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THE IRREGULARITY OF CYCLIC MULTIPLE PLANES

AFTER ZA RI SKI

by Daniel Naie

ABSTRACT. A formula for the irregularity of a cyclic multiple plane associated to
a branch curve that has arbitrary singularities and is transverse to the line at infinity
is established. The irregularity is expressed as a sum of superabundances of linear
systems associated to some multiplier ideals of the branch curve and the proof rests
on the theory of standard cyclic coverings. Explicit computations of multiplier ideals
are performed and some applications are presented

1. Introduction

Let f(x,y) 0 be an affine equation of a curve B C P2 and H:>0 be the

line at infinity. The projective surface So C P3 defined by the affine equation
zn — f(x,y) is called by Zariski the n-cyclic multiple plane associated to B
and — possibly only to B if n — deg B. For a given curve B, the

cyclic multiple planes play an important role in the study of the fundamental

group of the complement of B. At the same time they provide interesting

examples of surfaces. In [23], Zariski took up the study of So in the case that
the curve B has only nodes and cusps and answered the following question :

What is the irregularity of So, i.e. the dimension of the vector space of global
holomorphic 1-forms on a desingularization of So
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ZARISKI'S THEOREM. Let B be an irreducible curve of degree b,
transverse to the line at infinity H:yc and with only nodes and cusps as

singularities. Let So C P3 be the n-cyclic multiple plane associated to B

and Hy~, and let S be a desingularization of Sq The surface S is irregular

ifand only if n and b are both divisible by 6 and the linear system of curves

of degree 56/6 — 3 passing through the cusps of B is superabundant. In this

case,

p® - I 3 Eg,
where Z is the support of the set of cusps.

The aim of this paper is to present a generalization of Zariski's theorem

to a branch curve that has arbitrary singularities and is transverse to the line
at infinity bringing to the fore the theory of cyclic coverings as developed
in [20]. The irregularity will be expressed as a sum of superabundances of
linear systems defined in terms of some multiplier ideals associated to the

branch curve B. We refer to [5] for the notion of multiplier ideal. To state the

main result in Section 3, we recall here that if the rational £ varies from a very
small positive value to 1, then one can attach to B a collection of multiplier
ideals J(^-B) that starts at Öp2, diminishes exactly when £ equals a jumping
number — they represent an increasing discrete sequence of rationals — and

finally ends at 2g — Öp2(-B). The multiplier ideals reflect the singularities
of the rational curve £B. For example in case B has only nodes and cusps,
the only jumping number < 1 of B is 5/6 and the corresponding multiplier
ideal is Tz, where Z is the support of the cusps.

THEOREM (3.1). Let B be a plane curve of degree b and let Hbe a
line transverse to B. Let S be a desingularization of the n-cyclic multiple
plane associated to B and H.x. If J(B, n) is the subset of jumping numbers

of B smaller than 1 and that live in gcd^ ^Z, then

v m,
where Z(fB) is the subscheme defined by the multiplier ideal J(f • B).

Since for B with nodes and cusps 5/6 is the only jumping number

< 1, Theorem 3.1 becomes Zariski's theorem. In general, the usefulness of
Theorem 3.1 relies on explicit computations of the jumping numbers and

multiplier ideals attached to B. In case the singularities of B are locally given
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by equations of the form 4- y? — 0 such explicit computations may be

performed and will enable us to apply the theorem to various examples in
Section 4. Furthermore, in Remark 4.7 it will be shown that the irregularity
may jump in case the position of H.x with respect to B becomes special.

Generalizations of Zariski's theorem are discussed in several papers and the

proofs are based on different points of view. First, Zariski's original argument
divides naturally into three parts. He describes the canonical system of S in
terms of the conditions imposed by the singularities of So that correspond to
the cusps. Then he establishes the formula

where Z denotes the support of the set of cusps. To finish, he invokes the

topological result proved in [22] : If n is a power of a prime and B is

irreducible, then the n-cyclic multiple plane is regular. The theorem follows
from the examination of the different terms in the previous sum when the

degree of the cyclic multiple plane is a power of a prime and goes to infinity;
these terms are

and they all vanish.

Second, Esnault establishes in [7] a formula similar to (1.1) for the

irregularity of the b-cyclic multiple plane So, where b is the degree of
the branch curve B that possesses arbitrary isolated singularities. She uses

the techniques of logarithmic differential complexes, the existence of a mixed

Hodge structure on the complex cohomology of the associated Milnor fibre
— the complement of So with respect to the plane that contains B — and

the Kawamata-Viehweg vanishing theorem. In [1], Artal-Bartolo interprets
Esnault's formula for the irregularity and applies it to produce two new
Zariski pairs. Two plane curves B1.B2 C P2 are called a Zariski pair if
they have the same degree and homeomorphic tubular neighbourhoods in P2,

but the pairs (P2,B\) and (P2,Bf) are not homeomorphic. Zariski was the

first to discover that there are two types of plane sextics with six cuspidal

singularities depending on whether or not the cusps lie on a plane conic.

In [21], Vaquié gives a formula for the irregularity of a cyclic covering of
degree « of a non-singular algebraic surface X ramified along a reduced

curve B of degree b with respect to some projective embedding and a non-

singular hyperplane section H that intersects B transversely. His formula
is stated in terms of superabundances of the set of singularities of B and

(1.1)
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the proof also uses the techniques of logarithmic differential complexes. The

superabundances involved are given by ideal sheaves that coincide in fact to
the multiplier ideals. Vaquié's paper is one among several to introduce the

notion of multiplier ideals implicitly and we refer to [5] for this issue.

Third, in [13], Libgober applies methods from knot theory to study
the «-multiple plane So- His results are expressed in terms of Alexander

polynomials and extend Zariski's theorem to irreducible curves B with arbitrary
singularities and to lines H.x with arbitrary position with respect to B. Later

on, in [14, 15, 16], he deals with the case of reducible curves B having
transverse intersection with the line at infinity and the irregularity of the

multiple plane is expressed using quasiadjunction ideals. The technique is
based on mixed Hodge theory, and the result is a particular case in a vaster

study pursued in the above mentioned papers where the homotopy groups of
the complements of various divisors in smooth projective varieties are explored.
These groups are related to the Hodge numbers of cyclic or more generally
abelian coverings ramified along the considered divisors, as well as to the

position of their singularities. We refer the reader to [18] for more ample
details and references and to [17] for the relation between the quasiadjunction
ideals and the multiplier ideals.

Our argument will follow Zariski's ideas. A desingularization of cyclic
multiple plane is expressed as a standard cyclic covering. Then an analog of
the formula (1.1) is obtained thanks to the theory of cyclic coverings:

Finally Theorem 3.1 is established using the Kawamata-Viehweg-Nadel
vanishing theorem.

Remark. The above formula coincides with Vaquié's in [21] when the

latter is interpreted for a plane curve B and a line H transverse to it. At
the same time, Vaquié's formula in its general form might be obtained by
the argument we make use of in establishing Theorem 3.1 if Vaquié's general

setting were to be considered.

The paper is organized as follows. In §2 the theory of cyclic coverings and

some facts about multiplier ideals are recalled. Next, in §3 it is shown that the

normalization of a given cyclic multiple plane is birationally isomorphic to a

standard cyclic covering of the plane. Then, using it, Theorem 3.1 is proved.
In §4 some applications are presented. Finally, in the appendix a new explicit
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computation for certain multiplier ideals is performed and used to complete
the proof of Proposition 4.3. It is hoped that this description might be useful

in other circumstances.

Notation and conventions. All varieties are assumed to be defined

over C. Standard symbols and notation in algebraic geometry will be freely
used. The multiplier ideal associated to a curve B and a rational £ will be

denoted by and the corresponding subscheme by Z(£B) — Z(J(£<B)).
If Z is a subscheme in X, then Xz is the sheaf of ideals locally defined by the

functions that vanish along Z. In particular, J(£'B) — 2z(cs)- Moreover, if D
is a divisor on the variety Y, we shall often write H'(Y, D) and h'(Y, D) instead

of H'(Y.öy(D)) and h'(Y.öy(D')') respectively. If C is an invertible sheaf

on Y, then we shall regularly denote by L a divisor such that C — öy(L).
For m a positive integer, if a Zjm then a will denote the smallest

non-negative integer in the equivalence class a.

Acknowledgements. I started this paper during a one week stay at the

University of Pisa in the spring of 2004. I would like to thank Rita Pardini for
her hospitality and for the friendly talks we had. The paper owes Mihnea Popa
its present form. I would like to record my debt to his reading of a preliminary
version in the autumn of 2005 and to his encouragements to generalize the
results I obtained at that time. I wish to thank my friends Marian Aprodu,
Laurent Evain and Jean-Philippe Monnier for the conversations they put up
with during this period. Finally, I would like to thank the referees for their
comments and constructive criticism on questions of presentation, principle
and proportion.

2. Preliminaries

We shall summarize, in a form convenient for further use, some properties
of cyclic coverings and of multiplier ideals.

2.1 Cyclic coverings

Let F be a variety and let G be the cyclic group of order re. If G acts

faithfully on Y, then the quotient X — Y/G exists and Y is called an abelian

covering of X with group G. The map tr: Y X is a finite morphism, ix^öy
is a coherent sheaf of Ox-algebras, and Y ~ Spec Qx(-n*Oy).



