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RANK OF MAPPING TORI AND COMPANION MATRICES

by Gilbert Levitt and Vassilis Metaftsis

Abstract Given an element p £ GL(d, Z), consider the mapping torus defined
as the semidirect product G Zd xi^ Z We show that one can decide whether G
has rank 2 or not (l e whether G may be generated by two elements) When G is
2-generated, one may classify generating pairs up to Nielsen equivalence If p has

infinite order, we show that the rank of Zd x pn Z is at least 3 for all n large enough,
equivalently, pn is not conjugate to a companion matrix m GL(d, Z) if n is large

For Fritz Grunewald

1. Introduction

The rank of a finitely generated group is the minimum cardinality of a

generating set. There are very few families of groups for which one knows
how to compute the rank (see [8] and references therein), and there exists no

algorithm computing the rank of a word-hyperbolic group [2].
By Grushko's theorem, rank is additive under free product. It does

not behave as nicely under direct product, even when one of the

factors is Z: it can be checked that the solvable Baumslag-Solitar group
BS( 1,2) (a, b | bab~l a2) and the product BS( 1,2) x Z both have

rank 2 since the latter is generated by {/?, xa} where x is the generator of Z.
In this paper we consider semi-direct products G A x ^ Z (also known

as mapping tori), with the generator t of the cyclic group Z acting on A

by some automorphism p £ Aut(A). This was motivated by the remark that,
when A is a non-abelian free group Fd of rank d and p has finite order

in Out(Ej), then G is a generalized Baumslag-Solitar group and its rank is

computed in a forthcoming work by the first author. But we do not know how

to compute the rank when p has infinite order in Out(Ej). Abelianizing does

not help much, so we ask:
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Question. Is there an algorithm that, given p £ GL(d, Z), computes the

rank of G Zd x ^ Z

We can prove:

Theorem 1.1. is an algorithm that, given d £ N anJ ^ £ GL(J, Z),
decides whether G Zd x ^ Z /nrs1 rank 2 or not.

Here is a sketch of the proof. We show that the rank of G is 1 plus the

minimum number k such that Zd may be generated by k orbits of p (i.e.
there exist g\,...,gk £ Zd such that the elements pn(gt), for n £ Z and

i 1 generate ZJ). In particular, G has rank 2 if and only if Zd may
be generated by a single p -orbit. We then show that this happens precisely
when p is conjugate in GL(J, Z) to the companion matrix M^ having the

same characteristic polynomial. This may be decided since the conjugacy
problem is solvable in GL(J, Z) by Grunewald [6].

Theorem 1.1 extends to the case when p is an automorphism of an arbitrary
finitely generated nilpotent group A, by reduction to the abelian case.

When G has rank 2, one can classify generating pairs up to Nielsen

equivalence. In particular:

Theorem 1.2. Suppose that G Zd x^Z has rank 2. There are finitely
many Nielsen classes of generating pairs if and only if the cyclic subgroup

of GL(J, Z) generated by p has finite index in its centralizer.

Our next result is motivated by the following theorem due to J. Souto:

Theorem 1.3 ([12]). Let A be the fundamental group of a closed
orientable surface of genus g > 2. Let p be an automorphism of A

representing a pseudo-Anosov mapping class. Then there exists no such that
the rank of Gn A x Z is 2g + 1 for all n > no.

We prove:

Theorem 1.4. Given p of infinite order in GL(J, Z), there exists no

such that the rank of Gn Zd x Z is > 3 for all n > no.

The theorem becomes false if the hypothesis that p has infinite order is

dropped, or if 3 is replaced by 4. We do not know hypotheses that would
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guarantee that the rank is d + 1 for n large.

Since Zd x^Z has rank 2 if and only if p is conjugate to a companion
matrix, an equivalent formulation of Theorem 1.4 is:

Theorem 1.5. Given a matrix p of infinite order in GL(d, Z), with d >2,
there exists no such that pn is not conjugate to a companion matrix if n> no.

