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Procès-verbaux des séances

1928-1929

Séanee du 22 novembre 1928.

Présidence de M. le prof. Dr S. Bays, président.

Rapport annuel du Président (voir page 3).

Séanee du 6 décembre 1928.

Présidence de M. le prof. Dr S. Bays, président.

1. A. Haas, prof. : Neue Versuche über das Sieigen
der Lösungen des gelatinierbaren Opalblaus, von
Dr. Grübler in Kraut- und Holzpflanzen.

Rei Versuchen, Protozoen für Unterrichtszwecke
zu färben, wurde ich auch auf das gelatinierbare
Opalblau von Dr. G. Grübler & C°, Leipzig
aufmerksam und stellte mir die Frage, ob dieses
eventuell auch vom Pflanzenorganismus absorbiert
würde. Zu dem Ende wurde ein beblätterter Spross
der gewöhnlichen Drennnessel in eine Lösung von
Opalblau gestellt. Die Brennessel wurde gewählt,
weil die Blätter relativ dünn sind und das Erscheinen
der Farblösung in den Nerven der Blätter leicht zu
erkennen war. Das Ergebnis zeigte, dass die Färbung
in den Enden der Blattnerven eines 30 cm langen
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Sprosses bereits nach 15-20 Minuten sich bemerkbar
machte und mit der Zeit intensiver wurde.

Auffällig war vorerst die Beobachtung, dass die
Färbung in den obern, wie in den untern Blättern
ungefähr gleichzeitig erscheint. Einen Unterschied
in dieser Hinsicht vermochte ich nicht festzustellen.
Die verschieden langen Entfernungen von der Schnittfläche

bis zu den äussersten Blattspitzen müssen
somit mit ungleicher Geschwindigkeit durchlaufen
worden sein. Weitere Versuche ergaben das nämliche
Resultat auch mit beblätterten Zweigen von Acer
Californica nach der Bestimmung von Hr. Dr.
Jaquet. Beispielshalber sei es erlaubt, einen Versuch
mit der letztgenannten Pflanze anzuführen. Zwei dies-
jährige Zweige wurden am 13. August 1928 7 Uhr
morgens in die Färblösung gestellt. Am 8 Uhr war
die Färbung der Enden der Blattnerven deutlich in
den obern wie den untern Blättern. Ein Unterschied
der Färbung hinsichtlich Intensität war nicht zu
erkennen. Die Länge der Zweige betrug für beide
78 cm ; der eine trug 14, der andere hatte 13 Blätter.
Derlei Versuche dürften sich zur Demonstration in
Schulen empfehlen besonders deswegen, weil die
Nesseln fast überall leicht und lange zu haben sind.

Macht man Querschnitte durch einen derartig
behandelten Spross, so fällt auf, dass nur bestimmte
Teile und zwar des Holzteils gefärbt sind. Diese sind
im Querschnitt andern gegenüber durch vollständigen

Farbkontrast abgegrenzt. Das kann man
beobachten, wenn der Querschnitt in Luft und nicht
in Wasser als Einschlussmedium betrachtet wird.
Wird er ins Wasser übertragen, so verläuft die Farbe.
Querschnitte, die genannter Behandlung nicht un-
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terworfen waren, wurden in Farblösung gebracht
und da zeigte sich, dass andere Elemente sich
schneller und intensiver färben als die Teile, in denen
die Farblösung emporsteigt. Wird ein Querschnitt
oder ein Längsschnitt, der durch die aufsteigende
Opallössung gefärbt wurde, betrachtet, so ist die
Färbung in benachbarten Gefässen verschieden stark,
stärker bei englumigen als bei solchen mit grösserer
Lichtweite.

Wenn auch das Verhalten der abgeschnittenen
Zweige recht interessant ist, so ist es nicht weniger
die Frage, wie die unversehrte Pflanze der Färblösung
gegenüber sich benimmt.

I. Zu dem Zwecke wurde dem Garten des

Kollegiums eine Euphorbia Heliolropa entnommen, die
Erde behutsam entfernt und das Wurzelwerk in
Farblösung getaucht. Die Beobachtung zeigt folgendes :

Beginn des Versuchs 8. August 1928 1 Uhr 55 abends.
4 Uhr 10 Nervenenden deutlich gefärbt. Ein
Querschnitt durch einen Seitenzweig zeigt, dass nur die
Gefässbündel gefärbt sind, die Farblösung in der
intakten Pflanze denselben Weg nimmt, wie in
abgeschnittenen Zweigen. Nachdem die Pflanze am 9.
August 8 Uhr morgens in gewöhnliches Leitungswasser
gebracht worden, verbleibt die Pflanze frisch wie die
Aufzeichnungen ergeben vom

11. August 11 Uhr 50
12. » 8 „
13. » 7 „
18. »> 4 „

Am 5. September zeigt sich, dass die untern Blätter
vergilbt sind, während an den Zweigspitzen sich neue,
mit ungefärbten Nervenenden gebildet haben.
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II. 9. August 1928. Eine 53 cm hohe Atriplex-spec.
wird dem Boden entnommen, die Wurzeln behutsam
von der Erde befreit und um 6 Uhr morgens in die
Farblösung gestellt. Um 7 Uhr schon wies ein
Seitenzweig bereits deutliche Färbung auf und 7 Uhr 10

waren die Blätter stellenweise deutlich gefärbt. 8 Uhr
15 weist ein Querschnitt in 21 cm Höhe deutliche,
intensive Färbung der Gefässe auf. Das untere 21 cm
lange Stück verblieb in der Opallösung und seine
Blätter waren am 11. August 1928 11 Uhr 50 kaum
welkend und am 12. August 6 Uhr abends sind die
oberen Blätter dürr und die mittleren stark welk,
am 13. August 7 Uhr sind auch letztere völlig welk.

III. So war es begreiflich, dass der Wunsch darauf
hinaus ging eine intakte Pflanze ohne anhaftende
Erde zu bekommen. Bei den beiden ersten Versuchen
konnte immerhin der Einwand gemacht werden, dass
trotz aller Vorsicht und Behutsamkeit Würzelchen
zerrissen und die Farblösung durch die Wundstellen

eintrat. So fand ich denn in einer Höhlung einer
künstlichen Grotte im Park des Kollegiums St.
Michael eine Keimpflanze von Aesculus Hippocaslanum.
Die Pflanze hatte sich aus dem Samen entwickelt,
der ihr noch anhaftete. Ueber demselben finden sich
mehrere Wurzeln, die sich in der Luft entwickelt
hatten, da beständig Wasser über sie herunterrieselte.
Diese Pflanze wurde am 10. August 7 Uhr 05
abends in Farblösung gestellt, 9 Uhr 20 ist die
Färbung bereits erkennbar. 11. August 1 Uhr morgens
recht deutliche Färbung an den Knotenpunkten der
Blattränder ; 6 Uhr 20 einzelne Nervenbezirke deutlich

gefärbt, während andere fast noch keine
Färbung aufweisen. 8 Uhr 10 tritt der Farbstoff ins
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Parenchym über, 11 Uhr 40 Färbung ganz deutlich,
Pflanze frisch. 12. August 7 Uhr 45 Pflanze turgescent.

12 Uhr mittags zeigt die oberste Schicht der
Farblösung Schleim, worin zahlreiche Paramaecien
mit intensiv gefärbtem Rande und gefärbten Vakuolen

sich tummeln. 13. August 8 Uhr ein Rlatt etwas
welk, die übrigen drei noch frisch. Am Mittag wird
die Farblösung durch Leitungswasser ersetzt in der
Absicht das Welken zu verhindern. Am folgenden
Tage waren trotzdem die zwei obern welk, die zwei
untern noch frisch; am 18. August 8 Uhr morgens
sind alle Rlätter welk.

IV. Versuche vom 8. August 1928 mit Tradescantia.
Die Topfpflanze besitzt grüne und teilweise pana-
schierte Blätter. 7 Uhr 05 abends wird Opallösung in
die Topferde gegossen. Am 11. August 4 Uhr 30 abends
beginnt die Färbung, nachdem die Pflanze am 9.
August mit Leitungswasser und am 10. August wieder
mit Farblösung versetzt worden war. Der Farbstoff
muss von der Topferde absorbiert worden sein,
sodass erst durch eine weitere Zugabe, nachdem die
Erde gesättigt war, eine Aufnahme durch die Wurzeln

in den Blättern erkennbar wurde. Die
nachstehenden Angaben geben Aufschluss über das weitere
Verhalten der Pflanze. Vom 12. bis 13. August wird
die Färbung deutlicher. Am 15. August zeigt sich
kein weiterer Unterschied. Am 16. und 17. September
wird Opallösung nachgegossen, so dass die Färbung,
die verschwunden war, sich wieder zeigt.

Die angeführten Beobachtungen lassen somit
erkennen, dass der Farbstoff gelatinierbares Opallblau
von Dr. Grübler von der unversehrten Pflanze ebenso
wie von abgeschnittenen Zweigen aufgenommen wird,
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so dass man mit abgeschnittenen Zweigen operieren
darf, um die Leistungsbahnen des aufsteigenden
Saftstrommes zu bestimen. Bei abgeschnittenen
Zweigen fällt natürlich der durch das Wurzelwerk
bedingte Widerstand hin.

Im Anschluss hieran seien noch einige weitere
Versuche erwähnt, die vielleicht in anderer Hinsicht
interessieren dürften :

I. 11. August 1928 6 Uhr abends Acer-Zweig mit
8 starken Blättern in Farblösung gestellt. 6 Uhr 35
die Blattnerven-Färbung. 12. August 7 Uhr 45 morgens

sind die Enden der Blattnerven intensiv
gefärbt. 13. August 10 Uhr morgens sind die Blätter
gesunken während die Spreiten noch ziemlich frisch
aussehen.

IL Ist das untere Zweigstück mit 4 Blättern von I.
und wurde umgekehrt in die Lösung gestellt um 6 Uhr
15; auch diese Blätter zeigen Färbung um 6 Uhr 35.
12. August 7 Uhr 45 morgens sind die Blätter ebenso
intensiv gefärbt wie die von 1.5 Uhr 30 werden sie schlaff
und beginnen zu welken. Zimmertemperatur 30° C.

Vergleicht man diese Beobachtungen, so geht daraus
hervor, dass der Mechanismus in den Zweigen
reversibel funktionieren kann. Man könnte nun
einwenden, dass das Verhalten auf den Transpirationszug

der Blätter zurückzuführen ist. Damit scheint
aber die folgende Beobachtung nicht im Einklang zu
stehen. Versuch vom 16. August 1928 mit Acer-Zweig,
der 5 Uhr abends in Farblösung gestellt wurde.
Derselbe ist verzweigt und weist nachstehende
Gestalt und Dimensionen auf.
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A 24 D 36 Bl/ AD =24 cm

D B 36 cm

C D 9 cm

Bei A findet sich die Stelle, wo der Zweig am Baume
abgeschnitten wurde. C ist ein Seitenzweig, der mit
seinem Schnittende in die Farblösung taucht. Die
Bewegungsrichtung der Opallösung ist somit für G

und A der des Transpirationstromes entgegengesetzt.
Gegen das Ende B finden sich 5 gefiederte
Laubblätter, die am 17. August gefärbt und noch frisch
sind. Aber auch das Teilstück A ist bis 1-2 mm unterhalb

der Schnittfläche gefärbt, wie die Querschnitte
bei dessen Zerlegung zeigen.

Versuche mit Zweigen von Acer, bei welchen einzelne
Blattspreiten abgeschnitten wurden, zeigten als
Ergebnis: Die Gefässe der Stiele waren der ganzen
Länge nach bis etwa 1 mm unterhalb der Schnittfläche

gefärbt. Taucht ein Blattstielende in die
Farblösung, so färben sich auch die Blätter, die am
selben Zweige sitzen, wenn auch der Vorgang
wesentlich langsamer verläuft.

Eine Saugung durch die Blattspreiten musste
verhindern, dass die Farblösung in Zweigstücke ohne

Blätterjund in Blattstiele ohne Spreiten hineinwandert.
Da aber Letzteres zutrifft, so dürfte die Anschauung
nach welcher der Sitz der bewegenden Kräfte längs
der Leistungsbahnen verteilt ist, mehr und mehr an
Boden gewinnen.

Beachtet man weiter, dass der Mechanismus
reversibel funktionieren kann, so liegt es nicht ferne
an die Gefässspiralen, welche in erster Linie sich fär-
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ben und der Forderung der Reversibilität Genüge
leisten, zu denken. Eine Wasserbewegung im Innern
der Spiralgefässe würde verständlich, wenn die Ge-

fässpiralensich drehen würden. Doch für eine derartige
Ansicht fehlt als Unterlage einstweilen jede Beobachtung.

So liegt es denn gerade so nahe die inverse
Annahme zu machen, nämlich dass auf die Seitenwände,
die elastisch sein müssten, entsprechende Drucke von
aussen ausgeübt würden, womit deren Inhalt ebenso
in Bewegung käme, wie bei drehenden Spiralen. Eine
Vermischung des Gefässinhaltes mit dem der umgebenden

Zellen brauchte nicht stattzufinden. Die
Spiralstruktur der Gefässe und die umgebenden osmotischen
Verhältnisse wären die Grundlagen, aus deren
Zusammenwirken ein Verständnis für die Flüssigkeitsbewegung

im Innern der Gefässe sich ergeben dürfte.
Und so scheint aus vorliegenden und ähnlichen
Beobachtungen auch als wesentliches Ergebnis namhaft

zu machen, dass der Inhalt der Spiralgefässe
bei seiner Verschiebung sich mit dem der osmotisch
wirksamen Zellen nicht mischt.

2. J. Aebiseher, prof.: Sur la présence dans le

canton de Fribourg de deux mousses rares pour la
Suisse.

1. Mnium spinulosum Br. eur.

Cette mousse est rare pour notre pays puisque la
Flore des mousses de la Suisse, par Amann et les
additions jusqu'en 1928 n'en mentionnent que quelques

stations.
Le botaniste Reuter l'ayant trouvée jadis au Bur-

gerwald dans le canton de Fribourg, je l'ai recherchée
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tout spécialement pendant 25 ans et j'ai eu le plaisir
de la voir avec des capsules dans les stations suivantes,
toujours sous les sapins:

St-Sylvestre, à l'ait, de 951 m. et de 1010 m.
Treyvaux, à « La Combert ». entre 987 m. et 1040 m.

Elle y est abondante avec Mnium spinosum (Voit.).
La première occupe surtout le versant sud de la
colline et l'autre le versant nord-ouest.

Sur le territoire de Treyvaux, cette mousse se trouve
encore au-dessus de Pratzey, vers 980 m., dans deux
stations assez distantes l'une de l'autre.

La Roche, à l'ait, de 1000 m. et de 1180 m.; d'où
elle semble cependant avoir disparu.

Le Crêt, à l'ait, de 900 m.
Sorens, à l'ait, de 1050 m.
Grangettes, à 970 m.
Ohàtelard, à 1110 m.; l'aspect de cette dernière

station était magnifique en 1924.
Sur le versant oriental du Gibloux : Gumefens, à

950 m. et à 1000 m.; Villars-d'Avry, ait. 1150 m.
Posieux, dans le bois de Monterban, à l'ait, de

670 m., où elle a très bien fructifié en 1913, mais d'où
elle semble avoir disparu depuis, après avoir été
remplacée par de maigres touffes de Mnium spinosum.

Je l'ai aussi trouvée à l'état stérile sur le versant
occidental de l'Aettenberg, Planfayon, à 1200 m.

