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Proceés-verbaux des séances
19281929

Séance du 22 novembre 1928.

Présidence de M. le prof. Dr S. Bays, président.

Rapport annuel du Président, (voir page 3).

Séance du 6 décembre 1928. .

Présidence de M. le prof. D* S, Bays, président.

1. A. Haas, prof. : Neue Versuche iiber das Sleigen
der Ldésungen des gelalinierbaren Opalblaus, von
Dr. Griibler in Kraul- und Holzpflanzen.

Beir Versuchen, Protozoen fiir Unterrichtszwecke
zu fiarben, wurde ich auch auf das gelatinierbare
Opalblau von Dr. G. Gribler & Co, Leipzig
aufmerksam und stellte mir die Frage, ob dieses
“eventuell auch vom Pflanzenorganismus absorbiert,
wiirde. Zu dem Ende wurde ein bebliatterter Spross
der gewohnlichen Brennnessel in eine Lodsung von
Opalblau gestellt. Die Brennessel wurde gewihlt,
weil die Blatter relativ diinn sind und das Erscheinen
der Farblosung in den Nerven der Blitter leicht zu
erkennen war. Das Ergebnis zeigte, dass die Fiarbung
in den Enden der Blattnerven eines 30 cm langen
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Sprosses bereits nach 15-20 Minuten sich bemerkbar
machte und mit der Zeit intensiver wurde,
Auffillic war vorerst die Beobachtung, dass die
Farbung in den obern, wie in den untern Blittern
ungefihr gleichzeitig erscheint. Einen Unterschied
in dieser Hinsicht vermochte ich nicht festzustellen.
Die verschieden langen Entfernungen von der Schnitt-
fliche bis zu den #ussersten Blattspitzen miissen
somit mit ungleicher Geschwindigkeit durchlaufen
worden sein. Weitere Versuche ergaben das namliche
Resultat auch mit beblitterten Zweigen von Acer
Californica nach der Bestimmung von Hr. Dr. Ja-
quet. Beispielshalber sei es erlaubt, einen Versuch
mit der letztgenannten Pflanze anzufiihren. Zwei dies-
Jahrige Zweige wurden am 13. August 1928 7 Uhr
morgens in die Firblosung gestellt. Am 8 Uhr war
die Firbung der Enden der Blattnerven deutlich in
den obern wie den untern Blattern. Ein Unterschied
der Farbung hinsichtlich Intensitit war nicht zu
erkennen. Die Linge der Zweige betrug fiir beide
78 cm ; der eine trug 14, der andere hatte 13 Blatter.
Derlei Versuche diirften sich zur Demonstration in
Schulen empfehlen besonders deswegen, weil die
Nesseln fast iiberall leicht und lange zu haben sind.

Macht man Querschnitte durch einen derartig
behandelten Spross, so fallt auf, dass nur bestimmte
Teile und zwar des Holzteils gefarbt sind. Diese sind
im Querschnitt andern gegeniiber durch vollstindi-
gen Farbkontrast abgegrenzt. Das kann man beob-
achten, wenn der Querschnitt in Luft und nicht
in Wasser als Einschlussmedium betrachtet wird.
Wird er ins Wasser tibertragen, so verlauft die Farbe.
Querschnitte, die genannter Behandlung nicht un-
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terworfen waren, wurden in Farblosung gebracht
und da zeigte sich, dass andere Elemente sich
schneller und intensiver fiarben als die Teile, in denen
die Farblosung emporsteigt. Wird ein Querschnitt
oder ein Léangsschnitt, der durch die aufsteigende
Opallossung gefarbt wurde, betrachtet, so ist die
Farbung in benachbarten Gefissen verschieden stark,
starker bei englumigen als bei solchen mit grosserer
Lichtweite.

Wenn auch das Verhalten der abgeschnittenen
Zweige recht interessant ist, so ist es nicht weniger
die Frage, wie die unversehrte Pflanze der Farblosung
gegeniiber sich benimmt.

[. Zu dem Zwecke wurde dem Garten des Kol-
legiums eine Fuphorbia Heliolropa entnommen, die
Erde behutsam entfernt und das Wurzelwerk in Farb-
l6sung getaucht. Die Beobachtung zeigt folgendes :
Beginn des Versuchs 8. August 1928 1 Uhr 55 abends.
4 Uhr 10 Nervenenden deutlich gefidrbt. Ein Quer-
schnitt durch einen Seitenzweig zeigt, dass nur die
Gefiassbiindel gefarbt sind, die Farblosung in der
intakten Pflanze denselben Weg nimmt, wie in abge-
schnittenen Zweigen. Nachdem die Pflanze am 9. Au-
gust 8 Uhr morgens in gewOhnliches Leitungswasser
gebracht worden, verbleibt die Pflanze frisch wie die
Aufzeichnungen ergeben vom

I1. August 11 Uhr 50
12 » 8
13. » 7S
18. » 4

Am 5. September zeigt sich, dass die untern Blatter
vergilbt sind, wihrend an den Zweigspitzen sich neue,
mit ungefirbten Nervenenden gebildet haben.
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IT. 9. August 1928, Eine 53 ¢m hohe Atriplex-spec,
wird dem Boden entnommen, die Wurzeln behutsam
von der Erde befreit und um 6 Uhr morgens -in die
Farblosung gestellt, Um 7 Uhr schon wies ein Sei-
© tenzwelg bereits deutliche Farbung auf und 7 Uhr 10
waren die Blatter stellenweise deutlich gefirbt. 8 Uhr
15 weist ein Querschnitt in 21 em Hohe deutliche,
intensive Firbung der Gefisse auf. Das untere 21 em
lange Stiick verblieb in der Opallosung und seine
Bliatter waren am 11. August 1928 11 Uhr 50 kaum
welkend und am 12. August 6 Uhr abends sind die
oberen Bléatter diirr und die mittleren stark welk,
am 13. August 7 Uhr sind auch letztere vollig welk.

ITI. So war es begreiflich, dass der Wunsch darauf
hinaus ging eine intakte Pflanze ohne anhaftende
Erde zu bekommen. Bei den beiden ersten Versuchen
konnte immerhin der Einwand gemacht werden, dass
trotz aller Vorsicht und Behutsamkeit Wiirzelchen
zerrissen und die Farblosung durch die Wundstel-
len eintrat. So fand ich denn in einer Hohlung einer
kiinstlichen Grotte im Park des Kollegiums St. Mi-
chael eine Keimpflanze von Aesculus Hippocaslanum.
Die Pflanze hatte sich aus dem Samen entwickelt,
der 1hr noch anhaftete. Ueber demselben finden sich
mehrere Wurzeln, die sich in der Luft entwickelt
hatten,.da bestindig Wasser tiber sie herunterrieselte.
Diese Pflanze wurde am 10. August 7 Uhr 05
abends in Farblosung gestellt, 9 Uhr 20 1st die Fér-
bung bereits erkennbar. 11. August 1 Uhr morgens
recht deutliche Fiarbung an den Knotenpunkten der
Blattrinder; 6 Uhr 20 einzelne Nervenbezirke deut-
lich gefirbt, wihrend andere fast noch keine Fir-
bung aufweisen. 8 Uhr 10 tritt der Farbstoff ins



Parenchym tiber, 11 Uhr 40 Farbung ganz deutlich,
Pflanze frisch. 12. August 7 Uhr 45 Pflanze turges-
cent. 12 Uhr mittags zeigt die oberste Schicht der
Farblosung Schleim, worin zahlreiche Paramaecien
mit intensiv gefirbtem Rande und gefiarbten Vakuo-
len sich tummeln. 13. August 8 Uhr ein Blatt etwas
welk, die tbrigen drei noch frisch. Am Mittag wird
die Farblosung durch Leitungswasser ersetzt in der
Absicht das Welken zu verhindern. Am folgenden
Tage waren trotzdem die zwei obern welk, die zwel
untern noch frisch; am 18. August 8 Uhr morgens
sind alle Blitter welk.

I'V. Versuche vom 8. August 1928 mit Tradescantia.
Die Topfpflanze besitzt griine und teilweise pana-
schierte Blatter. 7 Uhr 05 abends wird Opallosung in
die Topferde gegossen. Am 11. August 4 Uhr 30 abends
beginnt die Farbung, nachdem die Pflanze am 9. Au-
gust mit Leitungswasser und am 10. August wieder
mit Farblosung versetzt worden war. Der Farbstoff
muss von der Topferde absorbiert worden sein, so-
dass erst durch eine weitere Zugabe, nachdem die
Erde gesiattigt war, eine Aufnahme durch die Wur-
zeln in den Blittern erkennbar wurde. Die nach-
stehenden Angaben geben Aufschlussiiber dasweitere
Verhalten der Pflanze. Vom 12. bis 13. August wird
die Farbung deutlicher. Am 15. August zeigt sich
kein weiterer Unterschied. Am 16. und 17. September
wird Opallosung nachgegossen, so dass die Farbung,
die verschwunden war, sich wieder zeigt.

Die angefithrten Beobachtungen lassen somit er-
kennen, dass der Farbstoff gelatinierbares Opallblau
von Dr. Griibler von der unversehrten Pflanze ebenso

wie von abgeschnittenen Zweigen aufgenommen wird,
2
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so dass man mit abgeschnittenen Zweigen operieren
darf, um die Leistungsbahnen des aufsteigenden
Saftstrommes zu bestimen. Bei abgeschnittenen
Zweigen fillt natiirlich der durch das Wurzelwerk
bedingte Widerstand hin.

Im Anschluss hieran seien noch einige weitere Ver-
suche erwiahnt, die vielleicht in anderer Hinsicht in-
teressieren diirften:

I. 11. August 1928 6 Uhr abends Acer-Zweig mit
8 starken Bldattern in Farblosung gestellt. 6 Uhr 35
die Blattnerven-Farbung. 12. August 7 Uhr 45 mor-
gens sind die Enden der Blattnerven intensiv ge-
farbt. 13. August 10 Uhr morgens sind die Blitter
gesunken wihrend die Spreiten noch ziemlich frisch
aussehen.

I1. Ist das untere Zweigstiick mit 4 Blattern von 1.
und wurde umgekehrt in die Losung gestellt um 6 Uhr
15; auch diese Blatter zeigen Farbung um 6 Uhr 35.
12. August 7 Uhr 45 morgens sind die Bliatter ebenso in-
tensiv gefiarbt wie die von I.5 Uhr 30 werden sie schlaff
und beginnen zu welken. Zimmertemperatur 30° C.
Vergleicht man diese Beobachtungen, so geht daraus
hervor, dass der Mechanismus in den Zweigen re-
versibel funktionieren kann. Man konnte nun ein-
wenden, dass das Verhalten auf den Transpirations-
zug der Bliatter zuriickzufiihren ist. Damit scheint
aber die folgende Beobachtung nicht 1m Einklang zu
stehen. Versuch vom 16. August 1928 mit Acer-Zweig,
der 5 Uhr abends in Farblosung gestellt wurde.
Derselbe ist verzweigt und weist nachstehende Ge-
stalt und Dimensionen auf.
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A 24 D36 Bl/ AD =24 ¢cm
_I_ k DB = 36 em
| CD = 9em

‘|

Bei A findet sich die Stelle, wo der Zweig am Baume
abgeschnitten wurde. (i 1st ein Seitenzweig, der mit
seinem Schnittende in die Farblosung taucht. Die
Bewegungsrichtung der Opallésung ist somit fir C
und A der des Transpirationstromes entgegengesetzt.
Gegen das Ende B finden sich b gefiederte Laub-
blatter, die am 17. August gefiarbt und noch frisch
sind. Aber auch das Teilstiick A ist bis 1-2 mm unter-
halb der Schnittflaiche gefiarbt, wie die Querschnitte
bei dessen Zerlegung zeigen.

Versuche mit Zweigen von A cer, bei welchen einzelne
Blattspreiten abgeschnitten wurden, zeigten als Er-
gebnis: Die Gefdsse der Stiele waren der ganzen
Lange nach bis etwa 1 mm unterhalb der Schnitt-
fliche gefirbt. Taucht ein Blattstielende in die
Farblosung, so farben sich auch die Bliatter, die am
selben Zweige sitzen, wenn auch der Vorgang we-
sentlich langsamer verlauft. -

Eine Saugung durch die Blattspreiten miisste ver-
hindern, dass die Farblosung in Zweigstiicke ohne
Blatterund in Blattstiele ohneSpreiten hineinwandert.
Da aber Letzteres zutrifft, so dirfte die Anschauung
nach welcher der Sitz der bewegenden Kriafte lings
der Leistungsbahnen verteilt ist, mehr und .mehr an
Boden gewinnen.

Beachtet man weiter, dass der Mechanismus re-
versibel funktionieren kann, so liegt es nicht ferne
an die Gefissspiralen, welche in erster Linie sich fir-
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ben und der Forderung der Reversibilitit Genitige
leisten, zu denken. Eine Wasserbewegung im Innern
der Spiralgefiasse wiirde verstiandlich, wenn die Ge-
fasspiralen sich drehenwiirden. Doch fiir eine derartige
Ansicht fehlt als Unterlage einstweilen jede Beobach-
tung. So liegt es denn gerade so nahe die inverse An-
nahme zu machen, naimlich dass auf die Seitenwiinde,
die elastisch sein miissten, entsprechende Drucke von
aussen ausgeiibt wiirden, womit deren Inhalt ebenso
i Bewegung kidme, wie bel drehenden Spiralen. Eine
Vermischung des Gefissinhaltes mit dem der umgeben-
den Zellen brauchte nicht stattzufinden. Die Spiral-
struktur der Gefisse und die umgebenden osmotischen
Verhiltnisse wiren die Grundlagen, aus deren Zu-
sammenwirken ein Verstindnis fiir die Fliissigkeits-
bewegung im Innern der Gefisse sich ergeben diirfte,
Und so scheint aus wvorliegenden und é&dhnlichen
Beobachtungen auch als wesentliches Ergebnis nam-
haft zu machen, dass der Inhalt der Spiralgefisse
bei seiner Verschiebung sich mit dem der osmotisch
wirksamen Zellen nicht mischt.

2. J. Aebischer, proi.: Sur la présence dans le
canlon de Fribourqg de deur mousses rares pour la
Suisse.

1. Mnium spinulosum Br. eur.

(lette mousse est rare pour notre pays puisque la
Flore des mousses de la Suisse, par Amann et les
additions jusqu’en 1928 n’en mentionnent (ue quel-
(ques stations.

Le botaniste Reuter 'ayant trouvée jadis au Bur-
gerwald dans le canton de Fribourg, je I'ai recherchée



tout spécialement pendant 25 ans et j’ai eu le plaisir
dela voir avec des capsules dans les stations suivantes,
toujours sous les sapins:

St-Sylvestre, a I'alt. de 951 m. et de 1010 m.

Treyvaux, a « La Combert », entre 987 m. et 1040 m.
Elle y est abondante avec Mnium spinosum (Voit.).
I.a premicre occupe surtout le versant sud de la col-
line et I'autre le versant nord-ouest.

Sur le territoire de Treyvaux, cette mousse se trouve
encore au-dessus de Pratzev, vers 980 m., dans deux
stations assez distantes I'une de 'autre.

LLa Roche, a I'alt. de 1000 m. et de 1180 m.; d’on
elle semble cependant avoir disparu. |

Le Crét, a 'alt. de 900 m.

Sorens, a 'alt. de 1050 m.

Grangettes, a 970 m.

Chatelard, a 1110 m.; DPaspect de cette dernicre
station était magnifique en 1924, )

Sur le versant oriental du Gibloux: Gumefens, a
950 m. et a 1000 m.; Villars-d’Avry, alt. 1150 m.

Posieux, dans le bois de Monterban, & lalt. de
670 m., ou elle a tres bien fructifié en 1913, mais d’on
elle semble avoir disparu depuis, apreés avoir été rem-
placée par de maigres touffes de Mnium spinosum.

Je I'ai aussi trouvée a 'état stérile sur le versant
occidental de I’Aettenberg, Planfayon, a 1200 m.