Example. Let p be the unipotent matrix ^ It is obvious that p

has infinite order. Notice that Z2 x ^ Z has rank 2 since it is generated by a
r2generator of Z and the element (0,1) of Z2. The companion matrix with the

'0̂0 - P
same characteristic polynomial as p is M^ 1 0

and one can easily

confirm that

1 1\ (I 2\ /0 -1\ (I 2^
1

0 I VI I VI 2 / Vi 1

On the other hand, pn ^ ^ has the same companion matrix as p,
but it is easy to check (by reducing modulo a prime dividing n) that p and pn

are not conjugate in GL(2, Z) if n > 2.

Our proof of Theorem 1.5, given in Section 5, is based on the Skolem-

Mahler-Lech theorem on linear recurrent sequences [3]. There are alternative

approaches based on equations in S-units and Baker's theory on linear forms
in logarithms. They are due to Amoroso-Zannier [1] and yield uniformity: one

may take no [Cd6(log d)6] where C is a universal constant (independent

of p). We refer to [1] for related number-theoretic questions, for instance a

discussion of a "Hasse principle".
We conclude with a few open questions.

What about ascending HNN extensions For instance, let p be an injective
endomorphism of Zd (a matrix with integral entries and non-zero determinant).
Let G ZJ*^ (ZJ, t | tgt~l p(g)). Is there an algorithm that can decide

whether G has rank 2

Our analysis on Zd uses the Cayley-Hamilton theorem. This is not available

in a non-abelian free group Fd. Given p e AutCFf), is there an algorithm
that can decide whether Fd may be generated (or normally generated) by a

single p-orbit? More basically: given p e Aut(Ff) and g E Fd, can one
decide whether the p -orbit of g generates Fd
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2. Generalities

Let A be a finitely generated group. The letters a, /?, v will always denote

elements of A. We denote by ia the inner automorphism v ava~l.
Given p E Aut(A), we let G be the mapping torus

G A Z — (A, t \ tat~l p{a)).

There is an exact sequence 1—»A—»G—»Z—»l.Upto isomorphism, G

only depends on the image of p in Out(A). Any g E G has unique forms atn,
fa! with n E Z and a, a' E A.

If A is a characteristic subgroup of A, we denote by p the automorphism
induced on A/N. There is an exact sequence

1 —y N —y A Z —y Aj'N y\(p Z —y 1.

The rank rk(G) is the minimum cardinality of a generating set. We

let vrk(G) be the minimum number of elements needed to generate a

finite index subgroup: vrk(G) inf#rk(//) with the infimum taken over
all subgroups of finite index. Note that one may have vrk(//) > vrk(G) if H
has finite index in G, for instance when G is free.

We say that two generating sets with the same cardinality are Nielsen

equivalent if one can pass from one to the other by Nielsen operations:
permuting the generators, replacing gl by g~l or gtgj. For instance, any
generating set of Z is Nielsen equivalent to {0, ...,0,1} by the Euclidean

algorithm.
The p-orbit of a E A is {pn(a) \ n E Z}. We denote by or(p) the

minimum number of p -orbits needed to generate A. Clearly or(p) < rk(A).
We also denote by vor(p) the minimum number of p -orbits needed to generate

a finite index subgroup of A, so vor(p) < vrk(A).
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Lemma 2.1. Given G A, the intersection

Af (ai,..., ak, at) D A

is generated by the (ia o p)-orbits of <21,..., <2^.

The (ia o (p) -orbits of <21,..., generate A if and only if a\,...,ak, at

generate G.

Proof. One has (ia o p)n(v) (<at)nv{at)~n for v G A and n E Z. This
shows that the (ia o <^) -orbit of <2; is contained in A'. Conversely, if v £ A',
write it in terms of a\,... ,ak,at. The exponent sum of t is 0, so v is a

product of elements of the form (at)nafl(at)~n.
If A' A, then (a\,... ,a^at) contains A and at, so equals G.

Corollary 2.2. rk(G) 1 + minaeA or(ia o <p).

