Zeitschrift: Ferrum : Nachrichten aus der Eisenbibliothek, Stiftung der Georg

Fischer AG
Herausgeber: Eisenbibliothek
Band: 93 (2024)
Artikel: The silver bullet, or how to kill the quality "beast"
Autor: Leimbach, Timo
DOI: https://doi.org/10.5169/seals-1061986

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-1061986
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

The silver bullet,
or how to kill the
quality “beast”

Timo Leimbach

Software projects are often examples of projects that
fail to meet quality, time, and cost constraints. Despite
substantial efforts to enhance the development pro-
cess, there is no simple solution. Improving the process
has remained a pivotal question and sparked heated
debates. It covers a broad set of problems and solutions
ranging from the unique attributes of software and the
formal correctness of code to different approaches in
project management. Originally, emphasis was placed
on detailed specification and rigorous upfront planning,
known as the waterfall model, while in recent years
alternatives focused on incremental/iterative concepts,
now called agile methodologies. For both, quality and
its different conceptualizations have played an import-
ant role.

within software development, have gained a notorious

reputation for consistently failing to meet quality, time,
and cost constraints. Even during the early days of com-
puting, numerous examples existed where software fail-
ures had serious consequences, impacting not only quality
but also safety.

Information technology (IT) projects, particularly those

112 Leimbach: The silver bullet, or how to kill the quality “beast”

Drawing on a variety of metaphors, F. Brooks from IBM,
who headed the development of the operating system for
the famous S/360, brought this issue to a wider audience.
In explaining the delays and cost overruns of software
projects he compared them to “tar pits”. Caught in these
mires with no progress in sight, people search in vain for
a simple, straightforward solution that solves all the prob-
lems, the mythical “silver bullet” capable of slaying the
monster with one shot.’

From hard to soft — the evolution of a problem

Despite substantial efforts to enhance the development
process, the underlying issues have persisted and, in
some cases, even exacerbated over time. In the 1990s the
infamous CHAOS Report by Standish Group highlighted
the fact that more than two-thirds of all IT projects failed
to meet at least one of the three critical dimensions - cost,
quality, and time.2 Although there has been some improve-
ment in recent years, these challenges have not disap-
peared entirely. The question of how to enhance the soft-
ware development process remains pivotal. Various
approaches have been proposed, leading to heated de-
bates within the field. But as organizations are still in need

of better outcomes, finding effective solutions continues to
be a priority.

One of the central challenges when discussing how
to enhance IT projects lies in the dynamic nature of the
problem itself. During the nascent years of computing, at-
tention primarily focused on the hardware limitations of
computer systems, for example machines like the IBM 650
and their counterparts. These constraints — such as limit-
ed memory and computing capacity — necessitated a prag-
matic and concise approach by programmers in order to
devise workable solutions. However, an important shift
occurred during the 1960s with the emergence of a more
capable generation of computers, which started to remove
the hardware limitations. Conversely, the increasing capa-
bilities created a rising demand for novel functionalities,
including multi-user environments and diverse types of
applications. This transition marked a departure from the
classical, mathematically rooted problem-solving para-
digms - such as sorting and optimization — to more com-
plex, continuous operations. Examples include online
transactions and management information systems.?

As software systems
grew in complexity, their
manual verification became
increasingly challenging.

This shift from batch-oriented processing to real-time, on-
line systems brought about significant changes in soft-
ware development practices. Firstly with regard to testing
and improving: unlike earlier times, programs could no
longer be tested and adjusted in the same way. Batch pro-
grams, commonly executed one after another on comput-
ers, would halt in case of failure. Programmers then faced
the task of identifying and resolving issues before re-
running the program until successful. As multi-user sys-
tems with concurrent applications gained importance, this
approach faced limitations. The second change related to
the size of the programs: previously, codebases were
small enough to allow manual verification of logic and cor-
rectness of the code itself. However, as software systems
grew in complexity, this manual task became increasingly
challenging.

Given that, the advent of online/real-time systems
shifted the very essence of software development. As
pointed out already, software development had been as-
sociated with two distinct paradigms. The test-based ap-
proach opened up in the direction of a more engineer-
ing-oriented approach, which involved rigorous testing
and refinement. The other one was the artisanal approach,
often referred to as the “art of programming”, which em-
phasized craftsmanship. Developers meticulously crafted
code, akin to artisans and craftspeople shaping individual
pieces. Both models faced different challenges. While the

latter was ill-suited to the growing need for programs, the
first required more rigorous methods to ensure the re-
sults would live up to the desired outcome. Therefore, the
emergence of transactional systems necessitated a de-
parture from these existing paradigms.*

As computer technology
advanced, the limitations
imposed by hardware
gradually diminished.

