
Zeitschrift: Ferrum : Nachrichten aus der Eisenbibliothek, Stiftung der Georg
Fischer AG

Herausgeber: Eisenbibliothek

Band: 59 (1988)

Artikel: Bewertung von Computer-Software

Autor: Ludewig, Jochen

DOI: https://doi.org/10.5169/seals-378217

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-378217
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Prof. Dr. Jochen Ludewig
Institut für Informatik
ETH-Zentrum
CH-8092 Zürich

Bewertung von Computer-Software
Zielsetzung und Überblick
Diejenigen, die von einem technischen Produkt auf irgendeine Weise
betroffen sind, haben den Wunsch (oder sollten doch wenigstens die
Möglichkeit haben), das Produkt zu bewerten und je nach Bewertung
auf seine Eigenschaften oder auf seinen Einsatz Einfluss zu nehmen.
Mein Beitrag diskutiert den speziellen Fall, in dem das Produkt ein
Software-System ist.

Wie gezeigt wird, ist die Beurteilung von Software grundsätzlich sehr
schwierig und daher prinzipiell ungenau und unzuverlässig. Für die
unmittelbar Betroffenen, also den Verkäufer und den Kunden, genügt
aber, wie man am florierenden Handel mit Software sieht, in den
meisten Fällen eine grobe Beurteilung.

Völlig anders ist die Situation derer, die durch Software indirekt betroffen

sind, ohne eine Chance zur Beurteilung und zur Einflussnahme zu
haben,- ihnen droht, wie im Beitrag begründet ist, eine Technokratie
im Sinne des Wortes. Am Schluss sind einige Forderungen formuliert,
die dieser Gefahr entgegenwirken sollen.

Der Beitrag befasst sich nur mit dem Aspekt, ob und wie Bewertung
und Einflussnahme möglich sind,- die Bewertung selbst, beispielsweise
die der sozialen Folgen, ist hier nicht beabsichtigt.

Ich hätte diesen Text gern mit einigen Abbildungen aufgelockert. Aber
Software ist abstrakt, man kann sich von ihr kein Bild machen. Das ist
gerade ein Aspekt meines Themas.

Software und Software-Systeme
Zunächst ist zu klären, was Software bedeutet. In den Begriffsnormen
der IEEE (1983) steht:
Software
(1) Computer programs, procedures, rules, and possibly associated

documentation and data pertaining to the operation of a computer
system.

(2) Programs, procedures, rules, and any associated documentation
pertaining to the operation of a computer system. (ISO)

Entsprechend verstehe ich unter einem Software-System die Gesamtheit
aller Programme, Verfahren und Regeln inklusive jeglicher zugehöriger
Dokumentation, die einer bestimmten Problemlösung zugeordnet ist.
Damit sind alle Informationen eingeschlossen, die zum Rechner-Programm

in Beziehung stehen, auch wenn sie informal oder chiffriert sind.
Einzige Bedingung ist, dass sie in permanenter Form vorliegen und
zugänglich sind: Gedanken oder Gespräche zählen nur zur Software,
wenn sie aufgezeichnet wurden.

Ein Software-System ist ein technisches Produkt, und viele Aussagen
lassen sich daher von anderen Produkten auf Software übertragen
(Ludewig, 1987). Allerdings gibt es spezielle Merkmale, vor allem sind
zu nennen
• die im Vergleich zu anderen Artefakten extreme Komplexität
• der immaterielle Charakter und die Möglichkeit, fast ohne Aufwand

Kopien herzustellen

• die sprungartige Änderung der Eigenschaften bei Modifikationen
(d. h. das Fehlen der Stetigkeit)

• das Fehlen einer natürlichen Struktur

Damit entsteht insgesamt eine sehr spezielle Art von Produkten.