2. Mnium hornum L.

De cette mousse aussi, on n’a signalé que peu de
stations en Suisse et encore n’a-t-elle été vue qu’a 1'é-
tat stérile.

En mai 1926, je l'ai trouvée avec beaucoup de
capsules sur un banc de molasse dans une forét du
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district de la Singine (canton de Fribourg), & I'alt.
de 740 m. C’est la pour le moment, la seule station -
du Mn. hornum dans le canton de Fribourg et la seule
station en Suisse ou elle a été trouvée avec des cap-
sules.

MM. Amann et Meylan qui en ont vu des exemplai-
res, ont confirmé l'exactitude de la détermination.

3. Prof. L. Weber: 1) Experimenlelle Melhode der
Vorausbestimmung der Gesleinslemperatur im In-

nern eines Gebirgsmassifs. 2) Gesleine von Helgoland.

[.’auteur n’a pas fourni de manuscrit.

Séance du 20 décembre 1928.
Présidence de M. le prof. Dr S. Bays, président.

1. L. Layaz: A propos des confluences el des bicon-
fluences.

2. Prof. L. Weher: Die Pelrographie im Diensle des
Slrassenbaues (neuere Untersuchungen).

L.es auteurs n’ont pas fourni de manuscrit.

Séance du 17 janvier 1929.
Présidence de M. le prof. Dr S. Bays, président.
Dr P. Gerber: Mon voyage en Orienl au prinlemps

1928, ltalie, Egyple, Palesline (avec projections
lumineuses). !

L’auteur n’a pas fourni de manuscrit.
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Séance du 2% janvier 1929.

Présidence de M. le prof. Dr S. Bays, prsident.

1. J. Aebischer, prof. : Probléemes de géomélrie basés
sur les rosaces du cloilre d’Haulerive ; en particulier,
'inscriplion de qualre cercles égaux dans le losange
curviligne.

LL’auteur n’a pas fourni de manuscrit.

2. Chr. Baumeler : Uber das Molekulargewicht der
Proteine, mil spezieller Beriicksichligung des
Hdmocyanins der Weinbergschnecke, nach neueslen
Forschungen.

Die Frage, welches Gewicht (oder welche Grosse)
den Eiweissmolekiilen — die bekanntlich kolloidale
wissrige Losungen bilden — eigen ist, besitzt, so-
wohl vom physiologischen Standpunkte (beispiels-
weise in Anbetracht der Vorginge welche sich im
Protoplasma abspielen), als auch vom allgemeinen
physikalisch-chemischen Standpunkte aus, grosse Be-
deutung. Fir dieses Mal werden unsere Betrach-
tungen dieser Frage nur in letzterer Hinsicht er-
folgen.

Vor 25 Jahren vertffentlichte Schulz! unter dem
Titel: « Die Grosse des Eiweissmolekiils » eine bedeu-
tende Monographie, in welcher schon eine stattliche
Anzahl von Arbeiten angefiihrt sind, die in mehr
oder weniger direkter Beziehung zu dieser Frage
stehen. Seit diesem Zeitpunkte nun hat die Literatur
tuber diesen Gegenstand einen bedeutenden Zu-

. 1 Fr.-N. Scuuirz, Jena, Gustav Fischer, 1903.
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wachs erfahren, wie aus der ausgezeichneten Zu-
sammenfassung, die Cohn! 1925 veroffentlicht hat
zu ersehen ist. Aber gerade seit 1925 gelangte
der geniale Physiker Theodor Sved-
berg, durch Anwendung ganz neuer
Bestimmungsmethoden, zu ausser-
gewOhnlich wichtigen Resultaten,
die hier in aller Kiirze wiedergegehen werden sollen.

Fiir seinen Vortrag, den Svedberg am 19. Mai 1927
hielt, als ihm der Nobelpreis far Physik iibergeben
wurde, war gerade das in Frage stehende Problem
zum Hauptgegenstande gewidhlt, und aus diesem
Grunde werden wir speziell diesem Vorlrage, der
bereits erschienen ist 2, reichliche Zitate entnehmen.

Die von dem schwedischen Physiker ausgesonne-
nen neuen Methoden beruhen auf der Anwendung von
sogenannten Ultra-Zentrifugen, das sind Zentrifugen,
welche eine ungeheure Umdrehungsgeschwindigkeit
besitzen (bis zu 42000 Umdrehungen in der Minute).

« Ein Zentrifugalfeld kann in zweierlei Weise zur
« Bestimmung der Partikelgrosse und des Molekular-
« gewichts ausgeniitzt werden. Einerseits kann man
«dieSedimentationsgeschwindigkeit
« an sich messen, andererseits den Gleichgewichts-
« zustand — das sogenannte Sedimentations-
«gleichgewicht — studieren, der sich nach
«langerer Zentrifugierung einstellt. Diese beiden
« Methoden kniipfen an die klassischen Untersuchun-

1 Ed.-J. ConN, Journ. of biolog. Chemisiry, 63, 1925, S. 721~
766 und Physiological Reviews, 5, 1925, S. 349,

2 Tue SVEDBERG. Nobelvortrag, Kolloidchemische Beihefle,
26, S. 230-244.
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« gen iber das Verhalten grobdisperser Systeme im
« Schwerfeld an, die im Jahre 1908 und den folgenden
« Jahren von P errin und Mitarbeitern ausgefiihrt
«und mit dem Nobelpreis in Physik fir das Jahr
« 1926 ausgezeichnet wurden. B

« Betrachten wir eine kleine Menge einer hochdis-
« persen kolloiden Losung, die in einer sektorformi-
« gen Zelle eingeschlossen ist, welche mit, der Winkel-
« geschwindigkeit @ um eine mit der Spitze des Sek-
« tors zusammenfallende Achse rotiert.

« Auf jeden Partikel wirken zwei einander entge-
« gengesetzte und gleichstarke Kréfte: die Zentrifu-
« galkraft v (o,—0) ®? x und der Reibungswiderstand
«k ._gi‘i, wo v das Volumen und g, die Dichte des Par-

« tikels, ¢ die Dichte des Losungsmittels, x den Ab-

« stand des Partikels von der Rotationsachse, k den

« Reibungskoeffizienten und —3—? die Sedimentationsge-

« schwindigkeit bedeuten. Man hat also

v (0,—0) w2x = k. % :

« Wenn die Partikeln angendhert als Kugeln mit dem
« Radius r betrachtet werden konnen, hat man

((V=%.‘TL’I‘3 und k = 6ayr, wo n die Viskositiat des
« Losungsmittels ist. Nach Einsetzung dieser Werte
«und Integration erhidlt man:

/' 9ym (%)

r — /f . .

_ bR (0p— o) @ (L, — t,)
« Handelt es sich um eine hochmolekulare Substanz
«mit dem Molekulargewicht M, dem partiellen spe-
«zifischen Volumen V, dem molaren Reibungskoef-
« fizienten f und dem Diffusionskoeffizienten D, so
«erhdlt man statt der obigen die Gleichungen




M(1— Vo) wx = f-$* und f =11

D
RT .=
. at
4« WOoraus M = DI Vo)w™
RT m(-ii)
«oder integriert M = : .

D(1—Ve)w*(t,—t,)

« Wenn man geniigend lange zentrifugiert, stellt
«sich schliesslich ein Gleichgewicht zwischen der Se-
«dimentation und der Diffusion ein. In diesem Falle
« konnen die Formeln fir das Partikelvolumen und
« das Molekulargewicht sowohl kinetisch als thermo-
« dynamisch abgeleitet werden. Man erhilt fiir das
« Volumen v einzelner Partikel

c?
- 2 RT In (c_l)
N(gp—e) o® (%,—X) (X, +X,)
«und fiir das Molekulargewicht

2R Tln(—ci)

_ €y B
M B (1 "Vg)w?(xzmxl) (X2+ xl)

« Wo ¢, und ¢, die Konzentrationen in den Punkten x,
«und x, bedeuten. -

« Ausgehend von den oben angegebenen Formeln
«konnen Methoden zur Berechnung der Partikel-
« grossenverteillung abgeleitet werden. »

Es wiirde uns zu weit fiihren, an dieser Stelle eine
Beschreibung der Svedberg’schen Ultrazentrifugen
zu geben. Ebensowenig werden wir auf die optischen
Messverfahren eingehen konnen, welche es gestatteten,
die Wirkungen der Zentrifugation zu verfolgen. Wir
werden uns bloss auf die Erwihnung beschrianken,
dass es Ende 1927 dem Autor gelungen ist, mittels
eines der letzterstellten Modelle (Oelturbinentypus)
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ein Zentrifugalfeld zu erreichen, das 104 000 mal
grosser war, als die Schwerkraft.

Bis zu diesem Zeitpunkte hatte Svedberg seine
Methoden zur Bestimmung des Molekulargewichtes
des Hiihnereiweisses, des Oxyhamoglobins (neben
Kohlenoxydhdmoglobin und Methimoglobin) ange-
wendet, ebenso auch des Phykozyans und des Phy-
koerythrins (beides Pigmente aus der Alge Ceramium
rubrum). In letzter Zeit aber beendete er und verof-
fentlichte seine Untersuchungen iiber das Molekular-
gewicht des Hiamocyanins der Weinbergschnecke
(Helix pomalia), auf welche Untersuchungen er
bereits in seinem « Nobelvortrage» Andeutungen
gemacht hatte.

Anfinglich hatte er nach den iiblichen Verfahren
moglichst gut gereinigtes Ovalbumin der Zentrifu-
gation unterworfen. In diesem Falle schwankte das
Molekulargewicht, welches durch Berechnung aus
den Untersuchungsbefunden erhalten wurde, zwischen
35 000 und 47 600. Die Losungen verhielten sich
namlich wie Mischungen (und zwar in sehr unglei-
chen Verhiltnissen) von Eiweissmolekiilen sehr ver-
schiedenen Molekulargewichtes. Als Svedberg aber
zu einer weiteren Reinigung seiner Substanzen die
Elektrodialyse zugezogen hattel, wiesen die

1 Einzig und allein durch Elektrodialyse werden die letzten
Spuren von jonogenen Verunreinigungen. entfernt. Und
zwar erhielt als erster Ch. Dhéré im Physiologischen Insti-
tute zu Freiburg Proteine von solch ausserordentlicher
Reinheit (Siehe: Mitteilungen an die Académie des sciences
de Paris, 1910 und an die Sociélé de biologie, 1911), was nun
ein far alle Male als erwiesen gelten kann. Z. B. steht am
Anfange der ausgezeichneten Monographie, welche M. Spie-
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mit so gereinigten LOsungen erhal-
tenen Befunde eine merkwirdige
Konstanz auf; die Extremwerte lagen zwi-
schen 33600 und 36 300; als Mittelwert dieser Be-
funde ergab sich: 34 830 1

Auf folgender Tabelle sind die hauptsichlichsten,
von Svedberg erhaltenen Werte zusammengestellt
(mit Ausnahme derjenigen fiir das Himocyanin):

TABELLE I

SUBSTANZ METHODE W
Ovalbumin Gleichgewicht 34,500
Serumatbumin{Hechzevient g )
Serumglonuiin | Glekhoviht oo (7
oo (G 8
N
Phykoerythrin | (00 it 226,800

T The Svedberg & B. Sjogren, Journ. Americ. chem. Soc. Dezember 1928,

Ein Vergleich dieser Zahlen mit den folgenden
Werten, welche Cohn 1925 aufgestellt hat, konnte
ein gewisses Interesse bieten.

cel-Adolf (in Abderhalden’s Hdb. d. biolog. Arbeitsmelho-
den) Ende 1927 veroffentlicht, Folgendes: « Systematische
Untersuchungen tuber die Elektrodialyse verschiedener
Proteine hat als erster Dhéré vorgenommen, von welchem
auch die Bezeichnung « Elektrodialyse » in dem hier niher
prazisierten Sinne als « Dialyse électrique » eingefithrt wor-
den ist ».

tJourn. of the American Chemical Sociely, Dezember 1926,
S. 3081,
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TABELLE II

Mindest- Wahrscheinlich.
SUBSTANZ MOLEKULAR- MOLEKULAR-
- GEWICHT GEWICHT
Ovalbumin ' 133,400 33,400
Serumalbumin 5,000 45,000
Hiamoglobin (Pferd) 16,700 66,800
— (Rind) 33,400 66,800
Serumglobulin 27,000 81,000 °
Hamoeyanin (Limulus) 22,700 90,300 *
Zein (aus Mais) 19,400 97,000 *
Edestin (aus Hanfsamen) 29,000 116,000 *
Gelatine 10,300 123.600 -~
Casein 12,800 192,000 *

* Zu seinen Belunden bemerkte Cohn, dass fiir die mit * bezeichneten

Proteine daz wahre Molekulargewicht ein hoheres Multiplum dieser Zahlen
sein konnte. (Diese Tabelle Cohn's ist ein weniz verkiirzt wiedergegeben.)

Es erhellt also aus den eben gemachten Anfiihrun-
gen, dass bis dahin keine einzige Mo-
lekulargewichtsbestimmung einen
Wert geliefert hat, der die Zahl
200000 nennenswert itberstieg. Nach
den neuesten Untersuchungen Sved-
berg’s! aber, auf welche wir tibrigens noch zu-
riickkommen werden, ergab sich die ungemein
iberraschende Tatsache, dass das
Himocyanin-Molekil der Weinberg-
schnecke (Helix pomatia) ein Gewicht
von 5000000 (+59%) besitze!

Bei der Darstellung dieses Hamocyanins (Oxy-)
ebenso auch beim Studium der spektralen Eigenhei-
ten dieses Pigmentes (welche zur Bestimmung des

LTHE SVEDBERG and E. CHirRNoAGA. The molecular weight
of Hemocyanin. Journ. of the American Chemical Sociely,
80, 1928, 5. 1399,
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Molekulargewichtes dienlich waren) sind Svedberg
(nach eigener Angabe) mehrere Befunde von Nutzen
cewesen, die bereits lange vorher von Dhéré und von
Burdel veroffentlicht waren — und deren Richtigkeit,
er bestitigte. Im Jahre 1908 nimlich veroffentlichte
Dhéré seine Entdeckung, dass das Oxyhdmocyanin
der Weinbergschnecke durch blosse Dialyse des Blu-
tes kristallisiert erhaltlich sei, und, was besonders
hervorzuheben ist, dass diese Kristallisation eben
nur eintritt, wenn die Entmineralisierung praktisch
vollstindig geworden ist. Genannte Eiweilss-
verbindung kann also durch dieses
Verfahren ganz aussergewohnlich
rein dargestellt werden?!. Reines Himo-
cyanin aber ist in destilliertem Wasser unloslich,
indessen sein Molekulargewicht nur bei Anwesenheit
von Elektrolyten bestimmt werden kann. Deshalb
verwendete Svedberg zu seinen Bestimmungen eine
Losung von (kristallisiertem) Hamocyanin in einer so-
gennanten Pufferlosung, deren pH (4,7) nahe dem iso-
elektrischen Punkte (pH 5,2) lag 2. In einer derarti-
gen LoOsung verhalten sich alle Teilchen des Héamo-

! Svedberg hat die Ausfillung des Hamocyanins (kristall-
formig) mittels der Elektrodialyse ebenfalls hervorgebracht.
Hiebei sei erwiahnt, dass bereits schon 1914 (C.R. Acad. des
sciences) Dhéré und Burdel Hamocyanin aus dem Serum
der Languste der Elektrodialyse unterworfen haben. Es war
dies wohl die erstmalige Anwendung der Elektrodialyse
auf ein Proteid (cf. Ch. DHERE, Kolloid-Zeilschr. 41, S. 322).

? Es ist uns unmaoglich an dieser Stelle die verschiedenen
Fragen zu prifen, die sich auf eine derartige kolloidale Lo-
sung beziehen. Auf einige davon wird in der Arbeit von W.-
D. BANcRroOFT, « Molecular Weight and Solution (Journ. of
physical Chemistry 29, 1925, S. 966) kritisch eingegangen.
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cyanins derartig, als wenn sie ein gleiches Molekular-
gewicht besdssen; nach Svedberg nun, miissen diese
Teilchen aber als die molekularen Einheiten selber
angesehen werden: man hétte es also mit einer m o-
lekularen Dispersion (in hinreichend ver-
dinnten Losungen) zu tun.