This was underlined by the growing number of projects
that faced significant challenges. These projects included
IBM's well-known and already mentioned 0S/360, which
experienced delays spanning several years and incurred
costs much higher than budgeted for. While this example
is widely recognized, numerous other private companies
also struggled in their attempts to establish management
information systems or similar solutions. Altogether,
these experiences raised awareness of a critical issue
around software. Nowadays the term “software crisis”,
which is likely a retrospective label applied to it, is used to
describe this period. While from an academic perspective
the debate over whether this wording was already used in
contemporary discussion remains open, it is obvious that
the period was marked by changes.’ As computer technol-
ogy advanced, the limitations imposed by hardware grad-
ually diminished. Simultaneously, the challenges associ-
ated with software development gained prominence. The
roots of these challenges are multifaceted. They range
from the inherent intangibility of software, which defied
production standards established in other areas, to a shift
in focus towards human interaction with the new forms of
applications. This rise of the “soft” problems was exempli-
fied by the widely circulated tree swing cartoon during the
1970s.

In summary, the landscape of computer systems
continually shifted, requiring new strategies to address
the systems’ emerging complexities. The resulting prob-
lems in particular within software development were sig-
nificant, prompting among other things the need for new
approaches in software development. Acknowledging
these historical shifts is crucial to the understanding of
further dynamics.

In search of an answer

Not surprisingly, the quest for a solution to the problem
emerged in parallel with this shift in computing. Notably,
the SAGE (Semi-Automated Ground Environment) radar
system marked an important point. Its evolution in the
1950s was a catalyst for the development of new ap-
proaches to larger and complex software, primarily re-
ferred to as system development since hard- and software

Leimbach: The silver bullet, or how to kill the quality “beast” 113

development were closely intertwined. Simultaneously,
other ideas gained traction, and the first scientific work-
shops took up programming-related issues. Altogether,
this gave rise to a diverse set of approaches aimed at ad-
dressing the same fundamental problem. However, not all
of these approaches harmonized with each other. Discrep-
ancies in understandings of the problem and subsequent
solutions became evident,® for example in the course of
the famous NATO conferences on software engineering,
held in Garmisch-Partenkirchen in 1968 and Rome in
1969. The idea behind the conferences was to bring to-
gether scientists and practitioners from a variety of fields
“to shed further light on the many current problems in
software engineering, and also to discuss possible tech-
niques, methods and developments which might lead to
their solution”.’

The primary outcome of the conferences
was not a solution to the problem as such,
but rather an amplified awareness
of the challenges at hand.

The divergence in approaches and ideas may have been
exacerbated by the term “software engineering”, which
was introduced to mark a difference to terms like pro-
gramming. Some interpreted this term through the lens of
craftsmanship, drawing parallels to the art of program-
ming as promoted by Donald Knuth.®2 From this perspec-
tive, practice and talent played pivotal roles. Conversely, a
different group, predominantly composed of applied math-
ematicians, favoured a mathematically grounded approach
to formal software verification. This approach demanded
rigorous techniques for formal specification, analysis, and
development - techniques deeply rooted in theoretical
computer science. Another group of practitioners and sci-
entists, including Grace Hopper, engaged in more prag-
matic discussions about possible process models, ad-
dressing (among other problems) safety and quality.” Given
the substantial disparities in understanding and potential
solutions, the primary outcome of the conferences was not
a solution to the problem as such, but rather an amplified
awareness of the challenges at hand. This heightened
awareness clearly influenced the establishment and evo-
lution of academic disciplines, particularly in Europe. While
the field of computer science was already well established
within American universities and scientific circles, Europe-
an researchers still struggled to establish the disciplines in
their respective countries. As a consequence, the increased
recognition of software development challenges started to
play a pivotal role in shaping disciplines such as “Informa-
tik” at German universities. Intriguingly, the aforemen-
tioned applied mathematicians played a crucial role in
steering the academic field toward a more formal and the-
oretical trajectory, in contrast for example to the field of

