Linear functional equations and Shapiro's conjecture

Autor(en): Laczkovich, M.
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 50 (2004)
Heft 1-2: L'enseignement mathématique

PDF erstellt am:
26.04.2024

Persistenter Link: https://doi.org/10.5169/seals-2642

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

LINEAR FUNCTIONAL EQUATIONS AND SHAPIRO'S CONJECTURE

by M. LACZKOVICH*)

ABSTRACT. We investigate the functional equation

$$
\sum_{i=1}^{n} a_{i}(y) f_{i}\left(x+b_{i}(y)\right)=h(y) \quad(x, y \in \mathbf{R})
$$

where a_{i}, f_{i}, and h are complex valued functions defined on \mathbf{R}, and b_{1}, \ldots, b_{n} are real valued functions such that $b_{i}-b_{j}$ is not constant on any interval. We prove that under mild regularity conditions (e.g., if a_{1}, \ldots, a_{n} are nonvanishing functions of bounded variation, b_{1}, \ldots, b_{n} are d-convex and f_{1}, \ldots, f_{n} are measurable) the functions f_{1}, \ldots, f_{n} must be exponential polynomials. We also show that the continuity of the functions b_{i} and f_{i} implies the same conclusion, subject to Shapiro's conjecture on exponential polynomials with constant coefficients.

1. Introduction

The functional equation

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}(y) f_{i}\left(x+b_{i}(y)\right)=h(y) \tag{1}
\end{equation*}
$$

has been studied extensively, and several papers have been devoted to the regularity properties of the solutions f_{1}, \ldots, f_{n}. In [12] and [1] it is shown that if the functions a_{i} and b_{i} are smooth enough and if f_{1}, \ldots, f_{n} are locally integrable then f_{1}, \ldots, f_{n} are necessarily C^{∞} functions. In this paper we show that under mild regularity conditions on the functions a_{i} and b_{i}, the functions f_{i} must be exponential polynomials, even if we only assume measurability instead of local integrability.

[^0]We shall say that the function $\phi:[a, b] \rightarrow \mathbf{R}$ is d-convex if it can be written as the difference of two continuous convex functions. It is easy to see that $\phi:[a, b] \rightarrow \mathbf{R}$ is d-convex and Lipschitz if and orly if ϕ is absolutely continuous and if the function ϕ^{\prime} (defined on the set of points where ϕ is differentiable) is of bounded variation. Clearly, every C^{2} function is d-convex.

A function $f: \mathbf{R} \rightarrow \mathbf{C}$ is said to be an exponential polynomial if $f(x)=\sum_{i=1}^{n} p_{i}(x) e^{\alpha_{i} x}$, where p_{1}, \ldots, p_{n} are polynomials with complex coefficients and $\alpha_{1}, \ldots, \alpha_{n}$ are complex numbers.

Theorem 1. Let J be a nondegenerate interval, and suppose that the functions $a_{i}: J \rightarrow \mathbf{C}$ and $b_{i}: J \rightarrow \mathbf{R}(i=1, \ldots, n)$ have the following properties.
(i) Each of the functions a_{1}, \ldots, a_{n} is nonvanishing on J and is of bounded variation;
(ii) each of the functions b_{1}, \ldots, b_{n} is d-convex on J; and
(iii) the function $b_{i}-b_{j}$ is not constant on any subinterval of J for every $1 \leq i<j \leq n$.
Let $h: J \rightarrow \mathbf{C}$ be an arbitrary function, and let $f_{1}, \ldots f_{n}$ be complex valued measurable functions on \mathbf{R} such that (1) holds for almost every $(x, y) \in \mathbf{R} \times J$. Then each of the functions f_{1}, \ldots, f_{n} equals an exponential polynomial almost everywhere.

The necessity of condition (iii) is shown by the fact that any function $f: \mathbf{R} \rightarrow \mathbf{C}$ satisfies

$$
f(x)+f(x+y)-f(x+\max (y, 0))-f(x+\operatorname{mir}(y, 0))=0
$$

for every $(x, y) \in \mathbf{R}^{2}$.
We can formulate many similar statements by imposing different conditions on the functions involved. Two of the most interesting variants are the following.

Statement M. Suppose that the functions $a_{i}: J \rightarrow \mathbf{C}$ and $b_{i}: J \rightarrow \mathbf{R}$ $(i=1, \ldots, n)$ are measurable, a_{i} is nonvanishing on J for every $i=1, \ldots, n$, and $b_{i}-b_{j}$ is not constant on any set of positive measure for every $1 \leq i<j \leq n$. Let $h: J \rightarrow \mathbf{C}$ be an arbitrary function, and let f_{1}, \ldots, f_{n} be complex valued measurable functions on \mathbf{R} such that (1) holds for almost every $(x, y) \in \mathbf{R} \times J$. Then each of the functions f_{1}, \ldots, f_{n} equals an exponential polynomial almost everywhere.

Statement C. Suppose that the functions $a_{i}: J \rightarrow \mathbf{C}$ and $b_{i}: J \rightarrow \mathbf{R}$ $(i=1, \ldots, n)$ are continuous, a_{i} is nonvanishing on J for every $i=1, \ldots, n$, and $b_{i}-b_{j}$ is not constant on any subinterval of J for every $1 \leq i<j \leq n$. Let $h: J \rightarrow \mathbf{C}$ be an arbitrary function, and let f_{1}, \ldots, f_{n} be complex valued continuous functions on \mathbf{R} such that (1) holds for every $(x, y) \in \mathbf{R} \times J$. Then each of the functions f_{1}, \ldots, f_{n} is an exponential polynomial.

We do not know if Statements M and C are true or not. We shall prove, however, that Statement C is a consequence of Shapiro's conjecture.

Let \mathcal{R} denote the set of difference operators of the form

$$
\Delta f=\sum_{i=1}^{n} a_{i} \cdot f\left(x+b_{i}\right)
$$

where a_{i} and b_{i} are complex. If we define addition in the obvious way and multiplication by $\left(\Delta_{1} \Delta_{2}\right) f=\Delta_{1}\left(\Delta_{2} f\right)$ then we obtain a commutative ring with identity. (In fact, what we obtain is the complex group ring over the additive group of \mathbf{C}.) The one-to-one correspondence between Δ and its characteristic function

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} e^{b_{i} z} \tag{2}
\end{equation*}
$$

is an isomorphism between \mathcal{R} and the ring \mathcal{E} of all exponential polynomials with constant coefficients. The units of the ring \mathcal{E} are the functions of the form $a \cdot e^{b z}$, where $a \neq 0$. The exponential polynomial (2) is called simple if the frequencies b_{1}, \ldots, b_{n} are pairwise commensurable; that is, if b_{i} / b_{j} is rational whenever $b_{j} \neq 0$. By a theorem of J.F. Ritt [9], every nonzero and non-unit exponential polynomial has a factorization of the form $f_{1} \cdot \ldots \cdot f_{s} \cdot g_{1} \cdot \ldots \cdot g_{t}$, where f_{1}, \ldots, f_{s} are simple, the frequencies of f_{i} and f_{j} are noncommensurable if $i \neq j$, and each g_{k} is irreducible. The factorization is unique up to unit multiples.
H. S. Shapiro conjectured in [11] that if two exponential polynomials have infinitely many common roots then they have a non-unit common divisor. As Shapiro remarked, the Lech-Mahler theorem implies the conjecture in the special case when one of the exponential polynomials is simple. (See [11, p. 18] and [8].) The conjecture in its general form is still open.

Recall that a topological space Y is Baire if every meager subset of Y has empty interior.

Theorem 2. Suppose that Shapiro's conjecture is true. Let Y be a topological space such that Y^{n} is Baire, and let the functions $a_{i}: Y \rightarrow \mathbf{C}$ and $b_{i}: Y \rightarrow \mathbf{R}(i=1, \ldots, n)$ satisfy the following conditions : a_{i} is nonvanishing on Y, b_{i} is continuous for every $i=1, \ldots, n$, and $b_{i}-b_{j}$ is not constant on any nonempty open subset of Y for every $1 \leq i<j \leq n$. Let $h: Y \rightarrow \mathbf{C}$ be an arbitrary function, and let f_{1}, \ldots, f_{n} be complex valued continuous functions on \mathbf{R} such that (1) holds for every $(x, y) \in \mathbf{R} \times Y$. Then each of the functions f_{1}, \ldots, f_{n} is an exponential polynomial.

