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GEOMETRIC ^-THEORY FOR LIE GROUPS AND FOLIATIONS

by Paul Baum and Alain CONNES*)

1. Introduction

For a C*-algebra A, let Kq(A), Ki(A) be its ^-theory groups. Thus K0(A)

is the algebraic iC0-theory of the ring A and K\(A) is the algebraic j£0-theory

of the ring A <g> C0(R) — C0(R,A). If A - B is a morphism of C*-algebras,
then there are induced homomorphisms of abelian groups Ki(A) —> Ki(B).
Bott periodicity provides a six term iC-theory exact sequence for each exact

sequence 0—> / —^ A —> B —> 0 of C*-algebras.

Discrete groups, Lie groups, group actions and foliations give rise through
their convolution algebra to a canonical C*-algebra, and hence to AT-theory

groups. The analytical meaning of these iC-theory groups is clear as a receptacle
for indices of elliptic operators. However, these groups are difficult to compute.
For instance, in the case of semi-simple Lie groups, the free abelian group with
one generator for each irreducible discrete series representation is contained
in KqC*G where C*G is the reduced C*-algebra of G. Thus an explicit
determination of the iGtheory in this case in particular involves an enumeration
of the discrete series.

In this note we shall introduce a geometrically defined iGtheory which
specializes to discrete groups, Lie groups, group actions, and foliations. Its
main features are its computability and the simplicity of its definition. In the
case of semi-simple Lie groups it elucidates the role of the homogeneous
space G/K (K the maximal compact subgroup of G in the Atiyah-Schmid
geometric construction of the discrete series [4]. Using elliptic operators we
construct a natural map from our geometrically defined ^-theory groups to the

*) The present paper was written in 1982 and distributed as an IHES preprint, but never
published. We are grateful to the Editors for offering us to publish it without change in this
Journal.
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above analytic (i.e. C*-algebra) K-theory groups. In all computed examples
this map is an isomorphism. The picture that emerges is of two parallel
theories: one analytic and one geometric. Elliptic operators provide a map
from the geometric to the analytic theory. We give evidence for the conjecture
that this map is always an isomorphism. In particular we prove that the map
is injective for foliations with negatively curved leaves. We then explore some
corollaries of this isomorphism conjecture. The injectivity is related through the

work of G. G. Kasparov and A. S. Miscenko to the Novikov higher signature
problem. We show how this problem leads to a conjecture on the invariance of
certain foliation characteristic classes under leaf-wise homotopy equivalence.
The surjectivity is related to a number of well-known C*-algebra problems,
such as the non-existence of idempotents in the reduced C*-algebra of any
torsion-free discrete group.

2. Lie group actions

G denotes a Lie group and X denotes a C°°-manifold without boundary.
Both G and X are assumed to be Hausdorff and second countable. G and

X may have countably many connected components. G may be a countable
discrete group.

Definition 1. A C°° (right) action X x G —> X of G on X is proper if
the map X x G —> X x X given by

(x,g) (x,xg)

is proper .(Le. the inverse image of any compact set is compact).

TERMINOLOGY. A G-manifold is a C°°-manifold with a given (right)
C°° G-action. If X, Y are G-manifolds a G-map from X to Y is a C°°

G-equivariant map /: X -# Y. A G-manifold X is proper if the action of
G on X is proper. A subset A of a proper G-manifold is G-compact if
the image of À in the quotient space X/G is compact. A G-vector bundle

on a G-manifold I is a C°°-vector bundle £ on I such that E is itself a

G-manifold, the projection E —» X is a G-map, and for each (x, g) G X x G

the map Ex —* Exg given by

u i—* ug (u £ Ex)

is linear.
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A G-vector bundle with G-compact support on a proper G-manifold X is

a triple (Eo,Ei,a) where Eq, E\ are G-vector bundles on X, a: Eq —> E\ is

a G-map which is linear on each fibre and Support (a) is G-compact, where

Support (cr) {x G X I cr : Eqx —> E\x is not an isomorphism}

For a G-manifold X, the analytic X-theory is the K-theory of the reduced

crossed-product C*-algebra Co(X) x G. Here Co(X) is the C*-algebra of all

continuous complex-valued functions on X vanishing at infinity. We now

proceed to define the geometric X-theory, denoted K*(X, G), and the natural

map

K\X, G) -* Kt [C0(X) x G] (i 0,1).

In doing this the G-manifold X will be "approximated" by proper G-mani-
folds. Note that the action of G on X is not required to be proper. Of special
interest is the case when X is a point. For this case Co(-) x G C*(G) where

C*(G) is the reduced C*-algebra of G.

Let Z be a proper G-manifold. Vq(Z) denotes the collection of all complex
G-vector bundles (Eo,E\,o) on Z with G-compact support. A group K^iZ)
is defined by imposing on Vq(Z) the same equivalence relation used by
Atiyah-Segal ([5], [31])

K°g (Z) Vg(Z)/~.

Addition in K°G{Z) is given by direct sum £ © £' of G-vector bundles with
G-compact support.

To define Kq{Z) let G act on Z x R by :

P,t)g=t)

(p e Z, te R, g G G). Set V^(Z) V%(Z x R). Then

4(Z)=4(ZXR).
The basic properties of Kq(Z) are stated and proved almost exactly as Atiyah-
Segal did for compact G.

Thom ISOMORPHISM THEOREM. On the proper G-manifold Z let E be
an R G-vector bundle with a given G-invariant Spinc-structure. Then

K*g(Z)^K*g(E).

Remark 2. The group KG(Z) is defined and used only for proper
G-manifolds Z.
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Definition 3. Let X be a G-manifold. A K-cocycle for (X, G) is a triple
(Z, £,/) such that

(1) Z is a proper G-manifold;

(2) /: Z —» X is a G-map;

(3) ^vj(rz©frx).
T*Z is the cotangent bundle of Z and f*T*X is the pull-back to Z via / of
T*X. In (Z, £,/) all structures are C°° and G-equivariant.

The main result of this section is the construction of a canonical map p
from X-cocycles to the X-theory of the reduced crossed-product C*-algebra
C0(X) x G.

THEOREM 4. Each K-cocycle for (X, G) canonically determines an element

in X*[Co(X) x G].

Outline of proof First assume that /: Z —» X is a submersion of Z
onto X. Let r be the cotangent bundle along the fibres of /. Using the

Thorn isomorphism theorem £ G Vq{T*Z 0/*T*X) determines an element

rj G V£(t). F°r x set Zx — f~\x). Then rj G Vq{t) restricts to give

rjx G V*(T*ZX), which is the symbol of an elliptic operator on Zx. Hence 77

is the symbol of a G-equivariant family D of elliptic operators, parametrized

by the points of X. The X-theory index of D is the desired element of
XJCo(X) x G] :

Index(D) G X*[C0(X) x G].

If / : Z — X is not a submersion, then form the commutative diagram

X x Z

i'
Z X

/
where i(z) (fz,z) and p(x,z) Using the Thorn isomorphism theorem,

£ G U5(r*Z0/*r*X) determines £; G V£(r*(X x Z) 0 p*T*X). The desired

element of X*[Go(X) x G] is then obtained as above from (X x Z, £;, p).

