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Proof of the lemma. Write o = + 61", where ¢ is constant and 7 of
degree less than N. Assume that N is at least 2. Since § is e-hermitian and
2 is invertible in A we can write 6 = o + o™ . Then

1 ¢ —gkpl y+oN +ec* 0 0 1 0 0
0 1 0 0 0 1 { 1 0
0 0 1 0 e 0 —otV1 0 1

is of degree < N —1 and after N — 1 such transformations we get a linear
matrix. [

Writing o = ag + ta; as ao(l + v1) we see immediately that, o being
invertible, v is nilpotent. The formal power series

r=0+v)T 2= ()t

is a polynomial. From o« = ea* we get of = eap and v*ag = eaor. This
implies that 7*aj = eap7 and therefore

a1 = 77 ap(1 + vt = apT(1 + vHT = g -

This proves that (P,«) is Witt equivalent to (P(0), «(0)) and is, therefore,
hyperbolic. [

4. THE WITT GROUP OF TORSION MODULES

Let M be a finitely generated right A[f]-module and suppose that it is
a t-torsion module and that it 1s projective as an A-module. Obviously, it
will be finitely generated over A. We denote by M! the left A[f]-module
Homy(M ,Alt,t711/A[f]) and we consider it as a right module through the
involution on A[z].

Recall that, as an A-module, the quotient A[f,#7!] /A[f] can be written as
a direct sum

Alt,t A=At @A e -

Thus, to any f € Homun(M, Alx, 1 /A[f]) we can associate an A-linear map
f-1: M — A, which is defined as the composite of f with the projection
onto At~ !.
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PROPOSITION 4.1. The map
O = Oy : M" = Homypy (M, Alt,t'1/A[f]) — Homy(M,A) = M*
obtained by associating f_| to f is a functorial A-linear isomorphism.

Proof. 1Tt is clear that 0 is A-linear. To show that it is bijective we
construct its inverse. Given any g € M* define g by the (finite !) sum

g = 171900 + 12 g(m) + 1 g(@Px) + -
It is easy to check that § € M¥, (§)_; = g and f: = f. Functoriality is
clear. [

COROLLARY 4.2. For any finitely generated t-torsion module M which
is projective as an A-module the canonical homomorphism M — M™ is an
isomorphism.

Proof. 1t suffices to remark that the diagram

M

can / \ can

(8;})—108Mﬁ

commutes and that M = M** is an isomorphism. [

An e-hermitian t-torsion space (or, briefly, a t-torsion space) is a pair
(M, (,)) consisting of a finitely generated ¢-torsion right A[f]-module M
which is projective as an A-module, and a perfect e-hermitian pairing
(,): M x M — Alt,t"'1/A[f]. Giving (,) is the same, of course, as giving
its adjoint ¢: M — M" defined by @(a)(b) = {(a,b). ‘

Isometries and orthogonal sums are defined in the obvious way. For any
subset X C M we define its orthogonal as

Xt={yeM|{(x,y)=0 VxcX}.

A sublagrangian of (M, ) is an A[t]-submodule L of M which satisfies the
following two conditions:

(1) It is contained in its own orthogonal: L C L.

(2) The quotient M/L is projective over A (which is the same as saying that
L, as an A-module, is a direct factor of M).
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A sublagrangian L is a lagrangian if L = L+. A t-torsion space is
metabolic if it has a lagrangian. The Witt group of z-torsion spaces is
the quotient of the Grothendieck group of #-torsion spaces with respect to
orthogonal sums, modulo the subgroup generated by the metabolic spaces. We
will denote it by W,,,(A[f]). Lemma 4.6 below will show that the opposite
of the class of (M, ) is the class of (M, —).

LEMMA 4.3. Let M and N be finitely generated t-torsion modules and
i: N — M an Alt]-linear homomorphism. Assume that as A-modules M
and N are projective. Then the map i*: M* — N¥ is surjective (respectively
injective) if and only if i*: M* — N* is surjective (respectively injective).

Proof. Look:

[]

PROPOSITION 4.4.  Let (M, @) be a t-torsion space and L an A[t]-submodule
of M. If M/L is projective over A, then L =L+t and L* is a direct factor
of M as an A-module.