114 Leimbach: The silver bullet, or how to kill the quality "beast”

computer sciences in the US sparking debates on its direc-
tion in the following years.®

In the discourse surrounding software develop-
ment, the concepts of quality and safety have been central
points of discussion. However, their precise meanings and
implications have often remained ambiguous. The concep-
tualization of safety was often closely tied to reliability and
malfunction prevention. Initially, the focus was primarily
on ensuring reliable operations of software systems. How-
ever, as software found its way into safety-critical domains
(such as aircraft control systems), safety considerations
expanded - in particular regarding prevention. While this
was only in a limited number of cases at that point, soft-
ware today pervades many other critical areas, including
automotive safety features and healthcare instruments.
Consequently, the definition of safety has evolved beyond
mere reliability.

Quality, on the other hand, received significant at-
tention in these discussions. Yet, like safety, it remained
conceptually hazy. Often, quality was discussed in terms of
quality assurance and quality control, which mirrored and
reflected the discussion patterns from other disciplines. In
this context quality assurance primarily referred to the de-
velopment process itself. This involves practices that en-
sure adherence to standards, efficient workflows, and de-
fect prevention. However, the boundaries between quality
assurance and quality control can be indistinct, especially
in early literature. Quality control on the other hand focus-
es on assessing the final product. Rigorous testing and val-
idation, like in other engineering disciplines, should ensure
product quality for the individual software. Interestingly,
software engineering diverges from other engineering
fields in its treatment of maintenance. While maintenance
is a critical aspect of system longevity, it has received less
attention and has become problematic. As software sys-
tems evolve, neglecting maintenance can lead to unfore-
seen issues, compromising both safety and quality.

The emergence of structured IT project management

The evolution of software development practices has been
influenced by the analogy to other engineering disciplines,
particularly manufacturing. Drawing inspiration from es-
tablished engineering fields, the practice of software devel-
opment moved its focus toward more structured approach-
es, with engineering management playing a pivotal role. In
this context, project management has emerged as a critical
discipline, addressing the challenges posed by large-scale
technology development endeavours. It emerged as a dis-
tinct field during the 1950s as a result of the challenges
experienced during ambitious, large-scale technology proj-
ects in the course of the Cold War arms and technology
race. Initially, project management aimed to equip practi-
tioners with the necessary skills and tools to navigate such
projects. Consequently, the knowledge base of it had a
strong focus on planning and control, especially schedul-

ing, optimization of resource utilization, budgeting and
timing, as well as controlling the implementation. Typical
tools developed and refined included Gantt charts as help
with visual planning, borrowed from engineering or critical
path analysis, which facilitates critical task identification
and optimized resource planning. The theoretical concepts
were often narrow and its underlying assumptions can be
traced back to the ideas of Taylorism and scientific man-
agement, which evolved in the 1920s and 1930s."

Within software development the idea was not to-
tally new, and structured approaches have a long history.
As early as the 1950s, the first examples of so-called
“structured programming methods” appeared. Among
these, one stands out: the approach that originated within
the context of the SAGE (Semi-Automatic Ground Environ-
ment) project and was first presented in 1956. This ap-
proach places significant emphasis on rigorous upfront
planning and detailed specification of requirements before
any coding begins — aimed at creating a solid foundation
for subsequent implementation. Quality assurance, in this
context, revolves around rigorous specifications. These
specifications are subject to validation through testing — a
practice borrowed from other engineering disciplines. Es-
sentially, quality is perceived as a control feature, ensuring
adherence to predefined standards. Notably, the approach
described dealt with a program comprising approximately

University of London
Computer Centre

WEWSLETTER

March 1973

74

)
ey

AS PROPOSBED By THE PROTECT SPavsor

AS GPECIFIED IN THE PREJRET RegueesT

BN N

AS DESIGNED BY THE SEMIOR SysteM S RS PROPuUCE> BY THE PrRoGRAMMERS
ALYS T

N AN

AS INSTALLED AT THE USERY SITE WHAT THE USER WANTED

AR L D (msmmronin) wvrved ——

1 Oldest dated version of the tree swing cartoon from the University of London
Computing Centre, 1973.

40 500 instructions. Given this manageable size, rigorous
processes could be applied to ensure the software’s prop-
er functioning. In a similar vein was the idea of formal
methods of verification, which were favoured by parts of
the scientific community. The idea here was also to specify
requirements rigorously, but instead of checks made by
hand it aimed at mathematical checks to ensure correct-
ness. However, these approaches have limitations.'>? While
they work well for smaller programs with a few thousand
instructions, they become impractical for larger software
systems. The proof process becomes prohibitively time-
consuming compared to the actual programming effort.
Consequently, these methods remained limited to specific
domains and were not widely adopted for general-purpose
software like modern operating systems, with their mil-
lions of lines of code.