Der Laie nimmt meist an, dass die Funktion eines Programms durch Testen
(d. h. Ausprobieren) sicher überprüft werden kann. Das folgende Beispiel
zeigt aber, wie aussichtslos dieses Unterfangen ist:

90

Gegeben sei ein winziges Programm, das zwei Zahlen bekommt und
deren Summe ausgibt. Die Zahlen seien auf den Bereich 0 bis 232-l,
also etwas über 4 Milliarden, beschränkt, eine bei modernen Computern
typische Grenze. Wir wollen nun probieren, ob alle Additionen korrekt
ausgeführt werden. Das bedeuteet 232 x 232 Additionen, von denen
knapp die Hälfte den Zahlenbereich überschreitet, also 263 legale
Additionen. Wenn wir den Test automatisieren, so dass eine Addition in
einer Mikrosekunde durchgeführt und geprüft wird, so dauert der
gesamte Test etwa

263 x io^s 9.22 x 1012s 2.56 x 109 h 292271 a

also fast dreihunderttausend Jahre!

Wir können also selbst elementare Programme keinesfalls «austesten»,
wir können nur versuchen (wie es auch die Elektroniker bei komplizierten
Schaltungen tun müssen), sie gleich richtig zu konstruieren. Leider gibt
es aber dafür kein zuverlässiges Verfahren, und in der Öffentlichkeit
sind viele zum Teil spektakuläre Fälle bekannt, in denen trotz erheblicher
Anstrengungen Fehler gemacht wurden, unentdeckt blieben und grossen
Schaden verursacht haben. Am bekanntesten ist der Verlust einer
amerikanischen Venussonde, die ihr Ziel weit verfehlte, weil eines der
Programme an einer Stelle einen Punkt enthielt, wo ein Komma stehen sollte
(vgl. Neumann, 1988).

Das Beispiel oben zeigt, mit welcher unvorstellbaren Komplexität wir
es bei Software zu tun haben: In Abwandlung einer häretischen Frage
(«Kann Gott einen Stein machen? Kann er ihn aufheben? Kann er ihn

so gross machen, das er ihn nicht mehr aufheben kann?») lässt sich also
schon zu Beginn feststellen: Ganz zweifellos kann sich der Mensch
Dinge ausdenken, die er anschliessend nicht mehr versteht, und die
Kluft zwischen der konstruktiven und der analytischen Fähigkeit ist
vermutlich nirgends so evident wie bei Software.

Andere wichtige Software-Qualitäten entziehen sich bis heute der
Quantifizierung und lassen daher vorerst keine objektive Bewertung
zu. Beispiele sind die Robustheit oder die Flexibilität gegenüber
Veränderungen in der Umgebung (Adaptabilität, Portabilität, Modifizierbarkeit).

Arbeiten, die auf eine Quantifizierung solcher Eigenschaften zielen,
laufen heute auf der ganzen Welt (Stichwort «Qualitätsmasse»), doch
sind die Ergebnisse bisher wenig ermutigend.

Aspekte der Bewertung
Für das hier gewählte Thema ist echte Ein-Personen-Software, wie sie
vor allem spielerisch geschaffen wird, ohne Bedeutung. Ich unterstelle
also, dass es zumindest zwei Beteiligte gibt, den Hersteller und den
Kunden. Dabei kommt es nicht darauf an, ob diese Parteien auch
juristisch unterschieden sind, also ob sie in verschiedenen Organisationen
arbeiten.

Beim Thema «Bewertung von Computer-Software» stellen sich zunächst
die Fragen:
• Wer bewertet?
• Mit welchem Zweck, aus welcher Sicht wird bewertet?
Für diesen Beitrag sind die Fragen wie folgt zu beantworten:
• Wer, das sollen diejenigen sein, die mit der Software oder ihren

Auswirkungen zu tun haben, also je nach Art der Software nur Hersteller
und Kunde oder- beispielsweise im Extremfall einer militärischen
Anwendung - alle Menschen.

• Der Zweck der Bewertung soll sein festzustellen, ob der Einsatz eines
Programms nützlich oder schädlich ist, und zwar aus der Sicht und
Interessenlage des Bewertenden.

Entsprechend führt der Beitrag von der praktischen Bewertung der
Gebrauchstauglichkeit zur Einschätzung der Software durch die Öffentlichkeit.

91

Bewertung durch Fachleute
Die Bewertung eines Programms findet zunächst im Bereich zwischen
dem Hersteller und dem Kunden statt. Eventuell können weitere Fachleute

herangezogen werden.