2. Mnium hornum L.

De cette mousse aussi, on n'a signalé que peu de
stations en Suisse et encore n'a-t-elle été vue qu'à l'état

stérile.
En mai 1926, je l'ai trouvée avec beaucoup de

capsules sur un banc de molasse dans une forêt du
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district de la Singine (canton de Fribourg), à l'ait,
de 740 m. C'est là pour le moment, la seule station
du Mn. hornum dans le canton de Fribourg et la seule
station en Suisse où elle a été trouvée avec des
capsules.

MM. Amann et Meylan qui en ont vu des exemplaires,

ont confirmé l'exactitude de la détermination.

3. Prof. L. Weber: 1) Experimentelle Methode der

Vorausbestimmung der Gesteinstemperalur im
Innern eines Gebirgsmassifs. 2) Gesteine von Helgoland.

L'auteur n'a pas fourni de manuscrit.

Séanee du 20 décembre 1928.

Présidence de M. le prof. Dr S. Bays, président.

1. L. Layaz: A propos des confluences el des bicon-

fluenees.

2. Prof. L. Weber : Die Pétrographie im Dienste des

Strassenbaues (neuere Untersuchungen).

Les auteurs n'ont pas fourni de manuscrit.

Séance du 17 janvier 1929.

Présidence de M. le prof. Dr S. Bays, président.

Dr P. Gerber: Mon voyage en Orient au printemps
1928, Italie, Egypte, Palestine (avec projections
lumineuses).

L'auteur n'a pas fourni de manuscrit.
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Séanee du 24 janvier 1929.

Présidence de M. le prof. D' S. Bays, prsident.

1. J. Aebischer, prof. : Problèmes de géométrie basés

sur les rosaces du cloître d'Haulerive ; en particulier,
l'inscription de quatre cercles égaux dans le losange

curviligne.

L'auteur n'a pas fourni de manuscrit.

2. Chr. Baumeier : Über das Molekulargewicht der

Proteine, mit spezieller Berücksichtigung des

Hämocyanins der Weinbergschnecke, nach neuesten

Forschungen.

Die Frage, welches Gewicht (oder welche Grösse)
den Eiweissmolekülen — die bekanntlich kolloidale
wässrige Lösungen bilden — eigen ist, besitzt,
sowohl vom physiologischen Standpunkte (beispielsweise

in Anbetracht der Vorgänge welche sich im
Protoplasma abspielen), als auch vom allgemeinen
physikalisch-chemischen Standpunkte aus, grosse
Bedeutung. Für dieses Mal werden unsere Betrachtungen

dieser Frage nur in letzterer Hinsicht
erfolgen.

Vor 25 Jahren veröffentlichte Schulz 1 unter dem
Titel : « Die Grösse des Eiweissmoleküls » eine bedeutende

Monographie, in welcher schon eine stattliche
Anzahl von Arbeiten angeführt sind, die in mehr
oder weniger direkter Beziehung zu dieser Frage
stehen. Seit diesem Zeitpunkte nun hat die Literatur
über diesen Gegenstand einen bedeutenden Zu-

1 Fr.-N. Schulz, Jena, Gustav Fischer, 1903.
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wachs erfahren, wie aus der ausgezeichneten
Zusammenfassung, die Cohn1 1925 veröffentlicht hat
zu ersehen ist. Aber gerade seit 19 2 5 gelangte
der geniale Physiker Theodor Sved-
berg, durch Anwendung ganz neuer
Bestimmungsmethoden, zu ausser-
gewöhnlich wichtigen Resultaten,
die hier in aller Kürze wiedergegeben werden sollen.

Für seinen Vortrag, den Svedberg am 19. Mai 1927

hielt, als ihm der Nobelpreis für Physik übergeben
wurde, war gerade das in Frage stehende Problem
zum Hauptgegenstande gewählt, und aus diesem
Grunde werden wir speziell diesem Vortrage, der
bereits erschienen ist2, reichliche Zitate entnehmen.

Die von dem schwedischen Physiker ausgesonnenen

neuen Methoden beruhen auf der Anwendung von
sogenannten Ultra-Zentrifugen, das sind Zentrifugen,
welche eine ungeheure Umdrehungsgeschwindigkeit
besitzen (bis zu 42000 Umdrehungen in der Minute).

« Ein Zentrifugalfeld kann in zweierlei Weise zur
« Restimmung der Partikelgrösse und des Molekular-
« gewichts ausgenützt werden. Einerseits kann man
« die Sedimentationsgeschwindigkeit
« an sich messen, andererseits den Gleichgewichts-
« zustand — das sogenannte Sedimentations-
«gleichgewicht — studieren, der sich nach
« längerer Zentrifugierung einstellt. Diese beiden
« Methoden knüpfen an die klassischen Untersuchun-

1 Ed.-J. Cohn, Journ. of biolog. Chemistry, 63, 1925, S. 721-
766 und Physiological Reviews, 5, 1925, S. 349.

2 The Svedberg. Nobelvortrag, Kolloidchemische Beihefte,
26, S. 230-244.



« gen über das Verhalten grobdisperser Systeme im
« Schwerfeld an, die im Jahre 1908 und den folgenden
« Jahren von P e r r i n und Mitarbeitern ausgeführt
« und mit dem Nobelpreis in Physik für das Jahr
« 1926 ausgezeichnet wurden.

« Retrachten wir eine kleine Menge einer hochdis-
« persen kolloiden Lösung, die in einer sektorförmi-
« gen Zelle eingeschlossen ist, welche mit der Winkel-
« geschwindigkeit co um eine mit der Spitze des Sek-
« tors zusammenfallende Achse rotiert.

« Auf jeden Partikel wirken zwei einander entge-
« gengesetzte und gleichstarke Kräfte: die Zentrifu-
« galkraft v (op—o) co2 x und der Reibungswiderstand
« k .^L, wo v das Volumen und p„ die Dichte des Par¬

at ' ^p

« tikels, o die Dichte des Lösungsmittels, x den Ab-
« stand des Partikels von der Rotationsachse, k den

« Reibungskoeffizienten und -£ die Sedimentationsge-
« schwindigkeit bedeuten. Man hat also

v K—p) w2x k Ì£\-P Kl dt
« Wenn die Partikeln angenähert als Kugeln mit dem
« Radius r betrachtet werden können, hat man
«v= yjir3 und k 6jn?r, wo n die Viskosität des

« Lösungsmittels ist. Nach Einsetzung dieser Werte
« und Integration erhält man :

r
9 »? In

2(öp-e)«2(t2-t1)
« Handelt es sich um eine hochmolekulare Substanz
«mit dem Molekulargewicht M, dem partiellen spe-
« zifischen Volumen V, dem molaren Reibungskoef-
« fizienten f und dem Diffusionskoeffizienten D, so
« erhält man statt der obigen die Gleichungen
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M (1 — \Te) <ü2x f 4f und f ~,
«woraus M

D(l—VeKx

RTln(f)
« oder integriert M =—=—.. \,' —r~.•D(l—VeJja^tj — tt)

« Wenn man genügend lange zentrifugiert, stellt
« sich schliesslich ein Gleichgewicht zwischen der Se-
« dimentation und der Diffusion ein. In diesem Falle
« können die Formeln für das Partikelvolumen und
« das Molekulargewicht sowohl kinetisch als thermo-
« dynamisch abgeleitet werden. Man erhält für das
« Volumen v einzelner Partikel

2RTln m
N(op— q)(o'!(x.2—xj (Xj+xJ

« und für das Molekulargewicht
c,2RTln

M
(1— Ve)<u2(X, — X,) (Xj + Xj

« wo c2 und Cj die Konzentrationen in den Punkten x2
« und Xj bedeuten.

« Ausgehend von den oben angegebenen Formeln
« können Methoden zur Rerechnung der Partikel-
«grössenverteilung abgeleitet werden.»

Es würde uns zu weit führen, an dieser Stelle eine
Beschreibung der Svedberg'schen Ultrazentrifugen
zu geben. Ebensowenig werden wir auf die optischen
Messverfahren eingehen können, welche es gestatteten,
die Wirkungen der Zentrifugation zu verfolgen. Wir
werden uns bloss auf die Erwähnung beschränken,
dass es Ende 1927 dem Autor gelungen ist, mittels
eines der letzterstellten Modelle (Oelturbinentypus)



ein Zentrifugalfeld zu erreichen, das 104 000 mal
grösser war, als die Schwerkraft.

Bis zu diesem Zeitpunkte hatte Svedberg seine
Methoden zur Bestimmung des Molekulargewichtes
des Hühnereiweisses, des Oxyhämoglobins (neben
Kohlenoxydhämoglobin und Methämoglobin)
angewendet, ebenso auch des Phykozyans und des Phy-
koerythrins (beides Pigmente aus der Alge Ceramium
rubrum). In letzter Zeit aber beendete er und
veröffentlichte seine Untersuchungen über das Molekulargewicht

des Hämocyanins der Weinbergschnecke
(Helix pomalia), auf welche Untersuchungen er
bereits in seinem « Nobelvortrage » Andeutungen
gemacht hatte.

Anfänglich hatte er nach den üblichen Verfahren
möglichst gut gereinigtes Ovalbumin der Zentrifu-
gation unterworfen. In diesem Falle schwankte das

Molekulargewicht, welches durch Berechnung aus
den Untersuchungsbefunden erhalten wurde, zwischen
35 000 und 47 600. Die Lösungen verhielten sich
nämlich wie Mischungen (und zwar in sehr ungleichen

Verhältnissen) von Eiweissmolekülen sehr
verschiedenen Molekulargewichtes. Als Svedberg aber
zu einer weiteren Reinigung seiner Substanzen die

Elektrodialyse zugezogen hatte\ wiesen die

1 Einzig und allein durch Elektrodialyse werden die letzten
Spuren von jonogenen Verunreinigungen entfernt. Und
zwar erhielt als erster Ch. Dhéré im Physiologischen Institute

zu Freiburg Proteine von solch ausserordentlicher
Reinheit (Siehe: Mitteilungen an die Académie des sciences
de Paris, 1910 und an die Société de biologie, 1911), was nun
ein für alle Male als erwiesen gelten kann. Z. B. steht am
Anfange der ausgezeichneten Monographie, welche M. Spie-
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mit so gereinigten Lösungen erhaltenen

Refunde eine merkwürdige
Konstanz auf; die Extremwerte lagen
zwischen 33 600 und 36 300 ; als Mittelwert dieser
Befunde ergab sich : 34 830 1.

Auf folgender Tabelle sind die hauptsächlichsten,
von Svedberg erhaltenen Werte zusammengestellt
(mit Ausnahme derjenigen für das Hämocyanin):

TABELLE I

SUBSTANZ METHODE MOLEKULARGEWICHT

Ovalbumin Gleichgewicht 34,500

Gleichgewicht 68,150
Geschwindigkeit 66,740Scrinimi!)umili

c ii,. f Gleichgewicht 103,100 '
Serumglobulin { Gesch|indigkeit 10^400

Hämoulnbin i Gleichgewicht 67,700fiamogiouiii \ Geschwindigkeit 68,000

Phvkozvm i Gleichgewicht 105,000i nyKozy.ui | Geschwindigkeit 105,000

Phvkoervthrin Gleichgewicht 207.700i nyKoerymnn ^ Geschwindigkeit 226,800?
•j" The Svedberg & B. Sjögren, Journ. Amerio, ehem. Soc. Dezember 1928.

Ein Vergleich dieser Zahlen mit den folgenden
Werten, welche Cohn 1925 aufgestellt hat, könnte
ein gewisses Interesse bieten.

gel-Adolf (in Abderhalden^ Hdb. d. biolog. Arbeitsmethoden)

Ende 1927 veröffentlicht, Folgendes: «Systematische
Untersuchungen über die Elektrodialyse verschiedener
Proteine hat als erster Dhéré vorgenommen, von welchem
auch die Bezeichnung « Elektrodialyse » in dem hier näher
präzisierten Sinne als « Dialyse électrique » eingeführt worden

ist ».
1 Journ. of the American Chemical Society, Dezember 1926,

S. 3081.
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TABELLE II
Mindest. Wahrscheinlich.

SUBS TANZ MOLEKULAR- MOLEKULAR¬
GE WICHT GEWICHT

Ovalbumin 33,400 33,400
Serumalbumiii 5,000 45,000
Hämoglobin (Pferd) 16,700 66,800

(Rind) 33,400 66,800
Serumglobulin 27,000 81,000 *

Häinocyanin (Limulus) 22,700 90,800 *

Zein (aus Mais) 19,400 97,000 *

Edcstin (aus Hanfsamen) 29,000 116,000 *

Gelatine 10,300 123.600 *

Casein 12,800 192,000 *

* Zu seinen Befunden bemerkte Cohn, dass für die mit * bezeichneten
Proteine das wahre Molekulargewicht ein höheres Multiplum dieser Zahlen
sein könnte. (Diese Tabelle Cohn's ist ein wenig verkürzt wiedergegeben.)

Es erhellt also aus den eben gemachten Anführungen,

dass bis dahin keine einzige
Molekulargewichtsbestimmung einen
Wert geliefert hat, der die Zahl
20Ü 000 nennenswert überstieg. Nach
den neuesten Untersuchungen Svedberg

' s 1 aber, auf welche wir übrigens noch
zurückkommen werden, ergab sich die ungemein
überraschende Tatsache, dass das
Hämocyanin-Molekül der Weinbergschnecke

(Helix pomatia) ein Gewicht
v o n 5 000 000 + 5%) besitze!

Bei der Darstellung dieses Hämocyanins (Oxy-)
ebenso auch beim Studium der spektralen Eigenheiten

dieses Pigmentes (welche zur Bestimmung des

1 The Svedberg and E. Chirnoaga. The molecular weight
of Hemocyanin. Journ. of the American Chemical Society,
50, 1928, S. 1399.
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Molekulargewichtes dienlich waren) sind Svedberg
(nach eigener Angabe) mehrere Befunde von Nutzen
gewesen, die bereits lange vorher von Dhéré und von
Burdel veröffentlicht waren — und deren Richtigkeit
er bestätigte. Im Jahre 1908 nämlich veröffentlichte
Dhéré seine Entdeckung, dass das Oxyhämocyanin
der Weinbergschnecke durch blosse Dialyse des Blutes

kristallisiert erhältlich sei, und, was besonders
hervorzuheben ist, dass diese Kristallisation eben

nur eintritt, wenn die Entmineralisierung praktisch
vollständig geworden ist. Genannte Eiweiss-
verbindung kann also durch dieses
Verfahren ganz aussergewöhnlich
rein dargestellt werden1. Reines Hämo-
cyanin aber ist in destilliertem Wasser unlöslich,
indessen sein Molekulargewicht nur bei Anwesenheit
von Elektrolyten bestimmt werden kann. Deshalb
verwendete Svedberg zu seinen Bestimmungen eine
Lösung von (kristallisiertem) Hämocyanin in einer so-
gennanten Pufferlösung, deren pH (4,7) nahe dem
isoelektrischen Punkte (pH 5,2) lag 2. In einer derartigen

Lösung verhalten sich alle Teilchen des Hämo-

1 Svedberg hat die Ausladung des Hämocyanins (kristall-
förmig) mittels der Elektrodialyse ebenfalls hervorgebracht.
Hiebei sei erwähnt, dass bereits schon 1914 (C.B. Acad. des

sciences) Dhéré und Burdel Hämocyanin aus dem Serum
der Languste der Elektrodialyse unterworfen haben. Es war
dies wohl die erstmalige Anwendung der Elektrodialyse
auf ein Proteid (cf. Ch. Dhéré, Kolloid-Zeitschr. 41, S. 322).

