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ON SUCCESSIVE MINIMA OF INDEFINITE QUADRATIC FORMS

by J. Bochnak and W. Kucharz*)

1. Introduction

The classical theorem of Minkowski on successive minima of definite

quadratic forms (cf. [6] or [3], p. 205) can be stated as follows :

THEOREM 1.1 (Minkowski). Let g be a non-singular positive definite
quadratic form in n variables with real coefficients. Then there are n linearly
independent points a\,..., an in IT such that

g(ai) - • - g(an) < y"D(g),

where yn is the Hermite constant.

In the statement above, D(g) is the determinant of g, that is, D(g)
det(^y), where g g^XiXj with gij gp. Recall that the Hermite constant yn
is defined as follows. Let £n be the set of all non-singular positive definite

quadratic forms in n variables with real coefficients. For any g in 8n put

7 (g)inf( \Z", > o).
<-D( g)n>

Then, by definition,

Insup{7(5) I

Only the first 8 values of yn (and 724 4) are known explicitly. Clearly,
since 7(g)n < 7J, the constant 7^ in the Minkowski theorem is optimal; it
cannot be replaced by a smaller one.

* Both authors acknowledge with gratitude the support of the Research in Pairs program at
the Mathematisches Forschungsinstitut Oberwolfach.
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The goal of this paper is to prove an analogous theorem for indefinite

quadratic forms.

First, given integers n and s with n > 1, define the Watson number wn^s

by setting

w — c 2^~n^

where {n} n for n even, {n} n — 1 for n odd, and

1 5-HOO
k-

(mod 8)

1/2
VIIIUa

±3 (mod 8)

1/3 ±2 (mod 8)

1/4 4 (mod 8)

One has 7^ wn^n if n < 8 (this result is classical, due to Gauss for n < 3,
Korkine and Zolotareff for n 4,5, and Blichfeldt for n 6,7,8 ; for the

references see [3], p. 332).
Let £WjJ be the set of all non-singular real quadratic: forms in n variables

with signature s (in particular £n £n,n)- Again, we can define the "Hermite
constant" aHjS of £tus imitating the definition of 7n. For any / in £HjS let

«(/) - inf {^T I * e I/WI > °}
and let

&n,s — sup^o^y) I f G £n,s\ •

Contrary to the case of positive definite forms, the numbers an,s with |.v| < n

are known explicitly. By a theorem of Watson (cf. [8], [9]), for n > 2 and
Is I < n, one has

The inequality ann
s > wn%s is proved in [9] by explicitly exhibiting a form

fus in £ns, with coefficients in Z, satisfying

We shall only need the existence of such a form fn^ Our main result can
be regarded as a theorem on successive minima for indefinite quadratic forms.

THEOREM 1.2. For any indefinite quadratic form f in £,us there are n

linearly independent points a\,... ,an in Zn such that

0 < \f(ai)• -f(an)\ <

Moreover, the constant wtus is optimal.
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Clearly, the inequality aJJ > wn^s, mentioned above implies the optimality
of the constant wHjS in Theorem 1.2. Observe that our theorem implies

an:s wn,s •

To the best of our knowledge no results similar to Theorem 1.2 are known,

except the contributions of Barnes ([1], [2]), in which he considers an analogous

problem for forms in 2 and 3 variables not representing 0 over Z. We wish to
thank Professor A. Schinzel who informed us about Barnes' papers. The proof
of Theorem 1.2 depends on a relatively recent result of Margulis [5] about
the density of values of irrational indefinite quadratic forms at integral points
(cf. Section 2). It seems probable that any attempt at proving Theorem 1.2

prior to Margulis' result would be either unsuccessful or would require very
long and complicated computation.