Der Hersteller hat eigentlich alle Voraussetzungen, um sein Produkt
realistisch zu beurteilen und wenn nötig zu verbessern. Es gibt dabei
aber einige Schwierigkeiten:
• Subjektiv neigt der Programmierer (und vielleicht jeder Ingenieur)

dazu, im Produkt nicht das zu sehen, was er wirklich realisiert hat,
sondern das, was er realisieren wollte. Der Unterschied ist aufgrund
der Komplexität eines Software-Systems schwer festzustellen.

• Wo mehrere Personen an einem System mitwirken (und das ist bei
Software praktisch stets der Fall), gibt es niemanden mehr, der den
vollen Überblick hat.

• Eine Beurteilung kann sich nur an Kriterien orientieren. Diese fehlen
bei Software in der Praxis meist teilweise und oft ganz.

• Der verständliche Wunsch, in einem oft unseriösen Wettbewerb mit¬

zuhalten, erhöht nicht die Bereitschaft, negative Wertungen
mitzuteilen.

Der Kunde, der ein Programm auf seine Eignung untersucht, hat gewisse
Erwartungen bezüglich Funktionalität und Schnittstellen (Hardware und
Betriebssystem, Datei-Formate, Bedienung). Diese Dinge lassen sich
(wenn auch nur mit beträchtlichem Aufwand) prüfen. Allerdings ist er
dabei oft fachlich überfordert. Die nicht-guantifizierbaren Eigenschaften
kann er nur durch den Gebrauch beurteilen (siehe unten, Bewertung
durch die Benutzer). Seine Einflussmöglichkeiten sind durch die
Marktmechanismen gegeben..

Eine unabhängige Prüfstelle kann die gleichen Untersuchungen wie
der Kunde vornehmen,- da sie allerdings nicht für den eigenen Bedarf
prüft, muss sie Anforderungsprofile entwickeln, in denen sich nicht unbedingt

jeder Kunde wiederfindet. Die Prüfstelle hat u. U. Zugriff auf die
Entwicklungs- und Wartungsdokumente, also auch auf den Programmcode,

und sie verfügt auch über das Fachwissen, um diese Information
zu analysieren. Damit könnte sie über die oben genannten nicht quantifi-
zierbaren Eigenschaften Aussagen machen. In der Praxis wird von dieser
Möglichkeit allerdings kaum Gebrauch gemacht, weil die Wertungen
nicht objektivierbar sind. Die Einflussmöglichkeiten der Prüfstellen sind
erheblich, da Zertifikate grossen Einfluss auf die Marktposition der
Software haben.

Die wenigsten Probleme schafft die Bewertung durch die Benutzer (die
meist nicht mit dem Kunden identisch sind). Typisch ist hier die Schreibkraft,

die ein (von höherer Stelle ausgewähltes) Textverarbeitungssystem
verwendet. Damit entsteht durch den Gebrauch eine -wenn auch
subjektive und durch die spezielle Anwendungssituation geprägte - Bewertung.

Allerdings ist diese wegen des oft hohen Einarbeitungsaufwands
meist nur dann möglich, wenn das Software-Paket bereits angeschafft
ist. Die direkten Einflussmöglichkeiten der Benutzer sind gering, aber
ihr passiver Widerstand hat schon manchen Software-Entscheid des
Managements umgestossen.

Zusammenfassend lässt sich feststellen, dass die unmittelbar beteiligten
Fachleute keineswegs in der Lage sind, Software vollständig oder objektiv

zu bewerten, stets wird nur ein Ausschnitt erfasst und subjektiv beurteilt.

Für den praktischen Gebrauch genügt diese Bewertung meist,
trotz ihrer Risiken. Am günstigsten ist die Lage, wo Software immer wieder

verwendet wird (Standard-Software). Dadurch werden nicht nur
die Herstellungskosten aufgeteilt (oder die Gewinne vervielfacht),
sondern die intensive Benutzung wirkt gleichzeitig als gigantischer Test,
der entsprechend viele Fehler anzeigt. Nach einiger Zeit (und vielen
Korrekturen) ist die Zahl der Restfehler tolerierbar geworden - oder
das Produkt ist vom Markt verschwunden.