Notation. With D as in the proof of Theorem 4, Index(D) G X*[C0(X) x G]

will be denoted p(Z, £,/). Observe that p(Z,£,/) is the analytic index of the

X-cocycle (Z,£,/). For £ G ^(rZ0/*rX), one has

p(Z,£7/)GXdC0(X)xG] (£ 0,1).
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Suppose given a commutative diagram

Zi —Z2
fi\/hX

where Zi, Z2, X are G-manifolds with Zi, Z2 proper and /i, /2, /* are

G-maps. Using the Thorn isomorphism theorem there is then a Gysin map

h : rGcrzi ®/i*rx) -> ^(rz2 ®/2*rx) (/ o, i).

Just as for the ordinary analytic index of an elliptic operator on a G-manifold

(with G compact) [6], the main property of the index p is its invariance with

respect to push-forward :

THEOREM 5. The index map p is compatible with Gysin maps in the

following sense. If 6 G V^rZe/frX), then p(ZuCufù

Remark 6. Theorems 4 and 5 indicate how to define the geometric
X-theory X*(X, G) and the natural map

p: Ki(X,G)-*Ki[C0(X)xG].

For a G-manifold X, let T(X, G) be the collection of all X-cocycles
(Z, £,/) for (X, G). On T(X, G) impose the equivalence relation ~, where

(Z, £,/) ~ (Z', £',/') if and only if there exists a commutative diagram

z z" Z'

/\ if
X

with /it(Q Kfff).

Definition 7. it*(X, G) T(X, G)/~.

The equivalence relation ~ could also be defined as the equivalence relation
generated by three elementary steps :

(1) cobordism;

(2) vector bundle modification;

(3) direct sum - disjoint union.
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Addition in K*(X, G) is given by disjoint union of X-cocycles. Further,

K*(X, G)K°(X, G) © K\X, G),

where Kl(X, G) is the subgroup of K*(X,G) determined by all X-cocycles
(Z, £,/) with £ G VlG(T*Z®f*T*X). The natural homomorphism of abelian

groups
KXX^G) -> Ki[C0(X) x G]

is defined by

(z,^/)^M(z,e,/).

CONJECTURE. For any G-manifold X, (JL : Kl(X,G) —» Xz[Co(X) x G] zs

<2« isomorphism.

This conjecture is known to be true if X is a proper G-manifold. If X is

proper there is a commutative diagram

K*(X,G)K,[Cq(X)xi G]

h \
K*g(X)

in which each arrow is an isomorphism. it: X*(X, G) —> KG{X) maps a

X-cocycle (Z,£,/) to its topological index, and ao p: X*(X,G) —» X£(X)
maps a X-cocycle (Z, £,/) to its analytic index. If G is compact then any
G-manifold is proper and commutativity of the diagram is equivalent to the

Atiyah-Singer index theorems of [6], [7], [8].

3. Homotopy quotient

Let VF be a topological space. V°(W) denotes the collection of all complex
vector bundles (Eo,Euo) on VF with compact support. Thus £0, E\ are

complex vector bundles on VF and o: Eq —> E\ is a morphism of complex
vector bundles with Support (<r) compact, where

Support (a) {peW\ cr: E0p —> Eip is not an isomorphism}

Also Vl(W) V°(W x R).
Suppose given an R-vector bundle F on VF. Following [9], a twisted by F

K-cycle on IF is a triple (M, £,</>) such that:
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(1) M is a C°°-manifold without boundary;

(2) (/>: M —> W is a continuous map from M to W ;

(3) £ G V*(T*M®(j)*F)

As in [9] an equivalence relation is imposed on these twisted by F X-cycles

to obtain the twisted by F ^-homology of W :

K\ (W) is the subgroup determined by all (M, £, d>) with £ G Vl(T*F). If
F has a Spinc-structure then K%(W) is isomorphic to K*(W), the X-homology

of W.

With G as in §2 above, let EG be a contractible space on which G acts

freely
EGxG^ EG.

Given a G-manifold X, let G act on EG x X by

(p,x)g (pg,xg)

(p G EG, x G X, g £ G). The quotient space [EG x X]/G will be referred to

as the homotopy quotient. Since T*X is a G-vector bundle on X, the quotient
[EG x r*X]/G is a vector bundle on [EG x X]/G. Denote this vector bundle

by t and consider the twisted by r X-homology Kl([EG x X]/G). There is

a map
X^([EG x X]/G) X*(X, G).

This map is not quite canonical. First an orientation must be chosen for the

Lie algebra of G, so assume that such an orientation has been chosen.

Let (M, £, 4i>) be a twisted by r K-cycle on [EG x X]/G. Now EG x X is
the total space of a principal G-bundle over [EG x X]/G and this principal
bundle can be pulled back via (j) to yield a principal bundle Z over M

EG xX Z

i 1P

[EGxX] < M.
4>

Let 7T : EG x X —> Xbethe projection and set / tr o

f-.Z-^X.

i V*(T*M(B<p*t) lifts to give £ G V*(p*TrM®f*T*X). Denote the bundle
along the fibres of p: Z —> M by F. This is a trivial vector bundle since,
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for each z G Z, Fz is canonically isomorphic to the Lie algebra of G. Using
the orientation of this Lie algebra, F has a G-invariant Spinc-structure so

that £ G V£(p*T*M@f*T*X) determines 77 p*T*M @f*T*X). Now

F® p*T*M — F*Z, so (Z, 77,/) is a X-cocycle for (X, G). The map

2C([FGxX]/G)-*X*(X,G)

is :

(M,£,</>) ^(Z,77,/).
This map has a dimension-shift in it. Set e dim (G). Then with addition of
indices mod 2 this map takes K[([EG x X]/G) to Kl+e{X, G).

LEMMA 1. If G is torsion free then Kl([EG x X]/G) —» X*(X, G) L an

isomorphism.

Proof Let (Z, £,/) be a X-cocycle for (X, G). The action of G on Z is

proper, so each isotropy group is compact. Since G is assumed to be torsion
free this implies that the action of G on Z is free. Hence Z is a G-principal
bundle over G/Z, and thus Z maps equivariantly to EG. Combining this with

/ : Z —> X we obtain a commutative diagram

EG x X < Z

1 I-
[EG x X] * Z/G.

Denote the map of Z/G to [EG x X]/G by <p. Then £ e
determines g G V/(p*T*(Z/G) ®f*T*X). Since the action of on Z is free

Ç' descends to give 0 G V*{T*{Z/G)®t). Then

(Z, £,/)-» (Z/G, 0,0

maps K*{X,G)toXJ([£G x X]/G) and provides an inverse to the map

XJ([£G x X]/G) -> X*(X, G).

REMARK 2. If G is the trivial one-element group then the isomorphism
of the lemma becomes

Kl"x(X) ^
If X is a Spinc-manifold then Kl*x(X) X*(X), so that in this case

the isomorphism of the lemma becomes the Poincaré duality isomorphism

KXX) K*(X).
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When G has torsion, the map Kf([EG x X]/G) —> K*(X,G) can fail to

be an isomorphism. The simplest example of this is obtained by taking X to

be a point and G Z/2Z.
When G has torsion, Kl([EGxX]/G) appears to be only a first

approximation to K*(X,G) and K*[Q, (X)xG]. The key point is that when

G has torsion, there will be proper G-manifolds on which the G-action is

not free.

4. Solvable simply connected Lie groups

The conjecture stated in §2 above is verified for (connected) solvable

simply connected Lie groups by

PROPOSITION 1. Let G be a (connected) solvable simply connected Lie

group, and let X be a G-manifold. Then there is a commutative diagram

K*(X, G) —^ K,[Cq(X) x G]

i I
K*(X) f iUCo(X)]

in which each arrow is an isomorphism.