2. Translation invariant closed subspaces of $C(\mathbf{R})$

Let $C(\mathbf{R})$ denote the space of complex valued continuous functions on \mathbf{R} endowed with the topology of uniform convergence on compact intervals. In the proof of Theorems 1 and 2 we shall use L. Schwartz's celebrated theorem stating that spectral synthesis holds in $C(\mathbf{R})$; that is, if L is any translation invariant closed subspace of $C(\mathbf{R})$ then the set of exponential polynomials contained in L form a dense subset of L. (See [10], [5] and [6].) Schwartz's theorem immediately implies that if L is a finite dimensional invariant subspace of $C(\mathbf{R})$ then L consists of exponential polynomials. We prove Theorem 1 - at least in the case when $h \equiv 0$ - by showing that the functions f_{i} must belong to finite dimensional invariant subspaces of $C(\mathbf{R})$.

LEMMA 3. Let L be a translation invariant closed subspace of $C(\mathbf{R})$. Suppose that
(i) there exists a nonzero difference operator Δ such that $\Delta f=0$ for every $f \in L$, and
(ii) every element of L is locally Lipschitz.

Then L is finite dimensional.
Proof. Let $\Delta f(x)=\sum_{j=1}^{p} a_{j} f\left(x+b_{j}\right)(f \in C(\mathbf{R}))$, where a_{1}, \ldots, a_{p} are nonzero and $b_{1}<\ldots<b_{p}$. If L is not finite dimensional then, by Schwartz's theorem, the spectrum $\operatorname{sp}(L)=\left\{\lambda \in \mathbf{C}: e^{\lambda x} \in L\right\}$ is infinite. If $\lambda \in \operatorname{sp}(L)$ then $\Delta e^{\lambda z}=0$ by (i), and thus $E(\lambda)=0$, where $E(z)=\sum_{j=1}^{p} a_{j} e^{b_{j z}}$. That is, $\operatorname{sp}(L)$ is a subset of the set of roots of $E(z)$, and hence the elements of $\operatorname{sp}(L)$ can be listed as $\lambda_{n}=\sigma_{n}+i t_{n}(n=1,2, \ldots)$, where $\left|\lambda_{n}\right| \rightarrow \infty$. Now

$$
\lim _{\operatorname{Re} z \rightarrow \infty} \frac{E(z)}{e^{b_{p} z}}=a_{p} \quad \text { and } \quad \lim _{\operatorname{Re} z \rightarrow-\infty} \frac{E(z)}{e^{b_{1} z}}=a_{1}
$$

and hence there is a positive number K such that $E(\sigma+i t) \neq 0$ if $|\sigma|>K$. Therefore $\left|\sigma_{n}\right| \leq K$ for every n. Since $\left|\lambda_{n}\right| \rightarrow \infty$, it follows that $\left|t_{n}\right| \rightarrow \infty$.

We select a sequence $n_{1}, n_{2} \ldots$ as follows. Let n_{1} be chosen such that $\left|t_{n_{1}}\right|>20 \pi K$. If n_{1}, \ldots, n_{k-1} have been selected then we choose n_{k} with the following properties: $\left|t_{n_{k}}\right|>20^{k} \pi K$, and

$$
\begin{equation*}
\left|\exp \left(\frac{\pi \lambda_{n_{j}}}{t_{n_{k}}}\right)-1\right|<\frac{1}{10^{k}} \tag{3}
\end{equation*}
$$

for every $j<k$. This defines the indices n_{k} for every k. Now we put $f(x)=\sum_{j=1}^{\infty} 10^{-j} e^{\lambda_{n_{j}} x}$ for every $x \in \mathbf{R}$. Since $\left|e^{\lambda_{n} x}\right| \leq e^{K \cdot|x|}$ for every n and for every $x \in \mathbf{R}$, it follows that the series is uniformly convergent on compact intervals, and thus f is an element of L. We shall prove that f is not locally Lipschitz at 0 . By (ii), this will provide a contradiction, proving that $\operatorname{sp}(L)$ must be finite.

We have $f\left(\pi / t_{n_{k}}\right)-f(0)=\sum_{j=1}^{\infty} 10^{-j} A_{k}^{j}$, where

$$
A_{k}^{j}=\exp \left(\frac{\pi \sigma_{n_{j}}+i \pi t_{n_{j}}}{t_{n_{k}}}\right)-1
$$

Now $\left|A_{k}^{j}\right|<10^{-k}$ for every $j<k$ by (3),

$$
\left|A_{k}^{k}\right|=\left|\exp \left(\frac{\pi \sigma_{n_{k}}}{t_{n_{k}}}+i \pi\right)-1\right|=\exp \left(\frac{\pi \sigma_{n_{k}}}{t_{n_{k}}}\right)+1>1,
$$

and

$$
\left|A_{k}^{j}\right| \leq \exp \left(\frac{\pi \sigma_{n_{j}}}{t_{n_{k}}}\right)+1 \leq \exp \left(\frac{\pi K}{t_{n_{k}}}\right)+1<3
$$

for every $j>k$. Therefore,

$$
\begin{aligned}
\left|f\left(\pi / t_{n_{k}}\right)-f(0)\right| & \geq \frac{1}{10^{k}}\left|A_{k}^{k}\right|-\sum_{j=1}^{k-1} \frac{1}{10^{j}}\left|A_{k}^{j}\right|-\sum_{j=k+1}^{\infty} \frac{1}{10^{j}}\left|A_{k}^{j}\right| \\
& \geq \frac{1}{10^{k}}-\sum_{j=1}^{k-1} \frac{1}{10^{j}} \cdot \frac{1}{10^{k}}-\sum_{j=k+1}^{\infty} \frac{1}{10^{j}} \cdot 3 \\
& \geq \frac{1}{2 \cdot 10^{k}} .
\end{aligned}
$$

Thus

$$
\left|\frac{f\left(\pi / t_{n_{k}}\right)-f(0)}{\left(\pi / t_{n_{k}}\right)}\right| \geq \frac{1}{2 \cdot 10^{k}} \cdot \frac{20^{k} \pi K}{\pi}=2^{k-1} K
$$

for every k, proving that f is not locally Lipschitz.

REMARK. Condition (i) cannot be omitted from Lemma 3: there are infinite dimensional translation invariant closed subspaces of $C(\mathbf{R})$ that only contain locally Lipschitz functions. One can show, for example, that if λ_{n} is a sequence of real numbers converging to infinity fast enough, then every element of the closed subspace L generated by the exponentials $e^{\lambda_{n} x}$ is real analytic, but L is not finite dimensional.

3. REDUCTION

Let G be an Abelian group, and let \mathcal{R}_{G} denote the algebra of difference operators of the form $\Delta f=\sum_{i=1}^{n} a_{i} \cdot f\left(x+b_{i}\right)\left(a_{i} \in \mathbf{C}, b_{i} \in G\right)$. The translation operator $T_{b}(b \in G)$ is defined by $T_{b} f=f(x+b)$. Clearly, every difference operator is the linear combination of translation operators. We shall use determinants of the form

$$
\left|\begin{array}{cccc}
\Delta_{1,1} & \ldots & \Delta_{1, n-1} & f_{1} \tag{4}\\
\vdots & & \vdots & \vdots \\
\Delta_{n, 1} & \ldots & \Delta_{n, n-1} & f_{n}
\end{array}\right|,
$$

where $\Delta_{i, j} \in \mathcal{R}_{G}(i=1, \ldots, n ; j=1, \ldots, n-1)$, and $f_{i}: G \rightarrow \mathbf{C}$ $(i=1, \ldots, n)$. These determinants are defined as follows. In the formal expansion of (4) every term is of the form $\pm p_{1} \cdots p_{n}$, where exactly one of the factors p_{i} is a function and the other factors are difference operators. Rearranging the factors such that the function comes last we obtain an expression of the form Δf, defining a map from G into \mathbf{C}. Then we define (4) as the sum of these functions.