92

Bewertung eines Programms
durch die Betroffenen
Da Software nicht im Vacuum hergestellt, gehandelt und verwendet
wird, sind von ihr nicht nur die direkt Beteiligten betroffen, sondern u. U.
sehr viele Menschen, entweder (bei Programmen, die in technischen
Systemen eingesetzt sind) durch direkte physische Wirkung oder (bei
Anwendungen in menschlichen Organisationen) durch Beeinträchtigung
der persönlichen Rechte und Möglichkeiten. Beispiele sind

• Verkehrssysteme (Ampelsteuerungen, Eisenbahn, Flugverkehr)

• grosse Anlagen mit hohem Betriebsrisiko (Kraftwerke, chemische
Prozesse, Staudämme)

• militärische Einrichtungen (rechnerunterstützte Lagebewertung,
automatische Auslösung und Steuerung der Waffen)

• Computeranwendungen zur Speicherung und Auswertung persönlicher

Daten (alle Programme in Verwaltungen, bei der Polizei, in
Firmen, Banken usw.)

In allen diesen Fällen besteht neben dem (tatsächlichen oder vermeintlichen)

Nutzen ein Risiko, dass Menschen durch Software zu erheblichem

Schaden kommen.
So besteht beispielsweise der Nutzen einer Software für die Verfahrenstechnik

im günstigsten Fall darin, dass die Leistung der Anlage optimal
genutzt wird, wenig Schadstoffe erzeugt werden und kaum
Überwachungsarbeiten erforderlich sind. Das Risiko entsteht durch die
Schäden an Menschen, an der Natur und an Sachen, die durch ein
Versagen der Software verursacht werden können.

Formen der Auseinandersetzung
mit der Technokratie
Die vorgesehenen Möglichkeiten, auf Systeme irgendeiner Art einzuwirken,

sind in demokratischen Staaten unterschiedlich, aber typisch wie
folgt gestaffelt:

Zuordnung Einfluss

voll im privaten Bereich frei entscheidbar

Grenze des privaten Bereichs Besprechung mit Beteiligten

Arbeitsbedingungen Mitbestimmung oder Mitsprache

Lebensumgebung Stimmrecht auf Gemeindeebene usw.

Gesetzgebung, Beziehungen zu
anderen Staaten

Stimmrecht auf Landesebene

Darüber hinaus gibt es Wege, den Widerstand gegen eine Entwicklung
zu demonstrieren:

• Protest in der Öffentlichkeit (Demonstration)

• Symbolische Sabotage (heute vielfach als «Aktionen»)

• Sabotage mit praktischer Wirkung

Die Grenzen zwischen diesen Formen sind fliessend.

Die zweite dieser Widerstandsformen liegt bezüglich ihrer Legalität
im Grenzbreich,- daher gibt es dazu auch eine schwankende Rechtsprechung.

Zumindest werden solche Aktionen aber von vielen Menschen
als moralisch legitim betrachtet (Beispiel: Verhindern der Giftmüllverklap-
pung in der Nordsee).

Untersucht man, welche Rolle die Einfluss- und Widerstandsformen bei
Software spielen, so zeigt sich, dass die Betroffenen, soweit sie nicht
Hersteller, Kunde oder Berater sind, praktisch keinerlei Möglichkeiten
haben. Die systemkonforme Mitwirkung ist nicht anwendbar:
• Die Betroffenen werden nicht informiert.

Es ist extrem schwierig (und scheitert sogar innerbetrieblich in vielen
Fällen), die notwendigen Informationen zusammenzutragen und so

93

Literatur
Brauer, W, Hesse W (Hrsg.) (1987):
Themenheft «Zur Verantwortung des
Informatikers». Mit Beiträgen von W
Brauer und W Hesse,- D. L. Parnas,-
H. W. Hofmann,- K. H. Bläsius und
J. H. Siekmann. Informatik-Spektrum,
10 IFebruar 1987), 1-39.

Goldberg, A. (1985):
President's letter: Reliability of computer
systems and risks to the public.
Communications of the ACM, 28, 131-133.