The proof depends on

LEMMA 2. Let G be a (connected) solvable simply connected Lie group,
and let Z be a proper G-manifold. Then there exists a G-map from Z to G.

Proof of Lemma 2. Since the action of G on Z is proper all isotropy

groups are compact. G has no non-trivial compact subgroups, so the action

of G on Z is free. Therefore Z is a principal G-bundle with base Z/G. As
G is itself a contractible space on which G acts freely, there is a G-map
from Z to G.

Proof of Proposition 1. In the diagram of the proposition the right vertical
arrow is the Thorn isomorphism of [13]. The lower horizontal arrow is
the standard isomorphism which is valid for any locally compact Hausdorff
topological space.
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To define the left vertical arrow the first step is to use the lemma to
construct an isomorphism

(1) X*(X, G) -> K%(T*[X x G] © ttÎT*X)

Here G acts on X x G by

(x,g\)g (xg,gig)

and 7Ti : X x G —> X is the projection.

If (Z, £,/) is a X-cocycle for (X, G) then according to the lemma there

exists a G-map Z —» G. Define h: Z X x G by h(z) (fz, so that

there is the evident commutative diagram

Z —^ X x G

/ \ i/
X

The isomorphism (1) is

Next, r*[X x G] 0 7T*r*X has a G-invariant Spinc-structure so by the Thorn

isomorphism theorem of §2, there is an isomorphism

(2) K*g(T*[X x G] © 7r*rx) K£(X x G).

Finally, the action of G on X x G is free and has [X x G]/G X. This

yields an isomorphism

(3) K*g(X x G) ^ K*(X).

Composing (1), (2), (3) gives the left vertical arrow of the proposition.

REMARK 3. The two vertical arrows in the diagram of the proposition are

not quite canonical. First an orientation must be chosen for the Lie algebra

of G. There is no dimension shift in the horizontal arrows of the proposition.
If e dim(G), then the left vertical arrow maps Xl(X, G) to XI+6(X), and

the right vertical arrow maps X/[Co(X) x G] to Ki+e[Co(X)].
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5. The geometric ^-theory for ir0G finite

In this section we shall determine the geometric group K*(X,G) whenever

G has only a finite number of connected components. The main point is the

existence of a final object (namely H\G, where H is the maximal compact
subgroup of G) in the category of proper G-manifolds.

Throughout this section G is a Lie group with a finite number of connected

components. H denotes the maximal compact subgroup of G. And g, f) are

the Lie algebras
o —> f) —* 0 —> b\s —> o.

Passing to dual spaces (over R):

0 <—()*<- g* (f)\g)* 0.

By the co-adjoint representation H acts on (f)\g)*

(f)\g)* x/f-> (Ï)\g)*

Given a G-manifold X, let H act on X x (f)\g)* by

(x, u)h — (xh, uh)

(xex, ue(f)\g)% heH).

PROPOSITION 1. For any G -manifold X there is a canonical isomorphism

of abelian groups

KlH(X x (f)\g)*) -> K\X, G) {i 0,1).

Remark 2. The isomorphism of the proposition is completely canonical

and has no shift of dimension.

COROLLARY 3. Set e us dim(f}\g). If the co-adjoint action of H on (f)\g)*
is Spin0, then

KlH(X) ^ r+(X, G).

Proof of Corollary 3. If the action of H on ((j\g)* is Spin0, then the

Thorn isomorphism [1] applies to give an isomorphism

K'h(X) -, K'h+(X x (f)\0r).

Composing this with the isomorphism of Proposition 1 proves the corollary.
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REMARK 4. Set H\G {Hg | g E G}. There is the evident (right) action

of G on H\G
cH\G) x G->ff\G.

The action of // on (f)\g)* is Spinc if and only if H\G admits a G-invariant
Spinc-structure.

To analyze the case when the action of H on (f}\g)* is not Spinc, fix
an //-invariant Euclidean structure on (f}\ö)*. Proceed as in [15]. Since

H is connected, the co-adjoint representation maps H into SO(f)\g)*. Let
Spin(f)\g)* be the non-trivial 2-fold covering of SO(fj\g)* and form the

commutative diagram
H > Spin(f}\0)*

H so(f)W
where H H xS0(f)\ö)* Spin(f}\g)* is the 2-fold covering of H obtained by

pulling-back the Spin covering of SO(f}\^)*. There is then ([1]) the Thorn

isomorphism
KUX) ^ Ki+\X x(iAfl)*)-ti H

Moreover, let u G H be the non-identity element of H which maps to the

identity element of H by the projection H —» H. If E is any //-vector bundle

on X, there is the direct sum decomposition

where E± — {v Çl E \ vu — ±v}. This leads to a direct sum decomposition

of K*{X) :

H

Kl-{X) :

H J Kl(X)
H

Kl{X)
H

where [iÄ(X)]± iis obtained by only using E±. Note that LJC(X) KUX).

COROLLARY 5. For any G-manifold X, there is an isomorphism of abelian

groups
4(X)| ->K

n —

z 0,1, 6 dim(f)\g).

Proof The Thorn isomorphism

KUX) - K'+e(X x (f)\0)*)
H H
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gives an isomorphism

kux) ^4+£(xx(i)\0r).
H. J —

Combining this with the isomorphism of Proposition 1 proves Corollary 5.

The essential point in the proof of Proposition 1 is given by

LEMMA 6. Let Z be any proper G-manifold. Then there exists a G-map

from Z to H\G.

Proof Assume for simplicity that H\G admits a G-invariant Riemannian

metric of non-positive curvature. This is the case if G is semi-simple [17].

It follows easily from the slice theorem of Palais [23] that Z can be covered

by open sets Go, Gi, G2, • • • such that each Ui is mapped into itself by G,
{Ut} is a locally finite cover of Z, and there exist G-maps f: Ui —>• H\G.
Two points in H\G are joined by a unique geodesic. Let 0o: Go U U\ —> R,

: Go U Gi —> R be a C°° partition of unity on Go U Gi subordinate to the

covering Go, Gi and with each & constant on orbits. Then 0q/o + 0i/i is

a G-map from Go U U\ to H\G where (0qf0 + fiff) means the weighted
average (by weights fo(x), f\{x)) of fo(x),fi(x) along the unique geodesic

joining f0(x) and f\(x). Iterating this construction produces the desired G-map
from Z to H\G.

The general case has been proved by A. Borel [10].

Proof ofProposition 1. Let (Z, £,/) be a X-cocycle for (X, G). According
to Lemma 6 there is a G-map 6: Z -» H\G. Let h: Z -> X x (H\G) be

h(z) (fz, Oz).

Form the evident commutative diagram

Z —^ X x

f\ y tt

x
where 7r : X x (H\G) —»• X is the projection.

Define an isomorphism

(1)

by

r'(X, G) -> KlG(T* [X x H\G] © 7r*rx)

(Z,tf)-^hfO.
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Now T*[X x H\G] © 7T*rX - 7t*T*X © tt*r*X © p*T*(H\G), where

p: X x H\G —> 7f\G is the projection. 7r*T*X © n*T*X has a G-invariant
Spinc-structure. Hence the Thom isomorphism theorem applies to give an

isomorphism

(2) K*G(J*[X x H\G] © 7x*T*X) Kq(p*T*(H\G))

Next, there is the identification

[Xx(fj\0nxHG p*r(H\G).

