichenen Geschwindigkeitsquadrate und Brechungsindizes des Kupfervitriols

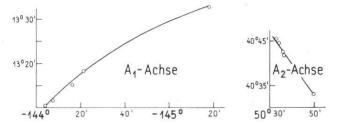
	5893 Na-gelb	5791 Hg-gelb	5461 Hg-grün	5349 Tl-grün	4358 Hg-violett
a^2	0.43603	0.43568	0.43477	0.43436	0.42953
b^2	0.42323	0.42293	0.42186	0.42144	0.41651
C^2	0.41967	0.41938	0.41825	0.41783	0.41293
n_{α}	1.51441	1.51502	1.51660	1.51730	1.52581
n_{β}	1.53714	1.53768	1.53962	1.54038	1.54949
n_{γ}	1.54365	1.54417	1.54626	1.54704	1.55619
1					

den Maederschen Zahlen können sie nicht direkt verglichen werden, da ihnen andere Wellenlängen zugrunde liegen. Werden aber beide graphisch veranschaulicht, so zeigt sich, daß die neuen Werte a^2 , b^2 , c^2 durchwegs etwas kleiner sind als die Maederschen. Demgemäß werden für Na-Licht n_{α} , n_{β} , n_{γ} um 2 oder 3 Einheiten der vierten Dezimale größer als die von Kohlrausch und Lavenir. Dafür passen sich a^2 , b^2 , c^2 von Strässle dem der Tab. 15 entsprechenden Kurvenverlauf enger an als diejenigen Maeders, doch derart, daß sie bald darüber, bald darunter liegen. Mit λ scheint sich die Doppelbrechung des Kupfer-

vitriols nur unbedeutend zu ändern. a^2-b^2 erreicht für Hg-gelb ein flaches Minimum und nimmt dann bis Hg-violett um 27 Einheiten der fünften Dezimale kontinuierlich zu. Weit weniger variiert b^2-c^2 ; die maximale Änderung macht nur 6 Einheiten der fünften Dezimale aus ; das Gesamtverhalten ist aber unregelmäßiger. Bei MAEDER und Strässle weist die Differenz a^2-b^2 Ausschläge auf, die mit 25 bzw. 22 Einheiten etwas kleiner sind als im Falle der Tab. 15 ; es ist aber auch das λ -Intervall etwas kleiner. Bekommt jedoch MAEDER für Tl das Minimum, so hat Strässle daselbst sein Maximum. Überraschend groß sind bei beiden die Schwankungen von b^2-c^2 , indem sie bei MAEDER 39, bei Strässle sogar 43 Einheiten erreichen, wobei sich für grünes Licht bei ersterem das Maximum, bei letzterem das Minimum einstellt.

Mit ξ_1 und ξ_2 ergeben sich aus x_1 und x_2 von Tab. 8, mit Berücksichtigung der Formeln von S. 120, die bereinigten Richtungen der optischen Achsen. Sie sind in Tab. 16 sowohl durch die Neigung gegenüber den xyz-Achsen als auch durch die zugehörigen cos (auf 6 Dezi-

Tab. 16. Lage der optischen Achsen im xyz-System, Richtungscosinus und Winkel


	${ m A_{1/x}}$	${ m A_{1/y}}$	$\mathbf{A_{1/z}}$	${ m A_{2/x}}$	$\rm A_{2/y}$	$\mathbf{A_{2/z}}$
Na-gelb	-0.788354 $142^{\circ}01'55''$	-0.571447 $124^{\circ}51'08''$	0.227916 76°49′32′′	0.481295 61°13′48″	0.584891 54°12′17″	0.652884 49°14′26″
Hg-gelb	-0.788902 142°04′59″	-0.570548 $124^{\circ}47'18''$	0.228274 76°48′16″	0.481167 61°14′18″	0.585184 54°11′03″	0.652715 49°15′12″
Hg-grün	-0.790149 $142^{\circ}11'58''$	-0.568408 124°38'21"	0.229296 76°44'40''	0.481197 61°14′11″	0.585712 54°08′48″	0.652219 49°17′27″
Tl-grün	-0.790149 $142^{\circ}15'46''$	-0.568408 $124^{\circ}33'00''$	0.229296 76°41′35″	0.481197 61°14′54″	0.585712 54°07′56″	0.652219 49°18′23″
Hg-viol.	-0.799259 143°03′34″	-0.553487 $123^{\circ}36'24''$	0.234173 76°27′26″	0.479951 61°19′04″	0.589087 53°54′28″	0.650095 49°27′06″

