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IN WHICH DIMENSIONS DOES A DIVISION ALGEBRA
OVER A GIVEN GROUND FIELD EXIST

by Erik Darpö, Ernst Dieterich and Martin Herschend

Abstract. For any ground field k we denote by Af(k) the set of all natural numbers

n such that a division algebra (not assumed to be associative) of dimension n over
k exists. We prove that Af(k) {1} if k is algebraically closed, Af(k) {1,2,4, 8}
if k is real closed, and Af(k) is unbounded if k is neither algebraically closed nor
real closed.

1. Introduction

Throughout this article, k denotes a field.
The class of all fields can be partitioned into the three subclasses of

all algebraically closed fields, all real closed fields, and all remaining fields
respectively1). Is this partition "natural"?

A first affirmative answer is obtained if one considers the degree of the
algebraic closure k of an arbitrary field k, recalling that

I if k is algebraically closed

[k : k] < 2 if k is real closed

^
oo if k is non-closed.

A second affirmative answer is obtained if one considers the set M(k) of all
degrees of irreducible polynomials in k[X\, recalling that

[{1} if k is algebraically closed

A4(k) < {1,2} if k is real closed

unbounded if k is non-closed.

For the sake of brevity we shall call a field non-closed if it is neither algebraically closed
nor real closed.
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In both cases the first identity holds by definition of an algebraically closed

field, the second identity expresses a basic result from the theory of real

closed fields, and the third identity is part of the Artin-Schreier theorem

(cf. Proposition 2.4).

A third and even more distinct affirmative answer to our initial question is

obtained if one considers the set J\f(k) of all dimensions of finite dimensional

division algebras over k. It is formulated in Theorem 1.1 below.

Recall that a A:-algebra is a vector space A over k which is endowed with

a &-bilinear multiplication AxA-^A, (x, y) xy. Every x G A determines

linear endomorphisms Lx\ A —> A, Lx{y) — xy and Rx: A —> A, Rx(y) yx.

By a division algebra over k we mean a non-zero k-algebra A such that Lx

and Rx are bijective for all x G A\{0}. Note that a finite dimensional non-zero

A:-algebra A is a division algebra if and only if it has no zero divisors, i.e.

xy 0 implies x 0 or y 0 for all x, y G A. Because infinite dimensional

division algebras do not occur in the present article, finite dimensional division

algebras will henceforth briefly be called division algebras.

Theorem 1.1. Let k be a field. Then

'{1} if k is algebraically closed

< {1,2,4,8} if k is real closed

^
unbounded if k is non-closed.

This result, although easily derived from established mathematical theories,

has hitherto seemingly escaped observation. Through the present note we mean

to bring it to the attention of a broader mathematical public.

2. Proof of Theorem 1.1

Theorem 1.1 turns out to be an easy consequence of the subsequent

Propositions 2.1-2.4 whose background is partly algebraic, partly model

theoretic, and partly topological. Three of them (Propositions 2.2-2.4) are

to be found in wide-spread mathematical literature and must be considered as

classical.

In contrast, Proposition 2.1 hardly seems to be known at all. In view of
its fundamental nature and elementary proof, this is particularly surprising. It
was first pointed out by P. Gabriel, on the occasion of a talk given by the

second author at the University of Zürich in 1994. Gabriel's original argument,
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involving Kronecker's normal forms for pairs of linear maps between two finite
dimensional vector spaces, is to be found in the proof of [12, Proposition 1.1].
Here we present a simplified version of Gabriel's argument which does without
normal forms, recently observed by the first author.

PROPOSITION 2.1 (Gabriel 1994). If k is an algebraically closed field and
A is a k -algebra with 1 < dim A < oo, then A has zero divisors.