This identification gives an induction isomorphism

(3) rH[x x (f,\0)*] -> ^(P*r (H\G))

Starting with an H-vector bundle £ onlx (f}\0)* the induction isomorphism
takes E to E xH G. Combining the isomorphisms (1), (2), (3) proves the

proposition.

Remark 7. Of special interest is the case when X is a point. By the
above proposition

Ke(-,G) R(H)-
Kl+e(-,G)=0.

Here e dim (f]\g) and R(H)~ - £?(•)- is the free abelian group with
H

one generator for each irreducible representation of H which is not a

representation of H. If the action of H on (f)\0)* is Spin, then there is

an identification R(H)- =R(H). The second-named author (A. Connes) and

independently G. G. Kasparov [20] have conjectured that Dirac induction gives

an isomorphism

Ke[C*G] R(H)-

Kl+e[C*G] 0.

For connected complex semi-simple groups M. Pennington and R. Plymen
[25], [28], have verified this conjecture. These results of M. Pennington
and R. Plymen combined with the proposition of this section verify the

isomorphism conjecture stated in §2 above in a number of interesting cases.

Note that (due to the proposition of this section) the Connes-Kasparov

conjecture on K*C*G is a special case of the isomorphism conjecture of §2.
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Let G be a connected semi-simple Lie group with finite center. The lemma

of this section elucidates the role of H\G in the Atiyah-Schmid geometric
construction of the discrete series [4]. Atiyah and Schmid obtain the discrete

series representations by using the Dirac operator on H\G. As noted in
the introduction Kq[C*G] contains a free abelian group with one generator
for each (irreducible) discrete series representation. By the lemma, however,
all of K*(-,G) is obtained from H\G. If (as conjectured in §2 above)

r(-,G) £*(C*G), then not only the discrete series, but all of K*(C*G)
can be obtained from H\G.

At this juncture one might ask, "Why not simply define Kl(X, G)
KlH(X) ?" We believe that there are compelling reasons for not doing this. First,
this misses the dimension-shift by e dim (.H\G). Second, this overlooks the
issue of whether or not the action of H on (f}\g)* is Spinc. Third, this
greatly obscures the relation of ^-theory to index theory. Finally, in the case

of discrete groups and foliations there is no maximal compact subgroup so
that if this were done there would be no unified theory for Lie groups, discrete

groups, and foliations.

6. Discrete groups : Chern character

In this section G is a discrete group which is either finite or countable
infinite. For a G-manifold X, K*(X, G) was defined in §2 above. As in §3
there is the natural map

Kl([EG x X]/G) —a K*(X, G),

where r [EG x T*X]/G.

PROPOSITION 1. Let G be a discrete group and X a G-manifold. Then

Kl([EG x X}/G) Q - JT (X, G) Q

is injective.

Remark 2. When X is a point, Proposition 1 asserts that

K*(BG) ®z Q-*£*(-,G) <8>ZQ

is injective.
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The proposition is proved by defining the Chern character. This is a natural

map

X*(X, G) -> HXIEG x X]/G; C).

Here Hl([EG xX]/G; C) denotes the homology (with coefficients the complex
numbers C) of the pair (Br, St) where Br, St are the unit ball and unit sphere
bundles of r with respect to any continuous Euclidean structure chosen for r

Hl([EG x X]/G; C) H*((Bt, St), C).

The Chern character can be defined by the following five-step procedure,
which is similar to a procedure used by M.F. Atiyah [2].

Step 1. Let (Z, £,/) be a X-cocycle for (X, G). Form the commutative

diagram

Z —h—+ XxZ
f \ 1/ *"1

X

where /z(z) — (fz,z) and 7T\(x,z) x. Consider h\(Q G Kq(T*(X x Z) ©
7T*r*X). Now f(XxZ) 7T*r*X 0 7Tjr*Z where 7t2(jt,z) - z. Since

7r*r*X 0 7t*F*X has a G-invariant Spinc-structure, the Thorn isomorphism
theorem gives an isomorphism

k£(t*(x x z) © 7T*r*x) ^ x^(7r*rz).

Via this isomorphism /zi(0 determines 0 G XJ(7r|r*Z). Using G-invariant
connections and the Chern-Weil curvature theory of characteristic classes, let

a; be the differential form on X x T*Z ir2 r*Z which represents the Atiyah-
Singer answer for the index of a family of elliptic operators [7].*Thus u is a

G-invariant closed differential form with G-compact support which represents

ch(0) U %2 Td(C ©r T*Z). Here ch is the usual Chern character and Td is

the Todd polynomial.

Step 2. The action of G on X x F*Z 7r|7*Z is proper. This implies that

the quotient space ix^T^Z/G is a rational homology manifold. The differential
form uj of Step 1 is closed, G-invariant and has G-compact support. Hence

ou descends to determine a cohomology class u, with compact support, on

tt*T*Z/G
uj G H*Z/G\ C)
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Step 3. On XxZ choose a G-invariant Euclidean structure for 7r^T*X and

let Bir*T*X, Sir?[T*X be the unit ball and unit sphere bundles. The rational

homology manifold T*(X x Z)/G is oriented. This gives a Poincaré duality

isomorphism

Hc*(?r*rZ/G; C) - rx/G, S^rx/G); C).

Using this isomorphism, u; G E*(7r|E*Z/G; C) determines

Dual(o/) G H*((Btt*T*X/G, Sir*T*X/G); C).

Step 4. On [EG x X x Z]/G let r be the vector bundle [EG x 7tJT*X]/G.
Consider the evident map

r ts [EG x 7r*r*X]/G -» 7r1*E*X/G.

A typical fibre of this map is of the form Er where T is an isotropy group
for the action of G on 7r*T*X. Since this action is proper, T is a finite group
and HfBT; Q) 0 for i > 0. Hence the map

T —> 7T*r*X/G

is an isomorphism in rational homology. This gives an isomorphism :

E*((ET, ST); C) 9É H*((Btt*T*X/G, SttJTX/G); C).

By this isomorphism Dual (a/) G H*((Btt*T*X/G, Sn*T*X/G)', C) determines

^GE*((ETvST);C).

Step 5. The projection r ». [EG x T*X x Z]/G —> [EG x E*X]/G r
induces a map of homology

St); C) E*((ET, ST); C).

The image of uj under this map is, by definition, the Chern character of the
original X-cocycle (Z, £,/).

Proof of Proposition 1. The following diagram is commutative

Kl([EG x X]/G) > X*(X, G)

\ /
Hl([EG x X]/G; C)

where the left vertical arrow is the usual ^-homology Chern character [9],
Since the usual ^-homology Chern character is rationally injective, this forces
the horizontal arrow to be rationally injective.
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Remark 3. For G discrete the reduced C*-algebra of G, denoted C*G,
comes equipped with a trace. An element in C*G is a formal sum ^ Xg g

g(zG
where Xg £ C. The trace of such an element is Ai where 1 is the identity
element of G. This trace then induces a map

tr: Ko C*G —> R.

Let Z be a proper G-manifold and let D be a G-invariant elliptic operator
on Z. If £ is the symbol of D then (Z,0 is a K-cocycle for (*,G) and the

Chern character defined above assigns to (Z, 0

ch(Z, 0 G H*(BG\ C).

Let e: BG —*• • be the map of BG to a point. Identify //*(•, C) C and

consider

e* ch(Z, 0 C.

The AT-theory index of the elliptic operator D is an element of Ko C*G

Index(D) G Ko C* G.

