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TEICHMULLER SPACE AND FUNDAMENTAL DOMAINS
OF FUCHSIAN GROUPS

by Paul SCHMUTZ SCHALLER

1. INTRODUCTION

There are a number of ways to define the Teichmiiller space of Riemann
surfaces. In this paper I treat an approach which is less common than others.
Let " be a Fuchsian group which uniformizes a closed Riemann surface of
genus g. Then a fundamental domain for I' is chosen in a canonical way,
namely as a polygon with 4¢g sides such that opposite sides are identified.
The Teichmiiller space T, of closed Riemann surfaces of genus g is then
constructed by varying these polygons.

This construction of 7, by polygons was first done by Coldewey and
Zieschang in an annex in [17], see also [18]; the construction includes the
proof that 7, is homeomorphic to R®~°. In [2], Buser gave a different,
however indirect proof. Here, I propose a new construction and a new proof
which is, in my eyes, easier and more transparent than the original one of
Coldewey and Zieschang.

The main idea is the following. Let P(g) be a canonical polygon of 4g
sides which is the fundamental domain of a Fuchsian group uniformizing
a closed Riemann surfaces of genus ¢ (the definition of P(g) will include
some technical subtleties, to be discussed in Section 3). Then “triangulate”
P(g) into 49 — 4 triangles and one quadrilateral S. This can be done in such
a way that these triangles are determined by 6g — 5 positive real numbers
(corresponding to the lengths of the sides of the triangles) with the condition
that the different triangle inequalities hold. It turns out that these 6g — 5
lengths, taken as homogeneous parameters, provide a parametrization of the
Teichmiiller space T,. Since the set of reals for which the different triangle
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FIGURE 1

On the left hand side: usual identification
On the right hand side: identification chosen in this paper

inequalities hold is open and convex, this also proves that T, is homeomorphic
to R0,

Let P be a polygon of 4g sides which is the fundamental domain for
a Fuchsian group T" uniformizing a closed Riemann surface M of genus g.
This means that we can write

M =H/T

where H 1s the upper halfplane. Usually, P 1is chosen such that the
identification of the sides of P 1is that of the polygon on the left hand
side in Figure 1. The construction described above would equally work for
these polygons. For the following reasons I prefer to choose the identification
(compare the polygon on the right hand side of Figure 1) such that opposite
sides are identified. First the sides of P correspond to simple (this means with
no selfintersections) closed curves in M and if opposite sides are identified,
then these simple closed curves intersect transversally (which is not the case
with the usual identification). Secondly, the vertices of P correspond to a
(unique) point QO in M ; with the usual identification, Q 1s completely arbitrary
while with the identification chosen here, there is a natural choice for Q in
the case of hyperelliptic Riemann surfaces, namely, as a Weierstrass point.
See Section 6 for details.

In this paper, I only treat the case of Fuchsian groups which uniformize
closed Riemann surfaces. In a straightforward way, the construction and
proof could be extended to all finitely generated Fuchsian groups. Note that
concerning the original construction and proof in [17] (mentioned above)
the corresponding generalization has been worked out by Coldewey in his
thesis [3].

The paper is structured as follows. In Section 2 the basic definitions
of hyperbolic geometry and Fuchsian groups are given. Section 3 defines the
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canonical polygons. Section 4 provides the necessary material from hyperbolic
trigonometry, it contains also some lemmas needed later. Section 5 contains
the proof of the main theorem and Section 6 gives some applications, mainly
concerning hyperelliptic Riemann surfaces. More precisely, I give a new proof
of a geometric characterization of hyperelliptic Riemann surfaces which first
appeared in [14] (I thank very much Feng Luo who, by his comments on
[14], has contributed to the idea of this new proof). I also show (and this is a
new result) that the Teichmiiller space T, for g =2 can be parametrized by
7 geodesic length functions, taken as homogeneous parameters. This is the
optimum parametrization of Teichmiiller space by geodesic length functions
which one can expect.

I spoke about the content of this paper in lectures of the Troisiéme Cycle
Romand de Mathématiques (Lausanne 1997); I thank the participants for their
comments.

2. HYPERBOLIC GEOMETRY AND FUCHSIAN GROUPS

The material of this section and of parts of the following section is standard,
see for example [1], [4], [5], [6], [7], [8], [15].

DEFINITION. (i) H = {z = (x,y) € C: y > 0} denotes the upper halfplane.
The hyperbolic metric on H is given by

1
dz = —(dz)g
y

where (dz)g is the standard Euclidean metric on C and y is the imaginary
part of z.

(i1) Define

a b

SL(2,R):{[C d} . ad — be = 1: a,b,c,dER}

and
PSL(2,R) = SL(2,R)/~

with A ~ B if and only if A = +B for A,B € SL(2,R). Let 5 ¢ SL(2,R).
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