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The Lij, together with these isomorphisms, define a gerbe over SU(d + 1),

representing the generator of Z/3(SU(<i-b 1),Z).
More generally, consider any compact, simply connected, simple Lie group

G of rank d. Up to conjugacy, G contains exactly d+ 1 elements with semi-

simple centralizer. (For G SU(d +1), these are the central elements.) Let

Cu • • •, Cd+1 C G be their conjugacy classes. We will define an invariant open

cover V], V^+i of G, with the property that each member of this cover

admits an equivariant retraction onto the conjugacy class Cj C Vj. It turns

out that every semi-simple centralizer has a distinguished central extension by

U(l). This central extension defines an equivariant bundle gerbe on Cj, hence

(by pull-back) an equivariant bundle gerbe over Vj. We will find that these

gerbes over Vj glue together to produce a gerbe over G, using a gluing rule

developed in this paper.
The organization of the paper is as follows. In Section 2 we review the

theory of gerbes and pseudo-line bundles with connections, and discuss 'strong

equivariance' under a group action. Section 4 describes gluing rules for bundle

gerbes. Section 3 summarizes some facts about gerbes coming from central

extensions. In Section 5 we give the construction of the basic gerbe over G

outlined above, and in Section 6 we study the 'pre-quantization of conjugacy
classes'.

Acknowledgements. I would like to thank Ping Xu for fruitful discussions

at the Poisson 2002 meeting in Lisbon, and for a preliminary version
of his preprint [2] with Behrend and Zhang, giving yet another construction
of the basic gerbe over G. Their (infinite-dimensional) approach is based on
the notion of Morita equivalence of (quasi-)symplectic groupoids. I thank the
referees for detailed comments and suggestions.

2. Gerbes with connections

In this section we review gerbes on manifolds, along the lines of Chatterjee-
Hitchin and Murray.

2.1 Chatterjee-Hitchin gerbes

Let M be a manifold. Any Hermitian line bundle over M can be described
by an open cover Ua, and transition functions Xab- Uar\Ub -» U(l) satisfying
a cocycle condition (5x)abc XbcXCcXab 1 on triple intersections. The
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cohomology class in Hl(M, U(l)) H2(M, Z) defined by this cocycle is

the Chern class of the line bundle. Chatterjee-Hitchin [10, 18, 17] suggested
to realize classes in 7/3(M, Z) in a similar fashion, replacing U(l)-valued
functions with Hermitian line bundles. They define a gerbe to be a collection
of Hermitian transition line bundles Lab Ua D Ub and a trivialization, i.e.

unit length section, tabc of the line bundle (SL)abc LbcL~clLab over triple
intersections. These trivializations have to satisfy a compatibility relation over
quadruple intersections,

(fit)abed, — tbcdt^rftabdt^ — 1

which makes sense since (St)abcd is a section of the canonically trivial
bundle. (Each factor Lab cancels with a factor L~bl.) After passing to a

refinement of the cover, such that all Lab become trivializable, and picking
trivializations, tabc is simply a Cech cocycle of degree 2, hence defines a class

in 7/2(M, U(l)) Z). The class is independent of the choices made in
this construction, and is called the Dixmier-Douady class of the gerbe.

Note that in practice, it is often not desirable to pass to a refinement.

For example, if M is a connected, oriented 3-manifold, the generator of
7/3(M, Z) Z can be described in terms of the cover U\, U2, where U\ is

an open ball around a given point p G M, and U2 M\{p}, using the degree

one line bundle over U\ D U2 S2 x (0,1).

2.2 Bundle gerbes

Bundle gerbes were invented by Murray [24], generalizing the following
construction of line bundles. Let tt : X M be a fiber bundle, or more

generally a surjective submersion. (Different components of X may have

different dimensions.) For each k > 0 let X^ denote the &-fold fiber product
of X with itself. There are k + I projections dl : X[k+1] —) X[k], omitting
the z'th factor in the fiber product. Suppose we are given a smooth function

X[2] —> U(l), satisfying a cocycle condition Sx 1 where

Sx ^d*0xdïx-ld*2X-Xm->V(

Then x determines a Hermitian line bundle L M, with fibers at m G M the

space of all linear maps <p: Xm — ir~l(m) —C such that fi(x) xCl-xO^C*7)-

Given local sections cra : Ua —> X of X, the pull-backs of % under the maps
(<ja, ab): UaC\Ub -A-X[2] give transition functions Xab for the line bundle.