270 D. NAIE

If Y is normal and X is smooth, then tt is flat and consequently it#öy is

locally free of rank n. The action of G on ir^öy decomposes it into the direct

sum of eigen line bundles associated to the characters y G — Hom(G,S1),

TT* Oy — öx # 1

1

'

The action of G on G"1 is the multiplication by y.
There are two naturally arising questions when dealing with cyclic

coverings. First, what is the ring structure of tt*öy Knowing this structure
is equivalent to knowing the covering Y. This structure, being compatible with
the group action, is determined by the multiplications C'~l ®

^
X. X XX

for any y,y' e G. Finding the image of each of these maps will provide
us with an answer to the first question and lead us to ask the second one :

Given a covering Y of X, is there straightforward information at the level of
X — less involved than n — 1 line bundles Cx, y G, y / 1, and a ring
structure on ^x ~ ^or filing us how to reconstruct Y

Example 2.1 (Simple coverings). Let B c X be a reduced effective
divisor such that there exists a line bundle C over X with Cn — öx(fi) • This
data (later on it will be called reduced building data) defines an n-cyclic
covering of X totally ramified along B : let Tp be a fixed generator for G,

let C^k — Ck and let

Al ® At* —* £&+* ® Ox(s(j, k)B) '~—¥

be the multiplications for any 1 < j, k < n— 1, with s(j, k) — 0 or 1 depending
on whether or not j 4~ k < n. If L A X denotes the total space of C with z

the tautological section of p* C, then Y is defined in L by zn ~ p*s — 0,
where s is a global section defining B.

Before turning to the two questions asked formerly, let us notice that a

general cyclic covering Y may be seen as a subvariety into a vector bundle

over X in the same way a simple covering was seen into a line bundle. Let
The surjection Symöx7-" —> rt*Oy defines the embedding

of Y into the total space of T, F A x. The ring structure of x^öy is

equivalent to knowing the kernel of that surjection. Over an open subset

U C X, if Zj denotes the tautological section of the line bundle p* Cxi, the

surjection Symöx T —b it*Oy becomes

(2.1) Ox(U)[z\-.- (jt*öy)(U) — öy(ir'~1(U))
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To understand the ring structure of tt*CV let us consider a component D
of the ramification locus. We suppose that Y is normal and X is smooth.

Since tt is flat, D is 1 -codimensional. The component D is associated to
its inertia subgroup H C G — the subset of elements of G that globally
fix D — and to a character ip H that generates H. The character w
corresponds to the induced representation of H on the cotangent space to Y

at D. Dualizing the inclusion H c G, such a couple (H.ip) is equivalent to
a group epimorphism /: G ~¥ Tjjmj, where mj — \H\ ; for any \ G, the

induced representation x\h is given by îp^
Recall that a' denotes the smallest non-negative integer in the equivalence

class of a TPjm. Here and later on, # denotes the set of all group
epimorphisms from G to different Z/mZ. Let Bf c X be the subdivisor
of the branch locus defined set-theoretically as with Rj the union
of all the components D of the ramification locus associated to the group
epimorphism /. In [20] it is shown that the ring structure is given by the

following isomorphisms: for any xpx' G,

(2.2) Cx B cx> ~ CXX' m Ox(e(f, x, x')Bf)

with sif. 'XPX') or 1- depending on whether or not fix)' P-fix'T < mf •

Example 2.2. Let P and Q be two distinct points of P1. We define

Cx — Cx2 öpi(l) and a ring structure on Dpi ® ® Cj by the

isomorphisms

Cx # Cx ~ cx2 f Op. (0 5 Cx B CX2 - Op. f Op.(P + Q)

and Cx2 0 Cx2 ~ Cx B Op. (P).

We obtain the triple covering Y of P1 totally ramified over P and Q. For

example above P1 — {ß}, if x is a local coordinate centered at P, Y is

defined by the surjection

C[x][zi,Z2Ï —* C[x][zuz2]f(z2l - Z2.Z1Z2 -x,z\- xzi) a CM[zi]/(zi - x).

Similarly, above P1 — {P} with y the local coordinate y(Q) 0, the triple
covering is defined by C[y\[z2\/iz^ —y). In other words, locally Y looks like
a simple triple covering, but globally it is not a simple covering.

The next proposition is formulated for cyclic groups, since it is this case

that will be used in the sequel. We refer again to [20] for the case of abelian

groups.
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PROPOSITION 2.3. Let tt: Y —y X be a cyclic covering with Y normal
and X smooth. If -?/> generates G, then for every k — 1,... ,n,

(2.3) Lp ~ kLt;. ]T BIm./

In particular, for k n equation (2.3) becomes

(2.4) nLé ~ V —fmBft—t mr J

f£Z

Proof. From the hypothesis, ri spans the group of characters. Applying

(2.2) for ri and 1 we get

L,; ~L,;j • d)Bf.
f£Z

Then, summing over j from 1 to k,

k k

v ~ kh * ^ ^ -

7=1 /£?? /S 7=1

By definition c(fri/pi/P"'1) — 1 is equivalent to /(#)* + f(^ri~1)* > mj
which is equivalent to (/(-?/>) -j-/(#'""1))" </(#)*, i-©- to (jf(i/))y </(#)"•
It follows that 5Zy=ie(/counts the number of j"s in {1.2....,
for which (jfifff < friPf, i.e. for which the remainder of the division of

jf(ip) — equivalently of jfriP)' — by mj is smaller than f(yp) This number
is exactly \kf(ipPf jmyJ and formula (2.3) follows. Formula (2.4) is obvious,
since ihn — 1.

We are now able to answer the second question. Starting with a line bundle

a fixed generator ip of G, and effective divisors Bj, / that satisfy the

identity (2.4), we define the line bundles C^k using formula (2.3). Any three

of these line bundles Cx, Cx> and Cxx> verify equation (2.2). Consequently,
the Ox-module Cf} is endowed with a ring structure, hence it defines in

a natural way the standard cyclic covering -n: Y — Spec C,J.k —^

In case Y is normal the covering is unique up to isomorphisms of cyclic
coverings. We notice that when we started the investigation of the ring
structure we supposed Y normal and denoted by Bj some components of the

branch divisor defined set theoretically, hence without multiple components.
Now in the construction of the standard cyclic covering the divisors Bj may
have multiple components. For example starting with Bf — P 2Q on P1,
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the standard covering defined by 3L$ ~ Bj is the simple 3-covering (see

Example 2.1) ramified above P and Q and having a cuspidal point over Q.

Following [20], we will call the divisors Cx and Bj, f #, used in the

definition of a standard cyclic covering a set of reduced building data for the

covering.

2.2 The normalization procedure for standard cyclic coverings

The standard covering obtained starting with a set of reduced building data

may not be normal. In [20, Corollary 3.1] it is shown that such a standard

covering is not normal precisely above the multiple components of the branch
locus and the normalization procedure is constructed. Let f\ G -¥ Z/mj be

a group epimorphism and let Bj — rC + R, with C irreducible, C not a

component of R and r > 2. The surface F is not normal along the pull-back
of C. The normalization procedure along this multiple component splits into
two steps and shows how to end up with a new covering, normal along the

pull-back of C. We shall later review the formulae involved for each step.

They are based on the comparison between the multiplicity r and the order mj
of the inertia subgroup. Two simple examples should shed some light on these

steps.

Example 2.4 (for the first step). Suppose that s is a coordinate along the

affine line, that F m A1 is given by zm — sd — 0 in the affine plane and that
d divides m. The curve Y — SpecC[5,,z]/(z'" — sd) is a simple cyclic covering
of the line ramified above the origin. It is smooth, or equivalently normal,

if and only if d — 1. If d > 1, a. desingularization Y' of F is defined by
the C[s] -algebra C[s. z, Q/(zm'd — Çs, Çd — 1). The inclusion of Cfs] -algebras

C[s,z\l(.zm - sd)t——+ C[s:,z,Q/(Cd - ^-,zm/d - Çs)

tells us that the covering Y' A1 factors through an étale covering of the
affine line of degree d, Y' Yet A1.

Example 2.5 (for the second step). This time, suppose that F -~¥ A1 is

the simple cyclic covering given by f1 — sr 0 in the affine plane and that

m and r > 2 are relatively prime positive integers. Let the positive integers

q and v satisfy vr — qm — 1. A desingularization Y' of F is defined by the
inclusion of C[5]-algebras

C[s} z\j{f - /) t-~> C[s, £]/(£" - s)}



274 D. NAIE

with hiz) — l~r. It says that the covering Y —> A1 is desingularized by the

change of coordinates £ — zv since we have £f — z"rjsqr — z-

Step 1. If Bj — rC-tR and (r.mj) — d > 1, then the natural composition
is considered

J fntf—i j—.
For any ;y, the integers /(;y)* and fix)' are linked by the relation /(;y)* —

qxmfid +f (xY • Put

L'x ~ Lx ^ qxr-C, B}=R} Br+ T-C and B'g Bg if g fff
in order to construct Y' —> X, a 'less non-normal' covering over C.

Two facts should be noticed. Firstly, if Y) G G is such that /(?/>) — 1,

then F is a simple covering locally over X \ \JgX,jBg defined by C,p. The

new covering Y' —> X factors over the same open subset through an étale

covering of X of degree d followed by a simple covering of degree mj/d
defined by the pull-back of C!x, on the étale covering. By Proposition 2.3,

fd fïij jd Rip, then

hence

f, r trif r
Lrf,d ~Lr-'d dC~~dL^ dc

dL' ,t~ 0 and

These relations, seen in terms of tautological sections of the corresponding
line bundles as in (2.1), are exactly the relations from Example 2.4. Secondly,

looking at f, the induced multiplicity and the corresponding subgroup order
become relatively prime.