Das Molekulargewicht des Hémocvanins wurde,
wie angegeben, in einer Pufferlosung bestimmt. Sved-
berg (1926) und Nichols (1927) erhiclten bei ihren
Molekulargewichtsbestimmungen des Hiamoglobins
mittelsder Ultrazentrifuge, praktisch identische Resul-
tate, obwohl ersterer zu seinen Bestimmungen eine
I.Losung von elektrolytfreiem Héamoglobin in dest.
Wasser anwendete, letzterer aber mit einer Puffer-
losung (pH 6,2-7,7) operierte.

Es wire nun angezeigt den Unterschied zwischen
dem Molekulargewichte des Himocvanins der Wein-
bergschnecke und demjenigen der anderen, einfachen
oder zusammengesetzten Proceine (Proteide) einer
niheren Betrachtung zu unterziehen.

Vorher mochten wir aber noch anfiithren, dass wir
in Gemeinschaft mit Herrn Prof. Dhéré, an Hand
der Ultrafiltration?!, bereits 1926, festgestelt haben,
dass das Molekiil (Teilchen) Schneckenhidmocyanin
viel grosser ist, als dasjenige des Hamoglobins. Unsere
Angaben lauteten: « Du collodion dilué jusqu’a ce
« que sa teneur ne soit plus que de 29, environ, per-
«met de préparer des ultrafiltres (ui retiennent com-
« pletement I’hémocyanine, tout en étant trés perméa-

1 Ch. DHERE und Chr. BAUMELER. « L’ultrafiltration ap-
pliquée au sang et a la bile d’Escargot (Heliz pomatia) en
vue de Uétude de I’hémocyanine et de I’hélicorubine. C. R.
de la Soc. de biologie, 95, 1926, S. 628.
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«bles & I'eau et aux cristalloides... ». « Au poinl de vue
« théorique, il convient de relever que I'hémoglobine
«n’est retenue compléetement que par des ultrafiltres
« préparés avec du collodion beaucoup plus concen-
«tré (4 5 p. 100 au moins). Nous voyons donc (ue
« ’hémocyanine d’Escargot, telle qu’elle existe en
« solution dans le sang, se trouve a I'état de particules
«relativement treés grosses, bien plus grosses que les
« particules d’hémoglobine en solution dans ’eau, par-
«ticules dont le poids moléculaire serait de 68 000,
« d’apres Adair (ou de 66 800, d’apres Svedberg et
Fahraeus, 1926).»

Damals waren uns die Versuche Cohn’s, der das
Molekulargewicht mehrerer Proteine (worunter auch
Hamocyanin von Limulus) durch Anwendung eben-
desselben Verfahrens zu bestimmen versuchte, noch
ginzlich unbekannt. Uber die von ihm angewendete
Methode sagt Cohn nur folgendes: « Given the mini-
mal molecular weights of proteins, their true molecular
weights may be estimated by determining the rela-
tive size of their molecules. This 1s being accomplished
by dialysis and ultrafiltration through membranes
of graded permeability!.» Nach den Angaben
Cohn’s wire das Molekulargewicht des Himocyanins
von Limulus nur um ein Weniges grisser (ungefidhr

1 Ed.-J. Conn, The molecular weights of the proteins.
Journ. of biolog. chemisiry, Sc. Proceedings, 63, 1925, S. XV.
Dieser Titel lasst in keiner Weise vermuten, dass in
der Arbeit eine Anwendung der Ultrafiltration enthalten
ist, und dieses ist eben der Grund, weshalb unsdie Verwandt-
schall unserer Arbeilen mit denen von Cohn ziemlich lange
entgangen ist. Uebrigens ist die Seite 29 stehende Tabelle II
obiger Mitteilung Cohn’s entnommen.



um ein Drittel) als dasjenige des Hiamoglobins. Nach
unseren, an Hand der Ultrafiltration gemachten
Beobachtungen und Befunden dagegen, hatten wir
schon damals den ganz sicheren Eindruck, dass
zwischen dem Héamocvanin {Schnecke; und dem Hé-
moglobin ein unvergleichbar griosserer Unterschied
in dem Molekulargewichte bestehen miisse; aber,
offen gestanden, waren wir nicht darauf gefasst, ein
Verhiltnis von 5 000 zu 68 vorzufinden, mit anderen
Worten, ein 73 mal griosseres Molekulargewicht fur
das Himocyanin.

Nun gibt es noch aundere physikalisch-chemische
Methoden zur Bestimmung des Molekulargewichtes
der Proteine, die tatsdchlich auch schon eine dies-
bheziigliche Anwendung erfahren haben. Aber, um
genau und vollwertig zu sein, erheischen die kryosko-
pischen Messungen, diejenigen des osmotischen Dru-
ckes und auch andere, ein von jedwelchem fremden
Elektrolvten befreites Protein. Es ist aber dusserst
schwer, ja beinahe nnmoglich diese Bedingung zu
erfiillen, wenn die Reindarstellung des Proteins anders
erfolgt, als durch moéglichst grindliche
Elektrodialvse. Da nun bis dahin ein der-
massen gereinigtes Protein sozusagen niemals fiir die
betreffenden Bestimmungen zur Verfiigung stand,
werden wir die diesbeziiglichen Arbeiten einfach iiber-
gehen 1. |

1 Z. B. fihrt G. S. Adair an: « The osmotic pressure deter-
minations for dialysed haemoglobin made by previous wor-
kers ranged from 3,5 mm. to 12,1 mm. per 1 per cent. of
protein. Variation is to be expected, for it is theoretically
impossible to prepare a haemoglobin solution absoluty free
from combined acids or bases, and there is the further risk

3
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Es bleibt uns noch iibrig, ein Wort zu sagen iiber
die rein chemischen Methoden zur Bestimmung des
Mindest-Molekulargewichtes, was an ein oder zwei
Beispielen erfolgen soll: Die Proteine sind ausschliess-
lich oder hauptséchlich durch Verkettungen van Ami-
nosiuren aufgebaut. Ergibt sich nun Lei der Hydro-
lvse des Hiihnereiweisses im Hvdrolysat (neben meh-
reren anderen Aminosiduren) ein Gehalt an Trypto-
phan ! von 1.239, dann zeigt dieses ein minimales Mo-
lekulargewicht von 16 593 an (Vgl. Fussnote 2); aus
dem Vergleiche mit anderen Aminosduren geht aber
hervor, dass das Eiweissmolekiil mindestens 2 Mole-

that prolonged purification may cause changes in the pro-
tein. » (Proceed. Roy. Soc. B. 98, 1920, S. 524.) Diese « theo-
retische » Unmoglichkeit wird nun bei der Reinigung durch
Elektrodialyse aufgehoben, wie W.E. Ringer (1925) ebenso
Pauli und Schwarzacher (1926) far das Hamoglobin es gezeigt
haben. Die tibrigen, bei den Bestimmungen des « osmotischen
Druckes» in Betracht kommenden Korrektionsfaktoren fin-
den sich in einer nachtriglich erschienenen Arbeit Adair’s
klar dargelegt. (Journ. American chem. Soc. 49, 1927, S. 2524.)

Dem Gesagten mochten wir noch zufiigen, dass die Mole-
kulargewichte, welche miltels Kryoskopie in einer Phenol-
losung erhalten wurden, einer ganz anderen (viel kleineren
Grossenanordnung) angehoren, dass diese Methode fur un-
sere Zwecke ungeeignet ist, nichtsdestoweniger aber zum
Nachweise gewisser Verunreinigungen sehr gute Dienste
leisten kann. (Cf. Ed.-J. Coux und J.-B. CoNaNT. Proceed.
Nation. Acad. of Sc., 12, 1926, S. 433.)

L Gewisse Aminosiauren, wie Tyrosin, Phenvlalanin und
Tryptophan sind in den Eiweissmolekiilen praeformiert vor-
handen, wie aus dem Studium der Absorptionsspektren
derselben im Ultravioletten hervorzugehen scheint. (CF.
hauplsichlich DuERE, Arch. des sciences physiques el nalur.,
24, 1907, S. 379, und Recherches spectrographiques, I'ribourg
1909.)



kiile Tryptophan enthalten muss, thm somit das dop-
pelte Molekulargewicht, d. h. 33 186 zukommt. Liegen
aber zusammengesetzte, metallhaltige Proteine (Pro-
teide) vor, so wird es geniigend genau sein, als minima-
les Molekulargewicht dasjenige zu wihlen, welches (vo-
rausgesetzt) einem Molekul, mit nur einem einzigen
Metallatomgehalt entspricht 1. So z. B. ist die prozen-
tuale Zusammensetzung des Hamoglobins: ¢ 54, 64 ;
H 7,09; 0 20,165; N 1738; § 0,39; Fe 0,335; die
kleinstmogliche Formel wire also C,;3 Hyer Oag
N,;» S, Fe, mit einem Molekulargewichte wvon
16 655 2. Das Héamocyvanin nun, welches in so
mancher Hinsicht dem Hamoglobin recht nahe steht,
enthilt aber kein Eisen, sondern Kupfer; deshalb
wurde versucht, das Mindest-Molekulargewicht des-
selben auf gleiche Weise zu bestimmen. In der An-
nahme (gestiitzt auf eine Analyse Alsherg’s), dass das
Hémocyanin von Limulus einen Kupfergehalt von
0,289 besitze, hat Cohn als kleinste Zahl fiir dessen
Molekulargewicht 22 704 berechnet. Dieser Wert
aber ist sicherlich unzutreffend, weil genanntes Hamo-
cyanin nur 0,1739, Kupfer enthilt, wie es erst vor
Kurzem Redfield in einer sorgfiltic durchgefiithrten

L Die IFormel, welche zu diesen Berechnungen dient, ist:

Nindest-Molekularg-wicht | Alomgewicht des Elementes >< 100

des Proteins ) Proenigebalt es Detreffenden Elementes 1 dem  Proteine.

Natarlich ist, mutalis mulandis, diese Formel auch auf jed-
welche Bestandteile anwendbar, wie z. B. auf das Trypto-
phan.

2 Eine betriachtliche Auzahl analoger numerischer Befunde
sind durch A. P. Matuews, Physiological Chemislry, 4. Auf-
lage 1925, S, 146 zusammengestellt worden.
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Arbeit festgestellt hat. Ubrigens scheint der Kupfer-
gehalt mit der zoologischen Herkunft der verschie-
denen Hamocyanine ! starken Wechseln unterworfen
zu sein. Nach Henze enthilt Himocyvanin von Oclo-
pus vulgaris 0,38 9%, Kupfer; Dhéré und Burdel (1919
und 1922) haben {iir ein bei gewohnlicher Temperatur
iber CaCl, getrocknetes Himocyanin der Schnecke
0,20—40,26 %, Kupfer gefunden. Nach Begemann,
wiirde dieser letztere Gehalt fiir ein vollstindig
kristallwasserfreies Produkt auf ca. 0,29 9%, ansteigen.
Redfield (1928) stellt als Mindestmolekulargewicht
fir das Hamocyanin von Limulus polyphemus die
Zahl 36 700 auf und 73 400 fiir dessen wahrschein-
lich wirkliches Gewicht.

Zum Schlusse mochten wir nochmals auf die ganze
Tragweite der Befunde Svedberg’s zuriickkommen
und deren Bedeutung betreffs des Hamocyanins der
Schnecke besonders hervorheben.

Anfinglich ist es ganz unmoglich sein Erstaunen
zuriickzuhalten, wenn man folgende zwel Tatsachen
bedenkt: ‘

. Die ungeheure Grosse des Mole-
kils des Schneckenhimocyanins
(Svedberg 1928) und

2. Die dusserst leichte Kristallisa-
tion dieses Haidmocyanins als Mole-
kilgebilde (Aggregat) beir Abwesen-

1 Die Pluralitat der Himocyanine ist durch eine Reihe
von ganz anderen Betrachtungen begriundet. (Cf. u. a. Ch.
DHERE, C. R. Acad. des Sc., Paris, 1913).



heit von Elektrolyten (Dhéré, 1908)?1.
Entgegen der viel verbreiteten Ansicht 2, ist dieses
ein Bewels dafiir dass, die iiberméssige Griosse des
Molekulargewichtes der Proteine nicht einzig und
allein die Schuld an ihrer unter gewdhnlichen Be-
dingungen schwierigen Kristallisierbarkeit trigt, ja
dass sie vielleicht damit nichts zu tun hat.

Sodann miissen wir noch auf eine ganze Reihe von
Folgerungen hinweisen, welche durch Svedberg in
den Vordergrund geriickt worden sind: Das H éa-
mocyaninmolekiil der Schnecke 1st
praktisch genommen von sphiarischer
Gestalt; sein Halbmesser 1st = 12,1
x 107 cm; dieses Grdossenmass wWare
fast geniigend, um das Molekal im
Ultramikroskopsichtbar zu machen,
wenn dasselbe ganz metallisch wire,
statt 1n der Hauptsache organischer
Natur zu sein3,

Wenn wir uns dazu entschlossen haben, vorliegende
Mitteilung an unsere naturforschende Gesellschaft
zu machen, so haben wir es in der Meinung getan,

L Eine eingehende Beschreibung dieser Kristalle findet
sich in der Dissertation A. BurbeL's (Milleilungen der na-
lurforsch. Gesellsch. Freiburg, 1922).

> Thus the proteins that are small... seem to be readily
crystallizable...; whereas those that are large... have not
vet been crystallized (Coun, Physiol. Reviews, S. 428).

3 Anderweitige Versuche, das Molekulargewicht der Pro-
teine durch Rontgenspektrographie zu bestimmen, auf
die wir aber leider nicht eingehen konnen, sind ubrigens
gemacht worden. (Cf. R. O. HErzoG auch O. GERNGROSS,
Zeitschrift f. angewandie Chemie, April 1928, S. 426.)
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dass diese Reihe von Befunden sowohl fiir den Biolo-
gen, als auch fir den Physiker, den Chemiker und
den Kristallographen von wirklichem Interesse sein
konnten.

Séance du 7 février 1929.

Présidence de M, le prof. D* S. Bays, président.

Prof. A. Huber: Eine Verbesserung des Gallon’schen
Zufallsapparales.

Mit dem von Francis Galton schon vor mehr als
fiunfzig Jahren angegebenen Apparate! kann man in
sehr anschaulicher Weise gewissermassen ein Modell
eines Kollektivs mit « normaler » Verteilung herstel-
len. Da aber die einzelnen Teile dieses sogenannten
(Galton’schen Brettes unbeweglich sind, so kann man
damit natirlich nur eine einzige Verteilungskurve
erzeugen. Die « Norm» (Mittelwert) des Kollektivs
wird dabei durch jene Kiigelchen reprasentiert, die
in das in der Richtung der Fallinie des geneigten
Brettes unterhalb der Ausflusséffnung des Trichters
befindliche Fach hineingeraten. Dadurch, dass Karl

1 Beschreibungen und Abbildungen findet man bei:

W. Johannsen, Elemente der exakten Erblichkeits-
lehre, 9. Aufl. Jena 1927.

E. Czuber, Die statistischen Forschungsmethoden.
Wien 1921.

P. Riebesell, Die mathematischen Grundlagen der
Variations- und Vererbungslehre (Teubners ma-
them. Bibliothek No 24). l.eipzig 1916.



Pearson! an Stelle der Nigel kleine Keile setzte,
die auf schmalen und gegenemander in ihrer Lings-
richtung verschiebbaren Leisten befestigt waren,
konnte er auch schiefe Verteilungskurven darstellen,
indem er wie J. Kapteyn 2 von der Annahme ausging,
dass die die Abweichungen vom Mittelwerte hervor-
bringenden Ursachen nach der einen Seite stéirker
wirken als nach der anderen.