Again, replacing U(l)-valued functions by line bundles in this construction,

one obtains a model for gerbes: A bundle gerbe is given by a line bundle

L and a trivializing section t of the line bundle SL — cÇL09*L_109JL
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over X[3], satisfying a compatibility condition St 1 over (which
makes sense since St is a section of the canonically trivial bundle SSL).

Given local sections aa: Ua -A X, one can pull these data back under the

maps ((Ja,(Jb): Ua n Ub -A X[2] and (aa, (?b-> <rc): Ua H Ub n Uc -A X[3] to

obtain a Chatterjee-Hitchin gerbe. The Dixmier-Douady class of (X,L,t) is

by definition the Dixmier-Douady class of this Chatterjee-Hitchin gerbe; again

this is independent of all choices. The Dixmier-Douady class behaves naturally
under tensor product, pull-back and duals.

Notice that Chatterjee-Hitchin gerbes may be viewed as a special case of
bundle gerbes, with X the disjoint union of the sets Ua in the given cover.

Remark 2.1. In his original paper [24] Murray considered bundle gerbes

only for fiber bundles, but this was found too restrictive. In [25], [29] the

weaker condition (called 'locally split') is used that every point x G M admits

an open neighborhood U and a map a: U -A X such that tt o a id.
However, this condition seems insufficient in the smooth category, as the fiber

product X xMX need not be a manifold unless tt is a submersion.

2.3 SlMPLICIAL GERBES

Murray's construction fits naturally into a wider context of simplicial
gerbes. We refer to Mostow-Perchik's notes of lectures by R. Bott [23] and

to Dupont's paper [12] for a nice introduction to simplicial manifolds, and to
Stevenson [29] for their appearance in the gerbe context.

Recall that a simplicial manifold M. is a sequence of manifolds (Mn)fL{),
together with face maps dt : Mn -A Mn_i for i v= 0,..., n satisfying relations
9/ o dj dj-1 o di for i < j. (The standard definition also involves degeneracy

maps but these need not concern us here.) The (fat) geometric realization
of M. is the topological space \\M\\ An x Mnj where An is
the n-simplex and the relation is (f, dfx)) ~ (9z'(f),jc), for dl\ A"-1 -> An
the inclusion as the i th face. A (smooth) simplicial map between simplicial
manifolds is a collection of smooth maps fn : Mn -a M'n intertwining
the face maps; such a map induces a map between the geometric realizations.

Examples 2.2.

(a) If S is any manifold, one can define a simplicial manifold E.S where
EnS is the n+ 1-fold cartesian product of A, and dj omits the jth factor. It
is known [23] that the geometric realization \\ES\\ of this simplicial manifold
is contractible. More generally, if I a M is a fiber bundle with fiber S,
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one can define a simplicial manifold EnX := X[n+1], with face maps as in
Section 2.2. The geometric realization 11 EX 11 becomes a fiber bundle over M
with contractible fiber \\ES\\.

(b) [22, 27] For any Lie group G there is a simplicial manifold BnG Gn.

The face maps for 0 < i < n are

(9l,-*i9i9i+U"»)9n),

while do omits the first component and dn the last component. The map
7in ' EnG -+ BnG given by irn(k0, ...,kn) (k0k^\..., kn^xk~l) is simplicial,
and the induced map on geometric realizations is a model for the classifying
bundle EG -» BG.

(c) [27, 23] If U — {Ua,a e A} is an open cover of M, one defines a

simplicial manifold

UnM := ]J Uao...an

(a0,...,an)eAn

where An is the set of all sequences (ao, • • •, an) such that Uao..Mn

Ua0 H D Uan is non-empty. The face maps are induced by the inclusions,

di\ Uao a -i aQ...un ao...aj...an

One may view this as a special case of (a), with X ]JaeAUa. It is known

[23, Theorem 7.3] that \\UM\\ is homotopy equivalent to M.

(d) [2] The definitions of EnG and BnG extend to Lie groupoids G over
a base S. If s, t: G S are the source and target maps, one defines EnG as

the 72+ 1-fold fiber product of G with respect to the target map t. The space

BnG for 72 > 1 is the set of all (pi,..., gn) G Gn with s(gj) t(gj-\), while

B0G S. The definition of the face maps dj\ BnG —» Bn_\G is as before

for 72 > 1, while for n — 1, do — t and d\—s. We have a simplicial map
EnG —y BnG defined just as in the group case.