Proof Because dim A > 1, there exist non-proportional vectors u, w G A.
If Lv is not bijective, then dimA < oo implies that Lv is not injective,
and hence vy 0 for some y G A \ {0}. If Lv is bijective, then the
linear endomorphism LflLw : A -» A is well-defined. Since k is algebraically
closed, LfxLw has an eigenvalue À G k. Every eigenvector y of L~lLw with
eigenvalue À satisfies the identity (Xv — w)y 0.

Recall that two fields are called elementarily equivalent in the language
Cr (+, - —, 0,1) of rings if they satisfy the same first order sentences in
this language.

Proposition 2.2 (Tarski 1931). Any two real closed fields are elementarily
equivalent.

Tarski's original sketch of a proof of Proposition 2.2 is published in [26].
Complete proofs are to be found in [27] and [28]. A reprint of [28] is contained
in [6]. For alternative proofs, see also [23], Theorem 2.28 and Corollary 3.18.

PROPOSITION 2.3 (Hopf 1940; Bott, Milnor, Kervaire 1958). Every real
division algebra has dimension 1, 2, 4 or 8.

Hopf proved in [21] that the dimension of a real division algebra is always
a power of 2. Bott, Milnor and Kervaire showed in [4] and [24] independently
that the dimension of a real division algebra is always less than or equal to 8.

For alternative proofs of Proposition 2.3, see also [14] and [20].

PROPOSITION 2.4 (Artin, Schreier 1927). For every field k which is not
algebraically closed, the following statements are equivalent.

(i) [k : k] is finite.

(ii) A4(k) is bounded.

(iii) k is real closed.
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The essence of Proposition 2.4 is contained in [1] and [2], where Artin and

Schreier originally developed their theory of real closed fields. Our formulation
follows Grillet's exposition in [17], Section 8.4.

In this article we consider 1 to be the least natural number. For each

n G N, we set n {1Moreover we denote by ipn(x7y,z) the first
order formula

(Â(É'«> '»)) - ((Â* =1°) v (Â» »))

in the free variables xi.yj and zhj, where h, ij G n. From '0n(x, y, z) we build
the new formula

Pniz) V*i, ,Xn,yi, yrf

in the free variables zuj- Accordingly, for each ne N, the formula 3zipn(z) is

a first order sentence in the language of rings. The relevance of this sequence

of sentences to our context is illuminated by the subsequent lemma.2)

Lemma 2.5. For every field k, the following statements hold true.

(i) {lJcMöcAf®.
(ii) For all n e N, n G Af(k) if and only if k \= 3zpn(z).

Proof (i) The polynomial X G k[X] is irreducible of degree 1, and for
each irreducible polynomial p(X) G k[X] of degree m, the field k(X)/(p(X))
is a division algebra over k of dimension m.

(ii) Let n G N. We denote by (eu... ,en) the standard basis in kn, and

by Alg(kn) the set of all algebra structures on kn, i.e. the set of all &-bilinear

mappings a: kn x kn -> kn. Moreover, knxnxn denotes the set of all triple

sequences a {a^f) in k, where hij erf. A bijection

Alg(kn) -A knxnxn, «Gä
is given by a(ej, ef) — Ylh=\ahijeh f°r ^ ^ -2* ^ a anc^ ^ correspond

under this bijection, then a(x,y) Ylh=i(^ij=iXiahijyj)eh holds for all

x,y ekn. Accordingly we obtain the following chain of equivalences.

n e Af{k) G Alg(kn) Vx,y G kn (a(x,y) 0=>x 0Vy 0)

<G> k [= tpn(a) for some a G knxnxn

k\= 3z(fn(z) •

2) If k is a field and ip is a first order sentence in the language of rings, then k |= ip

expresses that cp is true in k.
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Now Theorem 1.1 emerges from Propositions 2.1-2.4, tied up with
Lemma 2.5, as a mere corollary.