Da aber auch bei dieser Auffassung mathematisch
weniger geschulte Biologen noch hédufig an der Mei-
nung festhalten, dass der normalen Verteilung eine
ausgezeichnete Bedeutung zukomme, so unternahm
ich den Versuch, das Galton’sche Brett zu emnem sol-
chen Demonstrationsbehelfe auszubauen, dass man
damit, ohne zu weitschwelfigen mathematischen
Erorterungen gezwungen zu sein, einer grosseren Zu-
horerschaft das Zustandekommen schiefer Verteilun-
gen vorfiihren kann. Im folgenden soll zunéachst ein
solcher in Figur 1 abgebildeter Apparat beschrieben
werden.

Ein etwa 80 em langer und 30 em breiter Rahmen
aus Holz trigt an der oberen Schmalseite eine in
einem Scharnier drehbare Stiitze, wodurch man i1hm
eine Neigung von etwa 300 erteilen kann. Die andere
Schmalseite 1st durch zweil Scharniere an dem Quer-
balken einer T-formigen Unterlage befestigt. Die
Liangsteile des Rahmens sind mit einem etwa 4 mm
breiten Schlitz versehen, in dem die Spindeln der
Fligelschrauben gleiten konnen, die zur Fixierung

1 Philos. Transact. Roy. Soc., Bd. 186 (1895). S. 343.
2 J. Kapteyn, Skew Irequeney curves in biology and
statistics. Groningen, 1904,
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Fig. 1.

des Facherkastens dienen. Bei den oben angegebe-
nen Dimensionen des Rahmens kann dieser aus 20
bis 30 Fachern bestehen, die oben durch eine Glas-
platte abgeschlossen sind, um das Herausfallen der
Schrotkorner zu verhindern, wenn man den Rahmen
vertikal stellen will, um einem grosseren Auditorium
eine darin hergestellte Verteilung zu zeigen. Seine
Riickwand kann um zwei Scharniere nach aufwirts
gedreht werden, sodass die in den einzelnen Fachern
angesammelten Kiigelchen in einen darunter gestellten
Behilter hineinfallen konnen. Der Trichter, durch
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den die Schrotkorner eingeschiittet werden kénnen,
1st entlang der oberen Schmalseite des Rahmens ver-
schiebbar, wodurch der « Mittelwert » des Kollek-
tivs verschiedene Lagen einnehmen kann. Die Hin-
dernisse, welche die Abweichungen der herabrol-
lenden Kiigelchen verursachen, werden auch hier von
Nigeln gebildet, die in verschieden breite Brettchen
so eingeschlagen sind, dass die Nigel der einen Reihe
gerade vor den Liicken der benachbarten Reihen ste-
hen. Diese Brettchen konnen auf dem Rahmen ver-
schoben werden und sind durch an der Unterseite
befestigte Leisten vor dem Zwischendurchfallen ge-
schitzt. Die Figur zeigt zwar kein solches mit Néageln
versehenes Brettchen, dafar aber ein unmittelbar an
den Trichter anschliessendes ohne Nigel. Dadurch
soll verhindert werden, dass von den Néageln zuriick-
prallende Schrotkiigelchen vom Rahmen herabfallen.
Von den an die Langsseiten des Rahmens anliegenden
Leisten, zwischen denen der Fiacherkasten bewegt
werden kann, ist in der Figur die vordere weggelassen.
Ein solcher vom Verfasser aus Holz verfertigter Ap-
parat befindet sich im Besitze der Lehrkanzel fir
Zoologie an der hiesigen Universitat.

Es ist klar, dass man steilere oder flachere normale
Verteilungskurven erhalten wird, je nachdem man
den aus dem Trichter ausstromenden Schrotkérnern
eine kleinere oder grossere Anzahl von Nigelreihen
in den Weg stellt. Je zahlreicher also die eine Abwei-
chung vom Mittelwert herbeifiihrenden Ursachen —
Anzahl der Nigelreihen — sind, desto griosser wird die
¢« Streuung » der Verteilung.

Mit dem bisher beschriebenen Teile der Einrich-
tung des Apparates kann man auch die Entstehung



von «abnormalen» Verteilungen durch Superposi-
tion normaler Verteilungen demonstrieren. Man er-
zeugt ndmlich zunéchst eine normale Kurve und ver-
schiebt sodann den Trichter entlang der oberen
Schmalseite des Rahmens. Schaltet man dann noch
ein Brettchen mit Négeln ein, so wird sich die nun
entstehende flachere Verteilung iiber die bereits
vorhandene lagern und esresultiert im allgemeinen
eine schiefe oder bei gentigend grosser Entfernung der
neuen Einflussoffnung von der fritheren gar eine zwei-
gipflige Verteilungskurve.

Die soeben geschilderte Art des Zustandekommens
einer abnormalen Verteilung ist wohl so einfach, dass
es keiner weiteren Erlauterungen bedarf. Wir wenden
uns daher gleich zu einer anderen Entstehungsweise
abnormaler Verteilungen, namlich der durch « Trans-
formation des Argumentes » hervorgebrachten, nach-
dem wir schon oben die Auffassungen von Pearson
und Kapteyn erwihnt hatten, die sich bei unserem
Apparat dadurch realisieren liessen, dass man auf der
einen Hélfte der Brettchen die Négel dichter ein-
schlagt als auf der anderen. Es wiirde dies auch dem
Vorgange G. Fechners! entsprechen, der eine abnor-
male Verteilungskurve durch Aneinanderstiickeln
von zwel normalen mit verschiedener Streuung dar-
zustellen versucht hatte.

Ein Kollektiv sei nach dem Merkmale X geordnet,
die Masszahl, welche verschiedene Grade des Merk-
mals X bezeichnet, also das Argument sei z und vari-
lere innerhalb der Grenzen ¢ und b. Diese Verteilung
werde durch das obere Staffelpolygon S der Figur 2

1 G. Fechner, Kollektivmasslehre. Leipzig 1897,



.

dargestellt, die eine ausgesprochene rechtsseitige Asym-
metrie aufweist. Dasselbe Kollektiv wollen wir nun
nach einem anderen Merkmal = ordnen und es sei
mit & das Argument der neuen Verteilung bezeichnet,
welches von a bis B variieren moge.
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Die weiteren Ueberlegungen mogen zunichst an
einem Beispiel erliutert werden. Unser Kollektiv sei
etwa eine geniigend grosse Anzahl von Samenkornern,
deren Gestalt mit hinreichender Genauigkeit als ku-
gelformig betrachtet werden kann. Das Merkmal X
sel der Durchmesser der Korner und x die in Milli-
metern ausgedriickte Masszahl. Das zweite Merkmal
Z sei das Volumen eines Samenkornes und £ die in

Kubikmillimetern ausgedriickte Masszahl. Wenn alle

i 4

Samen genau kugelformig wéren, dann wire & = p o

und zwischen den Argumenten z und ¢ bestiinde
eine « funktionale Abhingigkeit ». Wenngleich dies
in Wirklichkeit nicht der Fall sein wird und wir durch
Messung” der Durchmesser und Vulumina nur eine
« korrelative Abhéngigkeit » werden feststellen kon-
nen, wo sollen wir der Einfachheit wegen doch vor-
aussetzen, dass allgemein zwischen den beiden Eigen-
schaften X und = eine strenge funktionale Abhingig-
keit ¢ —f (x) bestehen moge. Es ist dann leicht zu
sehen, wie man die Verteilung 2 nach der Eigenschaft
Z finden kann, wenn man die Verteilung S nach dem
Merkmal X kennt.

Es sel die Kurve K (Fig. 2) das Bild der Funktion
&={[ (z),wobelx zwischen a und b variiert und es sei
insbesonders f (a) =a und f (b) = B gesetzt. Die
Funktion f(x) soll weiters im Intervall (a, b) jeden
zwischen a und B liegenden Wert nur einmal anneh-
men. Das Intervall (q,8) sel in zehn Klassen, (o 1),
(1,11),(I1,11I),... (1X,B) geteilt. Das Argument x
Jener Varianten, deren Argumentg den Klassen (o, I)
(I,11),(11,111),...angehort, liegt dann in den immer
klemner werdenden Intervallen (a1’), bezw. (1'2"),



bezw. (2’, 3" ),... Zur ersten Klasse der Verteilung &
ogehoren also die ersten fiinf Klassen und ungefihr die
halbe sechste der Verteilung S, zur zweiten Klasse der
Verteilung 3 die siebente und je eine Hélfte der sechs-
ten und achten Klasse von S usw. Man konnte so
iber der zur z-Achse senkrechten ¢ — Achse das
neue Vertellungspolygon zeichnen, um aber die neue
Verteilung mit der alten bequemer vergleichen zu
konnen, ziehen wir unterhalb der xz-Achse pa-
rallel zu dieser eine neue ¢ — Achse und wihlen den
Masstab fir das Argument ¢ so, dass das Intervall
(a B) dieselbe Linge erhilt wie (a,b). Die Héaufigkeit,
in der ersten Klasse z. B. wird dann durch ein Recht-
eck dargestellt, dessen Inhalt gleich ist dem des Fli-
chenstiickes, das von derStrecke (a1’ ), den Ordinaten
in den Endpunkten und dem dazwischen liegenden
Teile des Staffelpolygons S begrenzt wird. Diese Zu-
ordnung der entsprechenden Flachenstiicke ist durch
die schrigen Verbindungsstrecken angedeutet, die
von den Punkten 17,2, 3’... ausgehen. Man sieht,
dass das neue Verteilungspolygon 2 eine deutliche
linksseitige Asymmetrie aufweist, die offenbar noch
stirker ausgefallen wire, wenn wir an Stelle von S
eine normale Verteilung angenommen hitten.

Diese soeben geschilderte « Transformation des
Argumentes » lasst sich auch mit dem Galton’schen
Apparat demonstrieren. Ersetzt man ndmlich 1m
Facherkasten die geraden Scheidewidnde durch ge-
knickte wie 117,22, 33’ ,... und ldsst man wie zu der
oben beschriebenen Erzeugung normaler Verteilungen
aus dem Trichter Schrotkorner ausfliessen, so wird
man mit dem so abgeinderten Fécherkasten eine
schiefe Verteilung erhalten. Es 1st wohl unmittelbar
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aus der Figur 2 ersichtlich, dass sich eine umso schie-
fere Verteilung ergeben wird, je niher sich der Trich-
ter dem linken Rande des Rahmens befindet. Dagegen
wird sie weniger schief werden, wenn der Trichter dem
rechten Rande ndher 1st. Wiirde man an Stelle der
Kurve K eine Gerade nehmen, so hitte eine solche
Transformation auf die Schiefheit keinen Einfluss. Da
das Argument eines Kollektivs meistens nur auf ein
verhiltnismissig enges Intervall beschrinkt ist und
eine Funktion in einem geniigend kleinen Intervall,
in dem sie kein Extremum besitzt, niherungsweise
als linear betrachtet werden kann, so sieht man leicht
ein, warum viele Kollektive Verteilungen besitzen,
die von einander nur wenig abweichen.

Seance du 21 février 1929.

Présidence de M. le prof. Dr S. Bays, président.

Proi. S. Bays: Problemes de la Théorie des nombres
addilive et de la Théorie des nombres analylique.

L’auteur n’a pas fourni de manuscrit.

Séance du 14 mars 1929.
Présidence de M. le prof. D* S. Bays, président.
A. Haas, proi.: Vision des abeilles el son rapporl avec
les couleurs des fleurs (avec projections).

L’auteur n’a pas fourni de manuscrit.
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Seéeance du 2 mai 1929.

Présidence de M, le prof. D* S. Bays, président.

Proi. L. Weber: Kristallstruklur, homogene Punll-
sysleme der Ebene und verwandle Fragen.

Die Geometrie des Diskontinuums muss dem
Kristallographen gelidufig sein. Veranschaulichung der
230 Raumgruppen ist darum unbedingtes Erfordernis.
Ein dahingehender Versuch findet sich in einer Arbeit
des Referenten (Schweiz. Min. Petrogr. Mitteilungen
5, 1-66). E. Schiebold baute spiter darauf weiter
(Abhandl. der math.-physik. Klasse der sidchsischen
Akad. d. Wiss., Bd. XL, Heft 5, 1-204). Auch die
Geometrie  des  zweidimensionalen Diskontinuums
1st kristallographisch von Interesse. Die einseitig
gedachte Ebene wurde von G. Polya (Zeitsch. f. Krist.
60, 278-282) und P. Niggl (ib. 60, 283-298) unter-
sucht. Mannigfaltiger ist das Problem fir die zwei-
seitige EEbene. Der Referent hat dasselbe anlésslich
der Jahresversammlung der Schweiz. Naturf. Gesell.
in Lausanne (1928) besprochen und das Ergebnis in
der Zeitschrift fiur Kristallographie (70, 309-327) pub-
liziert. Der Zufall wollte es, dass gleichzeitig eine
dhnliche Arbeit (E. Alexander und K. Herrmann)
bei der Redaktion einging.

Doppelseitige Ebenen konnen z. T. durch die ver-
schiedenen Gewebe veranschaulicht werden. Hier
mochte ich einige Beispiele kurz besprechen. Zur
Veranschaulichung dienen Modelle aus gleichbreiten
Papierstreifen, deren zwei Seiten durch verschiedene
Firbung kenntlich gemacht sind. Das einfachste
Modell erhalt man wohl, wenn man die Papierstreifen



derart kreuzt, wie es die kleine Figur oben in der
Mitte der beigedruckten Tafel andeutet. Dabei ist
vorausgesetzt, dass alle Streifen mit der gleichen
Seite (Farbe) nach oben gewendet sind. Die Symme-
trie der Figur ist sofort ersichtlich. In den kleinen
Quadritchen, die von je vier Biandern umschlossen
werden, stechen Tetragyren aus. Sie sind . zweierlel
Art, entsprechend dem Drehsinn der vier an dieser
Stelle zusammenstossenden Biénder (in der Figur
sehr deutlich). Die Digyren liegen in der Mitte jener
Streifenteilchen, welche diber (zweierlei lLagen) die
anders laufenden Streifen gezogen sind. Auch Sym-
metrieebenen sind vorhanden. Durch je zwei néichst-
benachbarte Digyren gehen Spiegelebenen. Zwischen
diesen liegen Gleitspiegelebenen. Die Winkel, in
denen sich diese und jene schneiden, werden von
diagonal verlaufenden Gleitspiegelebenen halbiert.
Das Gewebe hat die Symmetrie Nr. 60 meiner
zuletztgenannten Arbeit und entspricht der dortigen
Fig. 53. )
Durch Parallelverschiebung der Streifen kann man
diesen Gewebetypus und seine Symmetrie mannig-
fach abindern. Die Figur links oben auf der Tafel
oeht aus der eben besprochenen dadurch hervor, dass
man die Streifen zu je zwelen zusammennimmt und
durch ein Intervall von der Breite eines Streifens von
einander trennt. Es entstehen so leere Quadrate (alle
vom némlichen Drehsinn), welche die Ausstichpunkte
der einen Tetragyren andeuten. Die anderen Tetra-
gyren zeigen noch gleiche Umgebung wie in der ersten
Figur. Die Seiten des Elementarquadrates sind aber
jetzt dem Rand der Tafel parallel orientiert, wogegen
sie 1m ersten Fall diagonal verliefen. Zu beachten
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ist, dass die Digyren zwischen zwei Streifen hindurch-
stechen. Die Symmetrieebenen sind weggefallen. Es
resultiert Symmetrie 58 (Fig. 49).

Auch die auf der Tafel rechts oben stehende Figur
ergibt sich sehr einfach aus dem Ausgangsmodell.
Man braucht nur je drei Streifen zusammenzunehmen
und durch ein Intervall von der Breite eines Streifens
vom. benachbarten Tripel zu trennen. Die leeren
Felder, welche sich einstellen, sind im Gegensatz zum
vorangehenden Fall zweierlei Art. Die Symmetrie
selber 1st die gleiche wie beim ersten Modell.