The bi-graded space of differential forms Q#(M.) carries two commuting
differentials d, 5, where d is the de Rham differential and S : ££(Mn) ->
Qk(Mn+i) is an alternating sum, 5a J2l=o(~~^ydîa' ^ known [23,

Theorem 4.2, Theorem 4.5] that the total cohomology of this double complex
is the (singular) cohomology of the geometric realization, with coefficients

in R.
We will use the 5 notation in many similar situations : For instance, given a

Hermitian line bundle L -+ Mn, we define a Hermitian line bundle 5L -ï Mn+1

as a tensor product,
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SL OqL 0 d*L 1 0 • • • (8)

The line bundle 5(5L) -y Mn+i is canonically trivial, due to the relations

between face maps. If a is a unitary section (i.e. a trivialization) of L, one

uses a similar formula to define a unitary section Sa of fiL. Then 6(5a) 1

(the identity section of the trivial line bundle 5(5L)). For any unitary connection

V of L, one defines a unitary connection SV of SL in the obvious way.

Convention. For the rest of this paper, we take all line bundles L to be

Hermitian line bundles, and all connections V on L to be unitary connections.

Let M. be a simplicial manifold. One might define a simplicial line
bundle as a collection of line bundles Z^ -a Mn such that the face maps
dp. Mn —y Mn-1 lift to line bundle homomorphisms di : Ln —y L„_j, satisfying
the face map relations. Thus L. is itself a simplicial manifold, and its geometric
realization ||L|| is a line bundle over \\M\\. Equivalently, the lifts <9; may
be viewed as isomorphisms, d*Ln_\ —y Ln. In particular, we may identify
with the pull-back of L := Lq under the wth-fold iterate <90 o • • • o <90.

The isomorphisms d\L d^L Li determine a unitary section r of
ÖL ^ Mi, and the compatibility of isomorphisms

(Ö092)*L - (ö0öi)*L 9* (dodoTL L2

amount to the condition ^ t= 1. (Compatibility of the isomorphisms for L,x

with n > 3 is then automatic.) That is, a simplicial line bundle over M.
is given by a line bundle L -A Mo, together with a unitary section t of
SL —y M\, such that St — 1 over M2. A unitary section s of L with Ss t
induces a unitary section of ||L|| -A ||M||.

Taking L to be trivial, we see in particular that any U(l) -valued function
t on Mi, with St 1, defines a line bundle over the geometric realization.
A trivialization of that line bundle is given by a U(l)-valued function on M0
satisfying 5s t. Replacing U(l)-valued functions with line bundles, this
motivates the following definition.

Definition 2.3. A simplicial gerbe over M. is a pair (1,0, consisting
of a line bundle L > M\, together with a section t of SL —y M2 satisfying
St 1. A pseudo-line bundle for (L,t) is a pair (£, s), consisting of a line
bundle E —> Mo and a section s of SE~1 0 L such that Ss t.
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Remark 2.4.

(a) We are using the notion of a simplicial gerbe only as a 'working
definition'. It is clear from the discussion above that a more general notion
would involve a gerbe over Mo.

(b) In [9], what we call simplicial gerbe is called a simplicial line bundle.
The name pseudo-line bundle is adopted from [9], where it is used in a similar
context.

A simplicial gerbe over UM (for a cover U of M is a Chatterjee-Hitchin
gerbe, while a simplicial gerbe over E.X — X[#+1] (for a surjective submersion

X —> M) is a bundle gerbe. It is shown in [24] that the characteristic class of
a bundle gerbe (.X, L, t) vanishes if and only if it admits a pseudo-line bundle.

Example 2.5 (Central extensions). (See [9, p. 615].) Let K be a Lie

group. A simplicial line bundle over B.K is the same thing as a group
homomorphism K -A U(l) : The line bundle L —> BqK is trivial since BqK is

just a point, hence the unitary section t of SL becomes a U(l)-valued function.
The condition St 1 means that this function is a group homomorphism.

Similarly, a simplicial gerbe (T, r) over B.K is the same thing as a central
extension

Indeed, given the line bundle T —> K let K be the unit circle bundle inside
T. The fiber of öT K2 at (ki,^) is a tensor product T^r^r*,, hence

the section r of T -I K2 defines â unitary isomorphism Tk]k2, or
equivalently a product on K covering the group multiplication on K. Finally,
the condition Sr 1 is equivalent to associativity of this product.

A pseudo-line bundle (E,s) for the simplicial gerbe (T, r) is the same

thing as a splitting of the central extension : Obviously E is trivial since BqK
is just a point; the section s defines a trivialization K K x U(l), and Ss t
means that this is a group homomorphism.