STEP 2. If Bf — rC -i~ R with r > 2 and (r, mf — 1, the composition

f ^ ff : g zjntf Zjmj

is considered. As before, for any G, the integers fix)' and fix)' are

linked by r - fix)' — <Ixmf xf'ixf • Put

L'x ^ Lx — qxC, B'j — R, Btf,=Br+C and ßq Bg if g j=f,f
to get a new covering — if /(-?/>) — 1 and vr — qm — 1, then over
X \ (R U \JqXj Bf) the covering Y is simple defined by Cip, C~ Cf
and Y' is simple and defined by C)v as in Example 2.5 — and finish the

normalization procedure along C.
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Example 2.6. On P2 let Cx — 0(1) and nLx ~ Ho ~h(n~~ 1 )H.:X/, where

Hq and H:x, are two different fixed lines. The simple cyclic «-covering Y ~¥ P2

given by the set of reduced building data Cx and Bj — Ho 4- (« — 1 )Hcyo,

where fix) — 1, is not normal above H.x. Applying the second step of the

normalization procedure, if f : G -x ZjnZ is defined by fix) — n — 1, we
obtain the normalization Y' of Y as the «-cyclic covering with building data

C'x — (7(1), Bj ~ Ho and Bf H.x. Clearly Y' has a singular point above

P, the intersection of Ho and H,^. Actually we may obtain a desingularization
of Y using the theory of cyclic coverings. We consider the blow-up surface

BlpP2, with E the exceptional divisor and the induced simple cyclic covering
S -x BlpP2 with building data Lx ö-q\ppi H and Bf Ho~Hn~~l)H;x>~tnE.
Curves on P2 and their strict transforms are denoted by the same symbol. This
time the normalization procedure requires the first and the second step and leads

to S' —> BlpP2 defined by ni!x ~ Ho+ (« — l)HiX, with C'x — 0-q\pp2(H — E),

Bj — Ho and Bf — H.x. Incidentally, the surface S' may be identified. The
lines in the plane through P tell us that S' is a geometrically ruled surface.

Besides, the pull-back of £ is a rational section with self-intersection —«,
hence S' is the Hirzebruch surface Fn.

Example 2.7. On P2 let B be a reduced curve of degree b, Hx a

fixed line and « > 2 a fixed integer. For an integer r > 0, the identity
nL-x ^ B 4- rH.x defines a simple «-covering Sr P2 if and only if «
divides r + b. A set of reduced building data for the covering is represented

by ~ (7p2((r A b)/n) and Bf — B + rHi>0, with /(-?/>) — 1. If r > 1,

the normalization procedure leads to the standard cyclic covering S' which is

independent of r. It is defined by C[>,

where /: G -x Zjn, f(ip) — 1, and

(7P2 ([£»/«]), B'f B and Bg H,

G —xi gcd(«, \b/ri\ n — b) '' ' '* x gcd(«.

We shall justify the assertion when the integers « and r are relatively prime
and leave the more involved case as an exercise. The normalization procedure
is reduced to the second step and g: G -x Zjn is the composition of / with
the multiplication by r in Zjn. Then

and

grn'

CL — Crû % Öp2

r r + b r 'b~
r — — n — « — b — — n — —

n n

Op2
1+f

Op2 Op2
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2.3 Multiplier ideals

In this subsection we briefly recall the notion of multiplier ideal of divisors,
the other foremost tool of the paper. We refer the reader to [12] for the many
contexts where multiplier ideals appear and for the results that are cited below.

Let X be a smooth variety, D c X be an effective Q -divisor and ß : Y X
be a log resolution for D, i.e. the support of the Q-divisor KY\x — ß'*D is a

union of irreducible smooth divisors with normal crossing intersections. Then

ß*öy(KY\x — L/«*DJ) 1S an ideal sheaf J(D) on X. We will denote by Z(D)
the subscheme defined by this ideal. Hence Xz(d) — J(D). Showing that J{D)
is independent of the choice of the resolution, we have :

Definition. The ideal J(D) — ß*öY(KY^ — [p*Dj) is called the

multiplier ideal of D.

Examples 2.8. 1) Let X be a smooth surface and B c X a smooth curve

except at the point P where B has a simple double point — a node. Then

for any rational 0 < £ < 1 we have that

JÜ B) - ß*öY(KYlx - \p*Ç • 5J) - ß*öy(E « |2£j E) Ox,

since the blow-up of X at F is a log resolution for B and ß*öY(E) —

p*0Y — Ox-

2) We keep the same notation, but suppose that the singularity of B at P
is a simple triple point, i.e. in local coordinates it is given by x3 -by3 — 0.

Then J(£ B) ß*öy(E- [3^'j E), so J(£ • B) - 0 for any 0 < £ < 2/3
and JO; B) — X'p for any 2/3 < ^ < 1.

The sheaf computing the multiplier ideal verifies the following local

vanishing result: for every i > 0, R'p*öY(KY\x — \_ß*D\) — 0. Therefore,

applying the Leray spectral sequence, we obtain that for every i and any
Cartier divisor L on I,
am -wUJhm4x) ~ yar>].

In the example below we consider a simple instance of how the multiplier
ideals appear in the computation of the irregularity of multiple planes.

Example 2.9. Let Z4.L2 and L3 be three lines in the plane that intersect
in P and let So be the simple cyclic 3-covering given by the line bundle

Op2 1 and by B Bf — L\ X E2 X E3 with /(-?/) — 1. After blowing up
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the plane at P and normalizing the induced triple covering, we obtain the

desingularization of So, a smooth simple 3-covering S -V BlpP2 given by

Cy — Ößipp2 (H — E) and ramified over the strict transforms of the lines Lj.
The exceptional divisor has been denoted by E. The covering being simple,
the canonical divisor of S is Ks — /n*(KB\p p2 + 2L^,). We have

h1 (S:^*(KBlpp2 + 2L*)) - /^(BlpP2,KBlpp2 + 2Lj) h\B\PP2 - £)

hence ^(5) ~ /i1 (P2,2p(~l)) • To see how the notion of multiplier ideal

appears in this computation, in fact how 2*p is naturally seen as -B),
notice that p: BlpP2 ~~¥ P2 is a log resolution for the divisor B — L\ +L2+L3
at the triple point and that 2L^. — 2(L\ + Ei ~r Lf)/3 — 2H ~~ [/.C2B/3\. We

have

KBipV2 + 2L^. ~ /dWp2 + 2H ~i~ (^Bip p2 jP2

and using (2.5),

q(S) ~ ^(5, - /î1 (P2? CV(-1) & J(2/3 • 5))

For multiplier ideals, the basic global vanishing theorem is the following :

Kawamata-Viehweg-Nadel Vanishing Theorem. Let X be a smooth

projective variety. If L is a Cartier divisor and D is an effective Q-divisor
on X such that L — D is a nef and big Q -divisor, then

h' (X, OxiKx + L) ® 2z(D)) — 0

for every i > 0.

Definition- Lemma (see [5]). Let B c X be an effective divisor and

P B be a fixed point. Then there is an increasing discrete sequence of
rational numbers £,• £(ß, P),

0 Co < Ci < • • •

such that

J(fB)p - J(fiB)p for every £ G [&,&+i) :

and J(£i+\B)p Ç J(fB)p The rational numbers £,-'s are called the jumping
numbers of B at P.
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3. The irregularity of cyclic multiple planes

THEOREM 3.1. Let B be a plane curve of degree b and let H{>0 be a
line transverse to B. Let S be a desingularization of the projective n-cyclic
multiple plane associated to B and H.x. If

J(B, n) — {£ I £ jumping number of B, 0 < £ < 1, £ G —:Z|,11 gcd(b,n) J

then

m- m

with Z(fB) the subscheme defined by the multiplier ideal J(f • B).

Proof To compute the irregularity of a desingularization of So we need

either to desingularize So, or to find a smooth surface birationally equivalent to
So We shall follow the latter possibility. Let Si P2 be the normal standard

covering defined by the reduced building data C!,^ — Öp2 ([£>/«]). Bf — B and

Bq — H,y-, where # is a generator of G, f: G ~¥ Zjn, /(-?/>) — 1, and

P t / n r >\ \b/n\ n - b
a. (jr ~¥ Zj/ Q\W) ~ —H—-—^ •

ged(«, Ib/n \ n — b) ' ' '*

gcd(n, \ b/n\ n — b)

It might be noticed that by Example 2.7 the surface Si is the normalization of

any «-standard covering of the plane ramified along B and along a multiple
of the line at infinity. The relation defining Si is

nlfij, B 4~ ([bjn\ n — b)H0c

Over A2 — P2 \ H:x, the covering 5i coincides with the affine surface 2
defined by zn ~f(x.y), with f(x.y) — 0 an equation for B \ C A2. The
surfaces Si and the normalization Sq of So are birationally equivalent. In fact,
since they are normal and Si P2 is finite, S'() —¥ Si is a birational morphism.

We compute the irregularity of the multiple plane So using the standard

covering Si. If p: X —> P2 is a desingularization of B such that its total
transform on X is a divisor with normal crossing intersections, i.e. if p is

a log resolution for B, then the standard cyclic covering Si pulls back to a

standard cyclic covering S2 of X. The normalization procedure yields a normal
surface S with only Hirzebruch-Jung singularities (see [20], Proposition 3.3).
We have the diagram shown in Figure 1.

