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HOMFLY POLYNOMIAL VIA AN INVARIANT OF

COLORED PLANE GRAPHS

by Hitoshi Murakami, Tomotada Ohtsuki and Shuji Yamada

Abstract. After the first discovery of the quantum invariant associated with
SU(2) by V. F. R. Jones [3], the invariants associated with SU(n) were found by
several authors [1]. It was first proved by V. G. Turaev [16] that all these come from
so-called "quantum groups", especially from their R -matrices corresponding to the

vector representations. There also exist various quantum invariants corresponding to
other representations (see for example [7], [14], [11]).

The aim of this paper is to give a graphical way to define SU(n) quantum
invariants for links. To do this we first construct an invariant of colored, oriented,
trivalent, plane graphs for each n (> 2). Then we show that the SU(n) polynomial
invariant corresponding to the vector representation (HOMFLY polynomial) can be

defined by using our graph invariant.
We can also show that our invariant defines the SU(n) polynomial invariant

corresponding to the anti-symmetric tensors of the vector representation.
We note that our graph invariant for 51/(3) was first introduced by G. Kuperberg

in [8]. The second and the third authors used it in [12] to construct magic elements
and defined the quantum 5/7(3) invariants for 3-manifolds. Now [12] and the present
paper together give an elementary and self-contained proof of the existence of magic
elements for 5/7(3) and so that of the quantum 5/7(3) invariants of 3-manifolds just
like W. B.R. Lickorish did for 5/7(2) in [9] using the Kauffman bracket [5]. See [17]
for a similar approach to SUQi) invariants of 3-manifolds.

We also note that our graph invariant may be obtained (not checked yet) by direct
computations of the universal R -matrix. But the advantage of our definition is that it
does not require any knowledge of quantum groups nor representation theory. On the
contrary we can recover the R-matrix of the quantum group Uq(si(n. C)) corresponding
at least to the vector representation.

This work was inspired after conversation with M. Kosuda and J. Murakami, to whom the
authors express their gratitude.

The first named author was in the Department of Mathematics, Osaka City University
when the work was carried out and partially supported by Grant-in-Aid for Scientific Research
on Priority Areas 231 "Infinite Analysis", the Ministry of Education, Science. Sports and Culture.
The second named author was in the Department of Mathematical Sciences. University of Tokyo.
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§1. Invariants of graphs

In this section we define an invariant of colored, oriented, trivalent, plane
graphs.

Fix an integer n > 2 throughout this paper and put

M {-{n - 1)A ~(n - l)/2 + 1 l)/2} •

For disjoint subsets A\ and A2 of N we put

7t(Ai,A2) #{(aua2) e A{ x A2 \ a{ > a2}

Let G be an oriented, trivalent, plane graph with "color" or "flow" on each

of its edges. Here a flow f is a map from the edge set to positive integers
less than or equal to n such that for every vertex v in G the sum of its

values on the edges coming into v is equal to that on the edges going out
from v (see Figure 1.1). So we may say that G is a network with infinite
capacity without source or sink. We also note that at each vertex two edges

are "in" and one edge is "out", or two edges are "out" and one edge is "in".
We call these two in- or out-edges the legs and one out- or in-edge the head

of the vertex.

A state a is an assignment of a subset A of M to each edge e such that

#(A) —f{e) and, moreover, at each vertex the union of subsets assigned to its

legs coincides with that assigned to its head, where #(A) is the number of
elements in A (see Figure 1.2). We denote by o{e) the subset of J\f assigned

to an edge e.
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Figure 1.2

A state of the graph with flow in Figure 1.1

Given a state cr, we define the weight wt(v;a) of a vertex v to be

qf(ei)f(e2)ß-7r(a(e{),a(e2))/2

where q is an indeterminate, and e\ and ei are left and right legs respectively
with respect to the orientation of G (Figure 1.3).

Figure 1.3

If we replace every edge e with f(e) copies of parallel edges, assign each

copy an element of the subset determined by cr, and connect at every vertex
each pair of edges with the same element, we have a union of simple closed

curves each of which equipped with the same element of Af (Figure 1.4).