Let Y be a nonempty set, and suppose that the functions $f_{j}: G \rightarrow \mathbf{C}$, $a_{j}: Y \rightarrow \mathbf{C}, b_{j}: Y \rightarrow G(j=1, \ldots, n)$ and $h: Y \rightarrow \mathbf{C}$ satisfy

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}(y) \cdot f_{j}\left(x+b_{j}(y)\right)=h(y) \tag{5}
\end{equation*}
$$

for every $(x, y) \in G \times Y$. We can write (5) as

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}(y) T_{b_{j}(y)} f_{j}=h(y) \tag{6}
\end{equation*}
$$

Let $y_{1}, \ldots, y_{n} \in Y$ be arbitrary elements. Substituting $y_{1}, \ldots, y_{n} \in Y$ into (6) we obtain $\sum_{j=1}^{n} a_{j}\left(y_{i}\right) T_{b_{j}\left(y_{i}\right)} f_{j}=h\left(y_{i}\right)(i=1, \ldots, n)$.

Then we have

$$
\begin{align*}
& \left|\begin{array}{ccccc}
a_{1}\left(y_{1}\right) T_{b_{1}\left(y_{1}\right)} & \ldots & a_{n-1}\left(y_{1}\right) T_{b_{n-1}\left(y_{1}\right)} & \sum_{j=1}^{n} a_{j}\left(y_{1}\right) T_{b_{j}\left(y_{1}\right)} f_{j} \\
\vdots & & \vdots & \vdots \\
a_{1}\left(y_{n}\right) T_{b_{1}\left(y_{n}\right)} & \ldots & a_{n-1}\left(y_{n}\right) T_{b_{n-1}\left(y_{n}\right)} & \sum_{j=1}^{n} a_{j}\left(y_{n}\right) T_{b_{j}\left(y_{n}\right)} f_{j}
\end{array}\right| \tag{7}\\
& =\left|\begin{array}{cccc}
a_{1}\left(y_{1}\right) T_{b_{1}\left(y_{1}\right)} & \ldots & a_{n-1}\left(y_{1}\right) T_{b_{n-1}\left(y_{1}\right)} & a_{n}\left(y_{1}\right) T_{b_{n}\left(y_{1}\right)} f_{n} \\
\vdots & & \vdots & \vdots \\
a_{1}\left(y_{n}\right) T_{b_{1}\left(y_{n}\right)} & \ldots & a_{n-1}\left(y_{n}\right) T_{b_{n-1}\left(y_{n}\right)} & a_{n}\left(y_{n}\right) T_{b_{n}\left(y_{n}\right)} f_{n}
\end{array}\right|
\end{align*}
$$

this can be justified in the same way as for determinants with numerical entries. The left hand side of (7), as a function of x, is constant, since each entry of its last column is constant. If we denote the value of the left hand side by $H(y)=H\left(y_{1}, \ldots, y_{n}\right)$ and expand the right hand side of (7), then we obtain the following

LEmmA 4. Suppose that the functions $f_{j}: G \rightarrow \mathbf{C}, a_{j}: Y \rightarrow \mathbf{C}, b_{j}: Y \rightarrow G$ $(j=1, \ldots, n)$ and $h: Y \rightarrow \mathbf{C}$ satisfy (5) for every $(x, y) \in G \times Y$. Put $N=n!$. Then there are functions $A_{i}: Y^{n} \rightarrow \mathbf{C}$ and $B_{i}: Y^{n} \rightarrow G(i=1, \ldots, N)$ and $H: Y^{n} \rightarrow \mathbf{C}$ such that
(i) we have

$$
\begin{equation*}
\sum_{i=1}^{N} A_{i}(y) f_{n}\left(x+B_{i}(y)\right)=H(y) \tag{8}
\end{equation*}
$$

for every $x \in G$ and $y \in Y^{n}$;
(ii) for every $i=1, \ldots, N$ there are indices j_{1}, \ldots, j_{n} such that $A_{i}(y)=$ $\pm a_{j_{1}}\left(y_{1}\right) \cdots a_{j_{n}}\left(y_{n}\right)$ for every $y=\left(y_{1}, \ldots, y_{n}\right) \in Y^{n} ;$
(iii) for every $i=1, \ldots, N$ there are indices k_{1}, \ldots, k_{n} such that $B_{i}(y)=$ $b_{k_{1}}\left(y_{1}\right)+\ldots+b_{k_{n}}\left(y_{n}\right)$ for every $y=\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$;
(iv) if $b_{j_{1}}-b_{j_{2}}$ is not constant for every $1 \leq j_{1}<j_{2} \leq n$, then $B_{i_{1}}-B_{i_{2}}$ is not constant for every $1 \leq i_{1}<i_{2} \leq N$;
(v) if $h \equiv 0$ then $H \equiv 0$.

REMARK. We shall need the following 'almost everywhere' version of Lemma 4 in the special case when $G=\mathbf{R}$ and Y is a subinterval of \mathbf{R}. Suppose that the measurable functions $f_{j}: \mathbf{R} \rightarrow \mathbf{C}, a_{j}: Y \rightarrow \mathbf{C}, b_{j}: Y \rightarrow \mathbf{R}$ $(j=1, \ldots, n)$ and $h: Y \rightarrow \mathbf{C}$ satisfy (5) for a.e. $(x, y) \in \mathbf{R} \times Y$ with respect to the Lebesgue measure λ_{2}. Then there are functions $A_{i}: Y^{n} \rightarrow \mathbf{C}$ and $B_{i}: Y^{n} \rightarrow \mathbf{R}(i=1, \ldots, N)$ and $H: Y^{n} \rightarrow \mathbf{C}$ satisfying (ii)-(v) of Lemma 4
and such that (8) holds for a.e. $(x, y) \in \mathbf{R} \times Y^{n}$ with respect to λ_{n+1}. The proof of this statement is the same as that of Lemma 4.

4. Regularity of solutions

In this section we show that - under the conditions formulated in Theorem 1 - the measurable solutions of (1) are locally Lipschitz. We remark that by imposing more restrictive regularity conditions on the functions a_{i} and b_{i} (namely, $a_{i}, b_{i} \in C^{2}$) this result could be deduced from a general theorem of A. Járai [4]. Our result is based on the observation that if f is bounded measurable and g is of bounded variation then their convolution is Lipschitz. (See Lemma 7 below.)

LEMMA 5. If g is a nonconstant d-convex function on J then there are a subinterval $J_{1} \subset J$ and a positive number ε such that g is strictly monotonic on J_{1}; moreover, either $g^{\prime}(x) \geq \varepsilon$ for a.e. $x \in J_{1}$ or $g^{\prime}(x) \leq-\varepsilon$ for a.e. $x \in J_{1}$.

Proof. Since g is absolutely continuous and nonconstant, the set $H=$ $\left\{x \in J: g^{\prime}(x) \neq 0\right\}$ is of positive measure. Also, g^{\prime} is of bounded variation in every closed subinterval of the interior of J, and thus g^{\prime} is continuous almost everywhere. Consequently, there is a point $x_{0} \in H$ at which g^{\prime} is continuous. Let $0<\varepsilon<\left|g^{\prime}\left(x_{0}\right)\right| / 2$ be fixed, and choose a small neighbourhood J_{1} of x_{0} such that $\left|g^{\prime}(x)-g^{\prime}\left(x_{0}\right)\right|<\varepsilon$ whenever $x \in J_{1}$ and g^{\prime} exists. It is clear that J_{1} and ε satisfy the requirements.