We then have the following formula for tr[Index(D)] :

tr[Index(D)] 6* ch(Z, 0

For the special case when the action of G on Z is free this formula was

obtained by M.F. Atiyah [3].

7. Corollaries of the isomorphism conjecture

The conjecture stated in §2 above asserts that

Hi K*(X, G) —> K*[C0(X) x G]

is an isomorphism. Suppose that G is a discrete group and X is a point. The

conjecture then asserts that \x\ K*(-,G) K*C*G is an isomorphism where

C*G is the reduced C*-algebra of G. Throughout this section G will be a

discrete group and we shall consider some corollaries of the conjecture that

(.i: X°(-,G) —» Ko C*G is an isomorphism. "Proof" will mean "Proof modulo

the conjecture".
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COROLLARY 1. If G is torsion free ihen tr: K0 C*G R maps K0 C*G

onto the integers Z.

"Proof". Let (Z,0 be a £-cocycle for (-,G). Let D be a G-invariant

elliptic operator on Z whose symbol is 0 By the definition of p, : K°( •, G) —>

KoC*G given in §2 above

/i(Z, 0 Index(D).

If G is torsion free then the action of G on Z must be free. Hence Atiyah's
result applies [3] and tr(Index(D)] must be an integer. Thus the surjectivity
of p : K°( •, G) —> &o G*G implies that tr : K0 C*G -> R takes on only integer
values.

COROLLARY 2. If G is torsion free then there are no non-trivial projections
in C*G.

"Proof". A non-trivial projections in C*G would give an element

a G Ko C*G with 0 < tr(a) < 1.

Remark 3. For G torsion-free abelian, Corollary 2 can be proved by
applying Pontrjagin duality. At the other extreme, Pimsner and Voiculescu

[27] have proved that Corollary 2 is valid for a finitely generated free group.
In the statement of Corollary 2 it is essential that C*G be the reduced

C*-algebra of G. Corollary 2 is not valid if one uses the maximal C*-algebra

f* c
A classical conjecture [24] in the theory of group rings is that the group

ring of a torsion-free group has no (non-trivial) divisors of zero. 'J; Cohen
has observed that Corollaries 1 and 2 may be relevant to this zero-divisor
conjecture.

If G has torsion then we conjecture that tr: iC0 G*G ^ R maps Ko C*G
onto the additive subgroup of Q generated by all rational numbers of the
form £, where n is the order of a finite subgroup of G. This would follow
from the conjectured surjectivity of KqC*G plus the unproved
assertion that tr[Index(D)] can only take on such values, where D is any
G-invariant elliptic operator on a proper G-manifold.

COROLLARY 4. The Novikov conjecture on homotopy invariance of higher
signatures [11].

"Proof". Let M be a closed oriented C°°-manifold, G rc\ (M) and let

/ : M BG be the classifying map of the universal covering space of M.
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The Novikov conjecture is that

(L(M) U/*(a), [M])

is an invariant of oriented homotopy type, where L(M) is the total L class

of TM and a is any element in H*(BG\ Q).
Kasparov [19] and Miscenko-Fomenko [21] [22] define a map

K0(BG) K0 C*G

and prove that the Novikov conjecture is implied by its rational injectivity.
This enabled them to prove the Novikov conjecture for any discrete subgroup
of a linear Lie group. The relation with our conjecture is clear from the

following commutative diagram

KoiBG) > Ko C*G

\ /
and the Proposition of § 6 above. (In this factorization, the topological definition
of K-homology given in [9] is being used.)

COROLLARY 5. (Stable) Riemannian geometry conjectures of Gromov-

Lawson-Rosenberg [30].

For the same reason our conjecture implies the stable1) form of the

Riemannian geometry conjectures of Gromov-Lawson-Rosenberg [30] on

topological obstructions to the existence of metrics of positive scalar curvature.

8. Twisting by a 2-cocycle

This section is motivated by the papers [16], [26], [29], on the range of the

trace for the C*-algebra of the projective regular representation of a discrete

group.
All of §2 adapts to the projective situation where together with the

G-manifold X one is given a 2-cocycle y G Z2(X xi G, S1). For simplicity we

1 Paul Baum comments : It is important to emphasize "stable" because Thomas Schick has

shown that the original unstable Gromov-Lawson-Rosenberg conjecture is false. On the other hand,
Stephan Stolz (with contributions from J Rosenberg and others) has proved that the real form
of Baum-Connes implies the stable Gromov-Lawson-Rosenberg conjecture Also, Max Karoubi
and I have proved that the usual (i e complex AMheory) form of Baum-Connes implies the real
form of Baum-Connes
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shall stick to the case X pt • and G discrete F ; then 7 G Z2(F, S1)

is a map : T x T —» Sl such that :

7(52,53)7(5i92, 93F17(9i, 9293) 7(9i, 92)-1 1 for every 31,92,93 T

Given a proper T-manifold Z, a (r, 7)-vector bundle on Z is a smooth

(complex) vector bundle E on Z together with a smooth map E x r — E

such that (with 1t: E Z the projection) :

a) H£g) HO9 for each I £ £> 9 £ F ;

b) £(0102) « 7(Si> P2)(£pi)P2 for each g\,g2 £ T.

In b), 7(01,02) S1 is viewed as a complex number of modulus 1. As in

§2, we let V^p }(Z) be the collection of triples (E0,EU(j) where Eo,E\ are

(r, 7) -vector bundles over Z and a is a smooth morphism of vector bundles

such that:

1) H£g) Ö-(Op for each £ £ £0, 9 £ T ;

2) Support (cr) is T-compact.

The groups /^r7)(Z) are then defined as in [5], [31]. The Thorn isomorphism
as formulated in §2 still holds in this context, and this allows us to define

Gysin maps :

h\: K^rz^ ^ K{rn)(rz2)

for a T -map h of the proper T -manifold Z\ to the proper Y-manifold Z2.

Thus as in §2 we can define the geometric group also in this twisted
situation, we denote it by K*(X,G) in general, and =/£*(-,T) in our special
case.

Let then C*(r, 7) be the reduced C*-algebra of the pair (r, 7), i.e. the

C*-algebra generated in £2(Y) by the projective regular representation À of T :

(A g)0( g ')7 (9,9_19') 09_19') •

As in §2 we get a map fi from AT*(pt,T) to Kt(C*(r,j)), where /r(z,0 is
the analytical index of the üT-cocycle (Z, 0 The only part of the
construction which is modified by the presence of 7 is that of the C*-module
over Cr*(r, 7) attached to a (F, 7)-bundle E on the proper Y-manifold Z. More
precisely, one starts with the space Cc(Z,E of compactly supported
continuous \ -density sections of E and, after choosing a Y-invariant metric
on E, one defines:

(00 (9) / (0 (r]xg)9~l) for each g G T
Jx
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which gives a Cc(T)-valued sesquilinear form on Cc(Z,E®Q}/2). One checks
that for any £ C Cc(Z, Zs®^1/2), (£,£) is a positive element of C*(F), since
for any 77 £2(T) one has :

ivA((Ç,0)v) te) te) (A (A) 7?) (5)

5Z'>'te,A"1g)^(5)'7(A_15) f (£*,(£* A) A-1)
Jx

X^^te)»7(A_15) J {Ocg-OgAicg-^yh-1 9) >0.