2 Es ist uns unmöglich an dieser Stelle die verschiedenen
Fragen zu prüfen, die sich auf eine derartige kolloidale
Lösung beziehen. Auf einige davon wird in der Arbeit von W.-
D. Bancroft, « Molecular Weight and Solution (Journ. of
physical Chemistry 29, 1925, S. 966) kritisch eingegangen.
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cyanins derartig, als wenn sie ein gleiches Molekulargewicht

besässen ; nach Svedberg nun, müssen diese
Teilchen aber als die molekularen Einheiten selber
angesehen werden: man hätte es also mit einer m o-
lekularen Dispersion (in hinreichend
verdünnten Lösungen) zu tun.

Das Molekulargewicht des Hämocyanins wurde,
wie angegeben, in einer Pufferlösung bestimmt. Svedberg

(1926) und Nichols (1927) erhielten bei ihren
Molekulargewichtsbestimmungen des Hämoglonins
mittels der Ultrazentrifuge, praktisch identische Resultate,

obwohl ersterer zu seinen Bestimmungen eine
Lösung von elektrolytfreiem Hämoglobin in dest.
Wasser anwendete, letzterer aber mit einer Pufferlösung

(pH 6,2-7,7) operierte.
Es wäre nun angezeigt den Unterschied zwischen

dem Molekulargewichte des Hämocyanins der
Weinbergschnecke und demjenigen der anderen, einfachen
oder zusammengesetzten Proteine (Proteide) einer
näheren Betrachtung zu unterziehen.

Vorher möchten wir aber noch anführen, dass wir
in Gemeinschaft mit Herrn Prof. Dhéré, an Hand
der Ultrafiltration3, bereits 1926, festgestelt haben,
dass das Molekül (Teilchen) Schneckenhämocyanin
viel grösser ist als dasjenige des Hämoglobins. Unsere
Angaben lauteten: «Du collodion dilué jusqu'à ce
« que sa teneur ne soit plus que de 2% environ, per-
« met de préparer des ultrafiltres qui retiennent com-
« plètement l'hémocyanine, tout en étant très perméa-

1 Ch. Dhéré und Chr. Baumeler. « L'ultrafiltration
appliquée au sang et à la bile d'Escargot (Helix pomatia) en

vue de l'étude de l'hémocyanine et de l'hélicorubine. C. B.
de la Soc. de biologie, 95, 1926, S. 628.



:-!•>

« blés à l'eau et aux cristalloïdes... ». « Au point de vue
« théorique, il convient de relever que l'hémoglobine
« n'est retenue complètement que par des ultrafiltres
« préparés avec du collodion beaucoup plus concentré

(à 5 p. 100 au moins). Nous voyons donc que
« l'hémocyanine d'Escargot, telle qu'elle existe en
« solution dans le sang, se trouve à l'état de particules
« relativement très grosses, bien plus grosses que les

« particules d'hémoglobine en solution dans l'eau, par-
« ticules dont le poids moléculaire serait de 68 000,
« d'après Adair (ou de 66 800, d'après Svedberg et
Fähraeus, 1926). »

Damals waren uns die Versuche Cohn's, der das

Molekulargewicht mehrerer Proteine (worunter auch
Hämocyanin von Limulus) durch Anwendung
ebendesselben Verfahrens zu bestimmen versuchte, noch
gänzlich unbekannt. Über die von ihm angewendete
Methode sagt Cohn nur folgendes: « Given the minimal

molecular weights of proteins, their true molecular
weights may be estimated by determining the relative

size of their molecules. This is being accomplished
by dialysis and ultrafiltration through membranes
of graded permeability1. » Nach den Angaben
Cohn's wäre das Molekulargewicht des Hämocyanins
von Limulus nur um ein Weniges grösser (ungefähr

1 Ed.-J. Cohn, The molecular weights of the proteins.
Journ. of biolog. chemistry, Sc. Proceedings, 63, 1925, S. XV.
Dieser Titel lässt in keiner Weise vermuten, dass in
der Arbeit eine Anwendung der Ultrafiltration enthalten
ist, und dieses ist eben der Grund, weshalb uns die Verwandtschaft

unserer Arbeiten mit denen von Cohn ziemlich lange
entgangen ist. Uebrigens ist die Seite 29 stehende Tabelle II
obiger Mitteilung Cohn's entnommen.
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um ein Drittel) als dasjenige des Hämoglobins. Nach
unseren, an Hand der Ultrafiltration gemachten
Beobachtungen und Befunden dagegen, hatten wir
schon damals den ganz sicheren Eindruck, dass
zwischen dem Hämocyanin (Schnecke; und dem
Hämoglobin ein unvergleichbar grösserer Unterschied
in dem Molekulargewichte bestehen müsse; aber,
offen gestanden, waren wir nicht darauf gefasst, ein
Verhältnis von 5 000 zu 68 vorzufinden, mit anderen
Worten, ein 73 mal grösseres Molekulargewicht für
das Hämocyanin.

Nun gibt es noch andere physikalisch-chemische
Methoden zur Bestimmung des Molekulargewichtes
der Proteine, die tatsächlich auch schon eine
diesbezügliche Anwendung erfahren haben. Aber, um
genau und vollwertig zu sein, erheischen die kryosko-
pischen Messungen, diejenigen des osmotischen Druckes

und auch andere, ein von jedwelchem fremden
Elektrolyten befreites Protein. Es ist aber äusserst
schwer, ja beinahe unmöglich diese Bedingung zu
erfüllen, wenn die Reindarstellung des Proteins anders
erfolgt, als durch möglichst gründliche
Elektrodialyse. Da nun bis dahin ein der-
massen gereinigtes Protein sozusagen niemals für die
betreffenden Bestimmungen zur Verfügung stand,
werden wir die diesbezüglichen Arbeiten einfach
übergehen '.

1 Z. B. führt G. S. Adair an: « The osmotic pressure
determinations for dialysed haemoglobin made by previous workers

ranged from 3,5 mm. to 12,1 mm. per 1 per cent, of
protein. Variation is to be expected, for it is theoretically
impossible to prepare a haemoglobin solution absoluty free
from combined acids or bases, and there is the further risk

3
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Es bleibt uns noch übrig, ein Wort zu sagen über
die rein chemischen Methoden zur Bestimmung des

Mindest-Molekulargewichtes. was an ein oder zwei
Beispielen erfolgen soll: Die Proteine sind ausschliesslich

oder hauptsächlich durch Verkettungen von
Aminosäuren aufgebaut. Ergibt sich nun bei der Hydrolyse

des Hühnereiweisses im Hydrolysat (neben
mehreren anderen Aminosäuren) ein Gehalt an Tryptophan

x von 1.23% dann zeigt dieses ein minimales
Molekulargewicht von 16 593 an (Vgl. Fussnote 2) ; aus
dem Vergleiche mit anderen Aminosäuren geht aber
hervor, dass das Eiweissmolekül mindestens 2 Mole-

that prolonged purification may cause changes in the
protein. » (Proceed. Boy. Soc. B. 98, 1925, S. 524.) Diese «

theoretische » Unmöglichkeit wird nun bei der Reinigung durch
Elektrodialyse aufgehoben, wie W.E. Ringer (1925) ebenso
Pauli und Schwarzacher(1926) für das Hämoglobin es gezeigt
haben. Die übrigen, bei den Bestimmungen des « osmotischen
Druckes » in Betracht kommenden Korrektionsfaktoren
finden sich in einer nachträglich erschienenen Arbeit Adair's
klar dargelegt. (Journ. American ehem. Soc. 49, 1927, S. 2524.)

Dem Gesagten möchten wir noch zufügen, dass die
Molekulargewichte, welche mittels Kryoskopie in einer Phenollösung

erhalten wurden, einer ganz anderen (viel kleineren
Grössenanordnung) angehören, dass diese Methode für
unsere Zwecke ungeeignet ist, nichtsdestoweniger aber zum
Nachweise gewisser Verunreinigungen sehr gute Dienste
leisten kann. (Cf. Ed.-J. Cohn und J.-B. Conant. Proceed.
Nation. Acad, of Sc., 12, 1926, S. 433.)

1 Gewisse Aminosäuren, wie Tyrosin, Phenylalanin und
Tryptophan sind in den Eiweissmolekülen praeformiert
vorhanden, wie aus dem Studium der Absorptionsspektren
derselben im Ultravioletten hervorzugehen scheint. (Cf.
hauptsächlich Dhéré, Arch, des sciences physiques et natur.,
24, 1907, S. 379, und Becherches speclrographiques, Fribourg
1909.)
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küle Tryptophan enthalten muss, ihm somit das

doppelte Molekulargewicht, d. h. 33 186 zukommt. Liegen
aber zusammengesetzte, metallhaltige Proteine
(Proteide) vor, so wird es genügend genau sein, als minimales

Molekulargewicht dasjenige zu wählen, welches
(vorausgesetzt) einem Molekül, mit nur einem einzigen
Metallatomgehalt entspricht1. So z.B. ist die prozentuale

Zusammensetzung des Hämoglobins: C 54, 64 ;

// 7,09; 0 20,165; N 17,38; S 0.39; Fe 0,335; die

kleinstmögliche Formel wäre also C758 H1181 O2l0

N2o7 S2 Fe, mit einem Molekulargewichte von
16 655 2. Das Hämocyanin nun, welches in so

mancher Hinsicht dem Hämoglobin recht nahe steht,
enthält aber kein Eisen, sondern Kupfer; deshalb
wurde versucht, das Mindest-Molekulargewicht
desselben auf gleiche Weise zu bestimmen. In der
Annahme (gestützt auf eine Analyse Alsberg's). dass das

Hämocyanin von Limulus einen Kupfergehalt von
0,28% besitze, hat Cohn als kleinste Zahl für dessen

Molekulargewicht 22 704 berechnet. Dieser Wert
aber ist sicherlich unzutreffend, weil genanntes Hämocyanin

nur 0,173% Kupfer enthält, wie es erst vor
Kurzem Redfield in einer sorgfältig durchgeführten

1 Die Formel, welche zu diesen Berechnungen dient, ist:

UinJést-Bolekolarg-wicht "1 Atomgewicht des Elementes x 100

des Proteins / i'nizentgelialt des lielrelieniien r.leiiientfs in dem Proteine.

Natürlich ist, mutatis mutandis, diese Formel auch auf jed-
welche Bestandteile anwendbar, wie z. B. auf das Tryptophan.

2 Eine beträchtliche Anzahl analoger numerischer Befunde
sind durch A. P. Mathews, Physiological Chemistry, 4. Auflage

1925, S. 146 zusammengestellt worden.



— 36 —

Arbeit festgestellt hat. Übrigens scheint der Kupfergehalt

mit der zoologischen Herkunft der verschiedenen

Hämocyanine 1 starken Wechseln unterworfen
zu sein. Nach Henze enthält Hämocyanin von Octopus

vulgaris 0,38% Kupfer; Dhéré und Rurdel (1919
und 1922) haben für ein bei gewöhnlicher Temperatur
über CaCl2 getrocknetes Hämocyanin der Schnecke
0,25—0,26% Kupfer gefunden. Nach Regemann,
würde dieser letztere Gehalt für ein vollständig
kristallwasserfreies Produkt auf ca. 0,29% ansteigen.
Redfield (1928) stellt als Mindestmolekulargewicht
für das Hämocyanin von Limulus polyphemus die
Zahl 36 700 auf und 73 400 für dessen wahrscheinlich

wirkliches Gewicht.

Zum Schlüsse möchten wir nochmals auf die ganze
Tragweite der Befunde Svedberg's zurückkommen
und deren Bedeutung betreffs des Hämocyanins der
Schnecke besonders hervorheben.

Anfänglich ist es ganz unmöglich sein Erstaunen
zurückzuhalten, wenn man folgende zwei Tatsachen
bedenkt :

1. Die ungeheure Grösse des Moleküls

des Schneckenhämocyanins
(Svedberg 1928) und

2. Die äusserst leichte Kristallisation
dieses Hämocyanins als

Molekülgebilde (Aggregat) bei Abwesen-

1 Die Pluralität der Hämocyanine ist durch eine Reihe
von ganz anderen Betrachtungen begründet. (Cf. u. a. Ch.

Dhéré, C. R. Acad. des Sc., Paris, 1913).
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heit von Elektrolyten (Dhéré, 1908) K

Entgegen der viel verbreiteten Ansicht 2, ist dieses
ein Beweis dafür dass, die übermässige Grösse des

Molekulargewichtes der Proteine nicht einzig und
allein die Schuld an ihrer unter gewöhnlichen
Bedingungen schwierigen Kristallisierbarkeit trägt, ja
dass sie vielleicht damit nichts zu tun hat.

Sodann müssen wir noch auf eine ganze Reihe von
Folgerungen hinweisen, welche durch Svedberg in
den Vordergrund gerückt worden sind : Das H ä-

mocyaninmolekül der Schnecke ist
praktisch genommen von sphärischer
Gestalt; sein Halbmesser ist 12,1
x 1 Q~7 cm; dieses Grössenmass wäre
fast genügend, um das Molekül im
Ultramikroskop sichtbar zu machen,
wenn dasselbe ganz metallisch wäre,
statt in der Hauptsache organischer
Natur zu sein3.

Wenn wir uns dazu entschlossen haben, vorliegende
Mitteilung an unsere naturforschende Gesellschaft
zu machen, so haben wir es in der Meinung getan,

1 Eine eingehende Beschreibung dieser Kristalle findet
sich in der Dissertation A. Burdel's (Mitteilungen der
naturforsch. Gesellsch. Freiburg, 1922).

2 Thus the proteins that are small... seem to be readily
crystallizable... ; whereas those that are large... have not
yet been crystallized (Cohn, Physiol. Reviews, S. 428).

3 Anderweitige Versuche, das Molekulargewicht der
Proteine durch Röntgenspektrographie zu bestimmen, auf
die wir aber leider nicht eingehen können, sind übrigens
gemacht worden. (Ct. R. O. Herzog auch O. Gerngross,
Zeitschrift f. angewandte Chemie, April 1928, S. 426.)
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dass diese Reihe von Refunden sowohl für den Riolo-
gen, als auch für den Physiker, den Chemiker und
den Kristallographien von wirklichem Interesse sein
könnten.

Séanee du 7 février 1929.

Présidence de M, le prof. D' S. Bays, président.

Prof. A. Huber : Eine Verbesserung des Gallon'schen
Zufallsapparates.

Mit dem von Francis Galton schon vor mehr als

fünfzig Jahren angegebenen Apparate 1 kann man in
sehr anschaulicher Weise gewissermassen ein Modell
eines Kollektivs mit « normaler » Verteilung herstellen.

Da aber die einzelnen Teile dieses sogenannten
Galton'schen Rrettes unbeweglich sind, so kann man
damit natürlich nur eine einzige Verteilungskurve
erzeugen. Die « Norm » (Mittelwert) des Kollektivs
wird dabei durch jene Kügelchen repräsentiert, die
in das in der Richtung der Fallirne des geneigten
Rrettes unterhalb der Ausflussöffnung des Trichters
befindliche Fach hineingeraten. Dadurch, dass Karl

Beschreibungen und Abbildungen findet man bei:
W. Johannsen, Elemente der exakten Erblichkeitslehre,

9. Aufl. Jena 1927.
E. Czuber, Die statistischen Forschungsmethoden.

Wien 1921.
P. Riebesell, Die mathematischen Grundlagen der

Variations- und Vererbungslehre (Teubners ma-
them. Bibliothek N° 24). Leipzig 1916.
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Pearson1 an Stelle der Nägel kleine Keile setzte,
die auf schmalen und gegeneinander in ihrer
Längsrichtung verschiebbaren Leisten befestigt waren,
konnte er auch schiefe Verteilungskurven darstellen,
indem er wie J. Kapteyn 2 von der Annahme ausging,
dass die die Abweichungen vom Mittelwerte
hervorbringenden Ursachen nach der einen Seite stärker
wirken als nach der anderen.