LEmmA 6. Let $g: J \rightarrow \mathbf{R}$ be differentiable a.e. on the bounded interval J, and suppose that $g^{\prime}(x) \neq 0$ for a.e. $x \in J$. Then (i) $g^{-1}(H)$ is null for every null set $H \subset \mathbf{R}$, and (ii) for every $\varepsilon>0$ there exists a $\delta>0$ such that $\lambda(H)<\delta$ implies $\lambda\left(g^{-1}(H)\right)<\varepsilon$.

Proof. Let $\lambda(H)=0$, and suppose that $A=g^{-1}(H)$ is of positive outer measure. Since $g^{\prime}(x) \neq 0$ for a.e. $x \in A$, we can select a positive number ε and a set $B \subset A$ of positive outer measure such that either $g^{\prime}(x)>\varepsilon$ or $g^{\prime}(x)<-\varepsilon$ for every $x \in B$. We may assume that $g^{\prime}>\varepsilon$ on B, since otherwise we replace g by $-g$. Then there is a positive integer n and there is a subset $C \subset B$ of positive outer measure such that $(g(y)-g(x)) /(y-x)>\varepsilon$ for every $x \in C$ and for every $y \in J$ with $0<|y-x|<1 / n$. Let L be a
subinterval of J such that $|L|<1 / n$ and $\lambda(C \cap L)>0$. Put $D=C \cap L$; then $\lambda(D)>0$ and $|g(y)-g(x)| \geq \varepsilon|y-x|$ for every $x, y \in D$. In particular, g is one-to-one on D. Let $g(D)=E$ and $f=(g \mid D)^{-1}$. Then $E \subset H$ and f maps E onto D. Also, f is Lipschitz on E, since $|f(u)-f(v)| \leq|u-v| / \varepsilon$ holds for every $u, v \in E$. Since $\lambda(E) \leq \lambda(H)=0$, this implies $\lambda(D)=0$, a contradiction. This proves (i).

Suppose that (ii) is false. Then there is an $\varepsilon>0$ and there are sets H_{n} such that $\lambda\left(H_{n}\right)<1 / n^{2}$ and $\lambda\left(g^{-1}\left(H_{n}\right)\right) \geq \varepsilon$ for every $n=1,2, \ldots$. We may assume that the sets H_{n} are open. Since g is measurable (in fact, g is continuous a.e.), it follows that the sets $g^{-1}\left(H_{n}\right)$ are measurable. Let $H=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} H_{n}$. Then $\lambda(H)=0$, and

$$
\lambda\left(g^{-1}(H)\right)=\lambda\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} g^{-1}\left(H_{n}\right)\right) \geq \liminf _{n \rightarrow \infty} \lambda\left(g^{-1}\left(H_{n}\right)\right) \geq \varepsilon
$$

which contradicts (i).
Lemma 7. Let U be of bounded variation on the interval $[a, b]$. Let I be a compact interval, and let f be measurable and bounded on the interval $I+[a, b]$. Then the function

$$
F(x)=\int_{a}^{b} f(x+y) U(y) d y \quad(x \in I)
$$

is Lipschitz on I.
Proof. Let $I+[a, b]=[c, d]$, and put $\Phi(x)=\int_{c}^{x} f(t) d t(x \in[c, d])$. Then Φ is a Lipschitz function such that $\Phi^{\prime}=f$ a.e. on $I+[a, b]$. Denoting $\Phi(y+x)$ by $T_{x} \Phi(y)$ we obtain

$$
\begin{align*}
F(x) & =\int_{a}^{b} U \cdot\left(T_{x} \Phi\right)^{\prime} d y=\int_{a}^{b} U d\left(T_{x} \Phi\right)=\left[U \cdot T_{x} \Phi\right]_{a}^{b}-\int_{a}^{b} T_{x} \Phi d U \tag{9}\\
& =U(b) \cdot \Phi(x+b)-U(a) \cdot \Phi(x+a)-\int_{a}^{b} T_{x} \Phi d U
\end{align*}
$$

If $\left|\Phi\left(x_{1}\right)-\Phi\left(x_{2}\right)\right| \leq K \cdot\left|x_{1}-x_{2}\right|$ for every x_{1}, x_{2} then we have

$$
\begin{aligned}
\left|\int_{a}^{b} T_{x_{1}} \Phi d U-\int_{a}^{b} T_{x_{2}} \Phi d U\right| & =\left|\int_{a}^{b}\left(T_{x_{1}} \Phi-T_{x_{2}} \Phi\right) d U\right| \\
& \leq K \cdot\left|x_{1}-x_{2}\right| \cdot V(U ;[a, b])
\end{aligned}
$$

and thus the function $x \mapsto \int_{a}^{b} T_{x} \Phi d U$ is Lipschitz. Then, by (9), so is F.

Lemma 8. Suppose that

$$
F(x)=\int_{a}^{b} c(y) f(x+g(y)) d y \quad(x \in I)
$$

where

- $c:[a, b] \rightarrow \mathbf{C}$ is of bounded variation,
- $g:[a, b] \rightarrow \mathbf{R}$ is d-convex and Lipschitz,
- there is a positive number ε such that $\left|g^{\prime}(x)\right| \geq \varepsilon$ at every point $x \in[a, b]$ where $g^{\prime}(x)$ exists,
- I is a compact interval, and
- f is measurable and bounded on the interval $I+g([c, b])$.

Then the function F is Lipschitz on I.
Proof. Since g^{\prime} is of bounded variation, the oscillation of g^{\prime} is less than 2ε everywhere, except at the points of a finite set. Then, by $\left|g^{\prime}\right| \geq \varepsilon$ it follows that there is a subdivision $a=a_{0}<a_{1}<\ldots<a_{n}=b$ of $[a, b]$ such that, for every $i=1, \ldots, n, g$ is strictly monotonic on $\left[a_{i-1}, a_{i}\right]$, and either $g^{\prime}(x) \geq \varepsilon$ for a.e. $x \in\left[a_{i-1}, a_{i}\right]$ or $g^{\prime}(x) \leq-\varepsilon$ for a.e. $x \in\left[a_{i-1}, a_{i}\right]$. Let $F_{i}(x)=\int_{a_{i-1}}^{a_{i}} c(y) f(x+g(y)) d y(x \in I ; i=1, \ldots, n)$. Since $F=F_{1}+\ldots+F_{n}$, it is enough to show that each F_{i} is Lipschitz on I.

Let i be fixed. We may assume that g is strictly increasing on $\left[a_{i-1}, a_{i}\right]$; the case when g is decreasing can be treated similarly. Let $A=g\left(a_{i-1}\right), B=g\left(a_{i}\right)$, and let G denote the inverse of $g \mid\left[a_{i-1}, a_{i}\right]$. Then G is absolutely continuous (in fact, Lipschitz) and strictly increasing on $[A, B]$. Since $G^{\prime}=1 /\left(g^{\prime} \circ G\right)$, $g^{\prime} \geq \varepsilon$ and g^{\prime} is of bounded variation on $[A, B]$, it follow's that G^{\prime} is also of bounded variation on $[A, B]$. Let U be an extension of $(c \circ G) \cdot G^{\prime}$ to $[A, B]$ having finite variation. Then we have $F_{i}(x)=\int_{A}^{B} f(x+u) U(u) d u$ for every $x \in I$, and thus, by Lemma 7, F_{i} is Lipschitz on I.

For every closed interval J and positive integer n we shall denote by Φ_{J}^{n} the family of all functions of the form

$$
A(y)=a_{1}\left(y_{1}\right) \cdots a_{n}\left(y_{n}\right) \quad\left(y=\left(y_{1}, \ldots, y_{n}\right) \in J^{n}\right),
$$

where a_{1}, \ldots, a_{n} are complex valued nonvanishing functions of bounded variation defined on J. The set of the functions $b_{1}\left(y_{1}\right)+\ldots+b_{n}\left(y_{n}\right)$, where $b_{i}: J \rightarrow \mathbf{R}$ is a d-convex function on J for every $i=1, \ldots, n$ will be denoted by Ψ_{J}^{n}.

By a subinterval of J^{n} we shall mean a set of the form $J_{1} \times \ldots \times J_{n}$, where J_{1}, \ldots, J_{n} are nondegenerate subintervals of J.