Then, by completion with respect to the norm || (£, £) ||1//2# one gets a

C*-module over C*(T, 7), which we denote by L2(Z, E). The right action
is given by :

(CO M X)(Êcfl-')P/te) for each $ e Cc(Z,£ ® Q1/2), / 6 Cc(T)
r

Next, we can choose a T-invariant Riemannian metric on Z, represent every
class in K^r^(T*Z) by a pair Fo, Fi of (r, 7)-hermitian bundles on Z and

a symbol cr which is an isomorphism of the pull back of Eo to S*Z to that

of and is independent of £, 7r(Q z, outside a T-compact subset of Z.
Letting Pa be the corresponding order 0 pseudo-differential operator, one gets a

Kasparov (C, C*(F, 7)) -bimodule: the triple (.L2(Z,E0), L2(Z,£i),Pa) which
gives an element of Ko(C*(T,j)). It is important to give another description
of the map p: K^r^(T*Z) —> K0(Cp(r,7)), using Kasparov products.

PROPOSITION 1. a) Let X be a proper r-manifold, then K1^ ^(X) is

canonically isomorphic to KfC^X) x7 T), where Cq{X) x7 T is the twisted
crossed product of C$(X) by T.

b) (Compare [19]). For any C*-algebras A,B on which T acts by

automorphisms, one has a natural map from KKr(A,B) to KK(A x7T, B x7r).

Proof a) One can consider A C0(X) x7 T as the C*-algebra of the

groupoid IxT G with units G(0) X, source and range maps s(x, g)=xg,
r(x, 9) — x and composition (x, g) • (x', g') (x, ggf) with the 2-cocycle 7 o it
where it is the natural homomorphism G —> T : 7r(x, g) g.

Thus A is the completion of this convolution algebra Cc(G) :

ifi *h) (x,g)(x, h)f2(xhA-1 g)7(A, A-1 g)
r

fix, 9) =f(xg,g~l)
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with the norm ||/|| Sup |K(f)|| where for each x G X the representation

7 rx of Cc(G) in f(T) is given by :

CXx(f) 0 ig) Xy(x5_1 »h) £(Ä_1 9) 7(fc>5) for each £

r
Now, given a (F, 7)-vector bundle E on X,one can endow E with a

F-invariant hermitian metric and define a C*-module E over A Co(X) x7T
as follows. For any £,77 G Cc(X,E) let (£,77) Cc(X x be given by

(£;t?)(x,p) (£x9,ifes) ; then {£,£) is a positive element of A C0(X) x7F,
since for any 77 f2(F) and x G X one has :

(rç> **((£> £»rç)

EE (^xg-'h,^xg-ih)r)(h
1

g)r](g)j{h,h
1

g) (a,a) >0,

where a £(&<,-! )p 77(5) e Ex.

Let £ be the completion of Cc(X,E) with the norm ||£|| §=? ||(£,0|| ; then

£ is a C*-module over A, with:

(£/) to E/^-\s)aV)S for every / G Cc(X xi), £ G C0(X,£)

(One easily checks that (0 7/) (0 77) * / and that this right action of
Cc(X x T) extends to an action of A.)

The equality (77(77, 0)(x) {(jjxg-^9, îx)(rjxg-ù 9 shows that any

endomorphism cr of the vector bundle £ which commutes with T and has

T-compact support defines an A-compact endomorphism of £ by the equality :

(70 (x) a(x)£(x) for every x E X. Thus, to any triple (E0,Ei,a) E V^7)(X)
corresponds an element of KK(CyA), A Cq(X) x7 T, which obviously
depends only upon the class of the triple in £^r7)(X). Let us prove that this

map is an isomorphism assuming that T is torsion free. We may then assume
that X is r-compact. We claim first that A Cq(X) x7T is Morita equivalent
to a C*-algebra with unit. Indeed, with V X/T, A is the C*-algebra of
the continuous field of elementary C*-algebras At Co(7r~l(t)) x7 T, where
7r: X —» X/T — V is the projection. By a simple computation, one gets that
the Dixmier-Douady obstruction 6(A) E H3(V: Z) is given by 6(A) <z>*(£7)

where f: V —> BT is the classifying map, and dj E H3(BT, Z) is the boundary
of 7 E H2(BT, Sl) H^T.S1) in the exact sequence:

H\T,z)-»h2(T,R)- h\r,s1)A r,Z) -H\T,
In particular 6(A) is a torsion element in H3(V, Z) so that there exists a
bundle of matrix algebras over V with the same Dixmier-Douady obstruction
and A is Morita equivalent to a unital C*-algebra. It follows then that K0(A)
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is obtained from C*-modules E over A with the property id^ G Endi.e.
all endomorphisms of E are A-compact. Finally, the above construction sets

up a surjective map from (T, 7)-vector bundles on X to C*-modules over A
with the above property. Given E, the fiber Ex of the corresponding vector
bundle is:

Ex S%AeÇT)

where A — Cq(X) x7 T acts in £Z(Y) by the representation ttx. Since

7tx(A) C Compacts, one gets that Ex is a finite dimensional Hilbert space.

b) The proof is the same as in [19], one defines for any T-equivariant
C*-module E over B the crossed product E xi7r twisted by the 2-cocycle 7.

We can now state:

THEOREM 2. For any element x of K^r^(T*Z) Kq(A) (where
A — Co(T*Z) x7 r, and Z a proper Y -manifold), one has :

p(x) x Oy(r,7) (D),

where D G KKr(Co(F*Z), C) is the class of the Dirac operator.

Note that x G KK{C, Co(T*Z) xi7 F) and that

7(r kk(c0(t*z))r,c;(r,7)),

so that the above equality is meaningful. The proof is straightforward.

To show how to use this theorem, we shall combine it with the recent result

of G. G. Kasparov ([19]) to compute K/(C*(r, 7)) in the following example : we
let r ttj (M) be the fundamental group of a Riemann surface M with genus

> 1. From the exact sequence 0 H2(r,Z) —> H2(Y, R) —> H2(T, Sl) 0

one gets H2(Y,Sl) R/Z, so that there are many non trivial cocycles in
this example. The geometric group Kly(pt, Y) is easily determined : since the

universal cover M of M (the Poincaré disc) is a final object in the category
of proper T-manifolds, and homotopy classes of T-maps, it is enough to

compute K1qs^(T*M). Since M has a F-invariant Spinc-structure, the Thorn

isomorphism hence gives: ^(pfiF) Kl{Vl){M). By Proposition 1, one has

K|r 7)(M) Ki(Co(M) xi7 T) and the latter C*-algebra is Morita equivalent to

C(M) (see the proof of a) in Proposition 1). Thus we get: K^(pt,Y) Z2,

k\{Pt,r) z2®.
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THEOREM 3. Let r be the fundamental group of a Riemann surface of
genus > 1, and y E H2(T, S1), then the map p: K*(pt,T) —> K*(C*(r,j)) is

an isomorphism.

Proof Let D E KKG(C0(U), C) be the G PSL(2,R) equivariant Dirac

operator on the Poincaré disc U — GjGc (cf. [19]). Identify M with U and

T with a subgroup of G. Then by Proposition lb) and Theorem 2 it is

enough to show that the restriction of D to an element of KKt(Cq{U),C)
is an invertible element. This follows from [19] which shows that D is an

invertible element of KKg(Cq(U), C), and from the multiplicative property of
the restriction to subgroups.

We shall now show how to prove that the C*-algebras C*(T, 7) are pairwise
non-isomorphic when 7 varies in H2(T,Sl). In fact we shall compute in full
generality the composition (op of the canonical trace on C*QT, 7) (viewed
as a map from Ko to C) with the above map p: i^(pt, F) —> ATo(C*(r,7)).