Figure 1.4

Simple closed curves defined by Figure 1.2
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Then we define the rotation number rot(<j) to be

^cr(C)rot(C)
c

where the sum is over all simple closed curves C equipped with cr{C) G Af
and rot(C) is the rotation number of C (i.e., 1 if C is counter-clockwise and

— 1 otherwise). For example rot(cr) 2 for the state described in Figure 1.2

(see Figure 1.4).

Now we define (G)n as follows.

<G>„= E{ II
cristate v:vertex

We define (empty graph) n
1. It is clear that this is invariant under

ambient isotopy of R2. Note that our invariant can be regarded as a colored

graph invariant introduced by N. Yu. Reshetikhin and V. G. Turaev in [14]

replacing each vertex by a ''coupon". The coupon with two legs in would
correspond to a projection V/ 0 Vj —» V/+7- and that with two legs out to an

inclusion Vi+j —> Vf0Vj, where V) is the irreducible representation of SU(n)
corresponding to the i-fold anti-symmetric tensor of the vector representation.

§2. Local properties of (G)n

We will describe some local properties of (G)n. In what follows diagrams
indicated in each equality are identical outside the angle brackets )n and

each equality also holds if we reverse all the orientations of diagrams in both

hand sides. A number near an edge indicates its flow. If a flow in a diagram
exceeds n, we disregard the term where the diagram appears.

We put

LJ qW-q-1/2'

[*]! [1][2] ••[*],
and

~i] [']!
J J [/]^-y]! '

In the following equations we mean that if we replace the graph appearing

in the left hand side with the one in the right hand side, we obtain the same

value.
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Lemma 2.1.

n

[n] <0>„.

Proof. From the definition the left hand side is equal to

(«—1)/2

E
i=-(n-1)/2

which is [n], completing the proof.

Lemma 2.2.

(2.1)
n

[2]

n

Proof. Consider a state a of the left hand side. First note that the top-most
and the bottom-most edges are equipped with the same subset. So we may

put it {a,ß} (a < ß). Then there are two cases; (i) the left edge is equipped
with {a} and the right one with {/?} and (ii) the left edge is equipped with
ßß} and the right one with {a}. In the first case the weights of the upper
and lower vertex are the same and equal to q1//4. In the second case they
are also the same and equal to q~x^. Therefore the contribution of the two
vertices is

Proof In this case the top-most and the bottom-most edges of the left
hand side are equipped with the same subset for any state o as the previous
lemma. So we put it {a}. If the right edge is equipped with {ß} (ß ^ a),
then the weights of the two vertices are the same and equal to qs'^(ß-a)/4 ^

~1/2 [2],

which is independent of o and the conclusion follows.

Lemma 2.3.
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Since its contribution to the rotation number is —/?, the contribution of the
left hand side is

_ a—l (n—1)/2

Y q^n(ß-a)/2-ß q-^2-ß Hh ^ qX/2~ß

ß¥^oc ß~-{n-\)/2 ß=a+1

^-2)/2 + ^"4)/2 + --.+^—+1/2

+ q~a~l/1 H h q~(n~2)/2 [n— 1]

and the proof is complete.

Lemma 2.4.

Proof. There are three possibilities :

(1) the two edges at the top are equipped with {a} and the two edges at the

bottom are equipped with {ß} (a ^ ß) ;

(2) both the top left and the bottom left edges are equipped with {a} and

both the top right and the bottom right edges are equipped with {ß}
ipL + ß) I

and

(3) all the four edges at the corners are equipped with {a}.
In the first case, the two horizontal edges are equipped with {7}

(a 7^ 7 7^ ß). So the contribution of the left hand side is

^ q^(a-j)/2^$ign(ß-j)/2q^q-(a+ß)/2 _ ^ _ 2] q-(ot+ß)ß
1

which is equal to the contribution of the right hand side.