Theorems 1.1 and 1.2 can be placed in a larger context of classical

investigations in the geometry of numbers, concerning the problem of successive

minima of "distance functions" (cf. [3], Chap. 8 for more information). Recall
that a distance function rj : R" R is simply a non-negative continuous
function satisfying rj(tx) \t\rj(x) for all r in R and x in Rn. For any
positive real number A, put

Sx {xeRn\0< rj(x) < A}

(in the literature the inequality 0 < rj(x) is often omitted, which does not affect
the problem under consideration if 77_1(0) {0}). Given a lattice AcR"
of rank n, one defines the kth successive minimum A^ A^^A) of the

distance function rj with respect to A to be the infimum of the positive real

numbers A such that the set S'a contains k linearly independent lattice points.
Clearly

Ai < • • • < \n

and

Let

Ai inf{rj(x) \ x G A, 0 < rj(x)}

\ \ ~\7 \ ^1
A(77) sup —j- A(t7) sup

a d{A)' v,y / d(A) '

where d(A) is the determinant of A. If A(^) >0, the quotient

A -A^>i" My~is called the anomaly of 77. Numerous works of Rogers, Chabauty, Mahler,
Rankin and others show that Av is quite often strictly greater than 1 (cf. [3],
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Chap. 8 for references). The situation where Av equals 1 seems to be
counterintuitive.

Statements about different quadratic forms in Etus at integral points are

equivalent to statements about the single form

2 2 2 2 tl S

X\ + --+ Xp-Xp+1 Xn, P=—^~
and different lattices (cf.[3], pp. 20-23). It follows that Theorem 1.1 (resp.
Theorem 1.2) implies that for rj \x\-\ (resp. rj \x\-\ \-xf —

x]+l 2, where I ^ and |sj < n), the anomaly Av is equal to 1.

2. Strategy for the proof of Theorem 1.2

The strategy for the proof of Theorem 1.2 is inspired by Watson's papers [8]
and [9], dealing with the problem of finding absolute positive normalized
minima of forms in £n^s.

Let T(n,s) be the statement of Theorem 1.2 for the pair of integers (n,s)
(necessarily satisfying n > 2, \s\ < n, n s(mod 2)). In the subsequent
sections we shall prove the following three assertions :

(A) T(n,n — 2) holds for 2 < n < 6 (cf. Corollary 3.3).

(B) For n > 2, T(n,s) => T(n + 2,s) (cf. Corollary 4.2).

(C) If s s7(mod 8), then T(n,sf) => T(n,s) (cf. Corollary 5.2).

Assuming these assertions we now prove Theorem 1.2.

Proof of Theorem 1.2. Making use of (A) and (B), it follows by induction
that T(n,s) holds for all n > 2 and s satisfying 0 < s < 4 (s subject to
the usual restrictions \s\ < n, n s(mod 2)). Since T(n,s) trivially implies
T(n, —s), we conclude that T(n,s) holds for |s| <4. The following table, in
which T(n,s) is abbreviated to (n,s), helps to understand the situation:

2 (2,0)
3 (3,-1) 4 (3,1)
4 (4,-2) (4,0) 4 (4,2)
5 (5,-3) (5,-1) 4 (5,1) 4 (5,3)
6 (6,-4) (6,-2) (6,0) 4 (6,2) 4 (6,4)
7 (7,-5) (7,-3) (7,-1) 4 (7,1) 4 (7,3) 4 (7,5)

n/s -5 -4 -3 -2 -1 0 1 2 3 4 5
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In order to prove T(n, s) in the remaining cases, that is for \s\ > 4, we choose
s' with I s71 <4 and s s7(mod 8). Since we have already demonstrated that

T(n,s') holds, so does T(n,s) in view of (C). The proof of Theorem 1.2 is

complete.

The next proposition reduces the proof of assertions (A), (B) and (C)
to the case of forms with coefficients in Z, at least when n > 3. Recall
that a form in £njS is said to be irrational if it is not a multiple of a form
with coefficients in Z. By the celebrated result of Margulis [5], for every
non-singular indefinite irrational form / in n > 3 variables the set f(Tn) is
dense in R.