Proof of Theorem 1.1. If k is algebraically closed and A is a division
algebra over k, then 0 < dimA by definition of a division algebra, and

dimA < 2 by Proposition 2.1. Hence dimA 1. Accordingly Af(k) {1}.
If k is real closed, then k and R are elementarily equivalent by

Proposition 2.2. With Lemma 2.5.(ii) we conclude that the equivalences

n e Af(k) k |= =3 z ipn(z) O R |= 3 z Tn(z) O n e Af(R)

hold for all ne N. Thus AT(k) Af(R). Moreover Af(K) C {1,2,4,8} by
Proposition 2.3, and the classical examples of real division algebras R, C, H, O
show that {1,2,4,8} c A/"(R). So Af(k) Af(R) {1,2,4,8}.

If k is non-closed, then M(k) is unbounded by Proposition 2.4. With
Lemma 2.5.(i) we conclude that Af(k) is unbounded.

The interested reader may wonder whether Theorem 1.1 can be improved
towards a precise description of the subsets M(k) C Af(k) of N for all non-
closed fields k. In fact, we feel inclined to conjecture that A4(k) N (and
hence Af(k) N) holds whenever k is non-closed. Standard algebraic theories
provide means to verify this conjecture for prominent classes of fields such

as e.g. finite fields, algebraic number fields, local fields, and rational function
fields. For non-closed fields in general, however, we do not know any proof
of our conjecture, nor any counterexample to it.

Instead, the following supplement to Lemma 2.5(i), approximating Af(k)
from above in terms of M(k) for any field k, may be worthwhile mentioning.
For any subset M cN we define

3. Supplement

i= 1

Proposition 3.1. For every field k, the inclusions

M(k) c N(k) c {1}U^(.M<1)\{1})
hold true.
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Proof. In view of Lemma 2.5(i) we only have to prove the second

inclusion. If n G Af(k), then there exists an n -dimensional division algebra
A over k. If n — 1, then the second inclusion holds true. If n > 1, choose

non-proportional vectors v,w G A. Since A is a division algebra, the linear

endomorphism Lv : A -y A, Lv(y) vy is bijective, and hence LflLw : A —» A

is well-defined. The characteristic polynomial \ — det(XIa~L~1Lw) of L~1 Lw

has degree n and factors into a product x Yl^=\Pi °f monic irreducible

polynomials pt G k[X]. If some pt is linear, say pi X — A, then À is

an eigenvalue of L~1 Lw, and hence every eigenvector w of L~1 Lw with
eigenvalue À satisfies

LÇlLw(u) — \u ^ wu Ài;w => (w — À?;)w 0,

contradicting the fact that A has no zero divisors. Accordingly, all pt are
t

non-linear. Hence n deg x Xldeg^i'e I1))- °
i=\

Combined with the information on M.(k) presented in the introduction,

Proposition 3.1 has the following immediate consequences. For

algebraically closed fields k we obtain an alternative proof of the first statement

Af(k) {1} in Theorem 1.1, and thereby also an alternative proof
of Proposition 2.1. For real closed fields k we obtain the weak (but

easily gotten) approximation J\f(k) C {1} U 2N to the second statement

Af(k) {1,2,4, 8} in Theorem 1.1. For non-closed fields k we obtain an

improvement of the third statement |A/*(k)j co in Theorem 1.1 by the estimate

J\f(k) C {1} U \ {1}). Of course, if our conjecture is true, then this

improvement is void.

4. Epilogue

As soon as Af(k) is known for any given ground field k, the problem of
classifying for each d G Af(k) all d -dimensional division algebras over k up
to isomorphism, arises naturally. This problem is trivial for d 1, difficult
for d 2, and very hard for d > 2. Let us add some information in support
of this judgement. The category of all d-dimensional di vision algebras over k

is denoted by V^ik).
V\(k) is classified by {k}, for every field k. Indeed., given any A G V\(k),

we may choose a G A \ {0}. Then a2 aa for some a G k. Now e — a~la
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is a non-zero idempotent in A. Accordingly, the linear map -* e hg 1

is an algebra isomorphism. Hence V\ (k)consistsof the isoclass of k only.
The problem of classifying V2(k) has been solved for R. Classifying

subsets of P2(R) are to be found in [5], [16], [22] and [13]. Their description
involves up to 4 independent continuous real parameters.