Definition 2.6. A connection on a simplicial gerbe (L, t) over M. is a

line bundle connection VL, together with a 2-form B G Q2(Mo), such that

(ÔVL) t 0 and

SB —curv(VL).
2iri

Given a pseudo-line bundle C (E,s), we say that Ve is a pseudo-line
bundle connection if it has the property ((<5V£)-1 VL)s — 0.
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Simplicial gerbes need not admit connections in general. A sufficient

condition for the existence of a connection is that the 8 -cohomology of the

double complex £lk(Mn) vanishes in bidegrees (1,2) and (2,1). In particular,
this holds true for bundle gerbes : Indeed it is shown in [24] that for any

surjective submersion tt : X A M the sequence

(2.1) 0 —> Çi(M)AQ.k{X)A£2*(X[2]) A Ax[31) A • • •

is exact, so the 8 -cohomology vanishes in all degrees.

Thus, every bundle gerbe Q — (X, L, t) over a manifold M (and in

particular every Chatterjee-Hitchin gerbe) admits a connection. One defines the

3-curvature rj G Q?(M) of the bundle gerbe connection by Tr*r) dB G ker<5.

It can be shown that its cohomology class is the image of the Dixmier-Douady
class [G] under the map H3{M, Z) a H3(M, R). Similarly, if Q admits a

pseudo-line bundle C — (E,s), one can always choose a pseudo-line bundle

connection Ve The difference curv(V£) — B is 8 -closed and one defines

the error 2-form of this connection by

7T*cu - —curv(V^) — B.
27vi

It is clear from the definition that d oj + rj — 0.

Remark 2.7. There is a notion of holonomy around surfaces for gerbe
connections (cf. Hitchin [18] and Murray [24]), and in fact gerbe connections
can be defined in terms of their holonomy (see Mackaay-Picken [20]).

2.4 Equivariant bundle gerbes

Suppose G is a Lie group acting on X and on M, and that 7r: X -a M is
a G-equivariant surjective submersion. Then G acts on all fiber products
X[p]. We will say that a bundle gerbe Q (X,L,t) is G-equivariant,
if L is a G-equivariant line bundle and r is a G-invariant section. An
equivariant bundle gerbe defines a gerbe over the Borel construction1)
Xg — EG Xq X a Mg EG xg M, hence has an equivariant Dixmier-
Douady class in H3(MG,Z)H3G(M,Z). Similarly, we say that a pseudo-line
bundle Œ, s) for (X. L, t) is equivariant, provided E carries a G-action and
s is an invariant section.

We have not discussed bundle gerbes over infinite-dimensional spaces such as Mq Recall
however [4] that the classifying bundle EG BG may be approximated by finite-dimensional
principal bundles, and that equivariant cohomology groups of a given degree may be computed
using such finite dimensional approximations.
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Remark 2.8. As pointed out in Mathai-Stevenson [21], this notion of
equivariant bundle gerbe is sometimes 'really too strong' : For instance, if
X JJUa, for an open cover U — {Ua,a G A}, a G-action on X would
amount to the cover being G-invariant. Brylinski [9] on the other hand gives
a definition of equivariant Chatterjee-Hitchin gerbes that does not require
invariance of the cover.

To define equivariant connections and curvature, we will need some notions
from equivariant de Rham theory [15]. Recall that for a compact group G, the

equivariant cohomology HG(M, R) may be computed from Cartan's complex of
equivariant differential forms Q*G(M), consisting of G-equivariant polynomial
maps a: & —> Q(M). The grading is the sum of the differential form degree
and twice the polynomial degree, and the differential reads

(dGa)(0 da(0-.(£M)a(0?

where 4|r=oexp(—£0 is the generating vector field corresponding to
£ G 0. Given a G-equivariant connection VL on an equivariant line bundle, one
defines [3, Chapter 7] a dG -closed equivariant curvature curvG(VL) G QG(M).

A equivariant connection on a G-equivariant bundle gerbe (X, L, t) over
M is a pair (VL,PG), where VL is an invariant connection and BG G ßG(X)
an equivariant 2-form, such that SVLt 0 and 6BG ^7 curvG(VL). Its

equivariant 3-curvature rjG G ßG(M) is defined by 7r*rjG dGBG. Given

an invariant pseudo-line bundle connection Ve on a equivariant pseudo-line
bundle (E,s), one defines the equivariant error 2-form uüq by

1 *7T*^G 7T-. CUrVG(V )-BG.
27Tl

Clearly, dG ujg + t]G 0.

3. Gerbes from principal bundles

The following well-known example [7], [24] of a gerbe will be important
for our construction of the basic gerbe over G. Suppose U(l) —>K H* K is

a central extension, and (r,r) the corresponding simplicial gerbe over B.K.
Given a principal K-bundle 7r: P B, one constructs a bundle gerbe (P, L, t),
sometimes called the lifting bundle gerbe. Observe that

EnP P xK EnK,
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