If Cp denotes the line bundle defining S, we need to control the line
bundles in order to express the irregularity of a desingularization of S as

a sum of some hl's. The proof will be concluded by applying the Kawamata-

Viehweg-Nadel vanishing theorem. We need two preliminary results.
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Figure 1

PROPOSITION 3.2. Let X be smooth and let tt: Y -i- X be a standard

cyclic covering of degree n determined by the set of reduced building data
Ctj; and By, f $, i.e. by nLg. ~ ^njmjf(ft)fBf. For a fixed g
the branching divisor Bg is supposed to have a multiple component, say
Bq — rC i~ R with r > 1. Let Y" —» X be the standard cyclic covering
obtained from Y after the normalization procedure has been applied to the

multiple component rC. If Y" is associated to

fX
then for every k — I, 1,

L" kL, krg(fr)' C kgiffr R E kfiffr
rtif

BJ

Proof. We present the proof in case both steps of the normalization

procedure from the Subsection 2.2 are needed. Otherwise the argument is
easier. So suppose that (r,mg) — d > 1 and consider the map

,m„G ^ ^ Z/

For any y G the integer g(xT satisfies

d

(3.1) g(x)' ^ q-x w- X

The covering data are modified to

(3.2) fr,, L, r r<
qW-
4

4 ><

Br for f ft g, g'.
ic

How the multiplicity rjd of C is an integer greater than 1 and prime to mqjd.

Consider the map g" : G Z/yf —Z/ 'fr-. We have
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(3-3) r // \« / mti n /2.W + 3 <Al

and the covering data are modified to

(3.4) A
4' MB) for /

l\. Ä 4',,-4,,,+C.

Using (3.2) and (3.4) we have L" ~ L, jjd -f q'S)C for any x G. By
Proposition 2.3, L'^k ~ IcL— ffj \kf(gpy /mf \ B'f for any k 0

so L''!)k is linearly equivalent to

MLr 4^ R ~ (c-t-Bg") ]T

« — 1.

kgiff kg'm BQ'~
kg"m

m;) mfl jd m,j/d m/
Bf

or linearly equivalent to

kg"mkL,i,
m,Jd

t" kq$ — + kqf^C kg(v)' « E kfm
m/

Br.

How, from (3.3) and (3.1), we get successively

k<)"(vy
tria Id

krg'm Hà
krgtgpy

kq^ -;^ kqf.

LEMMA 3.3. Let S X be a normal standard cyclic covering of surfaces

defined by the line bundle ùy with X smooth. If S has only rational
singularities and S —> S denotes a desingularization of S, then

n~~~ 1

q(S) q(X) + Y, f Au) •

7=1

Proof. Since the singularities are rational, if S —* S is a resolution of
the singular points of S, then R'e*0% 0, for all i > 1. From the Leray
spectral sequence it follows that h'(S, Of) — h'(S.Os) for all i. Since by Serre

duality q(S) — ^(S.Of, we have

n—i

q(S) h\S} Os) h\x^,Os) hl(X> } •

7=0

Using the Serre duality, the required equality follows.
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One more notation is in order. Let F be a singular point of B and

let p: X —> P2 be a log resolution of B at P with Ep_\,Ep^r. >Ep,r the

irreducible components of the fibre p~'l{P) c X. This finite array of irreducible
curves will be denoted by Ep. If cp is a finite array of rational numbers

cp,«, then

(3.5) cP • Ep — cp.aEp,,

End of proof of Theorem 3.1. We have seen that if p: X —> P2 is

a log resolution for B, it is sufficient to compute the irregularity of a

desingularization of S2 which is the pull-back to X of Si, the standard

cyclic covering of the plane defined by nL^ ^ B f (\bfn \ n — b)H.:x,. If the

constants cp_a are the multiplicities of the strict transforms of the exceptional
divisors that appear in the pull-back of B, i.e. p* B — B + Y1pcp ' Ep> Ü1611

the standard cyclic covering S2 is defined by

nll^, ~ B -f- (\b/n \ n — b)H:^ + ^ Cp Ep.
p

Notice that Lf ~ [b/n] H and H.:x> ~ H. By Proposition 3.2, the normalization
S of S2 is defined by the line bundle Cp and

(3. U kLl - fb/n\n
..n

H T k
-cP

..n
•Ei

kb'
H S k

-Cp
.n

•Ei

the last equality resulting from \bjn\k — [k(\b/n] n — b)/n\ — \kb/n\
Here, [kcp/nj • Ep denotes fZa\bcP,aln\Ep_a. By Lemma 3.3, q(S)

Lpk). Now,
' kb"

Ek={hl(X,Kx

KxbL% p*Kj>2 H + Kxr ** ]T
k
-Cp

.n Ei

and

E k
-cP

..n
•Ei p*-B

n

since the curve B c P2 is reduced. By the local vanishing (2.5), it follows
that

'kb'Hl(X, Kx + Lpk) — H1 [X, p*öj>z (—3 ®x[Kxw p*-B
n

H PL Op2 (-3t kb"
V n

TLZ(|S)
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hence

q(S)
n-l
E"1
k= l

PL Op2 (-3 4
kb~ \

V n Z(|S)

If k/n J(B, h), then either k/n is not a jumping number of B, or it is, but

kb/n is not an integer. In the former case, if £ is the biggest jumping number

for B smaller than k/n, then, since \kb/n \ — £ > 0,

/Z1fp2j0p2 („3 4-
kb~ \

V n
-^Z(-B)j ~ \P Op2 (-3 4

kb" \
V n J Tzm so

by the Kawamata-Viehweg-Nadel vanishing theorem. In the latter case, we

apply the same argument, now using \kb/n\—kb/n > 0. The result follows.

4. Applications

We shall now apply Theorem 3.1 to illustrate how to compute in a uniform

way, the irregularity for some examples of cyclic multiple planes. Of course, we
shall need to control the multiplier ideals and the jumping numbers attached to
the branch curves. In this section we shall deal with curves having singularities
only of type Am, m > 1. In the appendix, more involved singularities will be

considered.

We recall that a singularity of type Am is defined locally by x2 4-y*+1 — 0.

The multiplier ideals and their jumping numbers are easy to compute; see

for example [4] and [5], or [11], A different argument for these computations
using the theory of clusters will be given in Example A. 13.

LEMMA 4.1. Let B be a curve on a smooth surface and let P be a
singular point of B of type Am. The jumping numbers <1 of B at P are

£. __
1 a
r\ < ,i2 m + 1

with a — 1,..\m/2\. If locally around P the curve B is defined by
x2 4-yd"1 si! 0, then, for every a, the multiplier ideal J(fia • B) is (x,y~),
i.e. the ideal that defines the 0 -dimensional curvilinear subscheme along
B supported at P and of length a.

Theorem 3.1 becomes the following:
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COROLLARY 4.2. Let B be a reduced plane curve such that its singularities
are either simple nodes or of type Am with m > 2 given. Let H.x be a line
transverse to B and let S be a desingularization of the n-cyclic multiple
plane associated to B and H.x.

i) If m 2r — 1, then

m- E +É+11-
a= 1

a+r„ 1 j2r ~gcd(b,n)

ii) If m — 2r, then S may be irregular only if n and b are even, and in
this case

SfSM E /P(P2..^( 3 ; ; I).
a= 1

a 1 j2r+l 'z gcd(b,n)

In both formulae, Z^ — 1JpZ^.

ZARISKl'S EXiAIvIPLE

The curve B is irreducible, of degree 6 and has six cusps as singularities.
If n is divisible by 6, in the formula for the irregularity of the «-cyclic
multiple plane from Corollary 4.2ii) we have a — 1 since m — 1. Hence

q(S) h1 (P2,Z"^(2)) where Z is the support of the cusps. So either the cusps
lie on a conic and the irregularity is 1, or they do not, and the irregularity
is 0.

Artal-Bartolo's first example in [1]

Let C C P2 be a smooth elliptic curve and let P\, P2 P3 be three inflexion
points of C, with L,- the tangent lines at Pi to C. Taking B — C -t-Li-tLi-t-L^
we construct the multiple cyclic plane with three sheets So associated to B.

The curve B has three points of type A5 at the Pt's, hence n — 3, b — 6

and r — 3 in Corollary 4.2i). We have a - 1 and

So the irregularity is 1 if the three inflexion points are chosen on a line. If the

points are not on a line, then the irregularity is 0. These two configurations
give an example of a Zariski pair.
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Artal-Bartolo's SECOND EXAMPLE IN [1]

Let P be a fixed point and K — {Pi,.... Pg} a cluster centered at P, all its

points being free. It represents a curvilinear subscheme Z ~ZK. In [1], Artal-
Bartolo considers sextics with an An type singularity at P, with P2, P9

the infinitely near points of the minimal resolution.

1) If B3 lies on the line L determined by P\ and P2 and if K does not
impose independent conditions on cubics, then all sextics are reducible. Let
B be the union of two smooth cubics from |2z(3)|. If So is the 3-cyclic
multiple plane associated to B, then by Corollary 4.2 i),

q{S) hl{P2s2Z[3](D) - 1.

Similarly, if So is the 6-cyclic multiple plane, then

q(S) ^(P^zeKD) 4-/21(P2;2Z[6](2)) 2?

since there is no irreducible conic through — i.e. through the points

P\,... ,P$ - but the double line 2L : if K' ~ {P\,pI,pI}, then Z[6] c ZK>.

More generally, if So is the «-cyclic multiple plane associated to B and

a transverse line H<oc, then by the same argument it follows that q(S) 2

when re — 0 mod 6, q(S) — 1 when re 3 mod 6, and q(S) — 0 otherwise.

2) If P3 ^ L and Pt$ T, the conic through P\,... ,P$, then there exists an

irreducible sextic with an An type singularity at P, such that the intersection

with r is supported only at P. If So is the «-cyclic multiple plane associated

to B and to a transverse line to it, then

q(S) — /î1 (P2,2Z[6](2)) 1

when « is divisible by 6, and q(S) 0 otherwise.