Proof.  First observe that as an A-module L is finitely generated and
projective. Let i: L — M be the natural injection. By Lemma 4.3 the map
i* o is surjective, thus the sequence

0—r1t L Poe s Ly

is exact. Hence L is a direct factor of M as an A-module; in particular it
is A-projective. Identifying L with L¥ we can write the dual sequence as

0—L-5mE gy g
Notice that it is exact by Lemma 4.3. Again by Lemma 4.3 the sequence

0— L+ i gy

is exact because L is a direct factor of M as an A-module. Since ! — +o,
comparing the last two sequences we get the result. [
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We now prove a fundamental result on the equivalence of 7-torsion spaces.

THEOREM 4.5. Let (M,p) be an e-hermitian t-torsion space and L a
sublagrangian of (M, ). The quotient L+ /L carries a natural structure of
t-torsion €-hermitian space and its class in W,,(A[t]) is the same as that of

M, p).

Proof. We first prove the following lemma.

LEMMA 4.6. Let (M,p) be any e-hermitian t-torsion space. The space
M, ) L (M, —p) is metabolic.

Proof of Lemma 4.6. We show that the image L = A(M) of the
diagonal map M L MeMis a lagrangian. The condition L C Lt is
immediately verified. The quotient (M & M)/L is isomorphic to M, hence
it is projective over A. It remains to see that L+ C L. If (a,b) € L+ we
have 0 = {(a,b), (x,x)) = (a — b,x) for any x € M. Since the pairing (,) is
perfect, this implies a = b, i.e. (a,b) e L. [

We now prove the theorem. By Proposition 4.4, L' is a direct factor of
M as an A-module. Since L C L+ is also a direct factor of M, the quotient
L+ /L is projective. Denoting by @,b the classes modulo L of two elements
a,b € L, we define the hermitian structure of L+/L by (a,b) = (a,b).
It is clear that (a,b) only depends on @ and b. We first check that this
pairing defines a z-torsion space. It is clearly e-hermitian. The injectivity of
the adjoint map L*/L — (L+/L)* follows immediately from Proposition 4.4.
To show surjectivity consider any A[f]-linear map f: L+ — A[zr,t~']/A[1].
Since L’ is a direct factor of M as an A-module, f, by Lemma 4.3, extends
to an A[f]-linear map f: M — Alt,t=']1/A[f]. Choose an m € M for which

f={m,). If f- vanishes on L, then m is in L*. This proves that L /L is
a t-torsion space.

To show that L+ /L is equivalent to (M, ) we check that the image of the
diagonal map A: Lt — M@ L+ /L is a lagrangian of (M, —y) L L+ /L which
is, therefore, metabolic. It is easy to check that A(L') is contained in its own
orthogonal. Conversely, if (a, bye M@L*- /L is orthogonal to every (x,X), then
(a —b,x) = 0 for every x € L*. This means that a—b is in L*++, which by
Proposition 4.4 coincides with L. We thus have (a,b) = (a,a) € ALY). 0O

The next proposition connects the Witt group of z-torsion spaces with the
Witt group of A.
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PROPOSITION 4.7. The isomorphisms
Oy Homgp (M, Alt,t11/Alt]) — Homa (M, A)
induce a surjective homomorphism
0" Wiops(Al1]) — W(A).
Proof. Associating to any ¢-torsion space (M,y) the hermitian space
(M, Oy o ) preserves isometries and orthogonal sums and, by Lemma 4.3,

transforms metabolic #-torsion spaces into hyperbolic spaces (with the same
lagrangian). Therefore it induces a homomorphism

0" Wiors(Al1]) — W(A).

To find a preimage (M,p) of a space (M,a) over A consider M as an
A[t]-module annihilated by ¢ and replace a: M — M* by ¢ = 0;,' ocar. [

5. THE WITT GROUP OF EXTENDED SPACES
Let W/(A[t,t~']) be the group defined in the introduction.

THEOREM 5.1. Let A be an associative ring with involution, in which 2
is invertible. The homomorphism

1 W(A) & W(A) — WALz, 1'])
mapping (&,n) to & +tn is an isomorphism.
Proof. The injectivity of % is based on the following result, whose proof

will be given in §6.

PROPOSITION 5.2. There exists a homomorphism
Res: W (A[t,t71]) — W(A)

with the following properties :
Ry : For any constant space § € W(A) C W/(Alt,t7']), Res(¢) = 0.
Ry @ For any constant space £ € W(A) C W/(A[t,t7']), Res(r- &) = €.

Proof. See Theorem 6.7. [
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