The expansion of program sizes presented a per-
sistent challenge for structured approaches as well. Over
time, a methodological framework emerged, now widely
recognized as the waterfall model. This model prioritized
comprehensive specification, thorough requirement gath-
ering and meticulous initial planning. Its formalization can
be traced back to a seminal 1970 article by William Royce,
often credited as its inventor. Ironically, Royce’s intention
was to critique and enhance the model rather than advo-
cate its adoption as-is. He highlighted a notable challenge:

Leimbach: The silver bullet, or how to kill the quality “beast” 115

System
Requirements

Software
Requirements

Analysis

Program

Design

Testing

Operations

2 Waterfall model as described by Royce, red arrows marking the improvements suggested.

the lack of feedback mechanisms to accommodate alter-
ations and refinements based on insights gained from
subsequent stages. Particularly, he advocated for a sim-
plified iterative approach, wherein core functionalities, af-
ter an initial development, will be refined based on initial
testing. This underscored a pressing challenge in comput-
er system development that could not be adequately ad-
dressed through increasingly stringent specifications and
upfront planning alone.®

The challenge stemmed primarily from the contin-
uous proliferation of computer systems into new domains
of application. It became increasingly apparent that the
significance of software extended beyond mere function-
ality — the paramount concern became whether the
software fulfilled its intended purpose. Consequently,
quality control began to pivot towards a dual emphasis on
verification and validation. This conceptualization found
prominent expression in the V-model, where the left side
signifies verification and the right side validation. This
evolution coincided with a burgeoning discourse on the
nature of software quality throughout the 1970s.

Many conceptual models, such as Boehm's utility
model, predominantly emphasized technical aspects of
quality, such as reliability and testability. Aspects like aes-
thetics and usability were often subsumed under the ru-
bric of human experience. This trajectory mirrors the on-
going deliberations on quality within contemporary
engineering, where the imperative of quality steadily es-

116 Leimbach: The silver bullet, or how to kill the quality “beast”

calated, particularly as a means of differentiation in in-
creasingly competitive markets. Nonetheless, the pre-
dominant focus remained entrenched in technical
dimensions. A gradual shift in this paradigm commenced
with the emergence of quality management as a distinct
discipline. This transformation coincided with the rise of
influential consultants such as Deming, Crosby, and Ju-
ran, alongside scholarly investigations led by Garvin and
others. These developments led to an increasing empha-
sis on quality, also in the realm of software production.

For many within the software industry,
the intensified focus on procedures
and its attendant requirements for

documentation appeared misguided.

Primarily, the rise of quality management systems cata-
lysed efforts to enhance existing methodologies. This
led to divergent avenues for integrating process quality
into software development. One such avenue was the
aforementioned V-model of development, designed to
ensure not only verification and validation but also a co-
herent process model. Another approach involved the
introduction of maturity models aimed at assessing the
quality of development processes. Additionally, entirely
new process-oriented project management frameworks,

Manifesto for Agile Software Development

‘We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

3 The title page of the Agile Manifesto set over an intentionally blurred image of the
2001 meeting, where the blurring is intended to underscore that all worked together.

such as Projects in Controlled Environments (PRINCE),
were formulated and adopted as industry standards.
Despite these concerted efforts towards improvement,
the persisting challenges remained evident. As under-
scored by the aforementioned CHAOS report, the num-
ber of failed IT projects remained high throughout the
1990s.™