Riickt man in der ersten Figur nur die horizon-
talen Béinder auseinander, so erhilt das Gewebe
das Aussehen der vierten Figur der obersten Reihe
unserer Tafel. Die Tetragyren sind verschwunden.
Den andern Geweben gegeniiber ist die Symmetrie
wesentlich erniedrigt (Nr. 22, Fig. 20). Die horizon-
talen Binder konnten nach Farbe und Breite von den
andern ganz verschieden sein, ohne dass sich hierdurch
etwas an der Symmetrie verdnderte.

Es lassen sich auch Gewebe herstellen, bei
denen senkrecht zur Gewebeebene Trigyren oder
Hexagyren vorhanden sind. In der linken Figur der
zweiten Reihe fallen die Hexagyren, Trigyren (zweier-
lei Art) und Digyren sofort auf. Symmetrie 76 (Fig.
61) liegt vor. Denkt man sich aus diesem Gewebe
in jeder Richtung je den zweiten Faden herausge-
zogen und zwar so, dass dabei auch die halbe Zahl
der Knoten verschwindet, so ergibt sich die rechts-
stehende Figur unserer zweiten Reihe. Sie liesse
sich auch so herleiten, dass man beispielsweise die
horizontalen Streifen verschieben wirde. Die Hexa-
gyren und Digyren sind verschwunden. Es treten

4
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nur noch Trigyren auf (dreierlei Art). Symmetrie
= Nr. 49, entsprechend Fig. 40.

Ausdriickliche Voraussetzung aller besprochenen
Figuren war, dass die Unterseite der Streifen anders
gefarbt sei wie die Oberseite. Es bleibe dem Leser
iberlassen zu untersuchen, welche Symmetrien sich
event. einstellen, wenn diese Bedingung fallen gelas-
sen wiirde, so dass also die Streifen zwei gleiche Seiten
hiatten.

Werden die verschiedenseitigen Binder so zu
einem Modell zusammengefiigt, dass bald die eine,
bald die andere Farbe (Seite) nach oben gewendet ist,
so entstehen echte doppelseitige Anordnungen. Ein
Beispiel veranschaulicht die Figur unten links. Der
Konstruktion nach entspricht sie genau der Figur
links oben. Im Gewebe sind jedoch abwechselnd die
hellen Seiten von je zwei Streifen nach vorn, von den
beiden benachbarten nach hinten gewendet. Alle zur
Ebene senkrechten Achsen (Digyren und Tetragyren)
gehen mitten durch die freien Felder. Die Anordnung
ist vollstiandig dieselbe wie oben. Das Elementar-
quadrat 1st natirlich viel grosser geworden. Das
wesentlich Neue liegt darin, dass die Gewebeebene
Symmetrieachsen enthidlt. Durch die Fusspunkte
benachbarter vertikaler Digyren gehen horizontale
Digyren mit diagonalem Verlauf. Zwischen ihnen
liegen, den Abstand halbierend, zweizdhlige Schrau-
benachsen. Derartige Achsen laufen auch parallel zu
den Seiten des von vier gleichartigen Tetragyren
gebildeten Quadrates. Die Quadratseiten schneiden
sie im ersten und dritten Viertel. Es ist Symmetrie
Nr. 68 (Fig. b8) verwirklicht.
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Das tiiber der eben besprochenen Figur abge-
bildete Modell leitet sich in sofort ersichtlicher Weise
aus der Ausgangsfigur her und ist héchst interessant.
Symmetrie tetragonal-hemiedrisch II. Art (Nr. 65,
Fig. 56). Die Spiegelebenen (den Blattriandern parallel)
schneiden sich in Digyren und Tetragyroiden (diese
an den Kreuzungsstellen ungleich gefarbter Bénder),
wihrend die Durchstichpunkte der Tetragyroiden
bezw. Digyren von diagonal verlaufenden Digyren
bezw. Dig roiden verbunden werden.

Die beiden letzten Figuren sind so zu verstehen,
dass 1im untern Teil der Figur das Muster, im obern,
der die homogene Weiterfithrung des untern ist, die
in der Gewebeebene gelegenen zweizéhligen Achsen
eingezeichnet, sind. Der Bauplan der beiden Muster
ist klar. Bei der Figur rechts kehren die horizontalen
Streifen dem Beschauer die andre Seite zu wie die
~vertikalen Streifen. Jeder Streifen ist abwechselnd
iiber und unter zwei Streifen durchgezogen. Die
mittlere Figur zeigt das gleiche Webeschema, doch
kehren die Streifen beider Richtungen abwechselnd
die eine und andere_Seite gegen den Beschauer. Diese
Figur hat nur Digyren einer Richtung. Wie man sieht,
verlaufen die einen (ausgezogen) durch die Scheitel-
punkte der von den punktierten Streifen gebildeten
Winkel, die andern (punktiert) durch die Scheitel-
punkte der von den hellen Streifen gebildeten Winkel.
Auf der Gewebeebene selber stehen keine Achsen
senkrecht. Man kann sich davon leicht tiberzeugen,
denn es miissten mindestens Digyren sein. Nun
braucht man bloss die Figur halbherumzudrehen,
um zu erkennen, dass irgend ein Streifen von den
Streifen der andern Richtung in den beiden Stellun-
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gen verschieden iiber- bezw. unterquert wird. Sym-
metrie Nr. 11, Fig. 10,

In der letzten Figur sind die zur Gewebeebene
senkrechten Digyren sofort erkennbar. Sie gehen durch
die Mitten der punktierten und hell gelassenen Felder.
Senkrecht dazu verlaufen zwei Diagonalscharen zwei-
zihliger Achsen. Die einen, ausgezogen, sind Digyren
und gehen von der rechten obern Ecke irgend eines
punktierten Feldes zur Mitte des linken Randes, bezw.
von der Mitte des rechten Randes zur linken untern
Ecke des ¢leichen Feldes. Ahnlich schneiden sie
auch die weissen Felder. In der andern Diagonal-
richtung sind nur zweizédhlige Schraubenachsen vor-
handen (in der Zeichnung punktiert). Die einen
gehen durch die Mittelpunkte der weissen, die andern
durch die Mittelpunkte der dunklen Felder. Sym-
metrieebenen fehlen. Symmetrie 34, Fig. 29. Die Strei-
fen dirften schief zu einander stehen.

Wie die Zeichnungen der beigedruckten Tafel als
Gewebe gedeutet werden, so lassen sich viele De-
korationsmuster der arabischen, maurischen usw.
Architektur, bei denen sich die Linien tiberschneiden,
durchdringen usw. als Gewebevorlagen auffassen.
Sie liefern reiches Anschauungsmaterial zur inneren
Symmetriemannigfaltigkeit der Kristalle. Ebenso
anregend sind Teppiche, wie man sie etwa in Volker-
kunde-Museen ausgestellt findet.

Erwihnt sei das eiserne Chorgitter der St. Niklaus-
Kathedrale in Freiburg als Beispiel fir Symmetrie 12
bezw.37, die bei eigentlichen Geweben unméglich sind.

I Streng genommen gilt diese Bemerkung nur, wenn_die
Bander ohne Zwischenraum aneinandergrenzen. Im Fall
der Figur ist sie also leicht zu modifizieren.
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‘Séance du 16 mai 1929,
Présidence de M. le prof. Dr S. Bays, président.

Proi. A. Huber: Christian Huygens zu seinem 300. Ge-
burlstage.

Als im 16. und 17. Jahrhundert fast alle Kultur-
volker Europas grosse Manner hervorbrachten, deren
geistigem Ringen und Schaffen wir die Grundlagen
der Naturwissenschaften zu verdanken haben, da
schenkte auch das kleine Holland der Welt einen
Naturforscher ersten Ranges, Christian Huygens. Aus
Anlass seines heuer zum 300ten Male wiederge-
kehrten Geburtstages sei die heutige Versammlung
unserer Gesellschaft dem Andenken seines hohen
Genius gewidmet.

Chr. Huygens wurde am 14. April 1629 im Haag
geboren. Sein Vater, Constantin Huygens, Herr von
Zuilichem, Zelhem und in Monikenlandt, war ein
hochangesehener Mann, war er doch ein halbes Jahr-
hundert lang Geheimsekretir beir drei Prinzen von
Oranien. Was fiir ein fein gebildeter Mann er aber
auch war, kann man daraus ersehen, dass er sich
als Dichter in hollindischer und lateinischer Sprache
eines guten Rufes erfreute. Er leitete daher auch
den ersten Unterricht des jungen Christian insbe-
sonders in den klassischen Sprachen, in Musik und
namentlich auch 1n der Mathematik, wozu der
kleine Knabe nicht nur eine ungewodhnliche Neigung,
sondern auch eine bedeutende Begabung an den Tag
legte. So bezog denn der vielversprechende Jiing-
ling mit 16 Jahren, wie es ja damals tiblich war die
Universitit Leiden, um Jus zu studieren, doch
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besuchte er auch eifrig die Vorlesungen des Carte-
sianers Frans van Schoolen. Wurde Huygens so
auch schon frih mit den Lehren des grossen Philo-
sophen Descarles bekannt, so konnte dies doch nicht
verhindern, dass seine eigenen Ansichten, die er sich
spater selbst bildete, von jenen wesentlich abwichen.
Ubrigens hat er wohl nie an den damals so iippig
wuchernden Spekulationen der Naturphilosophen
einen besonderen Gefallen gefunden und sich stets
dem verhdngnisvollen "Einfluss der Metaphysik zu
entziehen gewusst. In jene Zeit fillt auch der Be-
ginn seines Verkehres mit dem Paler Mersenne, dem
Faktotum der damaligen Physiker und dem intimen
Freunde des Cartesius.

Als sich dem jungen Huygens im Jahre 1649 die
Gelegenheit bot, als Begleiter des Grafen Heinrich
von Nassau eine Reise in die nordischen Linder zu
unternehmen, war er sofort hiezu bereit, denn er
hoffte hiebei mit Descartes bekannt zu werden, der
kurz vorher an den Hof der Konigin Christine von
Schweden gezogen war. Leider erfiillte sich diese
Hoffoung nicht, da die Mission des Grafen bereits
in Dinemark vorzeitig abgebrochen werden musste.
Nach dieser Reise hielt er sich 6fters in Frankreich
auf und erwarb auch in Anjou im Jahre 1655 den
juristischen Doktorgrad. Auf einigen Reisen nach
England lernte er mehrere Mitglieder der im Jahre
1660 entgiiltiz gegriindeten Royal sociely kennen,
die thn im Jahre 1663 zugleich mit dem Astronomen
Hevelius, dem gelehrten Biirgermeister von Danzig,
als eines ihrer ersten auswértigen Mitglieder wihlte.
Gilt uns schon diese aussergewOhnliche Ehrung als
ein Zeichen fir die wachsende Beriihmtheit unseres



I - R

Huygens, so muss dies in noch hoherem Masse der
Fall sein, wenn wir vernehmen, dass ithm im Jahre
1665 von Colbert, dem Finanzminister Ludwigs des
XIV., der Antrag gemacht wurde in die soeben in
Grindung begriffene Pariser Akademie der Wissen-
schaflen einzutreten, welchem Rufe er auch wirklich
im nidchsten Jahre Folge leistete.

Fiinfzehn Jahre verbrachte Huygens in Paris in
stiller Zuriickgezogenheit und mit tberaus erfolg-
reichen Arbeiten beschiftigt, von denen ich jetzt
schon seine grundlegenden Untersuchungen tiber die
Theorie des Pendels besonders hervorheben mochte.
Gewiss wiire er sein Leben lang in Paris geblieben,
wenn damals nicht wieder religiose Streitigkeiten in
Frankreich zum Ausbruche gekommen wiren, die
ithm als Protestanten doch nicht ganz gleichgiiltig
sein konnten. Man gab ihm zwar die Versicherung,
dass er hinsichtlich seiner religiosen Freiheit fiir
seine Person nichts zu fiirchten hitte, aber die Auf-
hebung des Ediktes von Nantes wart doch schon
recht empfindliche Schatten voraus, sodass es Huy-
gens fiir ratsam hielt, sich fir seine Arbeit nach
einer ruhigeren Stitte umzusehen. Er verzichtete
also auf seine glinzende Stellung, verliess 1681 Paris
zugleich mit dem ihm befreundeten dénischen Astro-
nomen Olaf Romer und nahm in seiner Vaterstadt
im Haag dauernden Aufenthalt, der nur einmal 1687
durch eine Reise nach England unterbrochen wurde.
Auch hier setzte er seine mathematischen und phy-
sikalischen Untersuchungen eifrig fort, doch diirfte
er wohl die meiste Zeit auf die Sammlung und Ergin-
zung seiner fritheren Arbeiten verwendet haben. Aus
dieser Zeit stammen erst sein unsterblicher Trailé de
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la lumiere, der Discours de la cause de la pesanleur
und das seinem Bruder Konstantin gewidmete Werk
iiber die Mehrheit der Welten, der Kosmolheoros.
Dieses Werk war auch sein letztes, es befand sich
gerade unter der Presse, als er am 8. Juni 1695 starb.

Huygens war ein ernster, iiberaus aufrichtiger und
friedfertiger Mann. An keiner Stelle seiner zahlrei-
chen Sechriften wird man eine ungerechte Schmiile-
rung der Verdienste seiner Vorginger oder Zeitge-
nossen finden, und wenn es auch ithm nicht erspart
geblieben ist in die damals an der Tagesordnung
befindlichen Prioritiatsstreitigkeiten verwickelt zu
werden, so gibt er uns gerade bei dieser Gelegenheit
einen Beweis seines edlen Charakters: lieber verzichtet.
er auf seine wohlbegriindeten Priorititsanspriiche,
derentwegen ithn ein hochst unbedeutender Mann
in einen unerquicklichen Prozess hineinziehen will,
als dass er sich dadurch von seiner Arbeit abziehen
lasst. Sein lauteres und aufrichtiges Wesen sowie
die Gediegenheit und Klarheit seiner Werke erwar-
ben ihm frihzeitig die Achtung aller grossen Geister
seiner Zeit, und Newton sogar nennt ihn nicht nur
einmal den «summus Hugenius », obwohl ihre An-
sichten in einigen Punkten ziemlich stark auseinan-
dergingen.

Das Leben unseres Huygens floss also dahin wie
ein ruhiger Strom, dem wohlhabenden und unab-
héngigen Manne blieben die traurigen Nahrungs-
sorgen erspart, die einem Kepler die wissenschaftliche
Arbeit so schwer gemacht hatten, er blieb aber auch
von den Demiitigungen verschont, die sein leuchten-
des Vorbild, Galilet, tiiber sich hatte ergehen lassen
miissen. Aber Huygens machte von seinen Mitteln



und seiner Musse auch einen vortrefflichen Gebrauch,
und ich will nun versuchen Ihnen zu zeigen, was er
in seiner beinahe ein halbes Jahrhundert wihrenden
Gelehrtenarbeit geschaffen hat. Es ist selbstver-
stindlich, dass ich im Rahmen dieses kurzen Vor-
trages nicht im Entferntesten alle seine Leistungen
in gleichem Masse wiirdigen kann, sind doch von der
bereits 1888 in Angriff genommenen Gesamtausgabe
seiner Werke bisher schon 15 stattliche Quartbande
erschienen. Ich will mich vielmehr auf jene Arbeiten
beschrinken, in denen wir gerade die Probleme
kennen lernen, mit denen sich die Mathematiker. vor
der Entdeckung der Infinitesimalrechnung lebhaft
beschéftigten und die Huygens zu einem endgiiltigen
Abschluss gebracht hat, der uns auch heute noch bis
auf die Form der Darstellung vollauf befriedigt.