In case d>2 and k is any field such that d G A'( k no complete
solution to the problem of classifying 'P,/( k is known to date. There are
however partial solutions in the classical case R. Noticeable among them
are the classification of all 4-dimensional real quadratic division algebras
2>|(R), initiated by Osborn [25], continued by Hefendehl-Hebeker [18], [19]
and accomplished by Dieterich [10], [11], [12], as well as the classification
of all real flexibledivision algebras Vf(R), initiated by Benkart, Britten and
Osborn [3], continued by Cuenca Mira et al. [7], and accomplished by Darpö
[8], [9], The description of a classifying subset of X>|(R) involves up to 9
independent continuous real parameters. While both V{(R) and T>{(R) are
classified by 2-parameter families, the description of a classifying subset of
^*8 CR) involves up to 15 independent continuous real parameters.

A key idea in our proof of Theorem 1.1 was to translate the statement
Af(R) {1,2,4,8} into a sequence of first order sentences in the language
of rings, and to conclude with Proposition 2.2 that this statement remains true
when R is replaced by any real closed field k. Applying the same argument
it is straightforward to prove for any real closed field k the following three
theorems, using that they are established in case R.

Theorem 4.1. Every commutative division algebra over a real closed
field k has dimension 1 or 2.

In case kR, Theorem 4.1 is due to Hopf [21],

Theorem 4.2. For every real closed field k there are precisely three
isoclasses of associative division algebras over k, one in each of the
dimensions 1, 2and 4.

In case kR, Theorem 4.2 is due to Frobenius [15],

THEOREM 4.3. For every real closed field k there are precisely four
isoclasses of alternative division algebras over k, one in each of the
dimensions 1, 2, 4 and 8.
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In case k R, Theorem 4.3 is due to Zorn [29].

The proofs of Proposition 2.3 and Theorem 4.1 in the special case k R

are strongly based on the topology of Rn, and can therefore not easily be

initiated for arbitrary real closed fields. Instead, Tarski's method enables us

to use these results without considering their proofs.

The question arises to what extent Tarski's method can be used to deduce

results on other classes of algebras over real closed fields, and possibly even

over other types of ground fields. To our knowledge, no systematic attempt

in this direction has hitherto been made.

REFERENCES

[1] Artin, E. and O. Schreier. Algebraische Konstruktion reeller Körper. Abh.

Math. Sem. Univ. Hamburg 5 (1926), 85-99.

[2] Artin, E. and O. Schreier. Eine Kennzeichnung der reell abgeschlossenen

Körper. Abh. Math. Sem. Univ. Hamburg 5 (1927), 225-231.

[3] Benkart, G.M., D.J. Britten and J.M. Osborn. Real flexible division

algebras. Canad. J. Math. 34 (1982), 550-588.

[4] BOTT, R. and J. MlLNOR. On the parallelizability of the spheres. Bull. Amer.

Math. Soc. 64 (1958), 87-89.

[5] Burdujan, I. Types of nonisomorphic two-dimensional real division alge¬

bras. Proceedings of the national conference on algebra. An. §tiin$.

Univ. Al. I. Cuza Ia§i Mat. 31 (1985), suppl., 102-105.

[6] Caviness, B.F. and J.R. JOHNSON, (ed.). Quantifier Elimination and Cylin¬

drical Algebraic Decomposition. Springer-Verlag, Vienna, 1998.

[7] Cuenca Mira, J. A., R. De Los Santos Villodres, A. Kaidi and A. Rochdi.
Real quadratic flexible division algebras. Linear Algebra Appl. 290

(1999), 1-22.

[8] DarpÖ, E. On the classification of the real flexible division algebras. U.U.D.M.