3) If P3 L and P<$ ^ T, then for every reduced sextic B with an A17

type singularity at P, the «-cyclic multiple plane associated to B and to a

transverse line to it is regular.

Remark. In [1] it is shown that in the third case above, two configurations

may appear: either P\,...,Pg do not impose independent conditions on
cubics and B is the union of two smooth cubics, or the points do impose
independent conditions on cubics and B is irreducible. Using these and the

two configurations in 1) and 2), two more Zariski couples are thus produced
there.
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Oka's example in [19] when p — 2

In [19], if p and q are relatively prime integers, Oka constructs the

curve Cp.q of degree pq enjoying the following property: CPA has pq cusp
singularities each of which is locally defined by the equation xp Of ~ 0. For

the construction, let Cp and Cq be smooth curves of degree p and q that
intersect transversely. If / ~ 0 and g — 0 are homogeneous equations for Cq

and Cp, then Cpq is defined globally by fp A gq — 0.

PROPOSITION 4.3. The normalization of the pq-multiple plane associated

to the curve Cp,q is irregular, the irregularity being equal to (p~~ 1)0q— l)/2.

ReîvIARK 4.4. We shall establish the result in the appendix and discuss
here the particular case p — 2. All the ideas are already present in this
situation. In the general computation the argument that uses the trace-residual

exact sequence will need the description of the multiplier ideals developed in
the appendix and based on the theory of clusters.

Proof when p — 2. The integer q must be odd, so let q 2r + 1.

To simplify the notation, let C — C2r+i and F be the conic transverse

to C. The curve C2gr+i is a curve of degree 4r 4~ 2 with 4r -f- 2 singular
points of type A^. Let So be the (4r + 2)-cyclic multiple plane associated

to C2,2r+i and let S be the normal cyclic covering constructed in Section 3.

We apply Corollary 4.2 ii) to obtain q(S) Y2o:=i h1 {P2 ,Xzu-<\{2r Jr2a --- 2)),
where Z^ — {JpZp'^ and Zp'^ is the curvilinear subscheme associated to the

cluster {P\ — P, P2:.. s Pa} • We shall apply the trace-residual exact sequence
with respect to T (see [10]) to show that all the terms of the sum equal 1

and to get q(S) — r.

Definitions. Let X be a projective variety, D be a Cartier divisor on X
and £ be a closed subscheme of X. The schematic intersection TrD£ — DO,^
defined by the ideal sheaf (2"d 2 TO) jT^ is called the trace of £ on D. The
closed subscheme Res#£ c X defined by the conductor ideal (Xt : 2#) is

called the residual of £ with respect to D. The canonical exact sequence

0 ~—I 2Rest(—D) —4 2C > Xjrc -—> 0

is called the trace-residual exact sequence of £ with respect to D.

In our situation, the trace-residual exact sequence with respect to r
becomes
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Q .—:y j£/pr[<v_i] Ç2,T ~j~ 2Q^ — 4) —"—¥ Izuy] (2r ~i~ 2o^ — 2) —»—^ (t^pi (4(71' — 6) —¥ 0.

Since C |2"^[,+i](2r -f- 1)|, the map //°(P2.2"5;[<v](2r 4- 2a — 2)) —>
H°(P1. Opi(4a—6)) from the long exact sequence in cohomology is surjective
for every 1 < a < r. Hence

h1 (P2, Jäm(4r — 2)) — h1 (P2.2*^[i](2r)) /î1 (P1, Opi(-2)) 1

establishing the proposition in the particular case p — 2.

Remark. The irregularity of the n -cyclic multiple plane associated to B
and to a line H.x transverse to S, n being an arbitrary positive integer, may
be computed by the same argument. Of course, if 2r f 1 is a prime number,

then it might be shown that q(S) — 0 unless 4r ~f 2 divides n — one should

use Theorem 3.1 and the result form [22] cited in the introduction. But if
2r -b 1 is not a prime number, then irregular cyclic multiple planes exist for
other values of n. For example, if 2r -f 1 — 15 and n — 40, then

q(S~) - /i1(P2jX2[3](18)) i-/31(P2!2'_2[61(24)) =2.

A SPEQ^ALIZATION OF OKA'S EXAlvIPLE WHEN p — 2

Keeping the notation from the previous paragraph, the conic r is now the

union of two distinct lines that intersect at O and C is a smooth curve of
degree 2r+ I passing through O and intersecting transversely the lines of F
at this point. The curve B has 4r points of type A^r and one singular point
at O of type Atr+i. It can be shown that the irregularity of the (4r+2)-cyclic
multiple plane associated to B is again r. We develop the computation for
r — 2. In this case, B is a curve of degree 10 with 8 points of type A4

and one point of type Ag. By Theorem 3.1 and using the notation from

Corollary 4.2, the irregularity is given by

h1 (P2j%1]üZg1(4)) + hl (P2,2^pj|jzt4](6))

where is the support of the points of type A4 and =4 Up of type 44 4^
is the support plus the tangent directions. How, 10 points on a conic do not
impose independent conditions on quartics, hence the first term is 1. The
second term is seen to be equal to the first after applying the trace-residual

exact sequence with respect to the two lines of r. So the irregularity is 2.

The computations for r — 1 lead to a branching curve of degree 6 with
four cusps and an A5 singularity at O. The irregularity of a 6-cyclic multiple
plane is 1, given by h1 (P2,ziz](2¥j. If in addition, the two lines of the
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degenerate conic r are brought together such that the cusps collapse two by
two, the branching curve has three A5 singularities. For a 6-multiple plane,

q — 2, with the contributions of the superabundance of the singularities with

respect to the lines and the conics both equal to 1. The branching curve is

reducible; it is Artal-Bartolo's first example.

Line arrangements following [7]

In this example we consider as branch curve a line arrangement
b - uLl C P2 that has only nodes and ordinary triple points as

singularities. We revisit, from the point of view developed here, results obtained
in [7], See also [2] where line arrangements are examined using the techniques
from [1].

Using Example 2.8 or Corollary A.2, we have that for an ordinary triple
point 2/3 is the only jumping number < 1. The multiplier ideal is Xp. By
Theorem 3.1, if H.x is a line transverse to B — Uf=1 L-t, then the normal

«-cyclic covering S corresponding to the «-cyclic multiple plane associated

to B and His irregular if and only if 3 divides both b and «, and

\Xz{—3 + y)| is superabundant, in which case

In case S is irregular, it can be shown that the irregularity is bounded by a

constant depending on the arrangement B.

PROPOSITION 4.5. Let B — (JÎ=i #00 and s be as above with b and

n divisible by 3. If tj is the number of triple points lying on the line L, for
each i, then

For the proof (see [7] for a different argument), we need a preliminary
lemma.

LEMMA 4.6. If 3 divides both b and n and if one line of the arrangement
contains no triple point, then q(S) — 0.

Proof Let B' be the arrangement of the b — 1 lines of B except the one
with no triple point. If S' is the normal «-cyclic covering corresponding to
the « -cyclic multiple plane associated to B' and Hi>0, then q(S') — 0 since

3 does not divide degßL Taking k — 2«/3 in Theorem 3.1 we obtain

q(S) < min tt.
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0 — hl VP1, Tz (—3 -f 2(6-1) hl(v'2}Zz(^3 + f]j^q(S)3

where Z is the support of the triple points.

ProofofProposition 4.5. Let us suppose that L\ is the line containing the
minimum number of triple points. If B' — L[ U U/séi J-"< is a line arrangement
with no triple point on L\ and if Z' denotes the support of the triple points
of B', then by the previous lemma, h1 {V2,lz>(~3 + 26/3)) — 0. Since
h1 (P2,2*^(—3 + 26/3)) measures how much Z fails to impose independent
conditions of the curves of degree 2b/3 —3,

V 3 • U fH • car«Z-

hence the result.

Example. Let B be the line arrangement of 9 lines with 9 triple points
represented below (Figure 2). In a convenient affine coordinate system (x,y),
the triple points that lie in the affine plane are the following:
(0.0), (±2.-2), (—2.0), (O.s), (2.s) and —^—(—1.1), with 5 f -2.0 and 2.

0+4)

V

/ °\A k
Figure 2

It is easy to see that there are two cubics — each the union of three

lines — through the 9 triple points, i.e. the system of cubics through the

points is superabundant. It follows that the irregularity of the «-cyclic multiple
plane associated to B and to a line H:X/ transverse to B, is 1 if and only if
3 divides n.

If s — 2, then the arrangement specializes to an arrangement with 10

triple points, 4 of them lying on the line x+-y — 0. But these points lie on
a cubic, the union of three of the lines of B, and again h1 (P2.2"^(3)) — 1,

hence the irregularity is 1 in this case too.
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Remark 4.7. The irregularity depends on the position of the line H.x
with respect to B. To see this, let B be the line arrangement below of 5 lines
with 2 triple points from Figure 3.

Figure 3

If is transverse to B, then the irregularity of the 6-cyclic multiple
plane is 0. But if H,x is the line through the double points P and Q then
the irregularity jumps to 1.

A. Clusters .and multiplier ideals

Among the examples treated in Section 4 there is Oka's example. The

irregularity of the surface involved is computed in Proposition 4.3. The

proposition was proved only in the particular case when the singularities
of the branch curve are of type Am. The general proof may be supplied along
the lines developed in the particular case on condition that the multiplier ideals
involved in the formula for the irregularity have a description fit for use in
the trace-residual exact sequence.