The rise of agile - the role of quality

The increased emphasis on quality did not inherently
pave a clear path forward. For many within the software
industry, the intensified focus on procedures and its
attendant requirements for documentation appeared
misguided. Rather than tackling issues such as the
challenges stemming from the intangible nature of
software and its ever-changing requirements, the
emerging frameworks often seemed burdensome and
inflexible. Consequently, there arose a desire for alterna-
tive solutions to the complexities of software develop-
ment. During the 1990s, a variety of approaches began
to surface, including methodologies now recognized
as Scrum, Extreme Programming, and Crystal Clear,
among others, collectively characterized as lightweight
methods. A gathering of proponents of these method-
ologies convened at a ski resort in Utah in 2001, original-
ly dubbed the “Lightweight Methods Conference”. This
gathering resulted in what is now commonly referred

to as the Agile Manifesto, encapsulating a shared set of
principles.'™

Although the various methodologies differ from
each other, they share a common enemy: the inflexible
“waterfall” model. While it has been demonstrated earli-
er that the waterfall model never truly existed in a
singular form and numerous variations were extant,
it served as a representation of a process and a unifying
foil, or even a straw man. Building upon this commonali-
ty, it became possible to delineate four values and
twelve principles that, to some extent, encapsulated the
diverse methodologies, based on the observation that
they all drew upon similar conceptual frameworks
and theoretical underpinnings. One such foundational
concept was the notion of incremental and iterative
processes, which had been recognized since the 1950s
and, as evidenced by the aforementioned ideas of Royce,
were fairly well known. Numerous scientific publications
in the 1970s and 1980s explored this concept, resulting
in various methodologies such as rapid prototyping
or evolutionary development (EVO), which served as
precursors for some of the methodologies discussed.
Meanwhile, proponents of other methodologies focused
on other roots for iterative processes. Scrum, for exam-
ple, is based on the principles expressed in the “New
New Product Development Game”, inspired by product
development processes in Japanese consumer electron-
ics companies.'®

Leimbach: The silver bullet, or how to kill the quality “beast” 117

1. Determine

objectives
. Requirements
Review plan
Concept of
operation
Development
plan
Test plan
4. Plan the Release

next iteration

4 Spiral model of iterative development after Barry Boehm.

The central idea was to
achieve heightened flexibility,
facilitating adaptive responses

to evolving demands.

The central idea was to achieve heightened flexibility,
facilitating adaptive responses to evolving demands. This
emphasis on flexibility as a fundamental value required
alignment with other key aspects. Among these, one of
the most prominent is the empowerment of teams, af-
fording them the autonomy to devise and modify plans
according to changing needs. This principle resonates
with similar ideologies advocated by figures like Kelly
Johnson, the head behind the Skunk Works at Lockheed,
whose presentations and writings favoured comparable
ideals. Concurrently, there was a concerted effort to ac-
tively engage users and customers, with a particular em-
phasis on delivering value to them. This emphasis echoes
the significance of user involvement in participatory
design practices, which, for instance, contributed to the
development of methodologies such as EVO and Rapid
Prototyping. These methodologies had their roots in vari-
ous communities.’

The emphasis on customer centricity, particularly
on delivering customer value, also played a pivotal role in
the second area of influence for shaping agile methodolo-
gies: leanness. Lean methodology is closely intertwined
with the concept of lightweight processes, as one of its fun-

118 Leimbach: The silver bullet, or how to kill the quality “beast”

Cumulative cost

Progress 2. Ildentify and

resolve risks

Operational

A Prototype 1 Prototype 2

Prototype
Pk Detalled
Requirements Draft d .
esign
Verification & Code
Validation
Integration

Verification &
Validation

Test
Implementation

3. Development
and test

damental principles concerns waste reduction. However, it
is important to note that lean is a rather broad and adapt-
able framework. It draws inspiration from traditional Japa-
nese production methods as well as American manage-
ment principles, representing a synthesis of ideas that
emerged post-World War Il.

The American influence is strongly connected to
the work of Deming, who moved to Japan in the 1950s.
Deming introduced the PDCA (Plan-Do-Check-Act) cycle,
initially developed by Shewhart, to Japan. This cross-
fertilized with notions of waste reduction, stemming from
the imperative to optimize scarce resources before,
during, and after the war. Additionally, it incorporated an
emphasis on regularity to facilitate a continuous flow of
work and improvements. This approach aims to achieve
optimal workflow balance and prevent distortions through
proactive problem recognition and resolution. Central to
lean methodology is the notion of the team as the funda-
mental unit of collaboration, aligning well with Japanese
cultural values.