Da aber auch bei dieser Auffassung mathematisch
weniger geschulte Riologen noch häufig an der
Meinung festhalten, dass der normalen Verteilung eine

ausgezeichnete Bedeutung zukomme, so unternahm
ich den Versuch, das Galton'sche Brett zu einem
solchen Demonstrationsbehelfe auszubauen, dass man
damit, ohne zu weitschweifigen mathematischen
Erörterungen gezwungen zu sein, einer grösseren
Zuhörerschaft das Zustandekommen schiefer Verteilungen

vorführen kann. Im folgenden soll zunächst ein
solcher in Figur 1 abgebildeter Apparat beschrieben
werden.

Ein etwa 80 cm langer und 30 cm breiter Rahmen
aus Holz trägt an der oberen Schmalseite eine in
einem Scharnier drehbare Stütze, wodurch man ihm
eine Neigung von etwa 30° erteilen kann. Die andere
Schmalseite ist durch zwei Scharniere an dem
Querbalken einer T-förmigen Unterlage befestigt. Die
Längsteile des Rahmens sind mit einem etwa 4 mm
breiten Schlitz versehen, in dem die Spindeln der
Flügelschrauben gleiten können, die zur Fixierung

1 Philos. Transact. Roy. Soc, Bd. 186 (1895). S. 343.
2 J. Kapteyn, Skew frequency curves in biology and

statistics. Groningen, 1904.



Fig.

des Fächerkastens dienen. Bei den oben angegebenen

Dimensionen des Rahmens kann dieser aus 20
bis 30 Fächern bestehen, die oben durch eine
Glasplatte abgeschlossen sind, um das Herausfallen der
Schrotkörner zu verhindern, wenn man den Rahmen
vertikal stellen will, um einem grösseren Auditorium
eine darin hergestellte Verteilung zu zeigen. Seine
Rückwand kann um zwei Scharniere nach aufwärts
gedreht werden, sodass die in den einzelnen Fächern
angesammelten Kügelchen in einen darunter gestellten
Behälter hineinfallen können. Der Trichter, durch
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den die Schrotkörner eingeschüttet werden können,
ist entlang der oberen Schmalseite des Rahmens
verschiebbar, wodurch der « Mittelwert » des Kollektivs

verschiedene Lagen einnehmen kann. Die
Hindernisse, welche die Abweichungen der herabrollenden

Kügelchen verursachen, werden auch hier von
Nägeln gebildet, die in verschieden breite Brettchen
so eingeschlagen sind, dass die Nägel der einen Reihe
gerade vor den Lücken der benachbarten Reihen
stehen. Diese Brettchen können auf dem Rahmen
verschoben werden und sind durch an der Unterseite
befestigte Leisten vor dem Zwischendurchfallen
geschützt. Die Figur zeigt zwar kein solches mit Nägeln
versehenes Rrettchen, dafür aber ein unmittelbar an
den Trichter anschliessendes ohne Nägel. Dadurch
soll verhindert werden, dass von den Nägeln
zurückprallende Schrotkügelchen vom Rahmen herabfallen.
Von den an die Längsseiten des Rahmens anliegenden
Leisten, zwischen denen der Fächerkasten bewegt
werden kann, ist in der Figur die vordere weggelassen.
Ein solcher vom Verfasser aus Holz verfertigter
Apparat befindet sich im Besitze der Lehrkanzel für
Zoologie an der hiesigen Universität.

Es ist klar, dass man steilere oder flachere normale
Verteilungskurven erhalten wird, je nachdem man
den aus dem Trichter ausströmenden Schrotkörnern
eine kleinere oder grössere Anzahl von Nägelreihen
in den Weg stellt. Je zahlreicher also die eine Abweichung

vom Mittelwert herbeiführenden Ursachen —
Anzahl der Nägelreihen — sind, desto grösser wird die
« Streuung » der Verteilung.

Mit dem bisher beschriebenen Teile der Einrichtung

des Apparates kann man auch die Entstehung



von « abnormalen » Verteilungen durch Superposition

normaler Verteilungen demonstrieren. Man
erzeugt nämlich zunächst eine normale Kurve und
verschiebt sodann den Trichter entlang der oberen
Schmalseite des Rahmens. Schaltet man dann noch
ein Brettchen mit Nägeln ein, so wird sich die nun
entstehende flachere Verteilung über die bereits
vorhandene lagern und es resultiert im allgemeinen
eine schiefe oder bei genügend grosser Entfernung der
neuen Einflussöffnung von der früheren gar eine
zweigipflige Verteilungskurve.

Die soeben geschilderte Art des Zustandekommens
einer abnormalen Verteilung ist wohl so einfach, dass
es keiner weiteren Erläuterungen bedarf. Wir wenden
uns daher gleich zu einer anderen Entstehungsweise
abnormaler Verteilungen, nämlich der durch «

Transformation des Argumentes » hervorgebrachten, nachdem

wir schon oben die Auffassungen von Pearson
und Kapteyn erwähnt hatten, die sich bei unserem
Apparat dadurch realisieren liessen, dass man auf der
einen Hälfte der Brettchen die Nägel dichter
einschlägt als auf der anderen. Es würde dies auch dem
Vorgange G. Fechners 1 entsprechen, der eine abnormale

Verteilungskurve durch Aneinanderstückeln
von zwei normalen mit verschiedener Streuung
darzustellen versucht hatte.

Ein Kollektiv sei nach dem Merkmale X geordnet,
die Masszahl, welche verschiedene Grade des Merkmals

X bezeichnet, also das Argument sei x und variiere

innerhalb der Grenzen a und b. Diese Verteilung
werde durch das obere Staffelpolygon 5 der Figur 2

G. Fechner, Kollektivmasslehre. Leipzig 1897.
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dargestellt, die eine ausgesprochene rechtsseitige Asymmetrie

aufweist. Dasselbe Kollektiv wollen wir nun
nach einem anderen Merkmal E ordnen und es sei
mit £ das Argument der neuen Verteilung bezeichnet,
welches von a bis ß variieren möge.

r /2

*Mz 3 ** 56789
Fis:. 2
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Die weiteren Ueberlegungen mögen zunächst an
einem Beispiel erläutert werden. Unser Kollektiv sei

etwa eine genügend grosse Anzahl von Samenkörnern,
deren Gestalt mit hinreichender Genauigkeit als

kugelförmig betrachtet werden kann. Das Merkmal X
sei der Durchmesser der Körner und x die in
Millimetern ausgedrückte Masszahl. Das zweite Merkmal
E sei das Volumen eines Samenkornes und î die in
Kubikmillimetern ausgedrückte Masszahl. Wenn alle

Samen genau kugelförmig wären, dann wäre £ •#3
6

und zwischen den Argumenten x und è bestünde
eine « funktionale Abhängigkeit ». Wenngleich dies
in Wirklichkeit nicht der Fall sein wird und wir durch
Messung' der Durchmesser und Vulumina nur eine
« korrelative Abhängigkeit » werden feststellen können,

wo sollen wir der Einfachheit wegen doch
voraussetzen, dass allgemein zwischen den beiden
Eigenschaften X und E eine strenge funktionale Abhängigkeit

£ / (x) bestehen möge. Es ist dann leicht zu
sehen, wie man die Verteilung 2 nach der Eigenschaft
E finden kann, wenn man die Verteilung S nach dem
Merkmal X kennt.

Es sei die Kurve K (Fig. 2) das Bild der Funktion
g f (x), wobei x zwischen a und b variiert und es sei
insbesonders / (a) o. und / (b) ß gesetzt. Die
Funktion f (x) soll weiters im Intervall (a, b) jeden
zwischen a und ß liegenden Wert nur einmal annehmen.

Das Intervall (a,ß) sei in zehn Klassen, (aI),
(1,11), (II,III),... (IX,ß) geteilt. Das Argument x
jener Varianten, deren Argument^ den Klassen (a, I)
(1,11), (II, III),... angehört, liegt dann in den immer
kleiner werdenden Intervallen (a 1'), bezw. (V2'),
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bezw. (2', 3'),... Zur ersten Klasse der Verteilung Z
gehören also die ersten fünf Klassen und ungefähr die
halbe sechste der Verteilung S, zur zweiten Klasse der
Verteilung 2 die siebente und je eine Hälfte der sechsten

und achten Klasse von S usw. Man könnte so
über der zur x-Achse senkrechten £ — Achse das
neue Verteilungspolygon zeichnen, um aber die neue
Verteilung mit der alten bequemer vergleichen zu
können, ziehen wir unterhalb der «-Achse
parallel zu dieser eine neue £— Achse und wählen den
Masstab für das Argument | so, dass das Intervall
(aß) dieselbe Länge erhält wie (a, b). Die Häufigkeit
in der ersten Klasse z. B. wird dann durch ein Rechteck

dargestellt, dessen Inhalt gleich ist dem des

Flächenstückes, das von der Strecke (al' denOrdinaten
in den Endpunkten und dem dazwischen liegenden
Teile des Staffelpolygons S begrenzt wird. Diese
Zuordnung der entsprechenden Flächenstücke ist durch
die schrägen Verbindungsstrecken angedeutet, die
von den Punkten V ,2', 3'... ausgehen. Man sieht,
dass das neue Verteilungspolygon 2 eine deutliche
linksseitige Asymmetrie aufweist, die offenbar noch
stärker ausgefallen wäre, wenn wir an Stelle von S

eine normale Verteilung angenommen hätten.
Diese soeben geschilderte « Transformation des

Argumentes » lässt sich auch mit dem Galton'schen
Apparat demonstrieren. Ersetzt man nämlich im
Fächerkasten die geraden Scheidewände durch
geknickte wie 11', 22', 33',... und lässt man wie zu der
oben beschriebenen Erzeugung normaler Verteilungen
aus dem Trichter Schrotkörner ausfliessen, so wird
man mit dem so abgeänderten Fächerkasten eine
schiefe Verteilung erhalten. Es ist wohl unmittelbar
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aus der Figur 2 ersichtlich, dass sich eine umso schiefere

Verteilung ergeben wird, je näher sich der Trichter

dem linken Rande des Rahmens befindet. Dagegen
wird sie weniger schief werden, wenn der Trichter dem
rechten Rande näher ist. Würde man an Stelle der
Kurve K eine Gerade nehmen, so hätte eine solche
Transformation auf die Schiefheit keinen Einfluss. Da
das Argument eines Kollektivs meistens nur auf ein

verhältnismässig enges Intervall beschränkt ist und
eine Funktion in einem genügend kleinen Intervall,
in dem sie kein Extremum besitzt, näherungsweise
als linear betrachtet werden kann, so sieht man leicht
ein, warum viele Kollektive Verteilungen besitzen,
die von einander nur wenig abweichen.

Seance du 21 février 1929.

Présidence de M. le prof. Dr S. Bays, président.

Prof. S. Bays: Problèmes de la Théorie des nombres
additive et de la Théorie des nombres analytique.

L'auteur n'a pas fourni de manuscrit.

Séance du 14 mars 1929.

Présidence de M. le prof. D" S. Bays, président.

A. Haas, prof. : Vision des abeilles et son rapport avec
les couleurs des fleurs (avec projections).

L'auteur n'a pas fourni de manuscrit.
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Séance du 2 mai 1929.

Présidence de M, le prof. Dr S. Bays, président.

Prof. L. Weber: Krisiallslruklur, homogene
Punktsysteme der Ebene und verwandle Fragen.

Die Geometrie des Diskontinuums muss dem

Kristallographen geläufig sein. Veranschaulichung der
230 Raumgruppen ist darum unbedingtes Erfordernis.
Ein dahingehender Versuch findet sich in einer Arbeit
des Referenten (Schweiz. Min. Petrogr. Mitteilungen
5, 1-66). E. Schiebold baute später darauf weiter
(Abhandl. der math.-physik. Klasse der sächsischen
Akad. d. Wiss.. Bd. XL, Heft 5, 1-204). Auch die
Geometrie des zweidimensionalen Diskontinuums
ist kristallographisch von Interesse. Die einseitig
gedachte Ebene wurde von G. Polya (Zeitsch. f. Krist.
60, 278-282) und P. Niggli (ib. 60, 283-298) untersucht.

Mannigfaltiger ist das Problem für die
zweiseitige Ebene. Der Referent hat dasselbe anlässlich
der Jahresversammlung der Schweiz. Naturf. Gesell,
in Lausanne (1928) besprochen und das Ergebnis in
der Zeitschrift für Kristallographie (70, 309-327)
publiziert. Der Zufall wollte es, dass gleichzeitig eine
ähnliche Arbeit (E. Alexander und K. Herrmann)
bei der Redaktion einging.

Doppelseitige Ebenen können z. T. durch die
verschiedenen Gewebe veranschaulicht werden. Hier
möchte ich einige Beispiele kurz besprechen. Zur
Veran^chaulichung dienen Modelle aus gleichbreiten
Papierstreifen, deren zwei Seiten durch verschiedene
Färbung kenntlich gemacht sind. Das einfachste
Modell erhält man wohl, wenn man die Papierstreifen
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derart kreuzt, wie es die kleine Figur oben in der
Mitte der beigedruckten Tafel andeutet. Dabei ist
vorausgesetzt, dass alle Streifen mit der gleichen
Seite (Farbe) nach oben gewendet sind. Die Symmetrie

der Figur ist sofort ersichtlich. In den kleinen
Quadrätchen, die von je vier Bändern umschlossen
werden, stechen Tetragyren aus. Sie sind zweierlei
Art, entsprechend dem Drehsinn der vier an dieser
Stelle zusammenstossenden Bänder (in der Figur
sehr deutlich). Die Digyren liegen in der Mitte jener
Streifenteilchen, welche über (zweierlei Lagen) die
anders laufenden Streifen gezogen sind. Auch
Symmetrieebenen sind vorhanden. Durch je zwei
nächstbenachbarte Digyren gehen Spiegelebenen. Zwischen
diesen liegen Gleitspiegelebenen. Die Winkel, in
denen sich diese und jene schneiden, werdeji von
diagonal verlaufenden Gleitspiegelebenen halbiert.
Das Gewebe hat die Symmetrie Nr. 60 meiner
zuletztgenannten Arbeit und entspricht der dortigen
Fig. 53.

Durch Parallelverschiebung der Streifen kann man
diesen Gewebetypus und seine Symmetrie mannigfach

abändern. Die Figur links oben auf der Tafel
geht aus der eben besprochenen dadurch hervor, dass

man die Streifen zu je zweien zusammennimmt und
durch ein Intervall von der Breite eines Streifens von
einander trennt. Es entstehen so leere Quadrate (alle
vom nämlichen Drehsinn), welche die Ausstichpunkte
der einen Tetragyren andeuten. Die anderen Tetragyren

zeigen noch gleiche Umgebung wie in der ersten
Figur. Die Seiten des Elementarquadrates sind aber

jetzt dem Rand der Tafel parallel orientiert, wogegen
sie im ersten Fall diagonal verliefen. Zu beachten
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ist, dass die Digyren zwischen zwei Streifen hindurchstechen.

Die Symmetrieebenen sind weggefallen. Es
resultiert Symmetrie 58 (Fig. 49).

Auch die auf der Tafel rechts oben stehende Figur
ergibt sich sehr einfach aus dem Ausgangsmodell.
Man braucht nur je drei Streifen zusammenzunehmen
und durch ein Intervall von der Breite eines Streifens
vom benachbarten Tripel zu trennen. Die leeren
Felder, welche sich einstellen, sind im Gegensatz zum
vorangehenden Fall zweierlei Art. Die Symmetrie
selber ist die gleiche wie beim ersten Modell.

Rückt man in der ersten Figur nur die horizontalen

Bänder auseinander, so erhält das Gewebe
das Aussehen der vierten Figur der obersten Reihe
unserer Tafel. Die Tetragyren sind verschwunden.
Den andern Geweben gegenüber ist die Symmetrie
wesentlich erniedrigt (Nr. 22, Fig. 20). Die horizontalen

Bänder könnten nach Farbe und Breite von den
andern ganz verschieden sein, ohne dass sich hierdurch
etwas an der Symmetrie veränderte.