Throughout this appendix we work under the following hypothesis: B is

a curve on a smooth surface such that each of its singular points is locally
characterized by an equation of type / t/ — 0. We shall give a new

description of the multiplier ideals attached to B. They are determined only
by the study of the coefficients of the last exceptional curves in a log resolution
of B.
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PROPOSITION A.l. Let p\ Y X be a log resolution of B in X and

denote by Ep the last exceptional curve in the resolution above each singular
point P. If cp is the coefficient of Ep in — Ky\x~1~ then the multiplier
ideal J{f • B) is given by

J(f • B) — /{* {^)p Oyi—cpEp).

Moreover, if P is locally given by xm yJl — 0 with d — gcd{m, n) and

m — dp, n — dq, then

ßtöyi—cpEp) — ß*ÖY(~cpEp), with ëp — min (ap + bq),
ap+bq>cp

a,b>0

and p*Oy(—cEp) Ç. ß^öyi—cpEp) for any c > c.

We refer the reader to [11] for a different description of these multiplier
ideals.

COROLLARY A.2 (see [4, 5, 11]). Let P be a singular point of a curve
B on a smooth surface S. If P is locally given by xm -j-y" — 0, then the

jumping numbers of B at P are

a b

m
'

n

with a and b positive integers.

Above a singular point P, through the log resolution p, lies an exceptional

configuration, a Z-linear combination of strict transforms of exceptional
divisors. The proof of Proposition A.l will mainly deal with this configuration.
To prepare the way for the proof we need to formalize the setup and recall

some results from the theory of clusters.

A.l Clusters and Enriques diagrams

Let X be a surface and P X a smooth point. A point Q is called

infinitely near to P if Q X' with p: X' —¥ X a composition of blowing
ups and Q lying on the exceptional configuration that maps to P. The points

infinitely near to P are partially ordered. The point Q precedes the point R

if and only if R is infinitely near to Q.
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Definition, à cluster in X centered at a smooth point F is a finite set

of weighted infinitely near points to P, K— {Pfl,....Pfr}, with P\ — P
and such that the ordering of the points is compatible with the partial order

of the infinitely near points — if a < ß then either Pß is infinitely near

to Pa or there is 7 < a such that Pa and Pß are infinitely near to P~,. The

point P\ is called the proper point of the cluster.

In the sequel, if K is a cluster, then all points preceding a point that

belongs to K will belong to K, possibly with weight 0.

Let Y — Yr+i —f Yr -¥ • • —f Y\ — X be the decomposition of /«: Y ~¥ X
into successive blowing ups with Ya+1 — BlP<v Ya. Each point Pa corresponds
to an exceptional divisor Ea c Ya+i. All its strict transforms will also be

denoted by Ea and the total transform of each Ea by Wa. When needed,

the strict transform of Ea on Yß will be denoted by Efp, and similarly for
the total transform. For example VV^>:+1) =£^f+1).

The strict transforms Ea and the total transforms W<t form two different
bases of the Z-module ®aZ.Ea C Pic Y. The combinatorics of the configuration

of the strict transforms on Y is codified in the notion of proximity for
the points of the cluster: a point Pß is said to be proximate to Pa, Pß -< Pa,
if Pß lies on Epp c Yß, the strict transform on Yß of the exceptional divisor
corresponding to the blow-up at Pa. Besides, a point that is infinitely near,
i.e. that is not proper, is always proximate to at most two other points of the

cluster. It is said to be free if it is proximate to exactly one point and satellite

if it is proximate to exactly two points of the cluster.

Let IT — H/?«/? II be the decomposition matrix of the strict transforms in
terms of the total transforms on Y. Since

Ea — Wa — Y, W/D
P;r<P<y

pao rr 1 for any a and p(,ß equals —1 if Pß is proximate to Pa and 0

otherwise. Notice that along the a column of II the non-zero elements not on
the diagonal correspond to the points to which Pa is a satellite. The matrix

—nyn is the intersection matrix of the curves Ea on the surface Y. For

any a,

if- a,*jp,
where pa is the number of points Pß proximate to Pct. Since the intersection
matrix of the curves Wa is minus the identity, there exist effective divisors Ba
that form the dual basis for the divisors —Ea 's with respect to the intersection
form. In the sequel this basis will be referred to as the branch basis. Clearly,
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the decomposition matrix of the basis of strict transforms in terms of the

branch basis is II-'IT.

The points of a cluster K, their weights and proximity relations were
encoded by Enriques in a convenient tree diagram now called the Enriques
diagram of the cluster (see [3, 6, 8]). If the weights are omitted, the tree

reflects the combinatorics of the configuration of the strict transforms Ea c Y.

DEFINITION. An Enriques tree is a couple (T.e), where T — TQXJ. 6) is

an oriented tree (a graph without loops) with a single root, with 23 the set

of vertices and 6 the set of edges, and where s is a map

fixing the graphical representation of the edges. An Enriques diagram is a

weighted Enriques tree.

Example A.3. Let p < q be relatively prime positive integers. Tp_q will
denote the Enriques tree associated to the Euclidean algorithm. It is a unibranch
tree. Let ro ~ a\ri ~f ri, rm—2 — am,.....\rm—i ~t~ rm and rm^,\ — amrm, with

r0 ~ q and r\— p. The oriented tree has 33 — {Pa | 1 < a < a\ -f- • • • +
and 21 {[/><>i/><)e+i] | 1 < a < • •4~am — 1}. The map e is locally constant

on the aj edges LPa/Vi-i] wifh a\ + • • • + aj_\ + 1 < a < a\ 4 4- aj.
The first constant value of s — on the first a\ edges — is 'slant'. The
other constant values are alternatively either 'horizontal' or 'vertical', starting
with 'horizontal'. The Enriques trees T13, T2.3 and T5.7 are represented in
Figure 4. The tree T5.7 together with the weights w\ — 5, vp — un, — 2

and w4 — u's 1 becomes the Enriques diagram that reflects the Euclidean

algorithm for p — 5 and q 7 : if Pa is the initial vertex of one of the aj
edges on which s has constant value, then wa — rj. The configuration of
exceptional curves is the configuration obtained when desingularizing the curve

C (6 —i {'slant', 'horizontal', 'vertical'}

Figure 4

Xs i~ y1 — 0
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The fact that clusters and Enriques diagrams carry the same information is
asserted by the following lemma. One more piece of terminology first Let T be

an Enriques tree. A horizontal (respectively vertical) L-shaped branch of T is

an ordered chain of edges such that the final vertex of each is the starting vertex
of the next, and such that all edges, but the first, are horizontal (respectively
vertical) through s. An edge is an L-shaped branch, regardless its value through g.
It is a horizontal L-shaped branch if its value through e is either slant or
vertical and it is a vertical L-shaped branch if its value through s is horizontal.

An L-shaped branch is proper if it contains at least two edges. A maximal

L-shaped branch is an L-shaped branch that can not be continued to a longer
one.

LEMMA A.4 (see [8], Proposition 1.2). There exists a unique map from
the set of clusters in X centered at a smooth point P to the set of Enriques
diagrams such that:

• For every cluster K ~ {Pfx....... Pf'} the set of vertices of the image tree
is 5} — {Li,.... Pr} with the weights given by the integers w\,W2> ..wr.
The root of the tree is the proper point.

• At every point there ends at most one edge.
• A point Pa is satellite if and only if there is either a horizontal or a

vertical edge that ends at the vertex Pa.
• If there is an edge that begins at the vertex Pa and ends at the vertex

Pß then Pß E^f, and the converse is true if Pß is free.
• The point Pß is proximate to P(l if and only if there is an L-shaped

branch that starts at P(t and ends at Pß.
• The strict transforms E(l and Eß intersect on Y ifand only if the Enriques

diagram contains a maximal L-shaped branch that has Pa and Pß as its
extremities.

• An edge that begins at a vertex of a free point and ends at a vertex of a
satellite point is horizontal.

Example A.5. The Enriques tree T5.7 seen in the previous example
has two maximal horizontal L-shaped branches. These branches are shown

in Figure 5 together with the configuration of the strict transforms of the

exceptional curves.

A.2 Unloaded clusters
Let K — {Pfl..... ,Pf'} be a cluster centered at P. It defines a divisor

Dk — Yj'w<*Wa on F, an ideal sheaf p*Oy(^Dk) on X and hence a
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Figure 5

subscheme Zk of X. The decomposition matrix II is also called the proximity
matrix of the cluster. Using it,

Dk ~ Yw<x w°: ~ Y CaE°: ~ Y b°B<

with w c II and b — c • II 'n, where w (up,..., wr), c — (ci,... .cr)
and similarly b — (b\,... ,br). The lemma below clarifies the comparison
between the divisor Dk and the ideal sheaf p*Oy(~Dk) or, equivalently, the

subscheme Zk-

Lemma A.6. Let Dk — YLa ^oßa- (f bß < 0 for a certain ß, then

P«Oy(--Dk) — p*Öy(~Dk — Eß).

Proof. We take p.* on the exact sequence

0 —^ 0Y(—Dk — Eß) —A ÖY(-DK) —> OE0(~DK \E0) —* 0-

Since

deg(—Ie0)~ ^(Y ' Eß - bß < 0

we have möE.ß-DK \e0) - 0.

A cluster K is said to satisfy the proximity relations if for every Pa in K,

w<* ~ wß - w<* •

P;r<P<,

COROLLARY A.7 (see [3], Theorem 4.2). Let K ~ {Pfx,... ,Pf'} be a
cluster that contains a point Pa at which the proximity relation is not satisfied.