malen gekürzt) fixiert. Dabei ist von der ersten Achse nicht das untere, sondern das obere Ende berücksichtigt, so wie es in Fig. 5 auftritt. Die Dispersion von A₁ und A₂ ist überaus regelmäßig, aber für die beiden Lagen ganz verschieden und nimmt für das violette Licht sehr stark zu. Wegen der kleinen Winkelunterschiede konnte sie in der stereographischen Projektion der Fig. 5 nicht dargestellt werden. Sie wurde darum mit Angabe von Länge und Breite in Fig. 6 veranschau-

licht. Die Länge wird auf dem Grundkreis der Projektions-Fig. 5 gemessen und von x aus über y positiv gezählt. Die «Breite » entspricht, wie in der Geographie, dem Abstand des Punktes vom Grundkreis. Die beiden Kurven zeigen eindrucksvoll das Dispersionsverhalten der optischen Achsen in der für trikline Kristalle charakteristischen Unterschiedlichkeit.

Der stumpfe Winkel der optischen Achsen, welcher von n_{γ} halbiert und in Fig. 5 dem Beobachter sichtbar wird, ist mit seiner Farbenabhängigkeit in Tab. 17 enthalten. Er weicht von Maeders Angaben

Fig. 6. Dispersionsunterschiede der beiden optischen Achsen.

durchschnittlich um etwa 1 $^2/_3$ ° ab, paßt aber, im Mittel genommen, ausgezeichnet zu Strässles Zahlen und verzeigt — entsprechend der Beobachtungsmethode — eine sehr regelmäßige Variation.

Wie S. 122 angedeutet, bestimmen die beiden optischen Achsen auch die Hauptachsenrichtungen der Indikatrix (Fig. 5). Die Winkel und ihre cos (wiederum 6-stellig) sind in Tab. 17 unter Voraussetzung eines Rechtssystems (der in Fig. 5 sichtbare Ausstichpunkt von n_{β} stellt also das negative Ende dar) für alle fünf Wellenlängen notiert. Die Dispersion der drei Achsen ist ganz verschieden (Fig. 7), darf aber

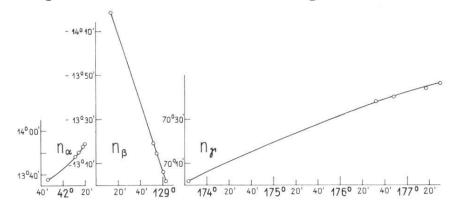


Fig. 7. Unterschiedliche Dispersion der drei Hauptachsen der Indikatrix. Nβ ist auf den untern positiven Gegenpol des in Fig. 5 dargestellten Ausstichpunktes bezogen.

nicht überschätzt werden, da sie — ebenso wie die Dispersion der optischen Achsen — in Fig. 5 nur zum kleinen Teil gerade noch knapp sichtbar würde.

Wegen der in dieser Arbeit zur Verwendung gelangten besonderen Untersuchungsmethode kommt den Richtungen der optischen Achsen und der Indikatrixhauptachsen eine große Genauigkeit zu. Es zeugt

Tab. 17. Ausgeglichene Orientierung der Indikatrixhauptachsen und Größe des von n_{γ} halbierten Achsenwinkels