The computation is a generalization of the index theorem for covering
spaces of Atiyah ([3]).

LEMMA 4. Let Z be a proper T -manifold and E a ÇT, 7) vector bundle
on Z. There exists a T -invariant connection V on E.

Proof For any (r, 7)-vector bundle F on Z and section £ C£°(Z,F)
let, for g T,gÇgC~(Z,F) be given by: (g£) (x) (^(xg))g^i e Fx for
every x E Z.

In this way one gets a natural 7-action of T on both C^°(Z,F) and

C^°(Z,F 0 T*Z), and one looks for a connection

V : CnZ, E) -> Cc°°(Z, E 0 T*Z)

such that V(pO - p(V0 for every 0 Let / E C°°(Z), 0 < / < 1,
be such that ^2f(xg) 1 for every x E Z and V0 be a connection

r
on E. Put V J29~X(fVo)g. By construction V is T-invariant, moreover

r
each cr'Vop is a connection on E thus V is a connection on E.

Proof of Theorem 3, continued. Assuming now that Z is F-compact, let
for a r-invariant connection V on E,bethe canonical differential form
on Z which represents locally the Chern character ch(£). By construction
wy is T-invariant and hence determines a cohomology class in Z/T. One
checks as usual that this class does not depend upon the choice of V and
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we shall denote it by [E] G H*(Z/F, R). This construction easily extends to

give a map ch from K^Vl)(Z) to H*(Z/F, R) for any proper F-manifold Z.
However, in the presence of the 2-cocycle 7 the range of this map is no

longer necessarily contained in H*(Z/F, Q).
To be more precise, let us make a few simplifying assumptions and compute

exactly the range of this Chern character :

Thus let us assume that T is torsion free and that the image of 7 G H2(F, S1)

in H3(F, Z) under the connecting map of the long exact sequence:

is equal to 0 (it is always a torsion element).

Let then p e H2(F, R) be such that e(p) 7 where e: R —» Sl is given
by e(s) — exp(27vis), for each s eR.

LEMMA 5. a) Let p G Z2(r, R) and Z be a proper F -manifold, then

there exists a smooth function c G C°°(Z >0 F) such that :

c(x, g{) + c(xgi, g2) c(x, gig2) - p(gi, g2)

for every x G Z, g\,g2 G T.

b) If 7 £(p) exzsfa an isomorphism r : K^(Z) —> K^r ^(Z) making
the following diagram commutative :

where m is multiplication by the cohomology class exp(<fi*p) and where

f : Z/r —>• BF is the classifying map.

Proof a) Let M Z/r, 7r: Z M the projection. Since Z is a locally
trivial T-principal bundle, it is easy to construct c on the open set

for U small enough. Then one combines such cjj by a smooth partition of
unity on M :

c(x, 9)=F2 4>u(irg).

b) Let c G C°°(Z x T) be as in a) and let us endow the trivial line bundle

on Z (with total space Z x C) with a structure of (r,7)-bundle. We take:

ch: 7r,7)(Z) — H*(Z/r,K).

H\r, z) -> h\t, r) h2(t, s1) ^ h2(t, z)

x?(Z)

H*(Z/T) ->H*{Z/T)
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(x, A)g (xg, e(c(x, p))A).

(One has ((x, X)g\)g2 (xg\g2> e(c(x,g{) + c(xgi,g2))X) 7 1{9u9t){x\)
(.9I92)•)

Let L be the (r, 7)-line bundle on Z thus obtained. It is obvious that

tensoring by L gives an isomorphism of V^r)(Z) with 7)Z and hence of
K°t{Z) with ^r,7)(Z).

£>z<i 0/ proof of Theorem 3. To conclude, it is enough to compute

ch(L). Let £ G C°°(Z,L) be the section £(x) 1 for every x G Z. Let

V be a T-invariant connection on L, one has ch(L) exp(u;) where

to G H2(Z/T,R) corresponds to the T-invariant 2-form 0 2^d(V£/0 on
Z. Let a 2^ V^/^, then a is a 1-form on Z, and let us compute for any

g G r the difference a — fa where fx) xg for every x G Z. Since V is

T-invariant, one has fa — Vg(0/9(0* and as g(0(x) e(c(xg, g~1)) £(x)

one gets fa — a — dipg, where ipg(x) c(xg,g~l) for every x G Z. One

has f>gigi — gi'fgi — f>9l p(g2lThis shows that the class of 6 in
H2(Z/T, R) is the pull back of the class of —p in H2(BT, R), by the classifying

map: Z/T -+BT.

Using this map ch: K*T j)(Z) —> H*(Z/Y, R) we get, by the same five
steps as in §6, a map

Again as in §6, let e be the map from #r to a point, and trr be the canonical
trace on C*(r,7).

THEOREM 6. For any discrete group T and 2-cocycle 7 the following
diagram is commutative :

£;(pt,r)-^z/*(Br,R).

^(pt,r) —k0(C;(T,7))

H,(BT,R) c

The proof is a simple adaptation of the heat equation method to compute
the T-index of the (T,7)-Dirac operator on a T-manifold Z.
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COROLLARY 7. If 7 e(p), for some p G H2(F, R), then the subgroup

of R, A trr(Xo(C*(r, 7))) contains the group :

ch K* (BT), exp(p)

This follows from Theorem 6 and Lemma 5 b).

Moreover, when the map p is an isomorphism, one can conclude that

À (ch^*(#r),exp(p)). Thus using Theorem 3 we get:

COROLLARY 8. Let r be the fundamental group of a compact Riemann

surface of positive genus, 7 G H2(r, S1) a 2-cocycle and 0 G R/Z
c/ass 0/ 7 in H2{T,R)/H2(T,Z) R/Z. TTzen image a/ &o(Cp(r, 7)) by
the canonical trace Trp is equal to the subgroup Z + ^ZcR.

Since, for g > 1, the trace trr is the unique normalized trace on

C*(T,7) (for any value of 7), one gets that the corresponding C*-algebras
are isomorphic only when the F 's are the same (using K\ and when the 7's
are equal or opposite (in H2(F, S1)).

9. Foliations

Let V be a C°°-manifold, and let F be a C°°-foliation of V. Thus F is

a C°°-integrable sub-vector bundle of TV. As in [33] let G be the holonomy

groupoid (graph) of (V,F). The manifold V is assumed to be Hausdorff
and second countable. G, however, is a C°°-manifold which might not be

Hausdorff. A point in G is an equivalence class of C°°-paths

7: [0,1]-V
such that 7(/) remains within one leaf of the foliation for all t G [0,1]. Set

5(7) 7(0), r(7) 7(1). The equivalence relation on the 7 preserves 5(7)
s

and r(7) so G comes equipped with two maps G =4 V.
r

Let Z be a possibly non-Hausdorff C°°-manifold. Assume given a C°°-map

p: Z ^ V, set

Z O G{(z,7)Z x G I 5(7)} •

A C°° right action of G on Z is a C°°-map
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Z o G —> Z

denoted by (z,7)n
such that

p(n)Kt) (Z7) l' 2(77'), Z

where lp denotes the constant path at p EV.
An action of G on Z is proper if:

(i) the map ZoG-^ZxZ given by (2,7) (z,ry) is proper (i.e. the inverse

image of a compact set is compact);

(ii) the quotient space Z/T is Hausdorff. Here Z/T is the set of equivalence
classes of z G Z where z ~ zf if, for some 7 G G, 27 z7.

