1. Introduction Objekttyp: Chapter Zeitschrift: L'Enseignement Mathématique Band (Jahr): 45 (1999) Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: **25.04.2024** ### Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. ### Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch # TEICHMÜLLER SPACE AND FUNDAMENTAL DOMAINS OF FUCHSIAN GROUPS by Paul SCHMUTZ SCHALLER ## 1. Introduction There are a number of ways to define the Teichmüller space of Riemann surfaces. In this paper I treat an approach which is less common than others. Let Γ be a Fuchsian group which uniformizes a closed Riemann surface of genus g. Then a fundamental domain for Γ is chosen in a canonical way, namely as a polygon with 4g sides such that opposite sides are identified. The Teichmüller space T_g of closed Riemann surfaces of genus g is then constructed by varying these polygons. This construction of T_g by polygons was first done by Coldewey and Zieschang in an annex in [17], see also [18]; the construction includes the proof that T_g is homeomorphic to \mathbf{R}^{6g-6} . In [2], Buser gave a different, however indirect proof. Here, I propose a new construction and a new proof which is, in my eyes, easier and more transparent than the original one of Coldewey and Zieschang. The main idea is the following. Let P(g) be a canonical polygon of 4g sides which is the fundamental domain of a Fuchsian group uniformizing a closed Riemann surfaces of genus g (the definition of P(g) will include some technical subtleties, to be discussed in Section 3). Then "triangulate" P(g) into 4g-4 triangles and one quadrilateral S. This can be done in such a way that these triangles are determined by 6g-5 positive real numbers (corresponding to the lengths of the sides of the triangles) with the condition that the different triangle inequalities hold. It turns out that these 6g-5 lengths, taken as homogeneous parameters, provide a parametrization of the Teichmüller space T_g . Since the set of reals for which the different triangle FIGURE 1 On the left hand side: usual identification On the right hand side: identification chosen in this paper inequalities hold is open and convex, this also proves that T_g is homeomorphic to \mathbf{R}^{6g-6} . Let P be a polygon of 4g sides which is the fundamental domain for a Fuchsian group Γ uniformizing a closed Riemann surface M of genus g. This means that we can write $$M = \mathbf{H}/\Gamma$$ where \mathbf{H} is the upper halfplane. Usually, P is chosen such that the identification of the sides of P is that of the polygon on the left hand side in Figure 1. The construction described above would equally work for these polygons. For the following reasons I prefer to choose the identification (compare the polygon on the right hand side of Figure 1) such that opposite sides are identified. First the sides of P correspond to simple (this means with no selfintersections) closed curves in M and if opposite sides are identified, then these simple closed curves intersect transversally (which is not the case with the usual identification). Secondly, the vertices of P correspond to a (unique) point Q in M; with the usual identification, Q is completely arbitrary while with the identification chosen here, there is a natural choice for Q in the case of hyperelliptic Riemann surfaces, namely, as a Weierstrass point. See Section 6 for details. In this paper, I only treat the case of Fuchsian groups which uniformize closed Riemann surfaces. In a straightforward way, the construction and proof could be extended to all finitely generated Fuchsian groups. Note that concerning the original construction and proof in [17] (mentioned above) the corresponding generalization has been worked out by Coldewey in his thesis [3]. The paper is structured as follows. In Section 2 the basic definitions of hyperbolic geometry and Fuchsian groups are given. Section 3 defines the canonical polygons. Section 4 provides the necessary material from hyperbolic trigonometry, it contains also some lemmas needed later. Section 5 contains the proof of the main theorem and Section 6 gives some applications, mainly concerning hyperelliptic Riemann surfaces. More precisely, I give a new proof of a geometric characterization of hyperelliptic Riemann surfaces which first appeared in [14] (I thank very much Feng Luo who, by his comments on [14], has contributed to the idea of this new proof). I also show (and this is a new result) that the Teichmüller space T_g for g=2 can be parametrized by 7 geodesic length functions, taken as homogeneous parameters. This is the optimum parametrization of Teichmüller space by geodesic length functions which one can expect. I spoke about the content of this paper in lectures of the Troisième Cycle Romand de Mathématiques (Lausanne 1997); I thank the participants for their comments. ### 2. HYPERBOLIC GEOMETRY AND FUCHSIAN GROUPS The material of this section and of parts of the following section is standard, see for example [1], [4], [5], [6], [7], [8], [15]. DEFINITION. (i) $\mathbf{H} = \{z = (x, y) \in \mathbf{C} : y > 0\}$ denotes the *upper halfplane*. The *hyperbolic metric* on \mathbf{H} is given by $$dz = \frac{1}{y}(dz)_E$$ where $(dz)_E$ is the standard Euclidean metric on \mathbb{C} and y is the imaginary part of z. (ii) Define $$SL(2, \mathbf{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad - bc = 1; a, b, c, d \in \mathbf{R} \right\}$$ and $$PSL(2, \mathbf{R}) = SL(2, \mathbf{R})/\sim$$ with $A \sim B$ if and only if $A = \pm B$ for $A, B \in SL(2, \mathbf{R})$. Let $\gamma \in SL(2, \mathbf{R})$, $$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} .$$