Es lassen sich auch Gewebe herstellen, bei
denen senkrecht zur Gewebeebene Trigyren oder
Hexagyren vorhanden sind. In der linken Figur der
zweiten Reihe fallen die Hexagyren, Trigyren (zweierlei

Art) und Digyren sofort auf. Symmetrie 76 (Fig.
61) liegt vor. Denkt man sich aus diesem Gewebe
in jeder Richtung je den zweiten Faden herausgezogen

und zwar so, dass dabei auch die halbe Zahl
•der Knoten verschwindet, so ergibt sich die
rechtsstehende Figur unserer zweiten Reihe. Sie liesse
sich auch so herleiten, dass man beispielsweise die
horizontalen Streifen verschieben würde. Die Hexagyren

und Digyren sind verschwunden. Es treten
4
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nur noch Trigyren auf (dreierlei Art). Symmetrie
Nr. 49, entsprechend Fig. 40.

Ausdrückliche Voraussetzung aller besprochenen
Figuren war, dass die Unterseite der Streifen anders
gefärbt sei wie die Oberseite. Es bleibe dem Leser
überlassen zu untersuchen, welche Symmetrien sich
event, einstellen, wenn diese Bedingung fallen gelassen

würde, so dass also die Streifen zwei gleiche Seiten
hätten.

Werden die verschiedenseitigen Bänder so zu
einem Modell zusammengefügt, dass bald die eine,
bald die andere Farbe (Seite) nach oben gewendet ist,
so entstehen echte doppelseitige Anordnungen. Ein
Beispiel veranschaulicht die Figur unten links. Der
Konstruktion nach entspricht sie genau der Figur
links oben. Im Gewebe sind jedoch abwechselnd die
hellen Seiten von je zwei Streifen nach vorn, von den
beiden benachbarten nach hinten gewendet. Alle zur
Ebene senkrechten Achsen (Digyren und Tetragyren)
gehen mitten durch die freien Felder. Die Anordnung
ist vollständig dieselbe wie oben. Das Elementarquadrat

ist natürlich viel grösser geworden. Das
wesentlich Neue liegt darin, dass die Gewebeebene

Symmetrieachsen enthält. Durch die Fusspunkte
benachbarter vertikaler Digyren gehen horizontale
Digyren mit diagonalem Verlauf. Zwischen ihnen
liegen, den Abstand halbierend, zweizählige
Schraubenachsen. Derartige Achsen laufen auch parallel zu
den Seiten des von vier gleichartigen Tetragyren
gebildeten Quadrates. Die Quadratseiten schneiden
sie im ersten und dritten Viertel. Es ist Symmetrie
Nr. 68 (Fig. 58) verwirklicht.
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Das über der eben besprochenen Figur
abgebildete Modell leitet sich in sofort ersichtlicher Weise
aus der Ausgangsfigur her und ist höchst interessant.
Symmetrie tetragonal-hemiedrisch IL Art (Nr. 65,
Fig. 56). Die Spiegelebenen (den Blatträndern parallel)
schneiden sich in Digyren und Tetragyroiden (diese
an den Kreuzungsstellen ungleich gefärbter Bänder),
während die Durchstichpunkte der Tetragyroiden
bezw. Digyren von diagonal verlaufenden Digyren
bezw. Dig roiden verbunden werden.

Die beiden letzten Figuren sind so zu verstehen,
dass im untern Teil der Figur das Muster, im obern,
der die homogene Weiterführung des untern ist, die
in der Gewebeebene gelegenen zweizähligen Achsen
eingezeichnet sind. Der Bauplan der beiden Muster
ist klar. Bei der Figur rechts kehren die horizontalen
Streifen dem Beschauer die andre Seite zu wie die
vertikalen Streifen. Jeder Streifen ist abwechselnd
über und unter zwei Streifen durchgezogen. Die
mittlere Figur zeigt das gleiche Webeschema, doch
kehren die Streifen beider Richtungen abwechselnd
die eine und andere. Seite gegen den Beschauer. Diese

Figur hat nur Digyren einer Richtung. Wie man sieht,
verlaufen die einen (ausgezogen) durch die Scheitelpunkte

der von den punktierten Streifen gebildeten
Winkel, die andern (punktiert) durch die Scheitelpunkte

der von den hellen Streifen gebildeten Winkel.
Auf der Gewebeebene selber stehen keine Achsen
senkrecht. Man kann sich davon leicht überzeugen,
denn es müssten mindestens Digyren sein. Nun
braucht man bloss die Figur halbherumzudrehen,
um zu erkennen, dass irgend ein Streifen von den
Streifen der andern Richtung in den beiden Stellun-



52

L-Lt- il-U IUI I ' 'I IUn
I l_lr 1=11=

¦U-Ur l=Tiz

-11—11—11-

11 11

fillXXA##^MBLÀì
ytcxrxc ~\

i ii i

7

\\/
g FED ES3 pK tèsa

/mlm lâl Si Si ;;i ***•=£] 'l-ïi^^1 j—"'»r«!——^r^ïï^iat^ip-1®1-^ I—bli i~ m—mm—|

"i-'f 1 i i-*'r



— 53 —

gen verschieden über- bezw. unterquert wird.
Symmetrie Nr. 11, Fig. 10.

In der letzten Figur sind die zur Gewebeebene
senkrechten Digyren sofort erkennbar. Sie gehen durch
die Mitten der. punktierten und hell gelassenen Felder.
Senkrecht dazu verlaufen zwei Diagonalscharen zwei-
zähliger Achsen. Die einen, ausgezogen, sind Digyren
und gehen von der rechten obern Ecke irgend eines

punktierten Feldes zur Mitte des linken Randes, bezw.
von der Mitte des rechten Randes zur linken untern
Ecke des gleichen Feldes1. Ähnlich schneiden sie
auch die weissen Felder. In der andern Diagonalrichtung

sind nur zweizählige Schraubenachsen
vorhanden (in der Zeichnung punktiert). Die einen
gehen durch die Mittelpunkte der weissen, die andern
durch die Mittelpunkte der dunklen Felder.
Symmetrieebenen fehlen. Symmetrie 34, Fig. 29. Die Streifen

dürften schief zu einander stehen.
Wie die Zeichnungen der beigedruckten Tafel als

Gewebe gedeutet werden, so lassen sich viele
Dekorationsmuster der arabischen, maurischen usw.
Architektur, bei denen sich die Linien überschneiden,
durchdringen usw. als Gewebevorlagen auffassen.
Sie liefern reiches Anschauungsmaterial zur inneren
Symmetriemannigfaltigkeit der Kristalle. Ebenso

anregend sind Teppiche, wie man sie etwa in
Völkerkunde-Museen ausgestellt findet.

Erwähnt sei das eiserne Chorgitter der St. Nikiaus-
Kathedrale in Freiburg als Beispiel für Symmetrie 12

bezw. 37, die bei eigentlichen Geweben unmöglich sind.

1 Streng genommen gilt diese Bemerkung nur, wenn die
Bänder ohne Zwischenraum aneinandergrenzen. Im Fall
der Figur ist sie also leicht zu modifizieren.
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Séante du 16 mai 1929.

Présidence de M. le prof. Dr S. Bays, président.

Prof. A. Huber : Christian Huygens zu seinem 300. Gè

burtstage.

Als im 16. und 17. Jahrhundert fast alle Kulturvölker

Europas grosse Männer hervorbrachten, deren
geistigem Ringen und Schaffen wir die Grundlagen
der Naturwissenschaften zu verdanken haben, da
schenkte auch das kleine Holland der Welt einen
Naturforscher ersten Ranges, Christian Huygens. Aus
Anlass seines heuer zum 300ten Male wiedergekehrten

Geburtstages sei die heutige Versammlung
unserer Gesellschaft dem Andenken seines hohen
Genius gewidmet.

Chr. Huygens wurde am 14. April 1629 im Haag
geboren. Sein Vater, Constantin Huygens, Herr von
Zuilichem, Zelhem und in Monikenlandt, war ein
hochangesehener Mann, war er doch ein halbes
Jahrhundert lang Geheimsekretär bei drei Prinzen von
Oranien. Was für ein fein gebildeter Mann er aber
auch war. kann man daraus ersehen, dass er sich
als Dichter in holländischer und lateinischer Sprache
eines guten Rufes erfreute. Er leitete daher auch
den ersten Unterricht des jungen Christian
insbesondere in den klassischen Sprachen, in Musik und
namentlich auch in der Mathematik, wozu der
kleine Knabe nicht nur eine ungewöhnliche Neigung,
sondern auch eine bedeutende Begabung an den Tag
legte. So bezog denn der vielversprechende Jüngling

mit 16 Jahren, wie es ja damals üblich war die
Universität Leiden, um Jus zu studieren, doch
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besuchte er auch eifrig die Vorlesungen des Carte-
sianers Frans van Schooten. Wurde Huygens so

auch schon früh mit den Lehren des grossen
Philosophen Descartes bekannt, so konnte dies doch nicht
verhindern, dass seine eigenen Ansichten, die er sich

später selbst bildete, von jenen wesentlich abwichen.
Übrigens hat er wohl nie an den damals so üppig
wuchernden Spekulationen der Naturphilosophen
einen besonderen Gefallen. gefunden und sich stets
dem verhängnisvollen Einfluss der Metaphysik zu
entziehen gewusst. In jene Zeit fällt auch der
Beginn seines Verkehres mit dem Paler Mersenne, dem
Faktotum der damaligen Physiker und dem intimen
Freunde des Cartesius.

Als sich dem jungen Huygens im Jahre 1649 die
Gelegenheit bot, als Begleiter des Grafen Heinrich
von Nassau eine Reise in die nordischen Länder zu
unternehmen, war er sofort hiezu bereit, denn er
hoffte hiebei mit Descartes bekannt zu werden, der
kurz vorher an den Hof der Königin Christine von
Schweden gezogen war. Leider erfüllte sich diese

Hoffnung nicht, da die Mission des Grafen bereits
in Dänemark vorzeitig abgebrochen werden musste.
Nach dieser Reise hielt er sich öfters in Frankreich
auf und erwarb auch in Anjou im Jahre 1655 den

juristischen Doktorgrad. Auf einigen Reisen nach
England lernte er mehrere Mitglieder der im Jahre
1660 entgültig gegründeten Boyal society kennen,
die ihn im Jahre 1663 zugleich mit dem Astronomen
Hevelius, dem gelehrten Bürgermeister von Danzig,
als eines ihrer ersten auswärtigen Mitglieder wählte.
Gilt uns schon diese aussergewöhnliche Ehrung als
ein Zeichen für die wachsende Berühmtheit unseres
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Huygens, so muss dies in noch höherem Masse der
Fall sein, wenn wir vernehmen, dass ihm im Jahre
1665 von Colbert, dem Finanzminister Ludwigs des

XIV., der Antrag gemacht wurde in die soeben in
Gründung begriffene Pariser Akademie der Wissenschaften

einzutreten, welchem Rufe er auch wirklich
im nächsten Jahre Folge leistete.

Fünfzehn Jahre verbrachte Huygens in Paris in
stiller Zurückgezogenheit und mit überaus
erfolgreichen Arbeiten beschäftigt, von denen ich jetzt
schon seine grundlegenden Untersuchungen über die
Theorie des Pendels besonders hervorheben möchte.
Gewiss wäre er sein Leben lang in Paris geblieben,
wenn damals nicht wieder religiöse Streitigkeiten in
Frankreich zum Ausbruche gekommen wären, die
ihm als Protestanten doch nicht ganz gleichgültig
sein konnten. Man gab ihm zwar die Versicherung,
dass er hinsichtlich seiner religiösen Freiheit für
seine Person nichts zu fürchten hätte, aber die
Aufhebung des Ediktes von Nantes warf doch schon
recht empfindliche Schatten voraus, sodass es Huygens

für ratsam hielt, sich für seine Arbeit nach
einer ruhigeren Stätte umzusehen. Er verzichtete
also auf seine glänzende Stellung, verliess 1681 Paris
zugleich mit dem ihm befreundeten dänischen
Astronomen Olaf Bömer und nahm in seiner Vaterstadt
im Haag dauernden Aufenthalt, der nur einmal 1687
durch eine Reise nach England unterbrochen wurde.
Auch hier setzte er seine mathematischen und
physikalischen Untersuchungen eifrig fort, doch dürfte
er wohl die meiste Zeit auf die Sammlung und Ergänzung

seiner früheren Arbeiten verwendet haben. Aus
dieser Zeit stammen erst sein unsterblicher Traile de
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la lumière, der Discours de la cause de la pesanteur
und das seinem Pruder Konstantin gewidmete Werk
über die Mehrheit der Welten, der Kosmolheoros.
Dieses Werk war auch sein letztes, es befand sich
gerade unter der Presse, als er am 8. Juni 1695 starb.

Huygens war ein ernster, überaus aufrichtiger und
friedfertiger Mann. An keiner Stelle seiner zahlreichen

Schriften wird man eine ungerechte Schmälerung

der Verdienste seiner Vorgänger oder Zeitgenossen

finden, und wenn es auch ihm nicht erspart
geblieben ist in die damals an der Tagesordnung
befindlichen Prioritätsstreitigkeiten verwickelt zu
werden, so gibt er uns gerade bei dieser Gelegenheit
einen Beweis seines edlen Charakters: lieber verzichtet
er auf seine wohlbegründeten Prioritätsansprüche,
derentwegen ihn ein höchst unbedeutender Mann
in einen unerquicklichen Prozess hineinziehen will,
als dass er sich dadurch von seiner Arbeit abziehen
lässt. Sein lauteres und aufrichtiges Wesen sowie
die Gediegenheit und Klarheit seiner Werke erwarben

ihm frühzeitig die Achtung aller grossen Geister
seiner Zeit, und Newton sogar nennt ihn nicht nur
einmal den « summus Hugenius », obwohl ihre AnJ
sichten in einigen Punkten ziemlich stark
auseinandergingen.

Das Leben unseres Huygens floss also dahin wie
ein ruhiger Strom, dem wohlhabenden und
unabhängigen Manne blieben die traurigen Nahrungssorgen

erspart, die einem Kepler die wissenschaftliche
Arbeit so schwer gemacht hatten, er blieb aber auch
von den Demütigungen verschont, die sein leuchtendes

Vorbild, Galilei, über sich hatte ergehen lassen
müssen. Aber Huygens machte von seinen Mitteln
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und seiner Musse auch einen vortrefflichen Gebrauch,
und ich will nun versuchen Ihnen zu zeigen, was er
in seiner beinahe ein halbes Jahrhundert währenden
Gelehrtenarbeit geschaffen hat. Es ist
selbstverständlich, dass ich im Rahmen dieses kurzen
Vortrages nicht im Entferntesten alle seine Leistungen
in gleichem Masse würdigen kann, sind doch von der
bereits 1888 in Angriff genommenen Gesamtausgabe
seiner Werke bisher schon 15 stattliche Quartbände
erschienen. Ich will mich vielmehr auf jene Arbeiten
beschränken, in denen wir gerade die Probleme
kennen lernen, mit denen sich die Mathematiker vor
der Entdeckung der Infinitesimalrechnung lebhaft
beschäftigten und die Huygens zu einem endgültigen
Abschluss gebracht hat, der uns auch heute noch bis
auf die Form der Darstellung vollauf befriedigt.