Proposition 2.1. Let f be a non-singular indefinite irrational form in
n > 3 variables. Then for every e > 0 there are linearly independent points

a\,...,an in Tn such that

Proof Let b\,...,bn be linearly independent points in TT such that

f(bi) f=. 0 for all i. Let

Write x ZA,/?,, where A; is in R for all /, and choose k with \k^0. Set

ai bi for i / k and ak—x. Then the integral points a\,..., an are linearly
independent, and 0 < \f(a\).. .f(an)\ < s, as required.

For any / in £nß set

Let £n,s(Z) denote the subset of £njS consisting of all forms with coefficients
in Z and let

o < |/(ûi)---/(a„)| < £•

(j, max{|/(è,)| I 1 <

By Margulis' theorem there exists an integral point x such that

0 < < s/n"'1

a i,..., an G TT are linearly

independent, and f(at) 0 for 1 < i < n

ßn,s — SUp{/3(/) I / £„}S(Z)}



324 J. BOCHNAK AND W. KUCHARZ

Clearly, a(f)n < ßif) for all / in £„,5(Z), and hence the equality
®(fn,s)n Wn,s, preceding the statement of Theorem 1.2, implies

(2.2) Wn,s < ßniS

The following corollary is an immediate consequence of Proposition 2.1.

COROLLARY 2.3. Let n> 3 and |^| < n. Then T(n,s) holds if and only

If ^n,s — ßn,s •

3. Proof of T(n, n - 2) for 2 < n < 6

Lemma 3.1. T(2,0) holds true.

Proo/ Let / be in £2,o • If /GO 0 for some y G Z2 \ {0}, then / is

equivalent over Z to 0A1X2 + &x2 for some real numbers a and b satisfying
0 < b < a. In particular, |D(/)| a2 /4. Let ci and c2 be linearly independent

points in Z2 with 0 < |/(c/)| < <2 for i 1,2. Then

0 < |/(c!)/(c2)| < a2 -
which proves T(2,0) for / as above.

Suppose /(x) / 0 for all x in Z2 \ {0}. Then / £2 — £f, where £1 and

£2 are linear forms. The quadratic form /z £2 + £| is in £2, |T>(/)|,
and 0 < |/(x)| < h{x) for all x in Z2 \ {0}. By Theorem 1.1, there exist

linearly independent points a\ and a2 in Z2 such that

h(a\)h(a2) < y2Dih).

Since w2i2 < w2$, we get

0 < \ f(ai)f(a2)\ < h{ßx)h(af) < w2i0D(h) w2,o\D(f)\,

which completes the proof.

Henceforth it is sufficient for our purposes to conside r quadratic forms with
coefficients in Z. However, forms with other coefficients will also appear in

some proofs.

LEMMA 3.2. Let f be in £n^2(Z), where n> 3.

(i) If fix) 0 for some x m Zn \ {0}, then ß(f) < 4y„Z2-

(ii) If f(x) / 0 for all x in Zn \ {0}, then ßif) < 7/
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Proof, (i) The quadratic form / is equivalent over Z to

X2(ax\ + 02X2 + • • • + ctnxn) + g(x3i • • • xn),

where 0 < a2 < 0 and g is in £„_2,n-2(Z) (g is thus positive definite). Let

c 1 =(-l,l,0,...,0)cZn and

_ J(0,1,0,...,0)EZW if «2^0
C2~|(i,i,0,...,0)eZ" ifö2 0.

Then <7 and c2 are linearly independent and

0 < \f(ci)\ < a for / 1,2.

By Theorem 1.1, there are linearly independent points C3,...,<7 in Zn~2

such that

0<g(cl)---g(c-n)<Y„I22D(g).