If K' — {P'il....... P'r'} is the cluster defined by w'a — wa + 1, w'ß Wß — 1

for every ß with Pß proximate to Pa, and vfi — -uu, otherwise, then K and
K' define the same subscheme in X, i.e. p*Öy(~Dk) — P*Oy(~Dk')
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Proof. Let DK - Vaw0:W0: Y,c«Ea - and dk<

Kf.B<* The coefficients ba are given by b — c • II — w -?n w — w.
Then

b' ~ w' — w' w — w + (n -'n)a — b + (n -'nx*

and

c' - b' • (n -'nr1 b • (n -'irr1 + (n -'uy • en -'irr1
~ c i- (0...., 1,..., 0),

hence Dfc ~ Dk + Ea. But ba — wa — w<t < 0 and the result follows from
the previous lemma.

The cluster K' is said to be obtained from K by the unloading procedure.
Starting from K, iterated applications of this procedure lead to a cluster K

that satisfies the proximity relations and defines the same subscheme in X.
The cluster K is called the unloaded cluster associated to K. Notice that a

cluster is unloaded if and only if the coefficients of its divisor in the branch

basis are non-negative.

Example. Let {F\,pI,P],P\,P\} and {P\,Pl,P^,P2A,p\} be two clusters

with the proximity encoded by the Enriques tree Tsj. The former is
unloaded. The latter does not satisfy the proximity relation at P3. The
unloaded associated cluster K.2 is {P\,P\,and D^ — S2 ~t~ £4•

A.3 The proof of Proposition A.l

We consider S\PA, the set of unloaded clusters whose lattice tree is TPA

with p < q relatively prime positive integers. Given a positive integer c, we
want to characterize the unloaded cluster in ÂPA whose associated ideal is

p^OyC—cEf), with Er the last exceptional divisor.

All along this subsection the Wa's, 1 < a < r, denote the total transforms
of the exceptional divisors in the process of blowing up the points of the

clusters in ÂPA, the Ea's the strict transforms and the Ba's the elements of the

branch basis. The integer r is given by r — a\ +* • • ~i~am, where q — a\p~tr2,
p — a2f'2 + r$, rm„ 1 — amrm. Finally, p: ZEa —?• Z ~ ZEr denotes

the projection of 0a ZEa on its last factor.

We need four lemmas. In the following lemma two finite sequences closely
linked to the Euclidean algorithm are introduced.
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LEMMA A.8. If (fi)~\<j<m and are two finite sequences
defined by

fj — fj—2 + ajôj for any 1 <j<m
and

ôj — Ôj-2 + ajmiifj-2 for any 2 < j < m + 1

and such that f-\ — fi) — 0 and So — S\ — 1, then the remainder rj in the

Euclidean algorithm is given by —fi-\q-tSjp if j is odd and djq ~fi-ip if j
is even.

Proof. Left to the reader.

REMARK A.9. If m is odd, then fm — q and Sm+1 — p, and if m is

even, then fm —p and Sm+i ~ q. Indeed, let us suppose that m is odd. Then
the equalities follow since for any 1 < j < m the integers f and Sj+1 are

relatively prime and 0 — rm+\ — Sm-\.\q —fmp-

LEMMA A.10. If (fj)-i<j<m and (<)})i<y<n,-)-i are the finite sequences
defined in Lemma A.8, then for any 1 < j < m and any 1 < k < aj,
the coefficient of the last strict transform in Bax,\r,,,,yaj_x,yk equals either

(f~2 i~ h Sj) p if j is odd or (fi...2 i~ k Sj) q if j is even.

Proof. The proof proceeds by induction on j and k. It is clear for j — 1

and any k. Suppose that j is even, k < aj and that '<p(Baxjr.„,^.aj_x^rk) —

(fi-2 1-kdj)q. We recall that B(, is given by the Enriques diagram for which
the weight of the point Pa is wa — 1, the weights of all the points that do

not precede P(X are 0, and all the others are computed by imposing equalities
in the proximity relations. Then

Bci\-j-' "\~ctj— 1 ~.yk~\~ 1 " ^a\-E-.• +A +'"'+a/_i+A+1 '' ^ci\-Y•••-['ctj—\

and

^pkßaii+A+1 (fj—2 ~i~ k Sj) q f rj f (fj—3 "t* Qj—l Sj— \)P

(fj-2 + kSj)q + Sjq -fj-ip + fi-ip
- (fi-2 ~r(k~t l)Sj) q.

The argument is similar in all the other cases, i.e. when either k — aj or

j odd.

LEMMA A. 11. If K Sip.q, then the coefficient of Er in D% is of the

form ap -j- bq, with a.b non-negative integers.
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Proof. Since Dk — — wa)Bx the result follows from the previous
lemma.

Notation. The cluster Kp.q(ap + bq), a, b > 0, is the unloaded cluster

associated to P^_l, pf>[bq} i i.e. whose associated ideal is

p-jtOyi—iap + bq)Er).

LEMMA A. 12. Let K &p.q such that (p(D^) — ap + bq. Then

K •— Kp_q{ap 4- bq), the cluster that corresponds to p*Öy{~(ap + bq)Ef),
if and only if every ordered chain of maximal L-shaped branches determined

by the points Pol,....Pai — each P,Xk precedes PCt:j^x and the jth maximal

L-shaped branch starts at PXk and ends at P(*kJ_x ~ satisfies

(Recall that the non-negative integer pa is the number of points Pß that are
proximate to P(X.)

Proof. The proof divides into four steps the third being the main one.

First, if an unloaded cluster does not satisfy the condition (*), then an
inverse of the unloading procedure may be applied to K with the output
an unloaded cluster. Indeed, suppose that there exists an ordered chain of
maximal L-shaped branches determined by the points Pai..... ,PCM such that
SL=i('u-'«t ~~ w«*) ^ Y^k=\P'x-k -i-2 — /. We may further assume that all its

proper subchains satisfy (*). It follows that

By Lemma A.4, the strict transforms E<M....... Ectl intersect two by two. Then,

W&i "&/<*! — P(Kl Wfti

and for any other a*

- Pak - 1 •

' Bet; — baBa Eaf) • Eai

'At^tD-L i' — 1

- < m l + (.po- +.1) « i, i < i < l

^bai *r~ 1 + (pai + 1) i — I
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hence (Dr — ]CL=i Eak) • Eai < 0 for any a-,-. We conclude that the cluster K'
whose divisor is Dk — W!,=1 E(Xk is still unloaded and the coefficient of Er

in Dk< is unchanged. Qearly, Dk) C p*Öy(~Dk')-
Second, if AT is a cluster that satisfies (#), then for any 1 < ß < r and

any ordered chain of maximal L-shaped branches determined by the points

Pai>... ,Pai such that the last one ends in Pß,

i

(A.i) < ^(%).
7=1

Let us suppose that Pß is the final vertex of a maximal horizontal L-shaped
branch (the argument being similar if the branch is vertical). There are two
cases : the last maximal L-shaped branch is either proper or it is not, i.e. there

exists i < r — 1 such that ß — a\ -f- • • • + a-, -f- k with in the first case k—1
and in the second 2 < k < ai+ \ (see Figure 6).

Figure 6

In the first case, due to the condition (#) and using the formulae of
Lemma A.8,

i i-i
Y ba/ptßaj) < ** 1

7=1 7=1

< (a2fi + 04/3 + • • • + (a, + 1)^-1)/?

- 4- ^ -f a2fi + 04/3 -I 4- (a/ +
— (—^i + $+1 +/-ÙP
~ ~P ~t~ p(Pa\+ -\-ai-\-l)
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For the second inequality we have supposed that ß < r and hence pai —

Pa\-\-----\-cti-\ — ai + 1- If ß — r, then a-; — a\ + • • + am-l ancI Pat — am and

we get

i
Y2 baMBaj) < (ßifi +a4f3i~- • • +amfm^i)p ~ (-81 + Sm+i)p - —p + pßr).
j= 1

Similarly, in the second case, i.e. when ß — a\-t- • '-pai+k with 2 < k < a,-+1,

1 /-i
< Yl(-PaJ ~ 1)p(Baj) + PaMBat)

7=1 7=1

< (a2fi + 04/3 + • • • + aifi-1 + if-1 +(k-«o l)di+i))p

- (-£1 + Si+1 + if-1 + (*- l)%i))p
~ P -j- (p(ßöj.,ß-a-t-\-k)

Third, if both /C and K' are unloaded and satisfy the condition (*)
and are such that ipiDfc) — tpiDjc), then K — K'. To justify this, let

Dk — b\B\ 4 f- brBr and Dk' — b[B[ 4 h b'rB'r. We want to show that

for any a, ba — b'a. Then, if Pa Lh indicates that the vertex Pa is the

initial vertex of a maximal horizontal L-shaped branch,

(piD/c) - bap(Ba) + ba(f(Ba) + b/p(ßr) ~ ap + bq + brpq,
a<r a<r

P<v~LU P<v-»L„

with a,b non-negative integers. By the previous step applied to ß — r, it
follows that q > a and p > b. Analogously, (piDfp) — dp -f- b'q + b'rpq, with

1 > a' 0 and p > b' > 0. We get

ib'r - br)pq ~(am a')p + (b » b')q

with \a — d\ < p and \b — d\ < q, and hence br ~ t/r, a — d and b — b'
since the integers p and q are relatively prime. Now, the equality among the

other coefficients is established similarly. Keeping the above notation, suppose
that ba — b'a for any a > ß, with ß < r the initial edge of a maximal
horizontal L-shaped branch. If bp < b':J>, then

ap- bap(Ba) + bpp(ßß) + ^2 bapßa)
a<ß ß<a<r

< pßp) 4- bppßp) 1- ]T b'apßß<dp,
ß<a<r
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contradicting the identity a — ci obtained previously.
To finish the proof of the lemma, we notice that the unloaded cluster whose

associated ideal is p.tOY{—{ap ~i~ bq)Er) satisfies the condition (*) since the

subscheme supported at P — P\ defined by this ideal is the smallest subscheme

such that its pull-back on Y contains Er with multiplicity ap+bq. We have

seen in the first step that (*) characterizes this minimality condition.