Ich beginne zunächst mit den rein mathematischen
Arbeiten, die mit seinen mechanischen Untersuchungen

noch in keinem unmittelbaren Zusammenhang

stehen. Sie beziehen sich auf damals gerade
hochaktuelle geometrische und wahrscheinlichkeitstheoretische

Probleme. Die uralte Aufgabe der
Quadratur krummlinig begrenzter Flächenstücke und
besonders die des Kreises hatte das Interesse der
Mathematiker in der ersten Hälfte des 17ten
Jahrhunderts so stark in Auspruch genommen wie kaum
jemals vorher. Wenn man das mathematische Schaffen

jener Zeit betrachtet, so fühlt man, wie die Kräfte
der altehrwürdigen klassischen Methoden diesen
Problemen gegenüber bereits erschöpft waren. Im Grunde

genommen waren es immer wieder dieselben Ideen,
die zum grossen Teile bereits von Archimedes
geschaffen, entsetzlich breitgetreten den Stoff für zahl-
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reiche mitunter recht dickleibige Folianten liefern
mussten. Ich will nur zwei von diesen Schriften
anführen, die eben Huygens den Anlass zu seinen ersten
Publikationen gegeben haben. Es sind dies die von
dem belgischen Jesuitenpater Jean Charles de la
Faille 1632 herausgegebenen « Theoremata de centro

gravitatis partium circuii et ellypsis » (sie und das
zehn Bücher mit 1225 Seiten umfassende « Opus
geometricum quadralurae circuii et seclionum coni »

des Gregorius a Sanclo Vincenlio vom Jahre 1647.

In der ersten dieser beiden Schriften wird gezeigt,
dass die Bestimmung des Schwerpunktes von Kreis-
und Ellipsensegmenten und die Quadratur dieser
Kurven äquivalente Probleme sind. Das Werk des

Gregorius enthält unter Anderem als besondere
Kuriosität nicht weniger als vier Methoden zur
angeblich genauen Quadratur des Kreises.

Huygens behandelt nun in seiner ersten Arbeit
« Theoremata de quadratura hyperboles, ellipsis el

circuii ex dato portionum gravitatis centro » ungefähr,
aber mit mehr Eleganz, dieselben Fragen wie de la
Faille und stellt darin auch eine Widerlegung des

Gregorius in Aussicht, die auch wirklich bald darauf
unter dem Titel « El-ézaoïç Cyclometriae clarissimi
Gregorii a St. Vincenlio» erschien. Besonders durch
die letztere Schrift erwarb sich Huygens bei seinen

Zeitgenossen laute Anerkennung, die durch den
immer heftiger werdenden Kampf pro et contra
Gregorium noch lauter wurde, obwohl sich er sowie

Gregorius selber an dem ganzen Streite fast gar nicht
beteiligten. Huygens setzte vielmehr seine positiven
Untersuchungen über die Kreisquadratur fort, deren
Ergebnisse er im Jahre 1654 in der Abhandlung «De
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circuii magnitude inventa » niederlegte. Wenn auf
diesem Gebiete mit den alten elementaren Methoden
überhaupt noch nennenswerte Fortschritte zu erzielen

waren, so konnten sie nur darin bestehen, dass

man solche obere und untere Schranken für den
Kreisinhalt aufsuchte, mit deren Hilfe ein rascher
konvergierendes Einengungsverfahren konstruiert
werden konnte, als es die in der Zeit von Archimedes
bis Ludolf van Ceulen benutzten waren, die obendrein

einen enormen Rechenaufwand erforderten,
der natürlich damals, wo man noch keine mechanischen

Rechenbehelfe hatte, umso schwerer ins
Gewicht fiel. Freilich hatte Huygens im « Cyclomelri-
cus » (1621) seines Landsmannes Willebrod Snellius,
den er auch am Schlüsse der Vorrede zu seiner
Abhandlung rühmlichst^ erwähnt, die Anregung zu
seinen Untersuchungen gefunden, unterlässt es aber
auch nicht zu betonen, dass dieser Forscher kein
geringes Lob würde verdient haben, hätte er die
beiden Hauptsätze, auf denen sein ganzes Werk
aufgebaut ist, auch beweisen können. Huygens gibt
nun nicht nur die Beweise jener beiden Hauptsätze,
sondern entwickelt auch Methoden, die mit einer
für die damaligen Zeiten minimalen Rechenarbeit
die Zahl n bis auf neun Stellen zu berechnen gestatten.

Ich kann Ihnen hier nicht die uns heute
ungewohnten Beweismethoden vorführen und will nur
erwähnen, dass Huygens schon mittels des Sechzigek-
kes für n die Grenzen:

3-141592 653 3 0< 3*141592 653 8

gewinnt, während die Snellius'sche Methode selbst
aus dem 96-Eck nur sechs und die Archimedische
gar nur zwei Dezimalen liefern.
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Zeigt uns diese Abhandlung, dass Huygens mit
den damaligen geometrischen Kenntnissen wohl
vertraut war und an ihrer Weiterbildung hervorragenden

Anteil nahm, so können wir aus seiner späteren
Beschäftigung mit dem Probleme der Quadratur
erkennen, dass er viel klarer als alle seine Vorgänger
und vielleicht auch klarer als mancher Geometer
nach ihm, den tieferen Kern dieses Problèmes erfasst
hatte. In einer Kontroverse nämlich, die sich zwir
sehen ihm und dem englischen Geometer James
Gregory entsponnen hatte, machte er diesen
aufmerksam, dass es ja von vornherein gar nicht
feststehe, ob der Kreis und das Quadrat seines
Durchmessers kommensurabel seien, was freilich erst
hundert Jahre später von Lambert im verneinenden
Sinne wirklich entschieden wurde.

Dieser Meinungsaustausch zwischen Huygens und
Gregory ist aber auch noch in anderer Hinsicht
interessant, indem er zeigt, wie schwer die grundlegenden

Begriffe der höheren Analysis sich
durchsetzten. In der 1667 erschienenen Schrift « Vera
circuii el hyperbolae quadratura » von Gregory findet
sich zum ersten Male nicht nur das Wort « Konvergenz

», sondern auch der damit bezeichnete Begriff
wenigstens in dem speziellen Fall der Quadratur
ziemlich klar erläutert. Solche Auffassungen waren
aber für die damalige Zeit so überraschend neu, dass
sie selbst unserem Huygens unverständlich blieben.
Überhaupt zeigte sich Huygens der gegen Ende des
17ten Jahrhunderts allmählich bekannt werdenden
Infinitesimalrechnung gegenüber beinahe ablehnend,
obwohl ihn Leibniz wiederholt in Briefen dafür zu
interessieren versucht hatte. Mag sein, dass sich in
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diesem Falle auch bei ihm jene Erscheinung geäussert
hat, dass selbst vielseitig produktive Forscher gegen
ihr Lebensende einseitig werden und sich neu
auftauchenden Ideen gegenüber als unzugänglich erweisen.

Ich habe schon erwähnt, dass sich Huygens auch
mit wahrscheinlichkeitstheoretischen Untersuchungen

beschäftigt hat. Sie betreffen hauptsächlich
sogenannte Teilungsprobleme, bei denen es sich um
folgendes handelt: ein von zwei Spielern gemeinsam
geleisteter Einsatz soll jenem gänzlich zufallen, der
von einer im Voraus vereinbarten Anzahl von Spielen
die meisten gewonnen hat. Wenn aber das Spiel vor
seinem Ende abgebrochen werden muss, so fragt es

sich, wie der Einsatz zwischen den Spielern mit
Berücksichtigung ihrer bereits gewonnenen Spiele
gerecht verteilt werden soll. Aufgaben dieser Art
hatte ein gewisser Chevalier de Mere, ein in den Pariser
Salons bekannter Spieler, an Blaise Pascal gestellt,
der damals in den Kreisen der flotten Pariser Gesellschaft

mehr verkehrte, als es seiner Gesundheit und
seinem Geldbeutel zuträglich war. Über diese Fragen

entwickelte sich sodann zwischen Pascal und
seinem Freunde Fermât ein lebhafter Briefwechsel,
und als sich Huygens im Sommer 1655 in Paris
aufhielt, erfuhr er wahrscheinlich durch den Mathematiker

Boberval auch von diesen Dingen. Bereits im
Frühjahr 1656 hatte er seine diesbezüglichen
Untersuchungen abgeschlossen und im nächsten Jahre
erschienen sie als Anhang zu einer Sammlung von
Aufsätzen seines ehemaligen Lehrers van Schooten
von diesem ins Lateinische übersetzt unter dem Titel
« De raliociniis in ludo aleae ». Huygens stellt darin
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freilich keine allgemeinen Formeln auf, doch
entwickelt er, gestützt auf ein einheitliches Prinzip an
speziellen numerischen Beispielen Methoden zur
Lösung solcher Teilungsaufgaben. Später hat Jakob
Bernouilli der Huygensschen Abhandlung die
allgemeinen Formeln hinzugefügt und sie mit ausführlichen

Anmerkungen versehen als ersten Teil seiner
berühmten «Ars conjeclandi » im Jahre 1713 wieder
drucken lassen. Wenn auch diese Schrift heutzutage,

wo die Wahrscheinlichkeitsrechnung ganz
andere Ziele bekommen hat, nur unser historisches
Interesse beanspruchen kann, so dürfen wir doch
nicht übersehen, dass damals von ihr ein mächtiger
Anstoss zum weiteren Ausbau dieser Disziplin
ausgegangen ist. Es ist z. B. sicherlich Pascal stark von
ihr beeinflusst worden, obwohl Huygens ja selber,
was er übrigens in der Vorrede auch hervorhebt, von
ihm die erste Anregung mittelbar empfangen hatte.

Zeigen uns diese mathematischen Leistungen Huygens

als einen scharfsinnigen Denker, so lassen uns
seine ersten Erfolge auf dem Gebiete der Optik und
der physikalischen Astronomie seine experimentelle
Geschicklichkeit und seine aussergewöhnliche
Kombinationsgabe bewundern. Bereits in jungen Jahren
verfertigte er mit seinem Bruder mittels eigenhändig
geschliffener Linsen sehr leistungsfähige Fernrohre,
ja er erfand sogar ein eigenes Verfahren zum Schleifen

grosser Linsen — das Linsenschleifen musste
übrigens in Holland sogar Philosophen ernähren —
und dieses Verfahren imponierte der Boyal society
of London so sehr, dass sie Huygens zu ihrem
auswärtigen Mitglied wählte.
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Mit einem solchen selbstgebauten und bereits mit
einem Mikrometerokular ausgerüsteten Fernrohr sah

nun Huygens am 25. März 1655 zum ersten male, dass
auch der Saturn einen Mond besitze, es war dies der

— vom Saturn aus gezählt — sechste Mond, der
heute den Namen Titan führt und dessen Umlaufszeit
er auch ziemlich genau bestimmte. Aber noch ein
anderes merkwürdiges Phänomen, das schon 1610

von Galilei bemerkt und von Hevelius ausführlich
beschrieben worden war, entdeckte er nicht nur wieder,
sondern gab ihm auch die richtige Deutung. In einer
kleinen Schrift: «De saturni luna observalio nova»
vom Jahre 1655 zeigte er der Sitte seiner Zeit gemäss
die Entdeckung durch das folgende Anagramm an :

as c3 dL e,; gt ht i-14 m2 n10 o4 p2 ql r3 s817 u;,
wobei die Ziffern angeben sollen, wie oft die
betreffenden Buchstaben vorkommen. Die Lösung dieses
Rätsels, die natürlich niemandem gelang, gab er dann
nach vier Jahren in seinem « Systema saturnium », das

¦er dem Prinzen Leopold von Medici gewidmet hatte.
Sie lautet:

« Saturnus cingitur annulo tenui, plano, nusquam
cohaerente et ad eclipticam inclinato ».

' Allerdings behauptete der Kapuzinerpater Anton
Maria Schyrl aus dem Kloster Beith in Böhmen,
dass er schon 1643 mit dem von ihm entdeckten
terrestrischen Fernrohr neun Jupiter- und sechs Satum-
monde beobachtet hätte, aber der Umstand, dass er

sogar mehrere Monde des Mars, der bekanntlich nur
deren zwei hat, beobachtet haben wollte, macht seine

Angaben unglaubwürdig und Huygens bereits hat
sie auch als irrtümlich nachgewiesen.
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Von seinen rein experimentellen Arbeiten, die bei
aller Vertiefung in Einzelheiten nie den Zug ins
Grosse verkennen lassen, erwähne ich nur die
Konstruktion eines Doppelbaromelers, seine Beobachtungen

über das Brennen im Vakuum, über die
Ausdehnung des Wassers beim Gefrieren, sowie die gemeinsam

mit Papin unternommenen Versuche über die
Siedetemperatur. Ferner beteiligte er sich auch an
der von seinen Kollegen an der Pariser Akademie,
Cassini, Picard und Bömer durchgeführten Bestimmung

der Schallgeschwindigkeit.
Die bisher besprochenen Leistungen unseres Huygens

werden aber noch bedeutend von jenen überragt,

die er uns in seinen mechanischen Schriften
hinterlassen hat, von denen ich zunächst die beiden
kleineren anführen will, und zwar den « Tractatus de

motu corporum ex percussione » und den « Tractatus
de vi centrifuga ». Sie wurden erst im Jahre 1703 von
Burcherus de Voider und Bernhardus Fullenius
zusammen mit anderen Abhandlungen als Opuscula
posthuma zu Leiden herausgegeben, doch war ihr
wesentlicher Inhalt schon viel früher von Huygens
selber noch veröffentlicht worden. Die erste Arbeit,
die sich mit der durch den Stoss hervorgerufenen
Bewegung beschäftigt, wurde durch eine im Jahre
1668 von der Royal Society gestellte Preisaufgabe
veranlasst, es waren aber viele der darin enthaltenen
Resultate Huygens gewiss schon vor mehr als zehn
Jahren bekannt, wie aus seinem Briefwechsel hervorgeht.

Auch der englische Mathematiker Wallis und
der Architekt Wren — der Erbauer der St. Pauls-
Kathedrale in London — hatten Lösungen dieser
Aufgabe eingesandt, und zwar schon vor Huygens,
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doch blieben diese weit hinter der von Huygens
gegebenen zurück, sowohl hinsichtlich der Klarheit
der Begriffe als auch in der Strenge ihrer
Beweisführung. Die von Huygens entwickelten Sätze stehen
in einem geradezu wohltuenden Gegensatz zu den
sieben Stossgesetzen, die Descartes in seinen Prinzipien

der Philosophie aufgestellt hatte und die
bekanntlich sehr unklar und fast durchwegs
haarsträubend falsch sind. Mit viel Geschick verwendet
darin Huygens als einer der ersten die so lange
unverstanden gebliebenen von Galilei geschaffenen Grundlagen

der Dynamik, die er in der glücklichsten Weise
durch neue Begriffe erweitert. So spricht er im
Beweise des Lehrsatzes VII das Axiom aus, « dass

durch eine Bewegung von Körpern, welche nur von
ihrer Schwere verursacht wird, ihr gemeinsamer Schwerpunkt

nicht steigen kann ». Weiter heisst es im Lehrsatz

XI : « Beim wechselseiligen Stoss zweier Körper
wird die Summe der Produkte aus den Massen in die

Quadrate ihrer Geschwindigkeiten vor wie nach dem
Stoss als die gleiche gefunden ». Wer auch nur die
Elemente der Mechanik kennt, wird darin sofort zwei
Sonderfälle des Gesetzes von der Erhaltung der Energie

erkennen. Dass bei Huygens vor dem Produkte
m. v2 der Faktor l noch nicht vorkommt, ist hier
ganz belanglos, der wurde ja erst etwa vor hundert
Jahren von Coriolis hinzugefügt. Dieser Satz XI
sowie die in der Voraussetzung III. aufgestellte
Forderung, dass man die Geschwindigkeiten relativ
auffassen müsse, wenn die Cartesische Bewegungs-
grösse konstant bleiben soll, spielten eine wichtige
Rolle in der sich später zwischen Leibniz und den
Cartesianern entspinnenden Kontroverse über die
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Erhaltung der lebendigen Kraft, die sich schliesslich
ohne entschieden zu werden als nebelhafte metaphysische

Streitfrage bis über Kant hinaus fortzog, und
dies vor allem durch das grosse Rätsel, das auch für
uns noch in dem Begriffe der Kraft liegt.