Let Ci (0,0, c/) G Zn for / 3,..., n. Clearly, f(cß #(q) for i 3,..., n.
Since \D(f)\ ^D(g), it follows that for the linearly independent points

<7, C2,... ?cn in Zn one has

0 < \f(ci)• • -f(cn)\<a2g(ci) g(c

which implies the required inequality ß(f) < •

(ii) The quadratic form / can be written as / £ H b£^_ 1
— £/, where

the £/ are linear forms in n variables with real coefficients. The quadratic
form h + • • • + satisfies D(h) \D(f)\ and 0 < |/(jc)| < h(x) for
all a in Zn\{0}. Since h is non-singular and positive definite, Theorem 1.1

implies, ß(h) < 7^, and hence ß(f) < ß(h) < 7^.

As already mentioned in Section 1, 7^ wn,n for n < 8. However, only
the values of 7n for n < 4 are needed in this paper. In particular, one has

the following table (where 7$ 1 by definition) :

n 2 3 4 5 6

In 4/3 2 4

4T"-2 4 4 16/3 8 16

1Vn,n—2 4 4 16/3 8 16

Corollary 3.3. T(n, n- 2) holds for 2 < n < 6.

Proof T(2,0) is proved in Lemma 3.1. Hence by (2.2) and Corollary
2.3, it suffices to show ßn,n-2 < for 3 < n < 6. To this end let / be

in £n,n_2(Z).
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If n — 3 or n 4, then Lemma 3.2 and the table above imply

ß(f)<max{47 nnz\, 7"4i^I2 -
If n 5 or n 6, then by Meyer's theorem (cf. [7], p. 43), f(x) 0 for

some x in Zn\ {0}. Hence in view of Lemma 3.2 (i) and the table,

ß(f)<H~-\ 2 •

Thus the required inequality is proved for 3 < n < 6.

4. Proof of the implication Tin, s) => T(n -h 2,

Proposition 4.1. Let n and s be integers satisfying n> 2, \s\ < n, and

n s(mod 2). Then

ßn+2,s ^

Proof We have to show that

ß(f) < *ßn,s

for all / in £n+2,s(Z)•
First consider the case (n, s) (2,0) with / in £4,0® satisfying /(a) 7^ 0

for all a in Z4 \ {0}. Such an / can be written as / + £f ~ £3 — £4 »
where

the £; are linear forms in 4 variables with real coeflicients. The quadratic
form Ä £1 -h £f + £3 + £4 *s non-singular and positive definite, and hence

Theorem 1.1 implies

ß(h)<74=4.
Since D(/z) |D(/)|, 0 < |/(x)| < h{x) for all a in Z4 \ {0}, one has

ß(f)<ß(h)< 4<4/?2,o,

the last inequality being a consequence of an obvious one, ß2$ > 1
•

Assume now that / is in £n+2,5(Z), n > 2, and /(jc) 0 for some v
in Z"+2 \ {0} (if n > 3, the last condition is automatically satisfied due to

Meyer's theorem). It follows that / is equivalent over Z to the quadratic form

*2(01*1 + <32*2 H h an+2*^+2) + p(*3, • • • ,*«+2)

where the <3, are integers, 0 < a2 < a\, and g is in £,M(Z). Clearly,

4|D(/)| a\\D(g)\.
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Let &i,... ,bn be linearly independent points in TT such that

0 < \g(bi) • • • g(bn)\ < ßn,s\D(g)\.

Setting bi (0,0, bß G Zn+2, one has

f{bi) g(bi) for 1 < i < n.

For ci (—1,1,0,..., 0) G Z"+2 and

Hence for the linearly independent points c\r c2, b\,..., bn in Zn+2, one has

which implies ß(J) < 4ßnjS.

Corollary 4.2. For each n> 2, T(n,s) implies T(n + 2,s).

Proof. According to (2.2) and Lemma 3.1, 7(2,0) is equivalent to the

equality ß2$ ^2,0 • Hence, by Corollary 2.3, it suffices to show that if
ßn,s Wn,s, then ßn+2,$ wn+2,s > This can be done as follows. Since

w«+2,s 4wn,s, Proposition 4.1 implies

ßn+2,s < 4ßn,s 4Wn,s Wn+2,s •

Thus ßn+2,s < w>n+2,s, which combined with (2.2) gives ßn+2,s wn+2js •

Proposition 5.1. Let f be in £n,s(T) and let s' be an integer satisfying
|/| < n and s /(mod 8). Then there is a form f in £n,s'(Z) such that for
every prime number p, the forms f and f are equivalent over the ring Tp

of p-adic integers. In particular, D(f) D(ff).