Proof. < is clear. For the converse, apply Euclid's algorithm modulo A

to see that any finite generating set of G is Nielsen equivalent to a set

{au---,ak,at}.

Corollary 2.3. vrk(G) 1 + minaGA,«^o vor(C o <pn).

Proof. If n / 0 and the (ia o p>n) -orbits of <21,... ,ak generate a finite
index subgroup of A, the subgroup of G generated by <21,...,<2^,atn has

finite index because it maps onto nZ and it meets A in a subgroup of finite
index. This shows that vrk(G) < 1 + minaG^,«/o vor(/a o (pn).

For the opposite inequality, note that any finite subset of G generating a

finite index subgroup is Nielsen equivalent to {<21,... ,ak,atn} with n ^ 0,
and the (ia°Tn)-orbits of <21,... ,ak generate a finite index subgroup of A.

Corollary 2.4. Suppose that A is abelian.

(1) rk(G) 1 + or(p) and vrk(G) 1 + vor((/?).

(2) G has rank <2 if and only if A is generated by a single p-orbit.
A pair (a\,at) generates G if and only if the ip -orbit of a\ generates A.

(3) vrk(G) is computable.

Proof. ia is the identity and vor(p) < vor(<£>"), so (1) follows from

previous results. (2) is clear.

For (3), first suppose A Zd. View tp as an automorphism of the

vector space Qd. Then vor(</?) is the minimum number of p -orbits needed

to generate Qd. This is computable (it is the number of blocks in the
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rational canonical form of p). In general, if T is the torsion subgroup of A,
then A/T ~ Zd for some d. Let p be the automorphism induced on Zd.
Then vor((^) vor((^) is computable.

3. COMPUTABILITY

Suppose A Zd with d > 1. We view p> £ Aut(A) as an automorphism
of Zd or as a matrix in GL(d, Z). Its companion matrix M^ is the unique
matrix of the form

/ 0 * \
1 0 *

*
1 0 *

V i * /
having the same characteristic polynomial as p (the empty triangles are filled
with O's, and * denotes an arbitrary integer).

Lemma 3.1. Let (p £ GL(d,Z), with d > 1.

(1) The following are equivalent:

(a) G Zd x p Z has rank 2 ;

(b) Zd may be generated by a single p-orbit;
(c) there exists a £ Zd such that {a, p(a),..., pp~1(a)} is a basis of Zd ;

(d) (p is conjugate to its companion matrix M^ in GL(J, Z).
(2) Suppose that the p -orbit of a generates Zd. Then the p-orbit of b

generates Zd if and only if b h(a) where h £ GL(J, Z) commutes

with p.

Proof. We already know that (a) is equivalent to (b). If a is the first
element of a basis of Zd in which p is represented by the matrix M^,
then the basis is {a, p{a),..., pd~1(a)} and the p-orbit of a generates Zd,
so (d)^(c)^(b).

Conversely, note that the p -orbit of any element a is generated

by {a, p(a),..., pd~1(a)} as a consequence of the Cayley-Hamilton theorem.

So if (b) holds for the orbit of a, we obtain (c). Finally (c) clearly
implies (d).

To prove (2), suppose that h commutes with p, and define b h(a). The

image of the basis (a, p(a),..., pd~1(a)) by h is (b, p(b),..., pd~l(bj), so
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the orbit of b generates. Conversely, if the orbit of b generates, define h as the

automorphism of Zd taking (a, p(a),..., pd~l(a)) to (/?, p(b),..., pd~l(b)).
It commutes with p because M^ represents p in both bases.

PROPOSITION 3.2. Let A be a finitely generated nilpotent group. There

is an algorithm which, given p E Aut(A), decides whether G A»^Z has

rank 2 or not.

Proof. If A Zd, one has to decide whether p is conjugate to its

companion matrix M^ in GL(d, Z). This is possible because the conjugacy
problem is algorithmically solvable in GL(d, Z) by [6] (see Remark 3.4).