Von dem Inhalte der zweiten der beiden genannten
Abhandlungen, nämlich der über die Zentrifugalkraft,

hatte Huygens schon 1669 einiges der Royal
Society in Anagrammform mitgeteilt und auch im
Horologium oscillatorium vom Jahre 1673 sind 13 von
den im Ganzen 17 Lehrsätzen, freilich ohne Beweise

abgedruckt. Newton verwendet sie bereits mit grossem

Nutzen in den Principiis zur Behandlung der
Planetenbewegung und bezeichnet Huygens auch
als ihren Urheber. Gestützt auf das Prinzip der
Relativbewegung erledigt darin Huygens sein
Problem fast erschöpfend und seine Darstellung hat
dabei noch den Vorzug, dass sie den auch heute noch
etwas dunklen Regriff der Masse fast gänzlich
vermeidet, wodurch auch deutlich zum Ausdruck
kommt, dass die Zentrifugalkraft keine besondere
Naturkraft ist, sondern eine sogenannte Reaktionskraft.

Als letzte und bedeutendste der mathematischmechanischen

Schriften will ich nun die über die
Pendeluhr, das schon genannte « Horologium
oscillatorium sive de motu pendulorum ad horologia aptato »

etwas ausführlicher besprechen. Die erste Rekannt-
schaft mit einem der darin behandelten Probleme
machte Huygens schon mit 17 Jahren, als der schon
erwähnte Paler Mersenne den Mathematikern und
Physikern die Frage nach dem Schwingungsmittelpunkt

eines starren, um eine horizontale Achse drehbaren
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Körpers vorlegte. Freilich konnte Huygens damals
keine Lösung finden, aber das, was Descartes und
Roberval darüber gefunden hatten und weswegen
sie sogar miteinander in Streit geraten waren, war
auch nicht viel und zum Teil sogar falsch. Dieses
Problem war damals, als das Redürfnis der
Astronomen und Seeleute nach verlässlich funktionierenden

Uhren immer empfindlicher wurde, von
ausserordentlich hoher praktischer Bedeutung und Huygens
hatte sich mit ihm auch mehr als 25 Jahre beschäftigt.
Die Lösung die er aber dann — natürlich mit den
klassischen geometrischen Methoden — gab, war so

vollständig, dass eine Weiterentwicklung des
Problèmes nur in formaler Hinsicht möglich war, nachdem

die später erst geschaffene höhere Analysis die
Mittel hiezu bereitgestellt hatte.

Damit Sie aber die Leistung, die Huygens dadurch
vollbracht hatte, richtig einschätzen können, wird
es zweckmässig sein, wenn ich vorher einige kurze
Andeutungen darüber mache, wie man bis in die Mitte
des 17ten Jahrhundertes die Zeit gemessen hat. Von
den Wasser- und Sanduhren, die schon bei den alten
Ägyptern und Babyloniern in Gebrauch waren und
deren freilich stark degenerierte Nachkommen heute
noch beim Eierkochen verwendet werden, will ich

gar nicht weiter reden. Von Uhren die mit den unsri-
gen wenigstens äusserlich eine entfernte Ähnlichkeit
hatten, kann man erst sprechen, als man den Versuch
unternahm, die Fallbewegung eines meist recht
schweren Gewichtes durch irgendwelche Hemmvorrichtungen

zu verzögern und gleichförmig zu machen,
wozu man meist den sogenannten Windfang oder
Windflügel benützte. Solche Räderuhren erwähnt
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schon Dante im zehnten Gesang des Paradiso ; sie

führten zwar alle möglichen Kunststücke aus,
nahmen es aber dafür mit ihrer eigentlichen Aufgabe
der Zeitmessung nicht sehr genau. Gegen Ende des

16ten Jahrhunderts muss sich der grosse Astronom
Tycho de Brahe noch recht oft über seine vier Uhren
ärgern, von denen eine sogar ein Rad mit 1200 Zähnen

gehabt haben soll, und Sie werden seinen Zorn
darüber gewiss gerecht finden, wenn Sie hören, dass

man sie beinahe alle Viertelstunden richten, ja
mitunter sogar mit einem Hammer nachhelfen musste.

Nachdem Galilei die Regelmässigkeit der
Pendelschwingungen erkannt hatte, bedienten sich sowohl
er selber als auch die Mitglieder der Academia del
cimento dieses bequemen Mittels zur Messung kurzer
Zeiträume. Freilich hatte Galilei auch schon die
Mängel seines Instrumentes bemerkt, nämlich die

Abhängigkeit der Schwingungsdauer von der Amplitude,

und er dachte auch daran, das lästige und leicht
zu Fehlern Anlass gebende Zählen der Schwingungen
durch ein Zählwerk besorgen zu lassen, konnte aber
doch keinen erheblichen Fortschritt erzielen. Das

war also in grossen Zügen der Stand der Sache als
sich Huygens ihrer bemächtigte. Man hatte Uhren
und Pendel, sagt Poggendorf in seiner Geschichte
der Physik, ja sogar Pendel mit einem Zählwerk^
aber darum noch lange keine Pendeluhren

Die Idee, ein Pendel mit einem Räderwerk zu
.verbinden und die durch die Reibung verursachten
Energieverluste durch die Arbeit eines langsam fallenden

Gewichtes zu ersetzen, bleibt trotz des lange
andauernden Prioritätsstreites, den die Erfindung
der Pendeluhr ausgelöst hatte, eine der grossartigsten
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Äusserungen der Kombinationsgabe unseres Huygens.
Gerade im Gründungsjahre der Academia del
cimento, 1657, die sich in dem späteren Streite nicht
sehr schön benommen hatte, erhielt Huygens am
16. Juni von den General-Staaten ein Patent auf
seine Pendeluhr, die er dann 1658 in der kleinen
Schrift « Horologium » beschrieb und auch abbildete.

Die Turmuhren von Scheveningen und
Utrecht wurden gleich mit der neuen Erfindung
ausgestattet und eine Unzahl von Gratulationsbriefen
aus allen Ländern Europas, die im Huygensschen
Nachlass gefunden wurden, zeigt, mit welcher Begei-
sterung sie allgemein aufgenommen wurde. Die
fünfzehn Jahre aber, die zwischen dem Erscheinen
des kleinen Horologium und dem des grossen
Horologium oscillatorium im Jahre 1673 vergangen waren,
hatte Huygens unablässig gearbeitet sowohl an der
Vervollkommnung der Uhr selber als auch an ihren
theoretischen Grundlagen, wie ich Ihnen nun durch
eine kurze Inhaltsangabe der grossen Schrift über die
Pendeluhr zeigen will.

Im ersten Teile gibt Huygens eine ausführliehe
Reschreibung der Einrichtung und Wirkungsweise
seiner Uhr, von der ich nur den wichtigsten Bestandteil,

das Pendel, kurz erklären will. Zwischen zwei
in ganz bestimmter Weise gekrümmten Metallstreifen
sind zwei parallele leicht biegsame Fäden eingeklemmt
an deren unterem Ende die Pendelstange befestigt
ist. Diese geht durch die Öse der sogenannten Gabel,
deren oberes Ende mit der horizontalen Spindel des

Echapements fest verbunden ist, das ebenfalls von
Huygens wesentlich verbessert worden war. Die übrigen

Teile der Uhr stimmen im grossen Ganzen mit den
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entsprechenden unserer heutigen Uhren überein, doch
sei erwähnt, dass statt eines Sekundenzeigers ein
durch einen Schlitz sichtbares Zifferblatt rotierte.

Huygens weiss natürlich, dass die Schwingungen
des Kreispendels bei grosser Amplitude nicht mehr
isochron sind, ja er gibt sogar für das Verhältnis der
Schwingungszeiten zweier Pendel, von denen das
eine durch einen Halbkreis, das andere aber nur
durch einen sehr kleinen Bogen schwingt, den
verblüffend genauen Wert ~ an. Wie er zu diesem

Näherungswert gekommen ist, sagt er leider nicht,
man muss sich aber über die Genauigkeit dieser
Angabe wundern, wenn man bedenkt, dass die Berechnung

der Schwingungsdauer bei endlicher Amplitude
die Auswertung eines elliptischen Integrales erfordert.
Diese Abhängigkeit der Schwingungsdauer eines

Kreispendels von der Amplitude will nun Huygens
dadurch vermeiden, dass sich vermöge seiner
Aufhängevorrichtung das Pendel umso stärker verkürzt,
je grösser sein Ausschlag wird. Die Ermittlung der
Gestalt, die er zu diesem Zwecke den beiden oben
erwähnten Metallstreifen geben muss, bildet den
Inhalt des zweiten und dritten Teiles der Schrift.

Zunächst zeigt Huygens, dass ein schwerer Punkt
der sich auf einer nach unten konvexen gemeinen
Zykloide mit horizontaler Basis bewegen muss, von
jeder Stelle der Kurve aus dieselbe Zeit braucht, um
bis zum tiefsten Punkte zu gelangen, weswegen er
die Zykloide auch die Taulochrone nennt. Im folgenden

Teile entwickelt er dann die Begriffe Krümmung
einer Kurve, Evolute, Evolvente und zahlreiche Sätze
über die Rektifikation ebener Kurven. Das für seine
Zwecke wichtigste Resultat ist im Satz VI enthalten,
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dass nämlich die Evolvente einer Zykloide wieder
eine Zykloide ist. Damit ist nun auch die Gestalt
jener gekrümmten Metallstreifen gefunden: sie muss
aus den in einer Spitze zusammenlaufenden Kurvenzügen

einer Zykloide bestehen, und auch die Länge des

stets isochron schwingenden Pendels ist nun sofort
bekannt, sie muss nämlich dem doppelten Durchmesser

des die Zykloide erzeugenden Kreises gleich
sein. Die Schwingungsdauer T eines solchen Pendels
wurde aber schon im Satz XXV des zweiten Teiles
bestimmt: sie verhält sich zu der Zeit t' die der Punkt
brauchen würde, um den Durchmesser 2a des

erzeugenden Kreises frei zu durchfallen, wie der Umfang
eines Kreises zu seinem Durchmesser, also wie »: 1.

— wenn
g

Da also t i / *\ so wird T n i /
1 4a gesetzt wird, und dies ist die bekannte
Pendelformel für kleine Schwingungen eines Kreispendels,
da man die Zykloide in der Umgebung ihres Scheitels

durch ihren Krümmungskreis mit dem Radius
4a ersetzen kann.

Damit hat Huygens die Theorie des « mathematischen

» Zykloidenpendels in einem für seine Zwecke
vollständig hinreichenden Umfang entwickelt und
nun bringt der vierte Teil eine glänzende Lösung der
ihm von Mersenne vor 27 Jahren vorgelegten Aufgabe
der Restimmung des Schwingungsmittelpunktes eines

Körpers in einer Ausführlichkeit, die weit über den
unmittelbaren Zweck hinausreicht. Zuerst behandelt

er den mechanischen Teil der Frage, wobei er
sich wieder auf die bereits in der Lehre vom Stosse
so erfolgreich angewendeten dynamischen Prinzipien
stützt. Das Resultat ist im Satz V niedergelegt,
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den ich aber in der heute üblichen Ausdrucksweise
anführen will: Ist r der Abstand eines beliebigen
Massenteilchens von der Achse, m seine Masse, r0
der Abstand des Schwerpunktes von der Achse,
dann ist der Abstand des Schwingungsmittelpunktes
von der Achse oder die Länge 1 des mit dem Körper
isochron schwingenden mathematischen Pendels gegeben

durch:

y. m r2 / m r2 Trägheitsmoment

statisches Moment
r0 /_ m / m. r

Die grössere Hälfte dieses Teiles nehmen dann die
nach den damaligen Methoden elegant durchgeführten

Berechnungen der statischen und Trägheitsmomente

zahlreicher Flächenstücke und Körper ein,
die durchwegs vollkommen richtig sind. Im Satze XX,
der besagt, dass man Schwingungsmittelpunkt und
Aufhängepunkt eines Pendels untereinander
vertauschen kann, steckt schon die Idee des Reversions-
pendels, das erst um 1810 von Bohnenberger und Kater
verwendet wurde.

Huygens empfindet es als einen Nachteil seiner Uhr,
dass sich ihr Sekundenzeiger ruckweise bewegt, und
will diesen Umstand dadurch vermeiden, dass er das

Zykloidenpendel durch ein konisches ersetzt. Der
fünfte und letzte Teil bringt daher noch die Theorie
des konischen Pendels, das wir heute aber nur als

Regulator beim Drosselventil und bei parallaktisch
montierten Fernrohren anwenden. Aber auch das

Zykloidenpendel wurde bald vom gewöhnlichen Pendel

verdrängt, da man jene zykloidischen Metall-
streifen nicht genau genug herstellen konnte, da sich
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der Doppelfaden infolge der Steifheit nie genau an
sie anschmiegt, kurz, weil man bald erkannte, dass
die durch die zu komplizierte Aufhängung
verursachten Fehler viel stärker ins Gewicht fallen als die,
welche aus den nicht ganz genau synchronen kleinen
Schwingungen des Kreispendels entstehen.

Revor ich die Untersuchungen über das Pendel
verlasse, möchte ich noch auf eine interessante
Wahrnehmung hinweisen, die Huygens an zwei an
demselben Balken nahe beieinander aufgehängten Uhren
machte. Er beobachtete nämlich, dass die Pendel
zweier solcher genau gehender Uhren sich gegenseitig
beeinflussen, sodass ein ursprünglich vorhandener
Gangunterschied der beiden Pendel allmählich von
selbst verschwindet und auch nicht wieder zum
Vorschein kommt. Es ist dies ein Beispiel für eine gekoppelte

Schwingung, und als solche wird sie auch von
Huygens gedeutet, nachdem er diese Erscheinung
schon im Jahre 1665 beschrieben, ihre Erklärung aber
irrtümlich in der Bewegung der Luft gesucht hatte.

Von Huygens stammt auch der Vorschlag, aus dem
Sekundenpendel ein für ewige Zeiten unveränderliches

und stets leicht wieder auffindbares Normal-
längenmass herzustellen. Er empfiehlt hiezu den
dritten Teil der Länge des Sekundenpendels, den er
den Slundenfuss, « pes horarius », nennt. Es ist
Ihnen gewiss bekannt, welche Schwierigkeiten mit
der Durchführung eines solchen Vorschlages
verknüpft sind, und auch Huygens lernte sie bald kennen.

Jean Picard hatte im Auftrage der Pariser
Akademie, deren Mitglied er war, in den Jahren 1669-70
auf französischem Gebiete eine Gradmessung
durchgeführt, deren Ergebnisse nicht nur infolge der
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erheblich verbesserten Winkelmessinstrumente,
sondern auch infolge glücklicher Ausgleichung von
Beobachtungsfehlern ziemlich genau waren. Im Besitze
eines verlässlichen Wertes für den Erdradius wollte
nun die Akademie auch den Versuch machen, die
Entfernung der der Erde näher stehenden Gestirne
zu bestimmen. Wegen der am Äquator geringeren
atmosphärischen Refraktion sandte sie daher den
Astronomen Jean Bicher im Jahre 1671 nach Cayenne.
Dieser machte nun dort kurz nach seiner Ankunft
die Wahrnehmung, dass seine in Paris richtig gehende
Pendeluhr plötzlich pro Tag um zwei Minuten zurückblieb.