LEMMA 9. Let $A_{i} \in \Phi_{J}^{n}$ and $B_{i} \in \Psi_{J}^{n}$ for every $i=1, \ldots, N$, and suppose that $B_{i}-B_{j}$ is not constant on any subinterval of J^{n} for every $1 \leq i<j \leq N$. Let f_{1}, \ldots, f_{N} be complex valued measurable functions on \mathbf{R} such that

$$
\begin{equation*}
\sum_{i=1}^{N} A_{i}(y) f_{i}\left(x+B_{i}(y)\right)=0 \tag{10}
\end{equation*}
$$

for almost every $(x, y) \in \mathbf{R} \times J^{n}$. Then each of the functions f_{1}, \ldots, f_{N} equals a locally Lipschitz function almost everywhere.

Proof. By symmetry, it is enough to show that f_{1} equals a locally Lipschitz function almost everywhere.

Let U denote the set of points $(x, y) \in \mathbf{R} \times J^{n}$ for which (10) holds. Then $\left(x-B_{1}(y), y\right) \in U$ for a.e. $(x, y) \in \mathbf{R} \times J^{n}$, and thus

$$
\sum_{i=1}^{N} A_{i}(y) f_{i}\left(x+B_{i}(y)-B_{1}(y)\right)=0
$$

holds for a.e. $(x, y) \in \mathbf{R} \times J^{n}$. Therefore we may replace B_{i} by $B_{i}-B_{1}$ for every i. After these replacements we find that $B_{1} \equiv 0$.

Let $A_{i}(y)=\prod_{k=1}^{n} a_{i, k}\left(y_{k}\right)$ and $B_{i}(y)=\sum_{k=1}^{n} b_{i, k}\left(y_{k}\right)$, where $a_{i, k}: J \rightarrow \mathbf{C}$ is a nonvanishing function of bounded variation, and $b_{i, k}: J \rightarrow \mathbf{R}$ is a d-convex function for every $i=1, \ldots, N$ and $k=1, \ldots, n$. Since the functions $a_{i, k}$ are continuous everywhere on J apart from a countable set, they have a common point of continuity x_{0}. As $a_{i, k}\left(x_{0}\right) \neq 0$ for every i and k, there is an $\eta>0$ and there is a neighbourhood J_{0} of x_{0} such that $\left|a_{i, k}(x)\right|>\eta$ for every $i=1, \ldots, N, k=1, \ldots, n$ and $x \in J_{0}$. Replacing J by J_{0} we may clearly assume that $\left|a_{i, k}(x)\right|>\eta$ holds everywhere on J for every i and k. Then $a_{i, k} / a_{1, k}$ is of bounded variation for every i and k, and thus $A_{i} / A_{1} \in \Phi_{J}^{n}$ for every $i=1, \ldots, N$. We replace A_{i} by A_{i} / A_{1} for every i; then we have $A_{1} \equiv 1$ and

$$
\begin{equation*}
f_{1}(x)=-\sum_{i=2}^{N} A_{i}(y) f_{i}\left(x+B_{i}(y)\right) \tag{11}
\end{equation*}
$$

for a.e. $(x, y) \in \mathbf{R} \times J^{n}$.
Let $1<i \leq N$ and the subinterval $J^{\prime} \subset J$ be fixed. We claim that there is a $k \in\{1, \ldots, n\}$ and there is a subinterval $J^{\prime \prime} \subset J^{\prime}$ such that $b_{i, k}$ is not constant in every subinterval of $J^{\prime \prime}$. Indeed, otherwise we could find, successively, the intervals $J^{\prime} \supset J_{1} \supset J_{2} \supset \ldots \supset J_{n}$ such that $b_{i, k}$ is constant in J_{k} for every $k=1, \ldots, n$. Then $B_{i}=B_{i}-B_{1}$ would be constant in $\left(J_{n}\right)^{n}$,
contrary to the assumption. Applying this observation for every $1<i \leq N$ successively, we find a subinterval $\bar{J} \subset J$ with the following property: for every $1<i \leq N$ there is a $k(i) \in\{1, \ldots, n\}$ such that $b_{i, k(i)}$ is not constant in every subinterval of \bar{J}. Clearly, we may assume that $J=\bar{J}$. By taking another subinterval of J, we can suppose that each $b_{i, k}$ is Lipschitz in J.

Applying Lemma 5, N-1 times in succession, we find a positive ε and a subinterval $J_{1} \subset J$ such that, for every $1<i \leq N, b_{i, k(i)}$ s strictly monotonic on J_{1}, and $\left|b_{i, k(i)}^{\prime}\right| \geq \varepsilon$ almost everywhere on J_{1}. Again, we may assume that $J_{1}=J$. Then, by Lemma 6 , we can find a positive number δ such that $\lambda\left(b_{i, k(i)}^{-1}(H)\right)<|J| / N$ whenever $\lambda(H)<\delta$ and $i=2, \ldots, N$.

Let $i \in\{2, \ldots, N\}$ be arbitrary. We show that $\lambda_{n}\left(B_{i}^{-1}(H)\right)<|J|^{n} / N$ for every $H \subset \mathbf{R}, \lambda(H)<\delta$. We may suppose that H is open, and then so is $B_{i}^{-1}(H)$. If $y_{j} \in J$ is fixed for every $j \in\{1, \ldots, n\} \backslash\{k(i)\}$ then

$$
\left(y_{1}, \ldots, y_{n}\right) \in B_{i}^{-1}(H) \Longleftrightarrow b_{i, k(i)}\left(y_{k(i)}\right) \in H-\sum_{j \neq k(i)} b_{i, j}\left(y_{j}\right),
$$

and thus

$$
\lambda\left(\left\{y_{k(i)}:\left(y_{1}, \ldots, y_{n}\right) \in B_{i}^{-1}(H)\right\}\right)=\lambda\left(b_{i, k(i)}^{-1}\left(H-\sum_{j \neq k(i)} k_{i, j}\left(y_{j}\right)\right)\right)<|J| / N
$$

since $\lambda\left(H-\sum_{j \neq k(i)} b_{i, j}\left(y_{j}\right)\right)=\lambda(H)<\delta$. Therefore, by Fubini's theorem, we obtain

$$
\lambda_{n}\left(B_{i}^{-1}(H)\right)<|J|^{n-1} \cdot|J| / N=|J|^{n} / N^{\prime}
$$

as we stated.
We prove that f_{1} is locally essentially bounded. Let I be an arbitrary compact interval. Fubini's theorem implies that there is a set $X \subset \mathbf{R}$ of full measure such that for every $x \in X$, (11) holds for a.e. $y \in J^{n}$. If K is large enough then the measure of each of the sets $H_{K}^{i}=\left\{x \in I+B_{i}\left(J^{n}\right):\left|f_{i}(x)\right|>K\right\}$ $(i=2, \ldots, N)$ is less than δ. Therefore, by the choice of δ, the set

$$
E_{x}=\bigcup_{i=2}^{N} B_{i}^{-1}\left(H_{K}^{i}-x\right)
$$

is of measure less than $|J|^{n}$ for every x. Then the set $J^{m} \backslash E_{x}$ is of positive measure for every $x \in \mathbf{R}$, and hence we can choose a point $y_{x} \in J^{n} \backslash E_{x}$ for every $x \in X$ such that (11) holds with $y=y_{x}$. Since $x+B_{i}\left(y_{x}\right) \notin H_{K}^{i}$ for every $i=2, \ldots, N$, we have

$$
\left|f_{1}(x)\right| \leq \sum_{i=2}^{N} \sup _{J^{n}}\left|A_{i}\right| \cdot K
$$

for every $x \in I \cap X$. Since the interval I was arbitrary, it follows that f_{1} is locally essentially bounded. Clearly, the same is true for every f_{i}.