We now assume that A is abelian. It fits in an exact sequence

0^T->-A^Zd^0

with T finite. We denote by a i-A a the map A -» Zd, and by h ^ h the

natural epimorphism Aut(A) -aAut(ZJ). They each have finite kernel.

We have to decide whether A may be generated by a single p -orbit. We

first check whether the matrix of p is conjugate to its companion matrix.

If not, the answer to our question is no. If yes, [6] yields a conjugator and

therefore an explicit u E Zd whose p -orbit generates Zd.

We claim that A may be generated by a single p -orbit if and only if
there exist a E A mapping onto u, and pj E Aut(A) of the form hph~l
with h E Aut(A) and \h, p] 1, such that the ip -orbit of a generates A.

The "if" direction is clear. Conversely, suppose that the p -orbit of b

generates A. Then the p-orbit of b generates Zd, so by Lemma 3.1 there

exists 6 E Aut(ZJ) commuting with p and mapping b to u. Let h be any
lift of 0 to Aut(A). Defining a h(b) and ip hph~l, it is easy to check

that the pj-orbit of a generates A. This proves the claim.

We now explain how to decide whether a and ip as above exist. Note
that a and pj must belong to explicit finite sets: a belongs to the preimage Au

of u, and pj belongs to the preimage X^ of p in Aut(A).

By Theorem C of [6], the centralizer of p in Aut(ZJ) is a finitely
generated subgroup and one can compute a finite generating set. The same is

true of D {h E Aut(A) | \h,p] 1}, so we can list the elements pj in the

orbit Dp of p for the action of D on X^ by conjugation.

By the claim proved above, A may be generated by a single p-orbit if
and only if there exist a E Au and pj E Dp such that the pj -orbit of a
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generates A. To decide this, we enumerate the pairs (a, iß) with a £ Au

and iß £ Dp. For each pair, we consider the increasing sequence of
subgroups An (iß~N(a),..., iß~1(a), a, iß (a),... ißN(a)). It stabilizes and we
check whether AN A for N large.

This completes the proof for A abelian. If A is nilpotent, let B be

its abelianization and let p: B B be the automorphism induced by (p.

If G^ A x p Z has rank 2, so does its quotient Gp B x p Z. Conversely,
if Gp has rank 2, it is generated by t and some b £ B whose p-orbit
generates B. Let a be any lift of b to A. The subgroup of A generated by
the (p -orbit of a maps surjectively to B, so equals A by a classical fact about

nilpotent groups (see e.g. Theorem 2.2.3(d) of [9]). Thus Gp has rank 2.

Corollary 3.3. If A Z2 or A F2, one can compute the rank of G.

Proof. The rank is 2 or 3, so this is clear from the proposition if A Z2.

Recall that the natural map Out(F2) —» Out(Z2) Aut(Z2) is an isomorphism
(both groups are isomorphic to GL(2, Z)). Given G F2 Z, let p be the

image of p in Aut(Z2). Consider Gp Z2 xp Z. We prove that G and Gp
have the same rank.

Clearly 2 < rk(G^) < rk(G) < 3. If Gp has rank 2, Lemma 3.1 lets us

so has rank 2.

Remark 3.4. Grunewalds solution to the conjugacy problem is entirely
algorithmic. Given two matrices 7\, £ GL(J, Z), there is an algorithm which
decides whether there exists a matrix X £ GL(J, Z) such that XT\X~l T2.

If the answer is yes, the algorithm constructs such an X. In fact, Grunewalds

algorithm decomposes each Tt into the sum of two matrices Tt St + Ul9

where St is a rational semisimple matrix and Ut is a rational nilpotent
matrix. Then the conjugation question between the Tt S reduces to conjugation
questions between the St S and Ufs. In turn these questions are transformed
into problems about isomorphisms of modules over quotient rings of a subring
of finite index in a ring of integers of an algebraic number field. Arguments
are rather involved.

class of p in OutCF2), it is isomorphic to

(a,b,t\tat 1

bpbt 1 a±lbn)
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4. Nielsen equivalence

Proposition 4.1. Suppose that A is abelian and G Ay\^Z has rank 2.