Er glaubte zuerst, dass er sich geirrt habe und
beachtete die Sache nicht weiter. Nach zwei Jahren
kam er wieder nach Paris zurück und man war mit
seinen Beobachtungen sehr zufrieden. Hier bemerkte
er nun, dass er das Pendel wieder um denselben
Betrag verlängern musste, um den er es in Cayenne
verkürzt hatte. Zu seinem Unglück teilte er auch
diese neue Beobachtung mit und erklärte sie auch

richtig durch die uns wohlbekannten Gründe. Die
Akademie jedoch war damit nicht einverstanden,
sondern schob die ganze Sache auf die Ausdehnung
der Pendelstange durch die Wärme und manche seiner
Kollegen bezweifelten nun sogar die Verlässlichkeit
seiner astronomischen Beobachtungsergebnisse.

Unter den wenigen Akademikern, die Richers
Ansicht teilten, befand sich auch Huygens, wenn er auch
anfangs mit seiner Meinung etwas zurückhielt. Er
sah ein, dass die Schwere nicht nur wegen des grösseren
Drehungsradius gegen den Äquator zu abnehmen
müsse, sondern auch deswegen, weil dort die
Vertikalkomponente der Zentrifugalkraft grösser wird. Diese
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Begründung hatte zwar, wenn auch nicht so bestimmt,
bereits Picard gegeben, aber Huygens geht noch
weiter. Er behauptet nämlich, dass aus denselben
Gründen die Erde keine Kugel sein könne, und gibt
für die Abplattung den freilich zu kleinen und aus
unzulänglichen Annahmen berechneten Wert -^- an.
Obgleich er auch noch mittels einer rasch
rotierenden Kugel aus weichem Ton seinen Kollegen am
Kontinent die Richtigkeit seiner Behauptung ad
oculos zu demonstrieren vermochte und obgleich
auch Newton noch viel weiter reichende Konsequenzen

gezogen hatte, es bedurfte erst eines langen
Streites zwischen Engländern und Franzosen und
der berühmten französischen Gradmessung der
Revolutionszeit, bis sich endlich die richtige Ansicht
allgemein durchsetzte. Huygens hat die Ergebnisse
seiner Untersuchungen über die Schwere und die
Gestalt der Erde zusammengefasst in seinem «

Discours de la cause de la pesanteur », der erst im Jahre
1690 als Anhang zu seinem berühmten « Traité de

la lumière » erschien, zu dessen Besprechung ich nun
übergehen will.

Auch die in dieser Schrift niedergelegten
Untersuchungen hatte Huygens bereits in der Pariser
Akademie vorgetragen (1678), aber es fand sich schon
damals niemand, der ihre Bedeutung erkannt hätte,
man war eben mit der Korpuskulartheorie Newtons
völlig zufrieden. Die enorme Lichtgeschwindigkeit,
die Bömer gerade um diese Zeit aus der Verfinsterung
der Jupitermonde berechnet hatte, gab für Huygens
den ersten Anlass an der Richtigkeit der Emissionstheorie

zu zweifeln. Er hält es für überaus
unwahrscheinlich, dass die Lichtteilchen, ja dass sich über-
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haupt Körper mit solcher Geschwindigkeit bewegen
können. Wir würden aus diesem Grunde allein die
Emissionstheorie heute nicht ablehnen, da wir ja in
den ß - Stahlen materielle Teilchen haben, die sich
nahezu mit Lichtgeschwindigkeit bewegen.

Mit der Annahme einer jedenfalls nur endlichen,
wenn auch sehr grossen Ausbreitungsgeschwindigkeit
des Lichtes, gerät Huygens gleich am Anfang seiner
Theorie in Gegensatz zu den Cartesianern, und diesem
Umstände darf man es wohl zuschreiben, warum seine
Theorie auch am Kontinente nicht angenommen
wurde. Von den Vorstellungen, die Descartes über
das Wesen des Lichtes entwickelt hat, kann man sich
schwer ein klares Bild machen, man findet bei ihm
Anklänge an die Emissionstheorie sowohl wie an die
Wellentheorie, ja einmal kommt er sogar der alten
Anschauung Piatons nahe, der schon von Aristoteles
geradezu handgreiflich widerlegten Synaugie, wonach
das Sehen dadurch zustande kommen soll, dass die
vom Auge ausgehenden Sehstrahlen die Gegenstände
gewissermassen abtasten Das eine aber scheint für
Descartes festzustehen: die Lichtgeschwindigkeit
ist unendlich gross, und er begründet dies damit,
dass man sonst an den Fixsternen jenes Phänomen
wahrnehmen musste, das uns heute als Aberration
des Lichtes bekannt ist. Bei dieser Gelegenheit zeigt
sich übrigens auch, wie sehr der scharfsinnige
Descartes, der gemeint hatte, seine Philosophie ganz
von der Vergangenheit losgelöst zu haben, noch in
frühere Denkgewohnheiten verstrickt ist. Anstatt
an die Möglichkeit zu denken, dass eben die
Beobachtungswerkzeuge noch zu unvollkommen seien,
um einen so kleinen Winkel einwandfrei messen zu
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können, sagt er vielmehr: eine solche Verschiebung
der Sternörter, wie sie aus der Erd- und einer endlichen

Lichtgeschwindigkeit resultieren musste, ist
noch nicht beobachtet worden, also ist sie nicht
vorhanden, also ist die Lichtgeschwindigkeit unendlich

gross. Wir dürfen Descartes deswegen aber
keinen allzugrossen Vorwurf machen und können
daraus nur lernen, dass das Nichtvorhandensein eines
Effektes von unbekannter Grössenordnung
experimentell niemals festgestellt werden kann.

Die Grundzüge der Huygens'schen Lichttheorie
werden Ihnen wohl soweit bekannt sein, dass ich
mir diesbezügliche Ausführungen ersparen kann,
ich will mich daher nur auf eine kritische Betrachtung

ihrer Grundlagen beschränken. Huygens lässt
sich bei der Entwicklung seiner Theorie oft von der
Analogie mit dem Schalle leiten, leider aber gerade
dort, wo sie nicht am Platze ist. Wenn er auch

nirgends die Lichtwellen als longitudinale Schwingungen

der Ätherteilchen ausdrücklich bezeichnet,
so unterliegt es doch keinem Zweifel, dass er sich
diese so vorgestellt hatte. Diese Analogie mit dem
Schalle hat ihn also auf den Holzweg geführt und
erst der unerschütterliche Glaube eines Thomas Young
an ihre Richtigkeit und das kühne Genie eines

Augustin Fresnel haben die Wellentheorie in diesem
Punkte ins rechte Geleise gebracht, nachdem man
die transversale Natur der Lichtwellen erkannt hatte.

Eine andere Analogie mit dem Schalle hat Huygens
leider unbeachtet gelassen, deren weitere Verfolgung
der Wellentheorie schon damals vielleicht das Übergewicht

über die Emissionstheorie hätte verschaffen
können. Ich meine damit den periodischen Charakter
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der Schallwellen und die Abhängigkeit der Tonhöhe
von der Frequenz oder der Wellenlänge. In dem
Streben, seine Annahmen über die Natur des Lichtes
so allgemein als möglich zu halten, tut aber Huygens
gerade das Gegenteil. So heisst es unten auf Seite 15 :

« Da aber die Stösse im Mittelpunkte dieser Wellen
nicht in regelmässiger Reihenfolge stattfinden, so

braucht man sich auch nicht vorzustellen, dass diese

Wellen selbst in gleichen Abständen aufeinanderfolgen

», ja er entschuldigt sich gewissermassen sogar,
dass er in der beigefügten Figur doch die Abstände
der Wellen gleich gross gezeichnet habe. Damit war
es Huygens natürlich unmöglich, die Interferenzerscheinungen

zu erklären, die er deswegen wohl auch

gar nicht erwähnt, obwohl sie schon Boberl Boyle
beschrieben und Boberl Hooke auf Grund unklarer
Vorstellungen von der Wellennatur des Lichtes eine
freilich falsche Erklärung versucht hatte. Es ist
ungewiss, ob Huygens die von Grimaldi schon um 1660
entdeckten Diffraktionserscheinungen gekannt hat,
jedenfalls hätten auch sie ihm Anlass geben können,
seine Hypothesen über die Natur des Lichtes mehr
zu spezialisieren. Dann hätte er auch den gegen seine
Theorie erhobenen Vorwurf entkräften können, dass
danach so wie beim Schalle auch beim Lichte keine
scharf begrenzten Schatten auftreten könnten. In
diesem Punkte nähert sich Newton mit den « Anwandlungen

» (fits) seiner Lichtteilchen übrigens stark der
Wellentheorie, da er den periodischen Charakter
derselben ausdrücklich postuliert und daraus greifbare

numerische Resultate ableitet, worin ein unleugbarer

Vorzug gegenüber Huygens liegt. Es ist
sonderbar, dass Newton, trotz seines berühmten « Hy-
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potheses non fingo » in der Optik selten um eine neue
Hypothese verlegen ist und sich doch nie endgültig
für eine bestimmte entscheidet. Weil ich schon von
Newton spreche, so will ich noch hinzufügen, dass

Huygens entgegen Newton aus seiner Wellenhypothese

den Schluss zog, dass sich Licht in optisch
dichteren Medien langsamer fortpflanzen müsse als
in dünneren. Hier hätte man ein « experimentum
crucis » anstellen können, wenn die Messtechnik da>

mals auf einer zu einem solchen Versuch erforderlichen
Höhe gewesen wäre. Der Versuch, den Foucault im
Jahre 1850 machte, entschied bekanntlich zu Gunsten
der Wellentheorie, aber damals war die Emissionstheorie

schon lange an der Hypertrophie ihrer
eigenen Hypothesen zu Grunde gegangen, die sie
immer wieder über die Lichtteilchen aufstellen musste,
um dem immer mehr sich häufenden Beobachtungsmaterial

wenigtens qualitativ gerecht werden zu
können.

Das schönste Kapitel des Traité de la lumière ist
unbestreitbar das fünfte, in dem Huygens die schon

von Erasmus Barlholinus im Jahre 1669 beschriebene
Doppelbrechung beim isländischen Kalkspath
behandelt. Die Erklärung dieser Erscheinung wird ja
in den elementaren Lehrbüchern heute noch im
Anschlüsse an Huygens gegeben und ich kann sie daher
wohl als bekannt voraussetzen. Es ist ein Genuss zu
sehen, wie Huygens dem ausserordentlichen Strahle
hinter seine Schliche kommt, und wie er schliesslich
auf die Idee verfällt, es müsse sich ausser der
gewöhnlichen Kugelwelle im Kalkspath noch eine
andere Welle von der Gestalt eines Sphäroides
ausbreiten. Diese Hypothese sucht er durch eine andere
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über die Struktur dieses Kristalles zu stützen und
schliesslich zeigt ihm der Erfolg, dass er das Richtige
erraten hat: eine einfache geometrische Konstruktion
gestattet ihm, die Richtung des ausserordentlichen
Strahles zu finden, und mehr kann man schliesslich
von keiner Hypothese verlangen. Newton gab,
obwohl er den Traité gelesen hatte, auf Grund seiner
Theorie eine falsche Konstruktion des ausserordentlichen

Strahles. Die Doppelbrechung ist überhaupt
eine der schwächsten Seiten der Theorie Newtons, sie

gibt ihm aber infolge einer von Huygens gemachten
Reobachtung Veranlassung zu einer neuen Hypothese
über die Beschaffenheit der Lichtteilchen, mit der er
sich schon stark der Auffassung nähert, dass das Licht
aus transversalen Ätherschwingungen besteht. Huygens

Hess nämlich die beiden aus einen Kalkspath-
kristall austretenden Lichtstrahlen, in die ein einziger
Strahl zerlegt worden war, nochmals in einen zweiten
Kristall eintreten und bemerkte dabei, dass unter
den bekannten Umständen die beiden Strahlen nun
auch ihre Rollen vertauschen können. Er begnügt
sich aber mit der Beschreibung dieser Erscheinung
und überlässt anderen die Erklärung, die nun Newton
darin zu finden glaubte, dass er den Lichtteilchen
« verschiedene Seiten » zuschreibt und dass eben
zwei aufeinander senkrechte Seiten dem ordentlichen

und dem ausserordentlichen Strahle zukämen.
Sie wissen, dass die Huygenssche Wellentheorie

des Lichtes länger als ein Jahrhundert völlig
unbeachtet geblieben ist, wenn auch kein geringerer als
der grosse Leonhard Euler um die Mitte des 18ten
Jahrhundertes für sie eine Lanze gebrochen hat.
Seine Schriften darüber waren aber zum Teil populär-
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philosophisch und zum Teil wieder zu abstrakt
mathematisch, kurz sie blieben ohne Einfluss auf die
Physiker der damaligen Zeit. Nicht viel besser

erging es den diesbezüglichen Veröffentlichungen des

englischen Arztes Thomas Young, der die an zwei
Stimmgabeln beobachteten Schwebungen auch auf
Lichtwellen übertrug und das Interferenzprinzip und
damit natürlich auch den periodischen Charakter der
Lichtwellen klar aussprach. Es ist sehr bezeichnend
für das schwankende Verhalten Newtons, dass sich
Young, um wenigstens bei seinen Landsleuten Gehör
zu finden, geradezu auf Newton als Patron der Wellentheorie

beruft. Young war aber ein viel zu schwacher
Mathematiker, um gegen die damals auch in
mathematischer Hinsicht schon ziemlich entwickelte
Emissionstheorie aufzukommen. Das gelang erst Fresnel,
nachdem er die transversale Natur der Lichtwellen
erkannt hatte, nach langem und schwierigem Streite
mit den Vertretern der Emissionstheorie, der bei seinem
allzu frühen Tode noch nicht beendet war. Wenn
auch die Emissionstheorie sogar nach dem Tode Fres-
nels erst ihre höchste Entwicklungsstufe erreichte,
so trug sie doch schon den Todeskeim seit langer Zeit
in sich: die vielen, oft unmotivierten Hypothesen
führten schliesslich zu ihrer gänzlichen Niederlage
gegenüber der Wellentheorie, die mit einigen wenigen
Hypothesen nicht nur die bereits bekannten optischen
Erscheinungen qualitativ und quantitativ beherrschte,
sondern auch im Stande war, neue Erscheinungen
vorherzusagen, deren tatsächliche Entdeckung ihre
Stellung natürlich stark befestigte.

Schon diese groben Umrisse, mit denen ich Ihnen
das Lebenswerk des grossen Huygens zu zeichnen
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versucht habe, müssen jeden, der dieses nur halbwegs
zu würdigen versteht, mit aufrichtiger Bewunderung
erfüllen. Und wenn es überhaupt einen Sinn hat zu
sagen, dass hervorragende Leistungen eines einzelnen
das Ansehen des ganzen Volkes, dem er entstammt,
vor aller Welt zu heben vermögen, dann können die
Holländer mit Recht auf ihren Huygens stolz sein.
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Excursion au Lac-Noir et à la Kiggisalp,

le dimanche 30 juin 1929.

7 h. Départ en autocar.
8 h. Arrivée au Lac-Noir.

Montée à la Riggisalp.
Conférence de M. le professeur P. Girardin,
sur la géographie du Lac-Noir.
Conférence de M. le Dr 0. Rüchi, conservateur

du Musée, sur la formation géologique
du Lac-Noir.

12 h. Dîner du Rucksack.
14 h. Descente au Lac-Noir.

Conférence de M. le professeur Erhard, sur
l'hydrobiologie des lacs alpins.
Démonstration des appareils hydrobiologiques
de l'Institut de zoologie installés au Lac-
Noir, par M. Zemp. étudiant es sciences
naturelles. Prise de plancton.

Les conférenciers n'ont pas livré de manuscrit.
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