Report 2004: 6 (2004), 1-11. To appear in Colloq. Math.

[9] Normal forms for the Q2 -action on the real symmetric 7 x 7-matrices

by conjugation. U.U.D.M. Report 2005: 28 (2005).

[10] Dieterich, E. Zur Klassifikation vierdimensionaler reeller Divisionsalgebren.
Math. Nachr. 194 (1998), 13-22.

[11] Quadratic division algebras revisited (remarks on an article by J.M. Os¬

born). Proc. Amer. Math. Soc. 128 (2000), 3159—3166.

[12] Dieterich, E. and J. Öhman. On the classification of 4-dimensional quadratic
division algebras over square-ordered fields. J. London Math. Soc. (2)
65 (2002), 285-302.

[13] Dieterich, E. Classification, automorphism groups and categorical structure

of the two-dimensional real division algebras. J. Algebra Appl. 4 (2005),
517-538.

[14] ECKMANN, B. Continuous solutions of linear equations - an old problem, its

history, and its solution. Exposition. Math. 9 (1991), 351-365.



IN WHICH DIMENSIONS DOES A DIVISION ALGEBRA EXIST 263

[15] Frobenius, F. G. Über lineare Substitutionen und bilineare Formen. /. Reine
Angew. Math. 84 (1878), 1-63.

[16] Gottschling, E. Die zweidimensionalen reellen Divisionsalgebren. Se-
minarber. Fachb. Math. FernUniversität-GHS in Hagen 63 (1998), 228-
261.

[17] Grillet, P.-A. Algebra. John Wiley & Sons, New York, 1999.
[18] Hefendehl, L. Vierdimensionale quadratische Divisionsalgebren über Hilbert-

Körpern. Geom. Dedicata 9 (1980), 129-152.
[19] Hefendehl-Hebeker, L. Isomorphieklassen vierdimensionaler quadratischer

Divisionsalgebren über Hilbert-Körpern. Arch. Math. (Basel) 40 (1983),
50-60.

[20] Hirzebruch, F. Divisionsalgebren und Topologie. In : Zahlen. Springer-Verlag,
3. verb. Auflage (1992), 233-252.

[21] HOPF, H. Ein topologischer Beitrag zur reellen Algebra. Comment. Math.
Helv. 13 (1940), 219-239.

[22] Hübner, M. and H.P. Petersson. Two-dimensional real division algebras
revisited. Beiträge Algebra Geom. 45 (2004), 29-36.

[23] Jensen, C. U. and H. Lenzing. Model Theoretic Algebra. Gordon and Breach
Science Publishers, New York, 1989.

[24] Kervaire, M. Non-parallelizability of the «-sphere for n > 7. Proc. Natl.
Acad. Sei. USA 44 (1958), 280-283.

[25] OSBORN, J. M. Quadratic division algebras. Trans. Amer. Math. Soc. 105 (1962)
202-221.

[26] TARSKI, A. Sur les ensembles définissables de nombres réels. I. Fund. Math.
17 (1931), 210-239.

[27] A decision method for elementary algebra and geometry. Manuscript,
RAND Corp., Santa Monica, Calif., 1948.

[28] A decision method for elementary algebra and geometry. 2nd ed..
University of California Press, Berkeley and Los Angeles, 1951.

[29] ZORN, M. Theorie der alternativen Ringe. Abh. Math. Sem. Univ. Hamburg 8
(1930), 123-147.

(Reçu le 1 septembre 2005)

Erik Darpö
Ernst Dieterich
Martin Herschend

Matematiska institutionen
Uppsala universitet
Box 480
SE-751 06 Uppsala
Sweden
e-mail: Erik.Darpo@math.uu.se Ernst.Dieterich@math.uu.se
Martin.Herschend @ math.uu.se



Leere Seite
Blank page
Page vide


	In which dimensions does a division algebra over a given ground field exist?
	...