Ludewig, J. 11987):
Software Engineering: Computer-Programme

als technische Produkte. Technische

Rundschau, 79 (19871, Heft 7,
50-57.
Neumann, P. (19881:
Software Failures. Buch mit einer Sammlung

spektakulärer Software-Fehler.
Genauer Titel unbekannt, erscheint
1988.

Volk, R.(1987):
Der Computer als Herausforderung
an die menschliche Rationalität.
Informatik-Spektrum, 10 (April 19871,57-66.

aufzubereiten, dass der Laie damit etwas anfangen kann. Dieser
Aufwand wird in der Praxis nicht betrieben.

• Die Voraussetzung zur Auseinandersetzung reicht bei den Betroffenen
nicht aus. Selbst wenn man unterstellt, dass die Intelligenz homogen
verteilt ist, erfordert die Auseinandersetzung mit Software-Entscheiden

Ausbildung und Erfahrung, über die nur eine winzige Minderheit
verfügt.

• Die Betroffenen haben keinen Einfluss.
Selbst in der Schweiz, wo durch die direkte Demokratie sehr viele
Einzelentscheide durch Abstimmungen getroffen werden können,
beschränkt sich die Mitwirkung auf eine Auswahl zwischen JA und
NEIN (was selbst zum Gemüse-Einkauf nicht ausreicht). Wahlen
ersetzen die Sachentscheide durch Personalentscheide und schliessen
damit einen direkten Einfluss auf technische Entwicklungen aus.

Noch weniger als die traditionellen Mitwirkungsmöglichkeiten lassen
sich die Widerstandsformen gegen Software einsetzen:
• Für eine plakative Forderung ist die Materie zu komplex, im Falle einer

Demonstration wäre die Zielsetzung kaum zu vermitteln, zumal kaum
einer der Journalisten verstände, worum es geht.

• Symbolische Sabotage scheitert am nichtmateriellen Charakter der
Software. Man kann sich wohl vor ein Waffenlager auf die Strasse
setzen oder im Schlauchboot vor ein Walfangschiff fahren, man kann
aber nicht Software blockieren.

• Echte Sabotage ist nicht nur definitv illegal, sondern auch völlig
aussichtslos, weil sich Software praktisch kostenlos und fast verzögerungsfrei

vervielfältigen und über beliebige Distanzen transportieren
lässt. Darum hat die Zerstörung von Software keine Wirkung (ausser
in Organisationen, die die elementaren Regeln der Software-Sicherung

vernachlässigen). Eine Gefahr bildet dagegen die unbemerkte
Sabotage, also das «Verseuchen» von Programmen. Allerdings ist
dies extrem schwierig und angesichts der laufend verbesserten Siche-
rungsmassnahmen praktisch nur Insidern möglich.

Regeln für den verantwortungsvollen
Einsatz von Software
Fälle der individuellen Ohnmacht gibt es im gesamten Bereich der Technik,

die Situation ist nicht softwarespezifisch. Beispiele sind gerade
alle diejenigen technischen und organisatorischen Systeme, in denen
auch Rechner eingesetzt werden können, also beispielsweise Strassen
und Transportsysteme, Waffensysteme, Staudämme und Kraftwerke,
Fabriken und Lagereinrichtungen. Durch die Verwendung von Software
gibt es aber insofern einen gualitativen Sprung, als alle traditionellen
Formen der Mitwirkung und des Protests unbrauchbar werden.

Die Verwendung von Software in Anwendungen mit vielen Betroffenen
stellt also einen technokratischen Vorgang im strengen Sinne des Wortes

dar: Der Mensch wird von der Technik wesentlich beeinflusst (also
regiert), ohne sich dagegen wehren zu können. Welche Schlüsse sind
daraus für die Anwendung von Software zu ziehen?
1. Die Entscheidung, in einem bisher von Menschen kontrollierten System

Software einzusetzen, hat sehr weitreichende Konseguenzen. Wo
diese nicht überblickt werden oder nicht akzeptabel sind, kommt
die Verwendung von Software nicht in Frage (Goldberg, 1985).

2. Da die Möglichkeit der Mitwirkung bei Software-Entscheiden extrem
eingeschränkt ist, erfordern solche Entscheide mehr als nur eine einfache

Mehrheit, sie erfordern einen mehr oder minder vollständigen
Konsens.