Now we are ready to identify the unloaded cluster whose associated ideal

is p^OY(—cEr). We have

/,i*öy(—cEr) ~ p*öy(~cEr) with c — min (ap bq),
ap-\-bq>c

a,b>0

So the unloaded cluster whose associated ideal is p*öY(~cEr) is Kp_q(c).

Proof of Proposition A.l. We shall argue on the cluster associated to
the divisor — KY\x + L/{*£^J • To find the multiplier ideal is equivalent to
determine the unloaded corresponding cluster. Let the pull-back of B be

caEa + B - c • E + B. Then ~,KY\X + wa Wa ~ww, with

w — —w + • n and w (1,..., 1).

Let Pai...... Pai be ordered points that determine a chain of maximal

L-shape branches. Then

(A.2) w ~~w — w 'n —- L£cJ • n 'nw -'n.
The matrix —II 'II is the intersection matrix of the strict transforms Ea on
the surface Y. So for every 1 < j < I,

«jl ~ - LC^_,j + (Paj + 1) |£C<*J- [£c<w j + {p0j - 1)

and T!j=\^aj ^ E)aj) is equal to
1 i

[Ccaoj-f^ai
7=2 7=1

Since c • II 'n — (0,....0,d), we have

i i
(A.3) —2 < Y1(-w<Y * <*j) <YLPaj + 2wL

7=1 7=1

Putting / — 1 we observe that if the proximity relation is not satisfied at Pa,
then wa — Wa — —1. But the unloading procedure of Lemma A.7 at Pa

changes the vector w — w into the vector w — w + (II *'II)<3e. It follows that
the unloading procedure does not change the inequalities in (A.3) for the new
cluster. So the associated unloaded cluster satisfies (*). Lemma A. 12 gives
the result.
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Proofof Corollary A.2. Let d — gcd(m,n) and m — dp and n — dq. Let £
be a jumping number for B at P and consider the cluster whose associated

divisor is the exceptional configuration in [/C(£6)J. The coefficient of Er, the

last strict transform for a log resolution of B at P — the Enriques diagram
associated to the configuration of strict transforms above P is Tp q with the

weights corresponding to dBr — must be of the form ap + bq + 1, for some

a. b > 0. But the last coefficient is \fdpq\ -(/? + ?- 1), hence £ is the

minimal rational number such that

L£dpq\, ~ {a + Y)p + (b + l)q
and the result follows.

Examples A. 13. Let P B be a singular point of type A2r locally given
by x1 ~f-y2r"'A — 0, r > 1. The Enriques diagram of the minimal log resolution
of B at P is 72.>+i with the weights as shown in Figure 7.

Figure 7

By Corollary A.2, the jumping numbers < 1 of B at P are — 1/2 -f-

aj(2r + 1), with a — 1,... ,r. Then

J(ia-B)r - /{#Oy(—(2a— l)£r+2) ^0Y{-2aEr+2) - ^ö)
for any a. The corresponding subscheme Zi^r+iCf-a — 1) — is the

curvilinear subscheme defined by the unloaded cluster {P\,... ,Pa}.
Let P B be a singular point locally given by x* + y2r — 0, r > 1.

As before the Enriques diagram of the minimal log resolution of B at P
is T\_r. It consists of r free points with all the weights equal to 2. By
Corollary A.2, the jumping numbers <1 of B at P are — 1/2 -i~a/(2r)
with a — 1,... ,r — 1, and by Proposition A.l the multiplier ideals are

J(ia • B)p — ß*ÖY(~aEr) — Wo). The subscheme Z\_r(a)
is Zp-', the curvilinear subscheme corresponding to the unloaded cluster

{P\,..., Pa} for any 1 < a < r — 1.
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A.4 Oka's example and the proof of Proposition 4.3

Keeping the set-up and notation of Section 4, suppose that p < q. By
Theorem 3.1 and Proposition A.l, the irregularity of the pq-multiple plane
associated to the curve Cp.q is given by

V », nitWaring-
ap+ßq<pq

The sum consists of (p— l)(q~~1)/2 terms, and as in the particular case p — 2,

we shall show that each of them equals 1. For an arbitrary couple
with a >2, we first apply the trace-residual exact sequence a-- 1 times with
respect to Cp. If Z denotes the subscheme ZPzq((a — l)p + (ß ~ 1)<? + 1),

using the lemma hereafter, we have the short exact sequence

0 --4 2)p 1 (ff 1)#+1)^ 3 + a(p +^
—Zz(~3 -f- O'p -f- ßq) Jjjxc z(.—3 ~t~ (%p T" ßq) —^ 0 *

Let P be any point in the support of Z and w\ be the weight of P — P\
in the unloaded cluster Kp_q((a — Y)p +(ß — 1 )q + 1)- The subscheme Z is

contained in w\Cq, hence using the multiplication with the equation of Cq at
the power w\, the global sections of ö-pz(-wiq-tn) live in H°(P2 .Zz(n)) for

any integer n. Since TrcpZ w\Cq \cp, the global sections of Zi:Cpz(—3-f-w)
are cut out by the curves of degree -3 + «- w\q, hence H°p is surjective.
We conclude that

(A-4) h1 (P2 ZzPtjj,<x-1)p+{ß- i)q+1)(N + aP + ßq))

— h1 (P2,!^.^D^ß +p + ßq))

whenever a > 2. Then, in case ß > 2, we apply ß — 1 times the trace-

residual exact sequence with respect to Cq starting with the subscheme

Z Zp q((ß — 1 )q 4-1). As before, we have

0 -4 -^zp>q(ß~2)q-y 1)(~3 +P + (ß^X)q) -* Tzi-S +p + ßq)

~y Jjjj-c z(\—3 -f" p "F ßq) 0 î

the surjectivity of H°p being given this time by the inclusion Z c wCp, with

w the sum of the weights of the points P\. P^.... .Pax, Pa[+i in the cluster

KPtq«ß-l)q + l). So

(A.5) hl (P2,ZZpj^ß_1)(?+ J)(—3 •+• p-r ßq)) — hl (P2, Zz(jß~3 -t p-t q))
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Finally, Zp.q(l) — ljp P and we apply once more the trace-residual exact

sequence for this subscheme with respect to Cp to get

0 ~—y '3 ~j~ q) —^ 2^- ^ ~i~ p ~t~ q) —(—3 "f~ p) —~~¥ 0

Since q > p, h1{P2,XZi)^(—3+p+q)) — h1 [Cp, öcß—3+p)) — 1- Together
with (A.4) and (A.5) this concludes the proof of the proposition.

LEMMA A. 14. Let Z — Zp_q(ap ßq 1) be the subscheme associated to

the unloaded cluster Kp.q(ap + ßq 4-1) and centered at a point of intersection

of Cp and Cq. If a > 1, then RescpZ — Zp_q((a~ 1)p-t ßq-t 1), and if
ß > 1, then Resc4 Z Zp_q(ap + (ß — Y)q -f !)•

Proof We first show that if Kp.q(ap + ßq + 1) — {P\'ß.- Pf'}, then

the subscheme RescZ corresponds to the unloaded cluster associated to
K — {Pfi~1,...,P'":'}. To see this, let us denote by s the blowing up
of the plane at P — P\ and by p! the sequence of the remaining blowing ups

that compose p : X —¥ X2 — Bip p2 _L). X\ ~ P2. Then

2z — p*ÖX(—DK) ~ c* (Cbip p2(—«.'I wf) # P'*OX(—DK + «4 Wi)) •

The ideal p'^Ox(—Dx+w\Wi) is associated to the cluster K' —{Pf2,....Pf'}
centered at P2- If « is given locally around P2 by x — and y y*, then

the equation of the exceptional divisor Ef} C BlpP2 is f — 0. It
follows that

(A.6) (2z : lcf) ~ (eßOBipvß—uiiW^) ® p'*Ox(~DK + wi IVO) : lw&))

s^Ob^CHwi - l)VVf) ®p'M^DK 4- uqWi)),

hence the result. Next, suppose that ap A ßq + 1 — ap + bq. From the proof
of Lemma A. 12, since the cluster {P'ß,... ,P'"h} satisfies condition (*), it
follows that K satisfies this condition too and hence K is of the type Kp_q{c)

with

c-y((-a;i~l)Wfi4-^ W«)-^CC W0^-p(Wi)~ap~tbq-p~(a-l)pPbq.
«>2 <*

Here p is as before the projection ®/); ZEa —r Z ~ ZEr. So c — c and

Resc? Z s= Zpq((a — 1 )p -j~ bq). To finish the proof of the first assertion, it is

sufficient to show that (a — 1 )p -t ßq ~t 1 — (a — 1)p t bq, where a > 1 and

ap + ßq -p l m ap -t bq. But this is clear, since if there existed non-negative

integers a! ,b' such that
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(«a — 1 ~)p + bq > a'p + b'q > (a — 1 )p + ßq + 1,

then ap -f ßq 1 would be equal to (d + 1)p + b'q.
The proof of the second assertion is similar; the argument in formula (A.6)

has to be repeated a\ ~i~ 1 times, i.e. for all the free points of the Enriques

diagram.
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