(1) Any generating pair of G is Nielsen equivalent to a pair (a, t) with a £ A.
(2) Two generating pairs (a, t) and (b,t), with a,b £ A, are Nielsen equivalent

if and only if b belongs to the p-orbit of a or a~l.

Proof. Given a, y £ A, and n, write

(.x, ty) ~ {{ty)nx{ty)~n, ty) (pn(x), ty)

and

(a, ty) ~ (pn(x), ty) ~ (pn(x), typn(x)) ~ (a, typn(x)),

where ~ denotes Nielsen equivalence.

Every generating pair is equivalent to some (a,ty), with the p -orbit of a

generating A. But (a, ty) ~ (a, typn(a)) so by an easy induction (a, ty) (a, t).
This proves (1).

If b pn(a£) with £ ±1, then

(/?, t) (pn(a£), 0 (tna£t~n, 0 ~ (a, 0

The converse follows from Theorem 2.1 of [7]. We give a proof for
completeness. If (b,t) ~ (a,t), we can write b w(a,t) with w a primitive
word with exponent sum 0 in t. Such a word is conjugate to a±l in the free

group F(a,t), so b is conjugate to a±l in G. Since A is abelian, b belongs
to the p-orbit of a±l.

Remark 4.2. More generally, if A is abelian, any generating set of G

is Nielsen equivalent to a set of the form {öq,..., t}

Remark 4.3. The proposition does not extend to nilpotent groups. Let A
be the Heisenberg group (a, b, c \ [<a, b] c, [<a, c] [/?, c] 1). Let map a

to a/? and b to b. The generating pairs (a,t) and (ac~l,t) are Nielsen

equivalent (even conjugate) but ac~l does not belong to the p-orbit of a±l.
Moreover, (a,tc) is a generating pair which is not Nielsen equivalent to a

pair (a,t) with a £ A. Indeed, if it were, then t would be conjugate to tcak

for some k £ Z by [7]. Counting exponent sum in a yields k 0. But t
and tc are not conjugate.

COROLLARY 4.4. Let A Zd. If G has rank 2, the number of Nielsen
classes of generating pairs is equal to the (possibly infinite) index of the group
generated by p and —Id in the centralizer of p in GL(J, Z).
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Proof. By Proposition 4.1 we need only consider generating pairs of the

form (<a, t). Fix one. To any be Zd such that (/?, t) generates G we associate

the automorphism ipb of Zd taking the basis {a, ip(a),..., (fd~1(a)} to the

basis {b, (p(b),..., pd~lfb)}. By Lemma 3.1, the image of this map b

is the centralizer of p> in GL(d, Z). By Proposition 4.1, (b,t) ~ (a,t) if and

only if tj;b is ±pn for some n £ Z.

Example. If A Z2 and G has rank 2, the number of Nielsen classes

of generating pairs is always finite. If

ip

/ 0 1 0 0 \
1 1 0 0

0 0 0 1

V 0 0 1 0 J
or

this number is infinite.

5. Powers

Fix p e GL(d, Z). Say that v E Zd is -cyclic if its p -orbit generates Zd,

or equivalently if {u, p>(v),..., pd~l(y)} is a basis of Zd. The existence of
such a v is equivalent to p> being conjugate to its companion matrix, and

also to G having rank 2. If v is ^"-cyclic for some n> 2, it is p-cyclic
since its tpn -orbit is contained in its (p -orbit.

If v is (p-cyclic, we denote by Sn the index of the subgroup of Zd

generated by the pn-orbit of p. It does not depend on the choice of v
since p> always has matrix M^ in the basis {v, ip(v),..., pd~1(v)} Also note

that 51 1. The group Gn Zd Z has rank 2 (equivalently, tpn is

conjugate to its companion matrix) if and only if 5n 1.