3. Da die Fachleute einen Informationsvorsprung haben, der noch deutlich

höher als auf anderen technischen Gebieten ist, tragen sie in
besonderem Masse Verantwortung. Auf diese Verantwortung muss
immer wieder hingewiesen, sie muss unterrichtet und eingefordert
werden (Brauer, Hesse, 1987,- Valk, 1987).

94

4. Entscheide in Sachen Software sind aus den dargelegten Gründen
tendenziell obskur und verlangen daher in besonderem Masse nach
Transparenz,- die Einrichtung der Stelle eines Datenschutzbeauftragten

ist ein kleiner, aber richtiger Schritt in diese Richtung.

Zusammenfassung
Software lässt sich heute aus technischer Sicht unter gewissen Aspekten
präzise beschreiben und prüfen. Allerdings deckt dies einen grossen
und wichtigen Teil der Anforderungen und Erwartungen nicht ab
(beispielsweise die Korrektheit, die sich nicht prüfen lässt, vor allem aber
Eigenschaften wie Robustheit und Wartbarkeit). Offenbar sind diese
Schwierigkeiten aber für die Direktbeteiligten, also Hersteller und
Kunden, in der Regel erträglich.

Das gilt aber nicht für diejenigen, die nicht beteiligt, aber möglicherweise

betroffen sind: Sie sind den Fachleuten blind ausgeliefert. Daher
tun sie gut daran, diesen Fachleuten mit grossem Misstrauen zu begegnen

und ihnen laufend auf die Finger zu schauen (was nur heissen kann:
durch andere Fachleute schauen zu lassen). Wo das Risiko zu hoch
ist, darf Software nicht eingesetzt werden.

Vor hundert Jahren : £¦ M~*r..
Eisenbibliothek

Der Bau des Eiffelturmes
Schon damals Opposition gegen neue Bauwerke
Eine der schönsten und repräsentabelsten Eisenkonstruktionen feiert
dieses Jahr ihr lOOjähriges Baujubiläum. Gemeint ist der Eiffelturm.
Mit den Fundamentierungsarbeiten wurde am 28. Januar 1887 begonnen,

und knapp 26 Monate später, am 31. März 1889, fand die offizielle
Einweihung des Turmes statt. Die Meisterleistung der Ingenieurbaukunst
des 19. Jahrhunderts war damit erreicht.

Aber nicht erst in unseren Tagen regt sich der Unmut gegen Bauwerke.
Auch das Projekt der Eiffelturmes wurde angegriffen.

Vehemente Proteste
Als die Stadtbehörden von Paris ihre Zustimmung für den Bau des
300 Meter (oder 1000 Fuss) hohen Turmes publik machten, gab es eine
grosse Opposition gegen dieses Vorhaben. Künstler und Schöngeister
griffen das Projekt vehement an. Für sie schien der Turm eine Verschan-
delung des Stadtbildes, ein nacktes Gerüst, und das ganze Vorhaben
kam einer Gotteslästerung gleich. Den Höhepunkt der Kritik am Eiffelturm

stellt der schriftliche «Protest der Künstler» dar, der an den damaligen

Direktor der Arbeiten der Stadt Paris, an A. Alphand adressiert war:
«Mein Herr und lieber Landsmann. Wir, Schriftsteller, Maler, Bildhauer,
Architekten, leidenschaftliche Liebhaber der bis jetzt unversehrten
Schönheit von Paris, wollen mit allen unseren Kräften, unserer ganzen
gerechten Entrüstung im Namen des verkannten französischen
Geschmacks, im Namen der bedrohten französischen Kunst und Geschichte
gegen die Errichtung des unnützen und missgestalteten Eiffelturms mitten
im Herzen unserer Hauptstadt protestieren, den die so oft von gesundem

Menschenverstand und Gerechtigkeitssinn geprägte Bosheit des
Volkes bereits <Turm zu Babel> getauft hat.»

So beginnt dieser Aufruf, und er ergiesst sich weiter in Gemeinplätzen,
die dem damaligen Zeitgeschmack entsprachen, ohne dabei etwas
Sachliches am Projekt auszusetzen.

95

	Bewertung von Computer-Software