Specializing to Z V, the groupoid G acts on V by p(p) p and

PI « 7(1)

(p G V, 7 G G, p 7(0)). For many examples this action of G on y is not

proper. Set TPV/FP, so that ^ is the normal bundle of the foliation, z/

is a G-vector bundle since the derivative of holonomy gives a linear map

Up
1 > '

This is, of course, just the well-known fact that v is flat along the leaves of
the foliation.

More generally, if Z is a G-manifold, then the orbits of the G-action
foliate Z. Denote the normal bundle of this foliation by v. Then v is a

G-vector bundle on Z.
If Z is a proper G-manifold, a G-vector bundle on Z with G-compact

support is a triple (E0,Ei,o) where E0,Ei are G-vector bundles on Z and

a: E0 —> Ei is a morphism of G-vector bundles with Support(cr) G-compact.
As in §2 above one then defines VlG(Z) and KlG(Z), i — 0,1. These are defined
and used only for proper G-manifolds.

Definition 1. A K-cocycle for (V,F) is a pair (Z,0 such that

(1) Z is a proper G-manifold,

(2) £ G Vq[(v)* ® where p: Z V is given by the action of G
on Z.

In [12] and [14] a canonical C*-algebra C*(V,F) is constructed. This
C*-algebra can heuristically be thought of (up to Morita equivalence) as the
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algebra of continuous functions on the "space of leaves" of the foliation. Thus

K*C*(V,F) can be viewed as the K-theory of the "space of leaves" of the

foliation.
To define the geometric ^-theory K*{V,F) we proceed quite analogously

to §2 above.

THEOREM 2. Let (Z, £) be a cocycle for (V,F). Then (Z, £) determines

an element in 2£*C*(y, F).

Proof. If p : Z —> V is a submersion then £ gives rise to the symbol of a

G-equivariant family of elliptic operators D, parametrized by the points of V.
The ^-theory index of this family D is the desired element of K±C*(V. F).

If p: Z —> V is not a submersion, then as in the proof of Theorem 1 of
§2 one reduces to the submersion case.

Remark 3. With D as in the proof of the Theorem, Index(D) G FT*C*(V, F)
will be denoted /z(Z, £). For £ G VlG [{V)* © p* i/*], /i(Z,£) G ^C*(V,F),
/ 0,1.

Suppose given a commutative diagram

Zx z2

PI \ k/ P2

y
where Zi, Z2 are G-manifolds with Zl5 Z2 proper and F is a G-map. There

is then a Gysin map

Fr : K*G [(î/O* © pï i/*] -+ 4 [(F2)* 0 p\ i/*]

THEOREM 4. // £i G [(^)* 0 p\ v] then p(Zu^) /i(Z2, Ä.(£i))-

Remark 5. Let r(y,F) be the collection of all ZGcocycles (Z, £) for

(y,F). On F(y, F) impose the equivalence relation where (Z, £) ~ (Z',^)
if and only if there exists a commutative diagram

z JU z" z'

p \ i p" / p'

y
with F and h! G-maps and with /n(£) M(£')-
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DEFINITION 6. K*(V, F)r(V, F)/~ Addition in K*(V, F) is by disjoint

union of /f-cocycles. The natural homomorphism of abelian groups

K\V,F)-+KiC*(V,F)

is defined by
(Z, 0-+M(Z,0-

CONJECTURE, p: K*(V,F) —> K*C*(V,F) is an isomorphism.

Remark 7. Calculations of M. Pennington [25] and A.M. Torpe [32]

verify the conjecture for certain foliations.

Given (V,F), let BG be the classifying space of the holonomy groupoid
G. Since v is a G-vector bundle on V, v induces a vector bundle r on BG.

As in §3 above there is then a natural map

Kl(BG)^K*(V,F).

PROPOSITION 8. The natural map Kl(BG) K*(V,F) is rationally
injective. If G is torsion free then Kl(BG) —> K*(V,F) is an isomorphism.

Remark 9. Examples show that for foliations with torsion holonomy, the

map Kl(BG) —> K*(V,F) may fail to be an isomorphism.

THEOREM 10. If F admits a C°° Euclidean structure such that the
Riemannian metric for each leaf has all sectional curvatures non-positive,
then

pL-.K*<y,F)~*K+c*(y,F)

is injective.

10. Further developments

The theory outlined in §§1-8 can be developed in various directions. We
very briefly mention two of them here.

Let A be a C*-algebra. If G is a Lie group and X is a G-manifold, then
using A as coefficients there is both a geometric and an analytic ^-theory for
(X, G). The analytic X-theory is the X-theory of the C*-algebra (C0(X) x G)0A.
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The geometric K-theory is obtained from K-cocycles (Z, £,/) where ZJ are

as in §2 and £ {£0 —» £1} uses G-vector bundles £0, £1 on T*Z0/*F*X
such that the fibres of £) are finitely generated projective modules over A.
Denote this geometric K-theory by K*(X,G\A). The natural map

K\X, G;A) -> Ki[(C0(X) x G) © A]

is defined by using elliptic operators in the spirit of Miscenko-Fomenko [22].
We conjecture that this natural map is an isomorphism.

In the notation of Kasparov [18] the group denoted here by K*[Co(X) x G]
is KK(C,Co(X) x G). For the ^-homology group KK(Cq(X) x G, C) there
is a geometric group K*(X, G) which is the G-equivariant version of the

topologically defined K-homology of [9]. Using transversally elliptic operators
[2] one then obtains a natural map

K*(X, G) -> KK(C0(X) x G, C).

We conjecture that this map is injective and that its image is dense (with
respect to the natural topology) in KK(Cq(X) x G, C).
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Editors' note

The paper by Paul Baum and Alain Connes has been printed here

as it was circulated in 1982, without change. (But we have updated the

references that were preprints in 1982 and have appeared since; and a

small number of typographical corrections have been made.) The subject has

developed considerably over the last 18 years, as testified by the supplementary

bibliography below, for which we express our debt to Alain Valette.

We would also like to make the following remarks :

(i) The conjecture on the invariance of certain foliation characteristic
classes, alluded to at the end of Section 1 in the above paper, has appeared
in :

Baum, P. and A. Connes. Leafwise homotopy equivalence and rational Pontijagin
classes. In: Foliations (Tokyo, 1983). Adv. Stud. Pure Math. 5, 1-14. North-
Holland, 1985.

(ii) Concerning Corollary 5 and Remark 7 of §5 above, Cédric Béguin
has observed that it is necessary to assume that G is connected (and not only
that 7t0(G) is finite), as is shown by the example in which G is the group
{x ax + b I a G R*, b R} and H the subgroup {x i-> ±x}. Indeed, the
connectedness of H is used by Baum and Connes just after their Remark 4.
This observation is repeated from

BÉGUIN, C. Autour de la conjecture des idempotents. Thèse, Université de Neuchâtel,
1999.

(iii) The conjecture on the range of the map tr: KoC*G —> R for a

group G with torsion, stated just before Corollary 4 in §7, has been disproved
in :

Roy, R. The trace conjecture - a counterexample. K-Theory 17 (1997), 209-213.

Roy's example indicates that, if G has p-torsion (p a prime) then higher
powers of p in denominators do appear in the range of the trace map.

(iv) Finally, we would like to mention that the paper by P. Baum and
A. Connes has motivated several books still in preparation, including one by
J. Roe and N. Higson, and one by A. Valette.
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