(0,1,0,..., 0) G Zn+2 if fl2^0
(1,1,0,..., 0) G Zn+2 if a2 0

the following inequalities are satisfied:

0 < |/(9)| < ax for 7=1,2.

0 < \f(ci)f(c2)f(b{) • • -f(bn)\ < al\g(bi) • • • g(bn)\

< ajßn,s\D(g)I < 4/?WïJ|D(/)|

5. Proof of the implication T{n,s') => 7(n,/
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Proof. First we shall construct a quadratic form g in £ny, with coefficients
in Q, which is equivalent to / over the field of p-adic numbers, for
each prime p. The notation of Serre's book ([7], Chap. IV, §§2,3) will
be used without further explanation. One has d^if) (—1)^ (—1)^

and £oo(f) (—1)^_1)/2 _ 1)/2^ where q (n — s)/2 and

q' — (n — s')/2. Let d D(f) and let ev £„(/) be the Hasse-Minkowski
invariant for v a prime number or v oo. It follows from ([7], p. 44,

Proposition 7) that there exists a form g in £n^ % w ith coefficients in Q,
satisfying D(g) d and £v(g) £v sv(f) for all v. By ([7], p. 39,

Theorem 7), for every prime number p, the forms / and # are equivalent
over Q/;.

Having g as above, ([4], p. 141, statement 6n) implies the existence

of a form f in £n^(Z) which is equivalent to / over Zp for all prime
numbers p.

To prove the next corollary we need the powerful Siegel-Watson theorem

(cf. [4], p. 131, Theorem 1.5): Let / be a non-singular indefinite integral
quadratic form in n > 4 variables and let b / 0 be an integer. Suppose
that b is represented by / over all Zp. Then b is represented by / over Z.
Further, let P be a finite set of primes and for p e P let ap G be any
representation of b by /. Then there is a representation a G Zn of b by /
such that a is arbitrarily p-adically close to ap for every p G P.

COROLLARY 5.2. Let n,s and s' be integers satisfying \s\ < n, \s'\ <n,
n ^(mod 2), and s V(mod 8). Then

ßn,s' — ßn,s •

In particular, T(n,s') is equivalent to T{n,s).

Proof Let / be in £njS(Z). By Proposition 5.1, there is a form f
in £ny{7j) which is equivalent to / over Zp for every prime p. The Siegel-
Watson theorem implies that / and f represent the same non-zero integers

over Z. Moreover, if representations of n integers b\,..., bn by / are given

by n linearly independent points in ZT, then some representation of the same

integers by f can be also given by linearly independent points in Zn. Indeed,

let f(aß — bi, where at G Zn for 1 < i < n. Fix a prime p. Let f — f of
for some isomorphism f over Zp and let a^ ßiaß. If ai9...,an are

linearly independent in Zn, then a^\ aß] are linearly independent in Znp.

In particular,
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/ af
det /0.

V J?

By the Siegel-Watson theorem, one can choose in 7" such that

f\a!^ b, for 1 < i <n and a[ is p-adically arbitrarily close to a^\ Then

det

/ a[

\ <
and hence a[,..., a!n are linearly independent in U1.

We can now complete the proof. Since D(f) D(f the fact established

above implies ß(f) < ß(f). Thus ßn.s < ßn,s', the form / in £n,s(Z) being

arbitrary. Consequently one gets

ßn,s — ßn,s'

by interchanging s and sf.

Finally observe that for s and s' under consideration,

— ^n,sf -

By Corollary 2.3, the last two equalities imply the equivalence of T(n,s)
and T(n,sf) for n > 3. If n — 2, then s s' 0, and there is nothing
to prove.
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