Theorem 5.1. If p> e GL(2, Z) has infinite order, the rank of Gn Z2x\(pnZ
is 3 for all n > 3 (anJ also for n 2 unless det((/?) —1 and

trace(<p) ±1).

Proof. If Gn has rank 2 for some n, there exists a -cyclic element v.
Such a u is also (^-cyclic. In the basis {v, ip(v)} the matrix of <p has the form

M ^ ^
^

^ with e ±1. If finite, the index 5n is the absolute value

of the determinant cn of the matrix expressing the family {v,(pn(v)} in the

basis {v,(p(v)}. We prove the theorem by showing that \cn\ > 1 for n > 3.
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The number cn is determined by the equation Mn cnM + dnI. It follows
from the Cayley-Hamilton theorem that the sequence cn satisfies the recurrence
relation cw+2 — tcw+i — ecn 0.

If e -1 one has

n— 1

cn TTc ~2cos )'AJ- n
k=\

because cn is a monic polynomial of degree n — 1 in r which vanishes

for t 2 cos (one also has c„ £/„_i(r/2), with £/„_i a Chebyshev

polynomial of the second kind).
If e 1 one has

«—i

q TT(r ~2?cos —) •

k=l
Since p is assumed to have infinite order, one has r 0 if e 1,

and \t\ >2 if e — 1. One checks that |c„| > 1 for n > 3 (for n>2
if c =1 or |r| > 2).

Theorem 5.2. Suppose that p E GL(J, Z) has infinite order.

(1) There exists no such that Gn ifi Z has rank > 3 /cr pvpry n> no.
Equivalently: pn is not conjugate to its companion matrix for n > no.

(2) More precisely, the minimum index of 2-generated subgroups of Gn goes
to infinity with n.

Note that there are arbitrarily large values of n for which the rank of Gn

is J+l (whenever pn is the identity modulo some prime number). As already
mentioned, it is proved in [1] that no may be chosen to depend only on d.

The key step in the proof of Theorem 5.2 is the following result.

Proposition 5.3. If p has infinite order and v is p-cyclic, then the

index 5n of the subgroup of ifi generated by the pn-orbit of v goes to

infinity with n.

Remark. This proposition remains true if v is not assumed to be p-cyclic,
provided 5n is defined as the index of the subgroup generated by the pn -orbit
of v in the subgroup generated by the p-orbit of v.

Proof of the theorem from the proposition. As above, if Gn has rank 2

for some n, there exists a p-cyclic element v. For n large one has

so Gn has rank > 2. Assertion 1 is proved.
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For Assertion 2, suppose that there are arbitrarily large values of n such

that Gn contains a 2-generated subgroup Hn of index < C, for some fixed C.
This subgroup has a generating pair of the form (an,tn) with an £ Zd, and

the intersection of Hn with iß is generated by the pnnin -orbit of an for
some mn> 1. It has index < C in iß.

The subgroup of Zd generated by the p -orbit of an has index < C, so

we can assume that it does not depend on n. Call it J. It is (/?-invariant

so we can apply the proposition to the action of p on /, with v an. This

gives the required contradiction.

Proof of Proposition 5.3. When d 2, one easily checks that cn, as

computed above, goes to infinity with n. The proof in the general case is

more involved.
Define numbers uk(i), for k 0,..., d — 1 and i > 0, by

d-1

v'(v) - ^2 ukd)p(v)
k=0

The sequences uo,... ,Ud~i form a basis for the space S of sequences

satisfying the linear recurrence associated to the characteristic polynomial
of p> (the recurrence is J2j=o ajuk(i + j) 0 if the characteristic polynomial

is TUajXO.
The index Sn is the absolute value of the determinant cn of the matrix

(%(ft/))o<*A<d-i (unless the determinant is 0, in which case 5n is infinite).
We have to prove that, given c 0, the set of n's such that cn c is finite.
We assume it is not and we work towards a contradiction.