These ideas found expression in various tools,
such as Kaizen (continuous improvement), and methodol-
ogies like fishbone diagrams for problem identification.
Often, they are amalgamated into comprehensive frame-
works such as the Toyota Production System (TPS), which
later inspired the concept of Total Quality Management
(TQM). Across these approaches, quality is conceptual-
ized differently compared to Western business. It tran-
scends being merely a technical attribute of the product;

instead, it is viewed as a process aimed at delivering a
product that aligns with customer preferences and is per-
ceived as valuable. This entails avoiding unnecessary
features and concentrating on essential needs, a strategy
that propelled Japanese car manufacturers ahead of
their American and European counterparts.’®

In software development, these principles mani-
fested as customer-centric development practices in-
volving regular engagement with customer representa-
tives. This approach entails a focus on the core
functionalities of software through the prioritization of
backlogs, a consistent workflow (measured by velocity),
and a commitment to continuous learning and improve-
ment, with retrospectives serving as an integral compo-
nent. These elements are most prominently evident in
methodologies such as Scrum and Extreme Program-
ming (XP), which are among the most widely recognized."

Principles manifested as
customer-centric development
practices involving regular engagement
with customer representatives.

Moreover, the naming of these methodologies as “agile”
reflects the influence of the Japanese understanding of
quality. The term “agile” originally emerged in the Ameri-
can manufacturing industry in the early 1990s in re-
sponse to the competitive success of Japanese compa-
nies. Faced with this challenge, the American industry
sought new ideas to shape its future trajectory. In a report
sponsored by the American military among others, and
conducted by the lacocca Institute at Lehigh University
(named after Chrysler’'s longstanding CEO Lee lacocca),
agility was identified as the key response to these chal-
lenges. Published in 1991, the report defined agility as
the integration of “flexible technologies of production
with the skill base of knowledgeable workforce, and with
flexible management structures that stimulate coopera-
tive work”.?®

This initiative led to the establishment of the Agile
Manufacturing Enterprise Forum, later known as the
Agility Forum, which included companies such as Boeing,
TRW, Chrysler, and GM, promoting agility as a concept.
These companies collaborated on initiatives aimed at de-
veloping new processes. During this period, Kent Beck
and his colleagues, for instance, experimented with XP
during the development of a new payroll system called C3
at Chrysler. Given this context, it is not surprising that, in
discussions regarding a suitable name for the common
value set, “agile” emerged as a fitting term, while alterna-
tives such as “lightweight” were considered inappropri-
ate for various reasons.?’ In the years following “agile”
ultimately became the overarching umbrella term for al-
ternative methodologies in software development.

Conclusions: Towards new paradigms

The evolution of software development methodologies has
always struggled with the question of quality. It is notewor-
thy that the shifting perspectives on quality and its defini-
tion often mirror contemporary management trends and
techniques. This underscores that the values and mindsets
associated with agile, frequently discussed in the context
of software development, are not unique to this field; rath-
er, they have their origins in practices and concepts from
various industries. Instead of solely exploring how these
principles can be moved from IT to other sectors, it may be
beneficial to delve into their origins and analyse how they
emerged, subsequently developing strategies to adapt
them to different industries.

Concerning the software development process it-
self, it becomes evident that the complexity of the chal-
lenges often originates from human-made factors. Para-
doxically, the solution often lies in embracing simplicity
and adopting incremental approaches to problem-solving,
despite the fact that software is frequently used to build
complex solutions. Furthermore, this challenges conven-
tional metrics for success, such as time and cost, as well
as the elusive concept of quality.

Notably, respected practitioners like Tom DeMarco,
in his reflection on the 50-year development since the first
conference on software engineering in 1968, advocate for
a shift in focus. Instead of solely evaluating the develop-
ment process, there is a need to assess the transforma-
tions that software brings to society and businesses - the
actual value it delivers. This reorientation emphasizes the
importance of looking beyond process-oriented metrics to
realize the true impact of software.

Leimbach: The silver bullet, or how to kill the quality “beast” 119

About the author

Timo Leimbach, Prof. Dr.

Timo Leimbach is associate professor at the department
for Digital Design and Information Studies, Aarhus
University, where he researches project management
and digital innovation and their interrelations with
business and society. Before that he worked and re-
searched at, among others, Fraunhofer IS|, the Research
Institute for the History of Technology and Science of the
Deutsches Museum, the Institute for Information Sci-
ences and New Media at LMU Munich and the Department
for Management, Politics and Philosophy at the Copenha-
gen Business School. He received a master’s degree in
Economic and Modern History as well as Business
Administration from the University of Mannheim, Germa-
ny (2003) and obtained his PhD from the LMU Munich for
his thesis on the development of the German software
industry (2009).