		x	У	z	2V
	n_{α}	0.717680 44°08′12′′	0.653630 49°11′03″	0.240217 76°05′41″	
Na-gelb	$n_{\boldsymbol{\beta}}$	-0.613675 127°51′20″	0.756677 40°49'40''	$-0.225485 \\ 103^{\circ}01'52''$	124°23′34′′
	n_{γ}	-0.329150 109°13′02″	0.014411 89°20′26′′	0.944168 19°14′10′′	
	n_{α}	0.718007 44°06′35′′	0.653369 49°12′14′′	0.239949 76°06′59″	
Hg-gelb	n_{β}	-0.612982 $127^{\circ}48'20''$	0.756877 40°48′37″	-0.226693 $103^{\circ}06'09''$	124°21′57′′
	n_{γ}	-0.329726 109°15′08″	0.015682 89°06′08′′	0.943946 19°16′29′′	
	n_{α}	0.718932 44°02′01′′	0.652642 49°15′32′′	0.239158 76°09'48''	
Hg-grün	$n_{\boldsymbol{\beta}}$	-0.611374 $127^{\circ}41'20''$	0.757440 40°45′40′′	-0.229143 $103^{\circ}14'48''$	124°18′26′′
	n_{γ}	-0.330696 $109^{\circ}18'40''$	0.018522 88°56′20′′	0.943556 19°20′33′′	
	n_{α}	0.719516 43°59′08″	0.652196 49°17′32″	0.238614 76°11′43″	
Tl-grün	n_{β}	-0.610475 $127°37'26''$	0.757784 40°43′50″	$-0.230399 \\ 103^{\circ}19'14''$	124°14′52′′
	n_{γ}	-0.331084 $109^{\circ}20'13''$	0.020108 88°50′51″	0.943387 19°22′18″	
	n_{α}	0.724809 43°32′50″	0.647390 49°39'18''	0.235664 76°22′11″	
Hg-viol.	n_{β}	-0.599555 $126^{\circ}50'22''$	0.761219 40°25′41″	$-0.247145 \\ 104^{\circ}18'31''$	123°52′40′′
	n_{γ}	-0.339391 $109°50'23''$	0.037839 87°49′55″	0.939884 19°58′05′′	

aber für Maeders und Strässles Sorgfalt bei den Messungen, wenn die von ihnen auf indirektem Wege gefundenen Winkel sich mit einer mittleren Abweichung von etwa $^2/_3$ ° bzw. $^1/_4$ ° den neuen nähern.

ZUSAMMENFASSUNG

- 1. Die von J. Maeder bestimmten optischen Konstanten des Kupfervitriols bedeuten früheren Ergebnissen gegenüber einen großen Fortschritt. Ihre Verbesserung ist das Ziel der vorliegenden Arbeit.
- 2. Durch zahlreiche Messungen (Tab. 1, Tab. 6) wurden für die Fläche 110 die Auslöschungsschiefe und die Richtung der ins Kugelglas des Fedorow-Apparates austretenden optischen Achsen für fünf Farben ermittelt.
- 3. Überraschende Schwankungen der gewonnenen Zahlen sind durch Unvollkommenheit der Ausbildung, Unschärfe der das Bezugssystem bestimmenden Kanten und schiefe Auflage der Präparate weitgehend erklärbar, ohne daß unbedingt eine veränderliche Menge und Beschaffenheit des Kristallwassers anzunehmen wäre.
- 4. Aus MAEDERS Messungsreihen wurden Näherungswerte für a², b², c² wie auch für die Differenz a² c² abgeleitet und mit Benutzung der unter 2. genannten Ergebnisse nach der Methode der kleinsten Fehlerquadrate verbessert.
- 5. Die Dispersion der optischen Achsen und der Hauptachsen der Indikatrix läßt die für das trikline System geltenden Eigentümlichkeiten in typischer Weise hervortreten und ist graphisch veranschaulicht; für Hg-violett steigt sie stark an (Fig. 6 und 7).

Literaturverzeichnis

- 1. Duparc L. und Reinhard M.: Les méthodes de Fédorof et leur application à la détermination des plagioclases. Schweiz. Min. Petr. Mitt. Bd. III (1932).
- 2. Maeder J.: Kristallographie und Optik des Kupfervitriols. Schweiz. Min. Petr. Mitt. Bd. XXII (1942); daselbst weitere Literaturangaben.
- 3. Pockels F.: Lehrbuch der Kristalloptik, Leipzig 1906.
- 4. Strässle D.: Morphologie und Optik des Kupfervitriols. Bull. Soc. frib. Sc. nat., 46 (1956).
- 5. Weber L.: Über die Prismenmethode zur Bestimmung der Brechungsindizes optisch zweiachsiger Kristalle ohne Absorptions- und Drehungsvermögen. Mém. Soc. frib. Sc. nat., Série Mathématiques et Physique. Vol. IV, 1921.