Now we show that f_{1} equals a locally Lipschitz function almost everywhere. By (11) we have

$$
|J|^{n} \cdot f_{1}(x)=-\sum_{i=2}^{N} \int_{J^{n}} A_{i}(y) f_{i}\left(x+B_{i}(y)\right) d \lambda_{n}(y)
$$

for a.e. x. Clearly, it is enough to show that

$$
F_{i}(x)=\int_{J^{n}} A_{i}(y) f_{i}\left(x+B_{i}(y)\right) d \lambda_{n}(y) \quad(x \in \mathbf{R})
$$

defines a locally Lipschitz function for every $i=2, \ldots, N$. Let i be fixed. Putting

$$
u(z)=\prod_{j \neq k(i)} a_{i, j}\left(y_{j}\right) \quad\left(z=\left(y_{1}, \ldots, y_{k(i)-1}, y_{k(i)+1}, \ldots, y_{n}\right)\right)
$$

we have

$$
\begin{equation*}
F_{i}(x)=\int_{J^{n-1}} u(z) \cdot\left[\int_{J} a_{i, k(i)}(t) \cdot f_{i}\left(x+d(z)+b_{i, k(i)}(t)\right) d t\right] d \lambda_{n-1}(z) \tag{12}
\end{equation*}
$$

where $d(z)=\sum_{j \neq k(i)} b_{i, j}\left(y_{j}\right)$. By Lemma 8 , the function

$$
L(x)=\int_{J} a_{i, k(i)}(t) \cdot f_{i}\left(x+b_{i, k(i)}(t)\right) d t
$$

is locally Lipschitz on \mathbf{R}. Since

$$
F_{i}(x)=\int_{J^{n-1}} u(z) \cdot L(x+d(z)) d \lambda_{n-1}(z)
$$

by (12), it follows that F_{i} is also locally Lipschitz. Indeed, let I be a compact interval. Since d is continuous on J^{n-1}, it follows that $I^{\prime}=I+d\left(J^{n-1}\right)$ is also a compact interval. Let K be the Lipschitz constant of L on I^{\prime}. If $x_{1}, x_{2} \in I$ and $z \in J^{n-1}$ then $x_{1}+d(z), x_{2}+d(z) \in I^{\prime}$ and thus

$$
\begin{aligned}
\left|F_{i}\left(x_{2}\right)-F_{i}\left(x_{1}\right)\right| & \leq \int_{J^{n-1}}|u(z)| \cdot\left|L\left(x_{2}+d(z)\right)-L\left(x_{1}+d(z)\right)\right| d \lambda_{n-1}(z) \\
& \leq K \cdot\left|x_{2}-x_{1}\right| \cdot \int_{J^{n-1}}|u(z)| d \lambda_{n-1}
\end{aligned}
$$

proving that F_{i} is locally Lipschitz.

5. Proof of Theorem 1

First we shall assume that the function h is identically zero. By symmetry, it is enough to show that f_{n} equals an exponential polynomial almost everywhere.

Suppose that the functions a_{i}, b_{i}, f_{i}, and $h \equiv 0$ are as in Theorem 1. Applying the a.e.-version of Lemma 4, we find the functions $A_{i}: J^{n} \rightarrow \mathbf{C}$, $B_{i}: J^{n} \rightarrow \mathbf{R}(i=1, \ldots, N)$ satisfying (ii)-(v) of Lemmal 4 with $G=\mathbf{R}$ and $Y=J$ and such that (8) holds for a.e. $(x, y) \in \mathbf{R} \times J^{n}$.

By (iv) of Lemma 4, $B_{i}-B_{j}$ is not constant on any subinterval of J^{n} for every $i \neq j$. Therefore, by Lemma $9, f_{n}$ equals a local y Lipschitz function \widetilde{f}_{n} almost everywhere.

By Fubini's theorem, there is a subset Y of J^{n} of full measure such that for every $y \in Y$, (8) holds for a.e. $x \in \mathbf{R}$. Since $f_{n}=\widetilde{f}_{n}$ a.e., it follows that, for every $y \in Y$, we have

$$
\begin{equation*}
\sum_{i=1}^{N} A_{i}(y) \widetilde{f}_{n}\left(x+B_{i}(y)\right)=0 \tag{13}
\end{equation*}
$$

for a.e. x. Then, by the continuity of the functions \widetilde{f}_{n} and B_{i} we find that (13) holds for every $x \in \mathbf{R}$ and $y \in Y$.

Let L denote the set of continuous functions $f \in C(\mathbf{R})$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{N} A_{i}(y) f\left(x+B_{i}(y)\right)=0 \tag{14}
\end{equation*}
$$

for every $(x, y) \in \mathbf{R} \times Y$. Then L is a translation invariant closed subspace of $C(\mathbf{R})$ and, by the argument above, $\widetilde{f}_{n} \in L$. If $f \in L$. then (14) holds for a.e. $(x, y) \in \mathbf{R} \times J^{n}$ and thus, by Lemma $9, f$ is locally Lipschitz. That is, each element of L is locally Lipschitz. We claim that there exists a nonzero difference operator Δ such that $\Delta f=0$ for every $f \in L$. In fact, if $f \in L$ then we have $\Delta(y) f=0$ for every $y \in Y$, where $\Delta(y)=\sum_{i=1}^{N} A_{i}(y) T_{B_{i}(y)}$. We have to show that $\Delta(y)$ is nonzero for at least one $y \in Y$. But this is clear, because $A_{i}(y) \neq 0$ for every $y \in J^{n}$, and $B_{1}(y), \ldots, B_{n}(y)$ are distinct on a dense open subset of J^{n}.

Therefore we may apply Lemma 3. We find that L is finite dimensional, and thus each element of L is an exponential polynomal. Since $\widetilde{f}_{n} \in L$ and f_{n} equals \widetilde{f}_{n} almost everywhere, this completes the proof, assuming $h \equiv 0$.

The general case can be reduced to the previous one as follows. It is enough to show that f_{n} equals an exponential polynomial almost everywhere.

Let Δ_{b} denote the difference operator defined by $\Delta_{b} f(x)=f(x+b)-f(x)$. Suppose that the functions a_{i}, b_{i}, f_{i}, and h are as in Theorem 1. Then we have

$$
\sum_{i=1}^{n} a_{i}(y) \Delta_{b} f_{i}\left(x+b_{i}(y)\right)=0
$$

for almost every $(x, y) \in \mathbf{R} \times J$ and for every $b \in \mathbf{R}$. As we proved already, this implies that $\Delta_{b} f_{n}$ equals an exponential polynomial almost everywhere for every $b \in \mathbf{R}$. Then, in particular, $\Delta_{b} f_{n}$ equals a continuous function almost everywhere for each $b \in \mathbf{R}$. By a theorem of T. Keleti [7, Theorem 2.9] it follows that f_{n} equals a continuous function \bar{f}_{n} almost everywhere. Since $\Delta_{b} \bar{f}_{n}$ equals an exponential polynomial almost everywhere and \bar{f}_{n} is continuous, we find that $\Delta_{b} \bar{f}_{n}$ equals an exponential polynomial everywhere for every $b \in \mathbf{R}$. Therefore, by a theorem of F.W. Carroll [2], \bar{f}_{n} is exponential polynomial, which completes the proof.

6. Proof of Theorem 2

For every $E \in \mathcal{E}$ we shall denote by $\Lambda(E)$ the set of roots of E.

Lemma 10. Shapiro's conjecture implies that if $\left\{E_{j}: j \in J\right\}$ is a system of exponential polynomials with constant coefficients such that $\bigcap_{j \in I} \Lambda\left(E_{j}\right)$ is infinite, then either
(i) there is a non-unit exponential polynomial that divides each E_{j}, or
(ii) there is a nonzero complex number γ such that each E_{j} has a divisor of the form $e^{r \gamma z}-c$, where $c \neq 0$ and $r \neq 0$ is rational.