Ich beginne zunédchst mit den rein mathematischen
Arbeiten, die mit seinen mechanischen Untersu-
chungen noch in keinem unmittelbaren Zusammen-
hang stehen. Sie beziehen sich auf damals gerade
hochaktuelle geometrische und wahrscheinlichkeits-
theoretische Probleme. Die wuralte Aufgabe der
Quadratur krummlinig begrenzter Flachenstiicke und
besonders die des Kreises hatte das Interesse der
Mathematiker in der ersten Hilfte des 17ten Jahr-
hunderts so stark in Auspruch genommen wie kaum
jemals vorher. Wenn man das mathematische Schaf-
fen jener Zeit betrachtet, so fiihlt man, wie die Krafte
der altehrwiirdigen klassischen Methoden diesen Pro-
blemen gegeniiber bereits erschopft waren. Im Grunde
genommen waren es immer wieder dieselben Ideen,
die zum grossen Teile bereits von Archimedes ge-
schaffen, entsetzlich breitgetreten den Stoff fiir zahl-



— 59 —

reiche mitunter recht dickleibige Folianten liefern
mussten. Ich will nur zwei von diesen Schriften an-
fihren, die eben Huygens den Anlass zu seinen ersten
Publikationen gegeben haben. Es sind dies die von
dem belgischen Jesuitenpater Jean Charles de la
Faille 1632 herausgegebenen « Theoremala de ceniro
gravitalis partium circuli el ellypsis» (sic!) und das
zehn Biicher mit 1225 Seiten umfassende «Opus
geomelricum quadralurae circuli el sectionum coni »
des Gregorius a Sanclo Vincentio vom Jahre 1647.
In der ersten dieser beiden Schriften wird gezeigt,
dass die Bestimmung des Schwerpunktes von Kreis-
und Ellipsensegmenten und die Quadratur dieser
Kurven dquivalente Probleme sind. Das Werk des
Gregorius enthialt unter Anderem als besondere
Kuriositat nicht weniger als: vier Methoden zur
angeblich genauen Quadratur des Kreises.

Huygens behandelt nun in seiner ersten Arbeit
« Theoremala de quadralura hyperboles, ellipsis el
circuli ex dato portionum gravilalis ceniro » ungefahr,
aber mit mehr Eleganz, dieselben Fragen wie de la
Faille und stellt darin auch eine Widerlegung des
Gregorius in Aussicht, die auch wirklich bald darauf
unter dem Titel « E&éraocic Cyclometriae clarissimi
Gregorit a Sl. Vincentio» erschien. Besonders durch
~die letztere Schrift erwarb sich Huygens bel seinen
Zeitgenossen laute Anerkennung, die durch den
~immer heftiger werdenden Kampf pro et contra
Gregorium noch lauter wurde, obwohl sich er sowie
Gregorius selber an dem ganzen Streite fast gar nicht
beteiligten. Huygens setzte vielmehr seine positiven
Untersuchungen iiber die Kreisquadratur fort, deren
Ergebnisse er im Jahre 16564 in der Abhandlung « De
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circuli magnilude invenla» niederlegte. Wenn auf
diesem Gebiete mit den alten elementaren Methoden
tiiberhaupt noch nennenswerte Fortschritte zu erzie-
len waren, so konnten sie nur darin bestehen, dass
man solche obere und untere Schranken fiir den
Kreisinhalt aufsuchte, mit deren Hilfe ein rascher
‘konvergierendes IZinengungsverfahren konstrulert
werden konnte, als es die in der Zeit von Archimedes
bis Ludolf van Ceulen benutzten waren, die oben-
drein einen enormen Rechenaufwand erforderten,
der natiirlich damals, wo man noch keine mechani-
schen Rechenbehelfe hatte, umso schwerer ins Ge-
wicht fiel. Freilich hatte Huygens im « Cyclomelri-
cus » (1621) seines Landsmannes Willebrod Snellius,
den er auch am Schlusse der Vorrede zu seiner Ab-
handlung riihmlichsts, erwdhnt, die Anregung zu
seinen Untersuchungen gefunden, unterlisst es aber
auch nicht zu betonen, dass dieser Forscher kein
geringes Lob wiirde verdient haben, hitte er die
beiden Hauptsiatze, auf denen sein ganzes Werk
aufgebaut ist, auch beweisen kénnen. Huygens gibt
nun nicht nur die Beweise jener beiden Hauptsitze,
sondern entwickelt auch Methoden, die mit einer
fir die damaligen Zeiten minimalen Rechenarbeit
die Zahl z bis auf neun Stellen zu berechnen gestat-
ten. Ich kann Thnen hier nicht die uns heute unge-
wohnten Beweismethoden vorfithren und will nur
erwihnen, dass Huygens schon mittels des Sechzigek-
kes fir = die Grenzen:

3141592 653 3 <<a< 3141592653 8
gewinnt, wihrend die Snellius’sche Methode selbst

aus dem 96-Eck nur sechs und die Archimedische
gar nur zwei Dezimalen liefern.
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Zeigt uns diese Abhandlung, dass Huygens mit
den damaligen geometrischen Kenntnissen wohl ver-
traut war und an ihrer Weiterbildung hervorragen-
den Anteil nahm; so konnen wir aus seiner spéteren
Beschéftigung mit dem Probleme der Quadratur
‘erkennen, dass er viel klarer als alle seine Vorgédnger
und vielleicht auch klarer als mancher Geometer
nach thm, den tieferen Kern dieses Problemes erfasst
hatte. In einer Kontroverse nimlich, die sich zwi-
schen 1hm und dem englischen Geometer James
Gregory entsponnen hatte, machte er diesen auf-
merksam, dass es ja von vornherein gar nicht
feststehe, ob der Kreis und das Quadrat seines Durech-
messers kommensurabel seien, was freilich erst
hundert Jahre spiter von Lamberl im verneinenden
Sinne wirklich entschieden wurde.

Dieser Meinungsaustausch zwischen Huygens und
Gregory 1ist aber auch noch in anderer Hinsicht
interessant, indem er zeigt, wie schwer die grundle-
genden Begriffe der hoheren Analysis sich durch-
setzten. In der 1667 erschienenen Schrift « Vera
circult el hyperbolae quadratura» von Gregory findet
sich zum ersten Male nicht nur das Wort « Konver-
genz », sondern auch der damit bezeichnete Begriff
wenigstens in dem speziellen Fall der Quadratur
ziemlich klar erlautert. Solche Auffassungen waren
aber fiir die damalige Zeit so tiberraschend neu, dass
sie selbst unserem Huygens unverstindlich blieben.
Uberhaupt zeigte sich Huygens der gegen Ende des
17ten Jahrhunderts allmihlich bekannt werdenden
Infinitesimalrechnung gegeniiber beinahe ablehnend,
obwohl 1hn Leibniz wiederholt in Briefen dafiir zu
interessieren versucht hatte. Mag sein, dass sich 1n
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diesem Falle auch bei ihm jene Erscheinung gedussert
hat, dass selbst vielseitig produktive Forscher gegen
ihr Lebensende einseitig werden und sich neu auf-
tauchenden Ideen gegeniiber als unzugiénglich erwei-
sen.

Ich habe schon erwihnt, dass sich Huygens auch
mit wahrscheinlichkeitstheoretischen Untersuchun-
gen beschiftigt hat. Sie betreffen hauptsidchlich
sogenannte Teilungsprobleme, bel denen es sich um
folgendes handelt: ein von zwel Spielern gemeinsam
geleisteter Einsatz soll jenem génzlich zufallen, der
von einer im Voraus vereinbarten Anzahl von Spielen
die meisten gewonnen hat. Wenn aber das Spiel vor
seinem Ende abgebrochen werden muss, so fragt es
sich, wie der Einsatz zwischen den Spielern mit
Beriicksichtigung ihrer bereits gewonnenen Spiele
gerecht verteilt werden soll. Aufgaben dieser Art
hatte ein gewisser Chevalier de Méré, ein in den Pariser
Salons bekannter Spieler, an Blaise Pascal gestellt,
der damals in den Kreisen der flotten Pariser Gesell-
schaft mehr verkehrte, als es seiner Gesundheit und
seinem Geldbeutel zutriglich war. Uber diese Fra-
gen entwickelte sich sodann zwischen Pascal und
seinem Freunde Fermal ein lebhafter Briefwechsel,
und als sich Huygens im Sommer 1655 in Paris auf-
hielt, erfuhr er wahrscheinlich durch den Mathema-
tiker Roberval auch von diesen Dingen. Bereits im
Friithjahr 1656 hatte er seine diesbeziiglichen Unter-
suchungen abgeschlossen und 1m nichsten Jahre
erschienen sie als Anhang zu einer Sammlung von
Aufsiatzen seines ehemaligen Lehrers van Schooten
von diesem ins Lateinische tibersetzt unter dem Titel
« De raliociniis in ludo aleae». Huygens stellt darin



freilich keine allgemeinen Formeln auf, doch ent-
wickelt er, gestiitzt auf ein einheitliches Prinzip an
speziellen numerischen Beispielen Methoden zur
Losung solcher Teilungsaufgaben. Spiter hat Jakob
Bernouilli der Huygensschen Abhandlung die allge-
meinen Formeln hinzugefiigt und sie mit ausfiihr-
lichen Anmerkungen versehen als ersten Teil seiner
berithmten « Ars conjectandi » im Jahre 1713 wieder
drucken lassen. Wenn auch diese Schrift heutzu-
tage, wo die Wahrscheinlichkeitsrechnung ganz
andere Ziele bekommen hat, nur unser historisches
Interesse beanspruchen kann, so diirfen wir doch
nicht tibersehen, dass damals von ihr ein méachtiger
Anstoss zum weiteren Ausbau dieser Disziplin ausge-
cgangen ist. Es ist z. B. sicherlich Pascal stark von
ihr beeinflusst worden, obwohl Huygens ja selber,
was er tbrigens in der Vorrede auch hervorhebt, von
ithm die erste Anregung mittelbar empfangen hatte.

Zeigen uns diese mathematischen Leistungen Huy-
gens als einen scharfsinnigen Denker, so lassen uns
seine ersten Erfolge auf dem Gebiete der Optik und
der physikalischen Astronomie seine experimentelle
Geschicklichkeit und seine aussergewohnliche Kom-
binationsgabe bewundern. Bereits in jungen Jahren
verfertigte er mit seinem Bruder mittels eigenhindig
geschliffener Linsen sehr leistungsfihige Fernrohre,
ja er erfand sogar ein eigenes Verfahren zum Schlei-
fen grosser Linsen — das Linsenschleifen musste
iibrigens in Holland sogar Philosophen ernihren —
und dieses Verfahren imponierte der Royal sociely
of London so sehr, dass sie Huygens zu ihrem aus-
wartigen Mitglied wéhlte.
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Mit einem solchen selbstgebauten und bereits mit
emem Mikrometerokular ausgeriisteten Fernrohr sah
nun Huygens am 25. Mirz 1655 zum ersten male, dass
auch der Saturn einen Mond besitze, es war dies der
— vom Saturn aus gezahlt — sechste Mond, der
heute den Namen Titan fithrt und dessen Umlaufszeit
er auch ziemlich genau bestimmte. Aber noch ein
anderes merkwirdiges Phinomen, das schon 1610
von Galilei bemerkt und von Hevelius ausfiihrlich
beschrieben worden war, entdeckte er nicht nur wieder,
sondern gab thm auch die richtige Deutung. In einer
kleinen Schrift: « De salurni luna observalio nova»
vom Jahre 1655 zeigte er der Sitte seiner Zeit gemiss
die Entdeckung durch das folgende Anagramm an:

ag 0 dy e g hy 1l myngg 0, py syt ug,

wobel die Ziffern angeben sollen, wie oft die betref-
fenden Buchstaben vorkommen. Die Liésung dieses
‘Ratsels, die natiirlich niemandem gelang, gab er dann
nach vier Jahren in seinem « Syslema salurnium », das
er dem Prinzen Leopold von Medici gewidmet hatte.
Sie lautet:

« Saturnus cingitur annulo tenui, plano, nusquam
cohaerente et ad eclipticam ineclinato ».

Alerdings behauptete der Kapuzinerpater Anlon
‘Maria Schyrl aus dem Kloster Reith in Bohmen,
dass er schon 1643 mit dem von ithm entdeckten ter-
restrischen Fernrohr neun Jupiter- und sechs Saturn-
‘monde beobachtet hitte, aber der Umstand, dass er
sogar mehrere Monde des Mars, der bekanntlich nur
‘deren zwei hat, beobachtet haben wollte, macht seine
Angaben unglaubwiirdig und Huygens bereits hat
sie auch als irrtiimlich nachgewiesen.
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Von seinen rein experimentellen Arbeiten, die bei
aller Vertiefung in Einzelheiten nie den Zug ins
Grosse verkennen lassen, erwihne ich nur die Kon-
struktion eines Doppelbaromelers, seine Beobachtun-
oen iiber das Brennen im Vakuum, tber die Aus-
dehnung des Wassers beim Gefrieren, sowie die gemein-
sam mit Papin unternommenen Versuche iiber die
Siedelemperalur. Ferner beteiligte er sich auch an
der von seinen Kollegen an der Pariser Akademie,
Cassini, Picard und Rémer durchgefiihrten Bestim-
mung der Schallgeschwindigkert.

Die bisher besprochenen Leistungen unseres Huy-
gens werden aber noch bedeutend von jenen tiber-
ragt, die er uns in seinen mechanischen Schriften
hinterlassen hat, von denen ich zunichst die beiden
kleineren anfithren will, und zwar den « Traclatus de
motu corporum ex percussione » und den « Traclalus
de vi cenlrifuga ». Sie wurden erst im Jahre 1703 von
Burcherus de Volder und Bernhardus Fullenius zu-
sammen mit anderen Abhandlungen als Opuscula
- posthuma zu Leiden herausgegeben, doch war ihr
wesentlicher Inhalt schon viel frither von Huygens
selber noch veroffentlicht worden. Die erste Arbeit,
die sich mit der durch den Stoss hervorgerufenen
Bewegung beschiftigt, wurde durch eine im Jahre
1668 von der Royal Society gestellte Preisaufgabe
veranlasst, es waren aber viele der darin enthaltenen
Resultate Huygens gewiss schon vor mehr als zehn
Jahren bekannt, wie aus seinem Briefwechsel hervor-
geht. Auch der englische Mathematiker Wallis und
der Architekt -Wren — der Erbauer der St. Pauls-
Kathedrale in London — hatten LoOsungen dieser
Aufgabe eingesandt, und zwar schon vor Huygens,

b
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~doch blieben diese weit hinter der von Huygens
gegebenen zuriick, sowohl hinsichtlich der Klarheit
der Begriffe als auch in der Strenge ihrer Beweis-
fihrung. Die von Huygens entwickelten Sitze stehen
in einem geradezu wohltuenden Gegensatz zu den
sieben Stossgesetzen, die Descarles in seinen Prinzi-
pien der Philosophie aufgestellt hatte und die be-
kanntlich sehr unklar und fast durchwegs haar-
straubend falsch sind. Mit viel Geschick verwendet
darin Huygens als einer der ersten die so lange unver-
standen gebliebenen von Galilel geschaffenen Grund-
lagen der Dynamik, die er in der gliicklichsten Weise
durch neue Begriffe erweitert. So spricht er im
Beweise des Lehrsatzes VII das Axiom aus, «dass
durch eine Bewegung von Korpern, welche nur von
threr Schwere verursachl wird, thr gemeinsamer Schwer-
punkt nicht sleigen Lann». Weiter heisst es im Lehr-
satz XI: « Betm wechselseiligen Sloss zweier Korper
wird die Summe der Produlkle aus den Massen in die
Ouadrale ithrer Geschwindigkeilen vor wie nach dem
Sloss als die gleiche gefunden». Wer auch nur die
Elemente der Mechanik kennt, wird darin sofort zwei
Sonderfille des Gesetzes von der Erhaltung der Ener-
gie erkennen. Dass bei Huygens vor dem Produkte
m. v? der Faktor , noch nicht vorkommt, ist hier
cganz belanglos, der wurde ja erst etwa vor hundert
Jahren von Coriolis hinzugefiigt. Dieser Satz XI
sowie die in der Voraussetzung IIIl. aufgestellte For-
derung, dass man die Geschwindigkeiten relativ
auffassen miisse, wenn die Cartesische Bewegungs-
grosse konstant bleiben soll, spielten eine wichtige
Rolle in der sich spiter zwischen Leibniz und den
Cartesianern entspinnenden Kontroverse iiber die
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Erhaltung der lebendigen Kraft, die sich schliesslich
ohne entschieden zu werden als nebelhafte metaphy-
sische Streitfrage bis tiber Kanl hinaus fortzog, und
dies vor allem durch das grosse Ritsel, das auch fir
uns noch in dem Begriffe der Kraft liegt.