A sequence satisfies a linear recurrence if and only if it is a finite sum

of polynomials times exponentials, so cn also is a recurrent sequence. The

Skolem-Mahler-Lech theorem [3] then implies that cn c for all n in an

arithmetic progression No C N.
We shall now replace the basis uk of S by another basis wk depending on

the eigenvalues of p. We then assume that Dn := det(wk(ni))o<ljk<d-i c' 0

for n £ N0.
We sort the eigenvalues \k of p so that 0 < |Ai| < | A2I < • • • < |Aj|. First

suppose that the eigenvalues are all distinct. We then choose wk(f) (A^+0*.
In this case Dn is a Vandermonde determinant, for instance

1 1 1

Dn= (Mr (a2y (A3)w

(V)2" (A2)2" (A3)2"
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for d 3, so Dn I] ((Am)n - (A*)").
1 <k<m<d

If all moduli \Xk\ are distinct, then \Dn\ goes to infinity with n because

its diagonal term

(A2)"(A3)2"... (\d)id-V)n (A2(A3)2 {Xj-*-»)"
has modulus bigger than all others.

If the A^'s are distinct but their moduli are not, we write each of the d\

terms in the standard expansion of Dn in the form EjfiJ1 (with Sj ±1).
Now there may be several (possibly cancelling) terms for which \/ij\ takes its

maximal value K |A2(As)2 (Aj)(J_1)|. Note that K > 1 because otherwise
all A^'s have modulus 1, hence are roots of unity by a classical result of
Kronecker ([11], [5, Proposition 1.2.1]), and p has finite order.

Since Dn c' for n E N0 and K > 1, one has =K£j!Jijn 0

for n E N0. Call this sum Dn K. Recall that D„ Y[ ((^m)n ~ (\)n) • To

l<k<m<d
expand this product, one chooses one of (\m)n or (Xk)n for each couple k, m.
The corresponding term contributes to DnK if and only if one always

chooses a term of maximal modulus. In other words, DnK Ek,m

with Ekjin (Am)" - (Xk)n if |Am| |Ajtl and EKm (Am)n if |Am| > |A,t|.
Since the A^'s are non-zero, Dn K 0 implies (A^)w (Xm)n for some k,m
with k m, so that Dn 0, a contradiction.

This completes the proof when the eigenvalues of ip are distinct. In the

remaining case, the basis w^ must have a different form: if A is an eigenvalue
of multiplicity r, we use the sequences X\ iX\ ir~lXl. For instance,

10 0 1

_ (AO" n(Ai)" n2(Ai)" (A4)"
" (AO2" 2n(A02" (2n)2(A02n (A4)2n

(AO3" 3n(A03" (3n)2(A03" (A4)3"

when d 4 and Ai A2 A3 7^ A4.

Calling v\,..., vq the distinct eigenvalues of p, there exist integers

a,b,Ck,dmk (depending only on the multiplicities of the eigenvalues) such

that
q

Dn anb P[(^ri n (Tm)" - fatf)dmk
k= 1 1 <k<m<q

(see [4] or Theorem 21 in [10]). For instance, Dn as displayed above equals
2n3(A03"((A4)" - (AO")3 •
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If K > 1, we conclude as in the previous case. If K 1, all eigenvalues

are roots of unity and Dn nbEn where En only takes finitely many values

and b > 0 (an eigenvalue of multiplicity r > 2 contributes H h(r — 1)

to b). Such a product cannot take a non-zero value infinitely often.

COROLLARY 5.4. If A is abelian, and Lp E Aut(A) has infinite order, then

Gn A y\^n Z has rank > 3 for n large. The minimum index of 2-generated
subgroups of Gn goes to infinity with n.

This follows readily from Theorem 5.2, writing A/T ~ Zd with T finite.
The analogous result for nilpotent groups is false, as the following example
shows. Let A be the Heisenberg group as in Remark 4.3. If p maps a to be,
b to ac1, and c to c~l, then plnJrl(a) bc1~n, so G^n+i has rank 2

since a and plnJrl(a) generate A. The automorphism induced by p on the

abelianization of A has order 2.
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