Proof. By Ritt's theorem [9] we have $E_{j}=F_{j} \cdot G_{j}(j \in J)$, where each F_{j} is the product of finitely many simple exponential polynomials, and each G_{j} is the product of finitely many irreducible factors. Let $\Lambda=\bigcap_{j \in J} \Lambda\left(E_{j}\right)$. Then $\Lambda \subset \Lambda\left(E_{j}\right)=\Lambda\left(F_{j}\right) \cup \Lambda\left(G_{j}\right)$ for every $j \in J$. Suppose that there exists a $j_{0} \in J$ such that $\Lambda \cap \Lambda\left(G_{j_{0}}\right)$ is infinite. Then there is an irreducible factor H of $G_{i_{0}}$ such that $\Lambda \cap \Lambda(H)$ is infinite. Then $\Lambda(H) \cap \Lambda\left(E_{j}\right)$ is infinite for every $i \in J$, as it contains $\Lambda \cap \Lambda(H)$. If Shapiro's conjecture is true then H and E_{j} have a common non-unit factor. Since H is irreducible, this factor must be (a unit multiple of) H. Thus, in this case, H divides each E_{j}; that is, (i) holds.

Next suppose that $\Lambda \cap \Lambda\left(G_{j}\right)$ is finite for every $j \in J$. Then $\Lambda \cap \Lambda\left(F_{j}\right)$ must be infinite for every j. It is easy to see that if $F \in \mathcal{E}$, is simple then F is the product of a unit and of finitely many factors of the form $e^{a z}-c$, where $a \neq 0$ and $c \neq 0$. Therefore, $\Lambda(F)$ is the union of finitely many arithmetical progressions (AP's).

Let $j_{0} \in J$ be arbitrary. Since $\Lambda \cap \Lambda\left(F_{j_{0}}\right)$ is infinite and $\Lambda\left(F_{j_{0}}\right)$ is the union of finitely many AP's, there exists an arithmetical progression $A=\{b+n d: n \in \mathbf{Z}\}$ such that $\Lambda \cap A$ is infinite. Let $\gamma=d /(2 \pi i)$. We show that every E_{i} has a divisor of the form $e^{r \gamma z}-c$, where $c \neq 0$ and $r \neq 0$ is rational. That is, in this case (ii) holds.

Let $j \in J$ be arbitrary. Since $\Lambda\left(G_{j}\right) \cap(\Lambda \cap A)$ is finite, there is a factor $e^{a z}-c$ of F_{j} such that $\Lambda\left(e^{a z}-c\right) \cap(\Lambda \cap A)$ is infinite. Now $\Lambda\left(e^{a z}-c\right)$ is an AP with difference $(2 \pi i) / a$, and thus $(2 \pi i) / a$ and d must be commensurable; that is, $(2 \pi i) / a d$ is rational. Thus $a / \gamma=r$ is rational, which completes the proof.

REMARK. As the following simple example shows, we cannot omit case (ii) from the statement of Lemma 10. Let $G_{n}(n=1,2, \ldots)$ be a sequence of non-associate irreducible exponential sums such that $\{1, \ldots, n!\} \subset \Lambda\left(G_{n}\right)$ for every n. Let $E_{n}=\left(e^{\frac{2 \pi i}{n} z}-1\right) \cdot G_{n}(n=1,2, \ldots)$. It is easy to check that $\{n!: n=1,2, \ldots\} \subset \Lambda\left(E_{n}\right)$ for every n, but the E_{n}^{\prime} s do not have a common non-unit divisor.

Now we turn to the proof of Theorem 2. First we consider the case when the function h is identically zero. Suppose (1). Clearly, it is enough to show that f_{n} is an exponential polynomial. By Lemma 4 , there are functions $A_{i}: Y^{n} \rightarrow \mathbf{C}$ and $B_{i}: Y^{n} \rightarrow \mathbf{R}(i=1, \ldots, N=n!)$ such that (8) holds for every $y=\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}, A_{i}$ is nonvanishing and B_{i} is continuous on Y^{n} for every i. Also, it follows from (iv) of Lemma 4 that $B_{i}-B_{j}$ is not constant on any nonempty open subset of Y^{n} for every $1 \leq i<j \leq N$. Consequently, there is a nonempty open set $U \subset Y^{n}$ such that $B_{1}(y), \ldots, B_{N}(y)$ are distinct and of the same order for every $y \in U$. We may assume that $B_{1}(y)<\ldots<B_{N}(y)$ $(y \in U)$.

Let L denote the set of functions $f \in C(\mathbf{R})$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{N} A_{i}(y) f\left(x+B_{i}(y)\right)=0 \tag{15}
\end{equation*}
$$

for every $(x, y) \in \mathbf{R} \times Y^{n}$. Then L is a translation invariant closed subspace
of $C(\mathbf{R})$, and $f_{n} \in L$. By Schwartz's theorem, it is enough to show that L is finite dimensional.

First we shall prove that the spectrum $\operatorname{sp}(L)=\left\{\lambda \in \mathbf{C}: e^{\lambda x} \in L\right\}$ is finite. Suppose $\lambda \in \operatorname{sp}(L)$. Then $\sum_{i=1}^{N} A_{i}(y) e^{\lambda B_{i}(y)}=0$ for every $y \in Y^{n}$; that is, λ is a root of the exponential sum $E_{y}(z)=\sum_{i=1}^{N} A_{i}(y) e^{B_{i}(y) z}$ for every $y \in Y^{n}$. We prove, assuming Shapiro's conjecture, that the exponential sums E_{y} have only a finite number of common roots. Suppose this is not true. Then, by Lemma 10, one of the following two statements must be true:
(i) there is a non-unit exponential polynomial that divides each E_{y}, or
(ii) there is a nonzero complex number γ such that each E_{y} has a divisor of the form $e^{r \gamma z}-c$, where $c \neq 0$ and $r \neq 0$ is rational.

We show that each of these statements contradicts the condition that $B_{i}-B_{j}$ is not constant on nonempty open sets.

Suppose (i), and let $\sum_{i=1}^{k} \gamma_{i} e^{\delta_{i} z}$ be a non-unit exponential polynomial that divides each E_{y}. We may assume that $k \geq 2, \gamma_{1}, \ldots, \gamma_{k}$ are nonzero, $\delta_{1}, \ldots, \delta_{k}$ are distinct, and that $\delta_{1}=0$. Then we have

$$
\begin{equation*}
E_{y}(z)=\sum_{i=1}^{k} \gamma_{i} e^{\delta_{i} z} \cdot \sum_{j=1}^{m(y)} a_{j}(y) e^{\beta_{j}(y) z} \tag{16}
\end{equation*}
$$

for every $y \in Y^{n}$, where $a_{1}(y), \ldots, a_{m(y)}(y)$ are nonzero and $\beta_{1}(y), \ldots, \beta_{m(y)}(y)$ are distinct for every y. By a theorem of Ritt, there is a complex number δ such that each of the numbers $\delta_{i}-\delta(i=1, \ldots, k)$ and $\beta_{j}(y)+\delta(j=1, \ldots, m(y))$ is a linear combination of $B_{1}(y), \ldots, B_{N}(y)$ with rational coefficients. (See [9, p. 585] and [3, Lemma 2].) Since $B_{i}(y)$ is real for every i and y, it follows that $\delta_{i}-\delta$ and $\beta_{j}(y)+\delta$ are also real for every i, j and y. Now $\delta_{1}=0$ implies that δ is real, and thus δ_{i} and $\beta_{j}(y)$ are real for every $i=1, \ldots, k$, $j=1, \ldots, m(y)$ and $y \in Y^{n}$. We may assume that $0=\delta_{1}<\ldots<\delta_{k}$.

Let $K(m)=\{y \in U: m(y)=m\}(m=1,2, \ldots)$. Then $U=\bigcup_{m=1}^{\infty} K(m)$. Since Y^{n} is a Baire space, it follows that $K(m)$ is not nowhere dense for at least one m. Fix such an m, and partition $K(m)$ into m ! subsets according to the ordering of the numbers $\beta_{1}(y), \ldots, \beta_{m}(y)$. Then at least one of these subsets is not nowhere dense. In other words, there exists a non-nowhere dense subset K of $K(m)$ such that the ordering of the numbers $\beta_{1}(y), \ldots, \beta_{m}(y)$ is the same for every $y \in K$. We may assume that $\beta_{1}(y)<\ldots<\beta_{m}(y)(y \in K)$. By (16) and $\delta_{1}=0$ we have $B_{1}(y)=\beta_{1}(y)$ for every $y \in K$.