Von dem Inhalte der zweiten der beiden genannten
Abhandlungen, namlich der iber die Zentrifugal-
kraft, hatte Huygens schon 1669 einiges der Royal
Society in Anagrammform mitgeteilt und auch 1m
Horologium oscillatorium vom Jahre 1673 sind 13 von
den 1m Ganzen 17 Lehrsiatzen, freilich ohne Beweise
abgedruckt. Newlon verwendet sie bereits mit gros-
sem Nutzen in den Principiis zur Behandlung der
Planetenbewegung und bezeichnet Huygens auch
als ihren Urheber. Gestiitzt auf das Prinzip der
Relativbewegung erledigt darin Huygens sein Pro-
blem fast erschopfend und seine Darstellung hat
dabei noch den Vorzug, dass sie den auch heute noch
etwas dunklen Begriff der Masse fast ginzlich ver-
meidet, wodurch auch deutlich zum Ausdruck
kommt, dass die Zentrifugalkraft keine besondere

Naturkraft ist, sondern eine sogenannte Reaktions-
kraft.

Als letzte und bedeutendste der mathematisch-
mechanischen Schriften will ich nun die tiber die
Pendeluhr, das schon genannte « Horologium oscil-
latorium sive de motu pendulorum ad horologia aptalo »
etwas ausfiihrlicher besprechen. Die erste Bekannt-
schaft mit einem der darin behandelten Probleme
machte Huygens schon mit 17 Jahren, als der schon
erwihnte Paler Mersenne den Mathematikern und
Physikern die Frage nach dem Schwingungsmiliel-
punkt eines starren, um eine horizontale Achse drehbaren
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Kirpers vorlegte. Freilich konnte Huygens damals
keine Losung finden, aber das, was Descartes und
Roberval dariber gefunden hatten und weswegen
sie sogar miteinander in Streit geraten waren, war
auch nicht viel und zum Teil sogar falsch. Dieses
Problem war damals, als das Bedirfnis der Astro-
nomen und Seeleute nach verlisslich funktionieren-
den Uhren immer empfindlicher wurde, von ausser-
ordentlich hoher praktischer Bedeutung und Huygens
hatte sich mit ihm auch mehr als 25 Jahre beschiftigt.
Die Losung die er aber dann — natiirlich mit den
klassischen geometrischen Methoden — gab, war so
vollstindig, dass eine Weiterentwicklung des Pro-
blemes nur in formaler Hinsicht moglich war, nach-
dem die spéter erst geschaffene hohere Analysis die
Mittel hiezu bereitgestellt hatte.

Damit Sie aber die Leistung, die Huygens dadurch
vollbracht hatte, richtig einschitzen konnen, wird
es zweckmissig sein, wenn ich vorher einige kurze
Andeutungen dariiber mache, wie man bis in die Mitte
des 17ten Jahrhundertes die Zeit gemessen hat. Von
den Wasser- und Sanduhren, die schon beil den alten
Agyptern und Babyloniern in Gebrauch waren und
deren freilich stark degenerierte Nachkommen heute
noch beim Eierkochen verwendet werden, will ich
gar nicht weiter reden. Von Uhren die mit den unsri-
gen wenigstens dusserlich eine entfernte Ahnlichkeit
hatten, kann man erst sprechen, als man den Versuch
unternahm, die Fallbewegung eines meist recht
schweren Gewichtes durch irgendwelche Hemmvor-
richtungen zu verzogern und gleichférmig zu machen,
wozu man meist den sogenannten Windfang oder
Windfliigel beniitzte. Solche Réaderuhren erwéhnt
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schon Danle im zehnten Gesang des Paradiso; sie
filhrten zwar alle moglichen Kunststiicke aus,
nahmen es aber dafiir mit ihrer eigentlichen Aufgabe
der Zeitmessung nicht sehr genau. Gegen Ende des
16ten Jahrhunderts muss sich der grosse Astronom
Tycho de Brahe noch recht oft iiber seine vier Uhren
drgern, von denen eine sogar ein Rad mit 1200 Zah-
nen gehabt haben soll, und Sie werden seinen Zorn
dariiber gewiss gerecht finden, wenn Sie horen, dass
man sie beinahe alle Viertelstunden richten, ja mi-
tunter sogar mit einem Hammer nachhelfen musste.

Nachdem Galilei die Regelmissigkeit der Pendel-
schwingungen erkannt hatte, bedienten sich sowohl
er selber als auch die Mitglieder der Academia del
cimento dieses bequemen Mittels zur Messung kurzer
Zeitraume. Freilich hatte Galilei auch schon die
Mingel seines Instrumentes bemerkt, nidmlich die
Abhiingigkeit der Schwingungsdauer von der Ampli-
tude, und er dachte auch daran, das listige und leicht
zu Fehlérn Anlass gebende Zihlen der Schwingungen
durch ein Ziahlwerk besorgen zu lassen, konnte aber
doch keinen erheblichen Fortschritt erzielen. Das
war also in grossen Ziigen der Stand der Sache als
sich Huygens ihrer bemichtigte. Man hatte Uhren
und Pendel, sagt Poggendorf in seiner Geschichte
der Physik, ja sogar Pendel mit einem Zihlwerk)
aber darum noch lange keine Pendeluhren !

Die Idee, ein Pendel mit einem Réaderwerk zu
.verbinden und die durch die Reibung verursachten
Energieverluste durch die Arbeit eines langsam fallen-
den Gewichtes zu ersetzen, bleibt trotz des lange
andauernden Priorititsstreites, den die Erfindung
der Pendeluhr ausgelost hatte, eine der grossartigsten



Ausserungen der Kombinationsgabe unseres Huygens.
Gerade 1m Grindungsjahre der Academia del ci-
mento, 1657, die sich in dem spéateren Streite nicht
sehr schon benommen hatte, erhielt Huygens am
16. Juni von den General-Staaten ein Patent auf
~seine Pendeluhr, die er dann 1658 in der kleinen
Schrift « Horologium » beschrieb und auch abbil-
dete. Die Turmuhren von Scheveningen und Ut-
recht wurden gleich mit der neuen Erfindung aus-
gestattet und eine Unzahl von Gratulationsbriefen
aus allen Lindern Europas, die im Huygensschen
Nachlass gefunden wurden, zeigt, mit welcher Begei-
sterung sie allgemein aufgenommen wurde. Die
finfzehn Jahre aber, die zwischen dem Erscheinen
des kleinen Horologium und dem des grossen Horo-
logium oscillatorium im Jahre 1673 vergangen waren,
hatte Huygens unablissig gearbeitet sowohl an der
Vervollkommnung der Uhr selber als auch an ihren
theoretischen Grundlagen, wie ich Thnen nun durch
eine kurze Inhaltsangabe der grossen Schrift iiber die
Pendeluhr zeigen will.

Im ersten Teile gibt Huygens eine ausfiihrliche
Beschreibung der Einrichtung und Wirkungsweise
seiner Uhr, von der ich nur den wichtigsten Bestand-
teil, das Pendel, kurz erkliren will. Zwischen zwei
in ganz bestimmter Weise gekriimmten Metallstreifen
sind zwei parallele leicht biegsame Fiden eingeklemmt
an deren unterem Ende die Pendelstange befestigt
ist. Diese geht durch die Ose der sogenannten Gabel,
deren oberes Ende mit der horizontalen Spindel des
Echapements fest verbunden ist, das ebenfalls von
Huygens wesentlich verbessert worden war. Die tibri-
gen Teile der Uhr stimmen im grossen Ganzen mit den



— 71 —

entsprechenden unserer heutigen Uhren tiberein, doch
sei erwiahnt, dass statt eines Sekundenzeigers ein
durch einen Schlitz sichtbares Zifferblatt rotierte.
Huygens weiss natiirlich, dass die Schwingungen
des Kreispendels bei grosser Amplitude nicht mehr
1sochron sind, ja er gibt sogar fiir das Verhéltnis der
Schwingungszeiten zweier Pendel, von denen das
eine durch einen Halbkreis, das andere aber nur
durch einen sehr kleinen Bogen schwingt, den ver-
bliffend genauen Wert ' an. Wie er zu . diesem
Nédherungswert gekommen ist, sagt er leider nicht,
man muss sich aber tiber die Genauigkeit dieser An-
gabe wundern, wenn man bedenkt, dass die Berech-
nung der Schwingungsdauer bei endlicher Amplitude
die Auswertung eines elliptischen Integrales erfordert.
Diese Abhédngigkeit der Schwingungsdauer eines
Kreispendels von der Amplitude will nun Huygens
dadurch vermeiden, dass sich vermoge seiner Auf-
hingevorrichtung das Pendel umso stérker verkiirzt,
je grosser sein Ausschlag wird. Die Ermittlung der
Gestalt, die er zu diesem Zwecke den beiden oben
erwiahnten Metallstreifen geben muss, bildet den
Inhalt des zweiten und dritten Teiles der Schrift.

Zunichst zeigt Huygens, dass ein schwerer Punkt
der sich auf einer nach unten konvexen gemeinen
Zykloide mit horizontaler Basis bewegen muss, von
jeder Stelle der Kurve aus dieselbe Zeit braucht, um
bis zum tiefsten Punkte zu gelangen, weswegen er
die Zykloide auch die T'aulochrone nennt. Im folgen-
~den Teile entwickelt er dann die Begriffe Kriimmung
einer Kurve, Evolute, Evolvente und zahlreiche Siitze
iber die Rektifikation ebener Kurven. Das fiir seine
Zwecke wichtigste Resultat ist im Satz VI enthalten,



dass namlich die Evolvente einer Zykloide wieder
eine Zykloide ist. Damit ist nun auch die Gestalt
jener gekrimmten Metallstreifen gefunden: sie muss
aus den in einer Spitze zusammenlaufenden Kurven-
zigen einer Zykloide bestehen, und auch die Lange des
stets isochron schwingenden Pendels ist nun sofort
bekannt, sie muss ndmlich dem doppelten Durch-
messer des die Zykloide erzeugenden Kreises gleich
sein. Die Schwingungsdauer T eines solchen Pendels
wurde aber schon im Satz XXV des zweiten Teiles
bestimmt: sie verhilt sich zu der Zeit t’ die der Punkt.
brauchen wirde, um den Durchmesser 2a des erzeu-
genden Kreises frei zu durchfallen, wie der Umfang
eines Kreises zu seinem Durchmesser, also wie 7: 1.

Da also t = \/‘4 ., sowird T == \/ L , Wenn
g g

| = 4a gesetzt wird, und dies ist die bekannte Pen-
delformel fiir kleine Schwingungen eines Kreispendels,
da man die Zykloide in der Umgebung ihres Schei-
tels durch ihren Kriimmungskreis mit dem Radius
4a ersetzen kann.

Damit hat Huygens die Theorie des « mathema-
tischen » Zykloidenpendels in einem fiir seine Zwecke
vollstindig hinreichenden Umfang entwickelt und
nun bringt der vierte Teil eine glinzende Losung der
thm von Mersenne vor 27 Jahren vorgelegten Aufgabe
der Bestimmung des Schwingungsmittelpunktes eines
Korpers in einer Ausfiihrlichkeit, die weit iiber den
unmittelbaren Zweck hinausreicht. Zuerst behan-
delt er den mechanischen Teil der Frage, wobei er
sich wieder auf die bereits in der Lehre vom Stosse
so erfolgreich angewendeten dynamischen Prinzipien
stiittzt. Das Resultat 1st im Satz V niedergelegt,
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den ich aber in der heute iiblichen Ausdrucksweise
anfithren will: Ist r der Abstand eines beliebigen
Massenteilchens von der Achse, m seine Masse, ro
der Abstand des Schwerpunktes von der Achse,
dann ist der Abstand des Schwingungsmittelpunktes
von der Achse oder die Linge 1 des mit dem Korper
isochron schwingenden mathematischen Pendels gege-
ben durch:

~ 1m.r? > |, T2 Tragheitsmoment
l = Sowmme: = = s —
N NG statisches Moment
To . .~ | IM A 1M, T -

Die grossere Hilfte dieses Teiles nehmen dann die
nach den damaligen Methoden elegant durchge-
filhrten Berechnungen der statischen und Trigheits-
momente zahlreicher Flachenstiicke und Korper ein,
die durchwegs vollkommen richtig sind. Im Satze XX,
der besagt, dass man Schwingungsmittelpunkt und
Aufhingepunkt eines Pendels untereinander ver-
tauschen kann, steckt schon die Idee des Reversions-
pendels, das erst um 1810 von Bohnenberger und Kaler
verwendetl wurde.

Huygens empfindet es als einen Nachteil seiner Uhr,
dass sich ihr Sekundenzeiger ruckweise bewegt, und
will diesen Umstand dadurch vermeiden, dass er das
Zvkloidenpendel durch ein konisches ersetzt. Der
finfte und letzte Teil bringt daher noch die Theorie
des konischen Pendels, das wir heute aber nur als
Regulator beim Drosselventil und bei parallaktisch
montierten Fernrohren anwenden. Aber auch das
Zykloidenpendel wurde bald vom gewohnlichen Pen-
del verdringt, da man jene zykloidischen Metall-
streifen nicht genau genug herstellen konnte, da sich
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der Doppelfaden infolge der Steifheit nie genau an
sie anschmiegt, kurz, weil man bald erkannte, dass
die durch die zu komplizierte Aufhingung verur-
sachten Fehler viel starker ins Gewicht fallen als die,
welche aus den nicht ganz genau synchronen kleinen
Schwingungen des Kreispendels entstehen.

Bevor ich die Untersuchungen tber das Pendel
verlasse, mochte ich noch auf eine interessante Wahr-
nehmung hinweisen, die Huygens an zwei an dem-
selben Balken nahe beieinander aufgehingten Uhren
machte. Er beobachtete namlich, dass die Pendel
zweier solcher genau gehender Uhren sich gegenseitig
beeinflussen, sodass ein urspringlich vorhandener
Gangunterschied der beiden Pendel allmidhlich von
selbst verschwindet und auch nicht wieder zum Vor-
schein kommt. Es ist dies ein Beispiel fiir eine gekop-
pelte Schwingung, und als solche wird sie auch von
Huygens gedeutet, nachdem er diese Erscheinung
schon im Jahre 1665 beschrieben, ihre Erklirung aber
irrtiimlich in der Bewegung der Luft gesucht hatte.

- Von Huygens stammt auch der Vorschlag, aus dem
Sekundenpendel ein fiir ewige Zeiten unveridnder-
liches und stets leicht wieder auffindbares Normal-
langenmass herzustellen. Er empfiehlt hiezu den
dritten Teil der Linge des Sekundenpendels, den er
den Slundenfuss, «pes horarius», nennt. Es ist
Ihnen gewiss bekannt, welche Schwierigkeiten mit
der Durchfiihrung eines solchen Vorschlages ver-
kniipft sind, und auch Huygens lernte sie bald kennen.

Jean Picard hatte im Auftrage der Pariser Aka-
demie, deren Mitglied er war, in den Jahren 1669-70
auf franzosischem Gebiete eine Gradmessung durch-
gefiihrt, deren KErgebnisse nicht nur infolge der
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erheblich verbesserten Winkelmessinstrumente, son-
dern auch infolge gliicklicher Ausgleichung von Beo-
bachtungsfehlern ziemlich genau waren. Im Besitze
eines verlisslichen Wertes fiir den Erdradius wollte
nun die Akademie auch den Versuch machen, die
Entfernung der der Erde nédher stehenden Gestirne
zu bestimmen. Wegen der am Aquator geringeren
atmosphirischen Refraktion sandte sie daher den
Astronomen Jean Richer im Jahre 1671 nach Cayenne.
Dieser machte nun dort kurz nach seiner Ankunft
die Wahrnehmung, dass seine in Paris richtig gehende
Pendeluhr plétzlich pro Tag um zwei Minuten zuriick-
blieb. Er glaubte zuerst, dass er sich geirrt habe und
beachtete die Sache nicht weiter. Nach zwei Jahren
kam er wieder nach Paris zuriick und man war mit
seinen Beobachtungen sehr zufrieden. Hier bemerkte
er nun, dass er das Pendel wieder um denselben
Betrag verlingern musste, um den er es in Cayenne
verkiirzt hatte. Zu seinem Ungliick teilte er auch
diese neue Beobachtung mit und erklirte sie auch
richtig- durch die uns wohlbekannten Griinde. Die
Akademie jedoch war damit nicht einverstanden,
sondern schob die ganze Sache auf die Ausdehnung
der Pendelstange durch die Warme und manche seiner
Kollegen bezweifelten nun sogar die Verldsslichkeit
seiner astronomischen Beobachtungsergebnisse.