Aarhus University, Denmark
timo.leimbach@cc.au.dk

Related article in the Ferrum archive:
“Die Entwicklung der logischen Basis

der Computerwissenschaften”

by Heinz Zemanek in Ferrum 58/1987

Annotations

1

10

1

Frederick P. Brooks, The Mythical Man-month:
Essays on Software Engineering, 25th
Anniversary Edition, Boston 1995. Also contains

the later article on the silver bullet.

Johan Eveleens and Chris Verhoef, The Rise and
Fall of the Chaos Report Figures, in: IEEE
software 27(1) (2009), p. 30-36.

Thomas Haigh and Paul Ceruzzi, A New History
of Modern Computing, Boston 2021, p. 59-138.

Mike Mahoney, Finding a History for Software
Engineering, in: [EEE Annals of the History of
Computing 26(1) (2004), p. 8-19.

Tom Haigh, Crisis, What Crisis? Reconsidering
the Software Crisis of the 1960s and the Origins
of Software Engineering. Paper presented at
Tensions of Europe Conference, Sofia, Bulgaria,
2009, available at: https://www.tomandmaria.
com/Tom/Writing/SoftwareCrisis_SofiaDRAFT.
pdf.

Mahoney (see n. 4); Sandy Payette, Hopper and
Dijkstra: Crisis, Revolution, and the Future of
Programming, in: IEEE Annals of the History of

Computing 36(4) (2014), p. 64-73.

Peter Naur and Brian Randell, B. (Ed.), Software
Engineering: Report of a Conference Sponsored
by the NATO Science Committee, Garmisch,

Germany, 7-11 October 1968, Brussels 1969, p. |

Donald Knuth, Art of Programming, Volume 1:

Fundamental algorithms, Boston 1997.

Mahoney (see n. 4); Naur/Randell (see n. 7);

Payette/Hopper/Dijkstra (see n. 6).

Christine Pieper, Hochschulinformatik in der
Bundesrepublik und der DDR bis 1989/1990,
Stuttgart 2009, p. 159-164.

Lauri Koskela and Gregory Howell, The
Underlying Theory of Project Management Is
Obsolete, in: IEEE Engineering Management

Review 2(36) (2008), p. 22-34.

12

13

14

15

16

18

20

21

22

23

Herbert Benington, Production of Large
Computer Programs, in: Annals of the History of

Computing 5(4) (1983), p. 350-361.

William W. Royce, Managing the Development of
Large Software Systems, in: Proceedings of

IEEE WESCON, 1970, p. 328-388.

Peter Morris, Reconstructing Project Manage-

ment, London 2013, p. 52-98.

Robert Martin, Clean Agile: Back to Basics,
Boston 2019, p. 3-13.

Darrel Rigby, Jeff Sutherland and Hirohito
Takeuchi, The Secret History of Agile Innovation,
in: Harvard Business Review, 2016, accessible
at: https://hbr.org/2016/04/the-secret-
history-of-agile-innovation; Craig Larman

and Viktor Basili, Iterative and Incremental
Developments: a Brief History, in:

Computer 36(6) (2003), p. 47-56.

Larman/Basili (see n. 16).

Kieran Conboy, Agility from First Principles:
Reconstructing the Concept of Agility in
Information Systems Development, in:
Information Systems Research 20(3) (2009),
p. 329-354.

Martin (see n. 15), p. 14-26.

Roger Nagel and Rick Dove, 21st Century
Manufacturing Enterprise Strategy: an

Industry-led View, Part 1, Bethlehem 1991, p. 1.

Martin (see n. 15), p. 10-13.

Roger Atkinson, Project Management: Cost,
Time and Quality, Two Best Guesses and a
Phenomenon, its Time to Accept Other Success
Criteria, in: International Journal of Project

Management 17(6) (1999), p. 337-342.

Tom DeMarco, Software Engineering: An Idea
whose Time Has Come and Gone?, in: IEEE

Software 26 (2008), p. 96.

Image Credits

1 © University of London.

2 © Timo Leimbach.

3 © Alistair Cockburn.

4 After: Barry Boehm, Spiral Development:

Experience, Principles, and Refinements, Special

Report of the Software Engineering Institute,

Carnegie Mellon University, July 2000.

Leimbach: The silver bullet, or how to kill the quality “beast”

121

	The silver bullet, or how to kill the quality "beast"