Let J denote the set of those indices $j \in\{1, \ldots, m\}$ for which $\beta_{j}-\beta_{1}$ is constant on a non-nowhere dense subset of K. Obvicusly, $1 \in J$. Let j_{0} be the largest element of J, and let K_{0} be a non-nowhere dense subset of K such that $\beta_{j_{0}}-\beta_{1}$ is constant on K_{0}. Put $K_{i}=\left\{y \in K_{0}: \delta_{k}+\beta_{j_{0}}(y)=B_{i}(y)\right\}$ $(i=2, \ldots, N)$. If $y \in K_{i}$ then

$$
B_{i}(y)-B_{1}(y)=\delta_{k}+\beta_{j_{0}}(y)-\beta_{1}(y),
$$

and thus $B_{i}(y)-B_{1}(y)$ is constant on K_{i}. Therefore, K_{i} is nowhere dense for every $i=2, \ldots, N$. Consequently, the set $\bigcup_{i=2}^{N} K_{i}$ is also nowhere dense, and $K^{\prime}=K_{0} \backslash \bigcup_{i=2}^{N} K_{i}$ is not. Note that $\delta_{k}+\beta_{j_{0}}(y) \neq B_{i}(y)$ for every $y \in K^{\prime}$ and $i=2, \ldots, N$.

Let $y \in K^{\prime}$. The product on the right hand side of (15) contains the term $\gamma_{k} a_{j_{0}}(y) e^{\left(\delta_{k}+\beta_{j_{0}}(y)\right) z}$. Now $\delta_{k}+\beta_{j_{0}}(y)>\delta_{1}+\beta_{1}(y)=B_{1}(y)$ and $\delta_{k}+\beta_{j_{0}}(y) \neq B_{i}(y)$ for every $i \geq 2$ by $y \in K^{\prime}$. Thus $\delta_{k}+\beta_{j_{0}}(y) \neq B_{i}(y)$ for every i and, consequently, this term must be cancelled out by other terms. That is, there are indices $i(y)<k$ and $j(y)>j_{0}$ such that $\delta_{k}+\beta_{j_{0}}(y)=\delta_{i(y)}+\beta_{j(y)}$. Now there must exist indices $i<k$ and $j>j_{0}$ and a non-nowhere dense subset $K^{\prime \prime}$ of K^{\prime} such that $i(y)=i$ and $j(y)=j$ for every $y \in K^{\prime \prime}$. Then

$$
\beta_{j}(y)-\beta_{1}(y)=\left(\beta_{j_{0}}(y)-\beta_{1}(y)\right)+\left(\delta_{k}-\delta_{i}\right)
$$

for every $y \in K^{\prime \prime}$. Now $\beta_{j_{0}}-\beta_{1}$ is constant on $K^{\prime \prime}$ (even on K_{0}), and thus so is $\beta_{j}-\beta_{1}$. Therefore, $j \in J$. This, however, contradicts the fact that j_{0} was the maximal element of J. This contradiction proves the finiteness of $\operatorname{sp}(L)$ in the case when (i) holds.

Next assume (ii). Then there is a nonzero complex number γ such that

$$
\begin{equation*}
E_{y}(z)=\left(e^{r(y) \gamma z}-c(y)\right) \cdot \sum_{j=1}^{m(y)} a_{j}(y) e^{\beta_{j}(y) z} \tag{17}
\end{equation*}
$$

for every $y \in Y^{n}$, where $r(y) \neq 0$ is rational, $c(y), a(y), \ldots, a_{m(y)}(y)$ are nonzero and $\beta_{1}(y), \ldots, \beta_{m(y)}(y)$ are distinct for every y. We can prove, in the same way as in the case (i), that the numbers γ and $\beta_{1}(y), \ldots, \beta_{m(y)}$ are real for every y. Since Y^{n} is a Baire space, there is a nonzero rational number r and there is a positive integer m such that the set $R=\{y \in U: r(y)=r, m(y)=m\}$ is not nowhere dense. Then there is a non-nowhere dense subset R_{0} of R such that the ordering of the numbers $\beta_{1}(y), \ldots, \beta_{m}(y)$ is the same for every $y \in R_{0}$ We may assume that $\beta_{1}(y)<\ldots<\beta_{m}(y)\left(y \in R_{0}\right)$. From this point we can arrive at a contradiction in the same way as in the case of (i), using (17) instead of (16).

This proves that $\operatorname{sp}(L)$ is finite. If $e^{\lambda_{1} z}, \ldots, e^{\lambda_{s} z}$ are the only exponential functions contained in L, then every exponential polynomial contained in L must be of the form $\sum_{i=1}^{s} p_{i}(z) e^{\lambda_{i} z}$, where p_{1}, \ldots, p_{s} are polynomials. Since the set of all polynomials is dense in $C(\mathbf{R})$ and $L \neq C(\mathbf{R})$, it follows that the degrees of p_{1}, \ldots, p_{s} must be bounded. As the set of exponential polynomials is dense in L, we find that each element of L is an exponential polynomial, which completes the proof of Theorem 2 in the case when $h \equiv 0$.

The general case can be reduced to the previous one in the same way as in the proof of Theorem 1. Again, it is enough to show that f_{n} is an exponential polynomial. Since $\Delta_{b} f_{n}$ satisfies the homogeneous version of (1), it follows that $\Delta_{b} f_{n}$ is an exponential polynomial for every b. Therefore, by Carroll's theorem [2], f_{n} is also an exponential polynomial.

REFERENCES

[1] BAKER, J.A. Functional equations, distributions and approximate identities. Canad. J. Math. 42 (1990), 696-708.
[2] Carroll, F. W. A difference property for polynomials and exponential polynomials on Abelian locally compact groups. Trans. Amer. Math. Soc. 114 (1965), 147-155.
[3] Everest, G. R. and A. J. van den Poorten. Factorization in the ring of exponential polynomials. Proc. Amer. Math. Soc. 125 (1997), 1293-1298.
[4] JÁral, A. On Lipschitz property of solutions of functional equations. Aequationes Math. 47 (1994), 69-78.
[5] Kahane, J.-P. Sur quelques problèmes d'unicité et de prolongement, relatifs aux fonctions approchables par des sommes d'exponentielles. Ann. Inst. Fourier (Grenoble) 5 (1953-54), 39-130.
[6] Lectures on Mean Periodic Functions. Tata Institute, 1956.
[7] Keleti, T. Difference functions of periodic measurable functions. Fund. Math. 157 (1998), 15-32.
[8] VAn den Poorten, A. J. and R. Tijdeman. On common zeros of exponential polynomials. L'Enseignement Math. (2) 21 (1975), 57-67.
[9] Ritt, J. F. A factorization theory for functions $\sum_{i=1}^{n} a_{i} e^{\alpha_{i} x}$. Trans. Amer. Math. Soc. 29 (1927), 584-596.
[10] Schwartz, L. Théorie générale des fonctions moyenne-périodiques. Ann. of Math. (2) 48 (1947), 857-929.
[11] Shapiro, H.S. The expansion of mean-periodic functions in series of exponentials. Comm. Pure Appl. Math. 11 (1958), 1-21.
[12] SWIATAK, H. On the regularity of the locally integrable solutions of the functional equations $\sum_{i=1}^{k} a_{i}(x, t) f\left(x+\phi_{i}(t)\right)=b(x, t)$. Aequationes Math. 1 (1968), 6-19.
(Reçu le 27 juillet 2003)
M. Laczkovich

Department of Analysis
Eötvös Loránd University
Pázmány Péter sétány $1 / C$
H-Budapest
Hungary 1117
e-mail: laczk@cs.elte.hu
and

Department of Mathematics
University College London
Gower Street
GB-London WC1E 6BT
England

[^0]: *) Research partially supported by the Hungarian National Foundation for Scientific Research, Grant No. T032042.