Unter den wenigen Akademikern, die Richers An-
sicht teilten, befand sich auch Huygens, wenn er auch
anfangs mit seiner Meinung etwas zuriickhielt. Er
sah ein, dass die Schwere nicht nur wegen des grosseren
Drehungsradius gegen den Aquator zu abnehmen
miisse, sondern auch deswegen, weil dort die Vertikal-
komponente der Zentrifugalkraft grosser wird. Diese
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Begriindung hatte zwar, wenn auch nicht so bestimmt,
bereits Picard gegeben, aber Huygens geht noch
weiter. Er behauptet ndmlich, dass aus denselben
Grinden die Erde keine Kugel sein konne, und gibt
fir die Abplattung den freilich zu kleinen und aus
unzulinglichen Annahmen berechneten Wert .- an.
Obgleich er auch noch mittels einer rasch rotie-
renden Kugel aus weichem Ton seinen Kollegen am
Kontinent die Richtigkeit seiner Behauptung ad
oculos zu demonstrieren vermochte und obgleich
auch Newton noch viel weiter reichende Konsequen-
zen gezogen hatte, es bedurfte erst eines langen
Streites zwischen Englindern und Franzosen und
der beriihmten franzosischen Gradmessung der Revo-
lutionszeit, bis sich endlich die richtige Ansicht
allgemein durchsetzte. Huygens hat die Ergebnisse
seiner Untersuchungen tiber die Schwere und die
Gestalt der Erde zusammengefasst in seinem « Dis-
cours de la cause de la pesanieur », der erst im Jahre
1690 als Anhang zu seinem berihmten « Trailé de
la lumiére » erschien, zu dessen Besprechung ich nun
iibergehen will.

Auch die in dieser Schrift niedergelegten Unter-
suchungen hatte Huygens bereits in der Pariser Aka-
demie vorgetragen (1678), aber es fand sich schon
damals niemand, der ihre Bedeutung erkannt hitte,
man. war eben mit der Korpuskulartheorie Newtons
vollig zufrieden. Die enorme Lichtgeschwindigkeit,
die Riomer gerade um diese Zeit aus der Verfinsterung
der Jupitermonde berechnet hatte, gab fur Huygens
den ersten Anlass an der Richtigkeit der Emissions-
theorie zu zweifeln. Er halt es fir tiberaus unwahr-
scheinlich, dass die Lichtteilchen, ja dass sich tiber-
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haupt Korper mit solcher Geschwindigkeit bewegen
konnen. Wir wiirden aus diesem Grunde allein die
Emissionstheorie heute nicht ablehnen, da wir ja in
den g - Stahlen materielle Teilchen haben, die sich
nahezu mit Lichtgeschwindigkeit bewegen.

Mit der Annahme einer jedenfalls nur endlichen,
wenn auch sehr grossen Ausbreitungsgeschwindigkeit.
des Lichtes, gerdt Huygens gleich am Anfang seiner
Theorie in Gegensatz zu den Cartesianern, und diesem
Umstande darf man es wohl zuschreiben, warum seine
Theorie auch am Kontinente nicht angenommen
wurde. Von den Vorstellungen, die Descarles iiber
das Wesen des Lichtes entwickelt hat, kann man sich
schwer ein klares Bild machen, man findet bei ihm
Anklinge an die Emissionstheorie sowohl wie an die
Wellentheorie, ja einmal kommt er sogar der alten
Anschauung Platons nahe, der schon von Aristoteles
geradezu handgreiflich widerlegten Synaugie, wonach
das Sehen dadurch zustande kommen soll, dass die
vom Auge ausgehenden Sehstrahlen die Gegenstande
gewissermassen abtasten ! Das eine aber scheint fiir
Descartes festzustehen: die Lichtgeschwindigkeit
1st unendlich gross, und er begriindet dies damit,
dass man sonst an den Fixsternen jenes Phinomen
wahrnehmen miisste, das uns heute als Aberration
des Lichtes bekannt ist. Bei dieser Gelegenheit zeigt
- sich tbrigens auch, wie sehr der scharfsinnige Des-
cartes, der gemeint hatte, seine Philosophie ganz
von der Vergangenheit losgelost zu haben, noch in
frihere Denkgewohnheiten wverstrickt ist. Anstatt
an die Moglichkeit zu denken, dass eben die Beo-
bachtungswerkzeuge noch zu unvollkommen seien,
um einen so kleinen Winkel einwandfrei messen zu



— 78

konnen, sagt er vielmehr: eine solche Verschiebung
der Sternorter, wie sie aus der Erd- und einer endli-
chen Lichtgeschwindigkeit resultieren misste, ist
noch nicht beobachtet worden, also ist sie nicht
vorhanden, also ist die Lichtgeschwindigkeit unend-
lich gross. Wir dirfen Descartes deswegen aber
keinen allzugrossen Vorwurf machen und konnen
daraus nur lernen, dass das Nichtvorhandensein eines
Effektes von unbekannter Grissenordnung experi-
mentell niemals festgestellt werden kann.

Die Grundziige der Huygens'schen Lichttheorie
werden Thnen wohl soweit bekannt sein, dass ich
mir diesbeziigliche Ausfiihrungen ersparen kann,
ich will mich daher nur auf eine kritische Betrach-
tung ihrer Grundlagen beschrinken. Huygens lasst
sich bei der Entwicklung seiner Theorie oft von der
Analogie mit dem Schalle leiten, leider aber gerade
dort, wo sie nicht am Platze i1st. Wenn er auch
nirgends die Lichtwellen als longitudinale Schwin-
gungen der Atherteilchen ausdriicklich bezeichnet,
so unterliegt es doch keinem Zweifel, dass er sich
diese so vorgestellt hatte. Diese Analogie mit dem
Schalle hat ihn also auf den Holzweg gefiihrt und
erst der unerschiitterliche Glaube eines Thomas Young
an ihre Richtigkeit und das kiithne Genie eines Au-
gustin Fresnel haben die Wellentheorie in diesem
Punkte ins rechte Geleise gebracht, nachdem man
die transversale Natur der Lichtwellen erkannt hatte.

Eine andere Analogie mit dem Schalle hat Huygens
leider unbeachtet gelassen, deren weitere Verfolgung
der Wellentheorie schon damals vielleicht das Uberge-
wicht iiber die Emissionstheorie hitte verschaffen
konnen. Ich meine damit den periodischen Charakter
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der Schallwellen und die Abhingigkeit der Tonhohe
von der Frequenz oder der Wellenlinge. In dem
Streben, seine Annahmen tiber die Natur des Lichtes
so allgemein als moglich zu halten, tut aber Huygens
gerade das Gegenteil. So heisst es unten auf Seite 15:
« Da aber die Stosse im Mittelpunkte dieser Wellen
nicht in regelmissiger Reihenfolge stattfinden, so
braucht man sich auch nicht vorzustellen, dass diese
Wellen selbst in gleichen Abstinden aufeinander-
folgen », ja er entschuldigt sich gewissermassen sogar,
dass er in der beigefiigten Figur doch die Abstinde
der Wellen gleich gross gezeichnet habe. Damit war
es Huygens natiirlich unmoglich, die Interferenzer-
scheinungen zu erkliaren, die er deswegen wohl auch
gar nicht erwihnt, obwohl sie schon Roberl Boyle
beschrieben und Roberl Hoolie auf Grund unklarer
Vorstellungen von der Wellennatur des Lichtes eine
freilich falsche Erklarung versucht hatte. Es ist un-
gewiss, ob Huygens die von Grimaldi schon um 1660
entdeckten Diffraktionserscheinungen gekannt hat,
jedenfalls hitten auch sie ihm Anlass geben konnen,
seine Hypothesen uber die Natur des Lichtes mehr
zu spezialisieren. Dann hatte er auch den gegen seine
Theorie erhobenen Vorwurf entkriaften kdonnen, dass
danach so wie beim Schalle auch beim Lichte keine
scharf begrenzten Schatten auftreten konnten. In
diesem Punkte nihert sich Newlton mit den « Anwand-
lungen » (fits) seiner Lichtteilchen tbrigens stark der
Wellentheorie, da er den periodischen Charakter
derselben ausdriicklich postuliert und daraus greif-
bare numerische Resultate ableitet, worin ein unleug-
barer Vorzug gegeniiber Huygens liegt. Es ist son-
derbar, dass Newlon, trotz seines beriihmten « Hy-



potheses non fingo » in der Optik selten um eine neue
Hypothese verlegen ist und sich doch nie endgiltig
fir eine bestimmte entscheidet. Weil ich schon von
Newton spreche, so will ich noch hinzufiigen, dass
Huygens entgegen Newton aus seiner Wellenhy-
pothese den Schluss zog, dass sich Licht in optisch
dichteren Medien langsamer fortpflanzen miisse als
in dinneren. Hier hitte man ein « experimentum
crucis » anstellen konnen, wenn die Messtechnik da-
mals auf einer zu einem solchen Versuch erforderlichen
Hohe gewesen wire. Der Versuch, den Foucault im
Jahre 1850 machte, entschied bekanntlich zu Gunsten
der Wellentheorie, aber damals war die Emissions-
theorie schon lange an der Hypertrophie ihrer
eigenen Hypothesen zu Grunde gegangen, die sie
immer wieder tiber die Lichtteilchen aufstellen musste,
um dem immer mehr sich hidufenden Beobachtungs-
material wenigtens qualitativ gerecht werden zu
konnen.,

Das schonste Kapitel des Traité de la lumiere 1st
unbestreitbar das fiinfte, in dem Huygens die schon
von KErasmus Bartholinus im Jahre 1669 beschriebene
Doppelbrechung beim islindischen Kalkspath be-
handelt. Die Erkliarung dieser Erscheinung wird ja
in den elementaren Lehrbiichern heute noch im An-
schlusse an Huygens gegeben und ich kann sie daher
wohl als bekannt voraussetzen. Es ist ein Genuss zu
sehen, wie Huygens dem ausserordentlichen Strahle
hinter seine Schliche kommt, und wie er schliesslich
auf die Idee wverfdallt, es miisse sich ausser der
gewohnlichen Kugelwelle im Kalkspath noch eine
andere Welle von der Gestalt eines Sphiroides aus-
breiten. Diese Hypothese sucht er durch eine andere



iiber die Struktur dieses Kristalles zu stitzen und
schliesslich zeigt ihm der Erfolg, dass er das Richtige
erraten hat: eine einfache geometrische Konstruktion
gestattet 1thm, die Richtung des ausserordentlichen
Strahles zu finden, und mehr kann man schliesslich
von keiner Hypothese verlangen. Newlon gab, ob-
wohl er den Traité gelesen hatte, auf Grund seiner
Theorie eine falsche Konstruktion des ausserordent-
lichen Strahles. Die Doppelbrechung ist iiberhaupt
eine der schwiachsten Seiten der Theorie Newtons, sie
gibt ihm aber infolge einer von Huygens gemachten
Beobachtung Veranlassung zu einer neuen Hypothese
tiber die Beschaffenheit der Lichtteilchen, mit der er
sich schon stark der Auffassung nihert, dass das Licht
aus transversalen Atherschwingungen besteht. Huy-
gens liess ndmlich die beiden aus einen Kalkspath-
kristall austretenden Lichtstrahlen, in die ein einziger
Strahl zerlegt worden war, nochmals in einen zweiten
Kristall eintreten und bemerkte dabei, dass unter
den bekannten Umstidnden die beiden Strahlen nun
auch ihre Rollen vertauschen koénnen. Er begniigt
sich aber mit der Beschreibung dieser Erscheinung
und iiberlisst anderen die Erklarung, die nun Newton
darin zu finden glaubte, dass er den Lichtteilchen
«verschiedene Seiten» zuschreibt und dass eben
zwei aufeinander senkrechte Seiten dem ordentli-
chen und dem ausserordentlichen Strahle zukimen.

- die wissen, dass die Huygenssche Wellentheorie
des Lichtes linger als ein Jahrhundert vollig un-
beachtet geblieben ist, wenn auch kein geringerer als
der grosse Leonhard FEuler um die Mitte des 18ten
Jahrhundertes fiir sie eine Lanze gebrochen hat.
Seine Schriften dariiber waren aber zum Teil populér-

t



philosophisch und zum Teil wieder zu abstrakt ma-
thematisch, kurz sie blieben ohne Einfluss auf die
Physiker der damaligen Zeit. Nicht wviel besser
erging es den diesheziiglichen Veroffentlichungen des
englischen Arztes Thomas Young, der die an zwei
Stimmgabeln beobachteten Schwebungen auch auf
Lichtwellen tibertrug und das Interferenzprinzip und
damit natiirlich auch den periodischen Charakter der
Lichtwellen klar aussprach. Es ist sehr bezeichnend
fiir das schwankende Verhalten Newtons, dass sich
Young, um wenigstens bei seinen Landsleuten Gehor
zu finden, geradezu auf Newton als Patron der Wellen-
theorie beruft. Young war aber ein viel zu schwacher
Mathematiker, um gegen die damals auch in mathe-
matischer Hinsicht schon ziemlich entwickelte Emis-
sionstheorie aufzukommen. Das gelang erst Fresnel,
nachdem er die transversale Natur der Lichtwellen
erkannt hatte, nach langem und schwierigem Streite
mit den Vertretern der Emissionstheorie, der beiseinem
allzu frithen Tode noch nicht beendet war. Wenn
auch die Emissionstheorie sogar nach dem Tode Fres-
nels erst ihre hochste Entwicklungsstufe erreichte,
so trug sie doch schon den Todeskeim seit langer Zeit
in sich: die vielen, oft unmotivierten Hypothesen
fithrten schliesslich zu ihrer giinzlichen Niederlage
gegeniiber der Wellentheorie, die mit einigen wenigen
Hypothesen nicht nur die bereits bekannten optischen
Erscheinungen qualitativ und quantitativ beherrschte,
sondern auch im Stande war, neue Erscheinungen
vorherzusagen, deren tatsichliche Entdeckung ihre
Stellung natiirlich stark befestigte.

Schon diese groben Umrisse, mit denen ich Ihnen
das Lebenswerk des grossen Huygens zu zeichnen
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versucht habe, missen jeden, der dieses nur halbwegs
zu wiirdigen versteht, mit aufrichtiger Bewunderung
erfiillen. Und wenn es iiberhaupt einen Sinn hat zu
sagen, dass hervorragende Leistungen eines einzelnen
das Ansehen des ganzen Volkes, dem er entstammt,
vor aller Welt zu heben vermogen, dann kénnen die
Hollinder mit Recht auf ihren Huygens stolz sein.
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Exeursion au Lae-Noir et a la Riggisalp,

le dimanche 30 juin 1929.

Départ en autocar.

Arrivée au Lac-Noir,

Montée 4 la Riggisalp.

Conférence de M. le professeur PP, Girardin,
sur la géographie du Lac-Noir.

Conférence de M. le DT O. Biichi, conserva-
teur du Musée, sur la formation géologique
du Lac-Noir.

Diner du Rucksack.

Descente au Lac-Noir.

Conférence de M. le professeur Erhard, sur
I’hydrobiologie des lacs alpins.
Démonstration des appareils hydrobiologiques
de I'Institut de zoologie installés au Lac-
Noir, par M. Zemp, étudiant ¢s sciences
naturelles. Prise de plancton.

Les conférenciers n’ont pas livré de manuscrit,
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