In the second case, the contribution of the first term of the right hand side

is zero. It is easy to see that the left hand side and the second term of the

right hand side coincide.

In the third case, the contribution of the left hand side is [n — 2] q~a + 1,

which is equal to that of the right hand side. This completes the proof.
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Lemma 2.5.

Proof. There are three possibilities :

(1) both the top left and the bottom left edges are equipped with {a} and

both the top right and the bottom right edges are equipped with {/?, 7}
(a,ß and 7 are all distinct);

(2) the top left and the bottom left edges are equipped with {a} and {/?}
respectively and the top right and the bottom right edges are equipped
with {/3,7} and {0^,7} respectively (a,ß and 7 are all distinct);

and

(3) both the top left and the bottom left edges are equipped with {a} and

both the top right and the bottom right edges are equipped with {a,/?}
(a ^ ß).

In the first case both the upper and the lower horizontal edges in the
left hand side are equipped with {ß} or both of them are equipped with
{7}. So the contribution of the left hand side is qsl8fl(ß-ot)/2+sign(.7-ß)/2

gSign(7-oO/2+sign(/3-7)/2 Qn t^e 0ther hand that of the right hand side is
gi-7r({a}, 1/3,7» _j_ 1. it can be easily checked that these are the same.

The second and the third cases are easily checked and left to the reader.

\i\
i i

11

i+jj 77^
\ ii+j+k 1

*

\ i+j+,\ 1

Proof. This follows from the fact that

#{(<2i, CI2) G Ai x A2 I a\ > 02} + #{(<2, af) G (Ai U A2) x A3 \ a > a^}
#{(#i, af) G Aj x A2 I a\ > <22}

+ #{(tfi,<z3) G Ai x A3 I a\ > a3} + #{(ô2,<23) g A2 x A3 | a2 > a3}

#{(aua) GAi x (A2 U A3) | <21 > a] + #{(a2,a3) G A2 x A3 | a2 > a3}.
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§3. Invariants of links

In this section, we give a graphical definition of the HOMFLY polynomial
of oriented links. For an oriented link diagram D, we define (D)n by the

following.

^ /. <7
1/2, liT^Xl in

and

J-
q~l'2< l><r^l in

Then we have

THEOREM 3.1. (D)n is invariant under the Reidemeister moves II and III.

Proof. From Lemma 2.2, we have

+ (-<?1/2-<r1/2 + [2])(
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We also have

G -,"2'
"WO

q-l/1[ ti

\l\ 2
*1

+ ti
2

1/ vi/» uz vi,

i i j\ /i
(M - <?1/2[« - !] - q~l,2[n -!] + [«- 2])( / +

1" 1

from Lemmas 2.1, 2.3 and 2.4 and so (D)n is invariant under the Reidemeister

move II. Next we prove the invariance under the Reidemeister move III. Since

we have

and

<7
1/2

V

1

X
V
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it suffices to show that

V \
V

h
Since

In
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n

we have the required formula from Lemma 2.6.

Since the Reidemeister move III with other types of orientations can be

obtained from the Reidemeister moves II and III described above (see [12]),
the proof is complete.

If we define Pn(D) w(D)) (p)n with w(D) the writhe (the algebraic

sum of the crossings) of D, then we have

THEOREM 3.2. Pn(D) is invariant under the Reidemeister moves I, II, and

III and satisfies the following skein relation.

where D+, D_ and Dq are identical link diagrams except near a crossing

as described in Figure 3.1.

The proof of this theorem follows immediately from the following lemma.

qn/2Pn(D+) - q~n/2Pn(D_){q"2 -

Figure 3.1

skein triple

Lemma 3.3.

and
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Proof. From Lemmas 2.1 and 2.3, we have

337

(3.1)

(3.2)

m D1

ql'2[n]-{n- 1])(

Since
a*nql'2[n\ -[n-1] q"

the first equality follows. The second equality follows similarly and the proof

is complete.

Therefore Pn defines a link invariant and so we can put Pn(L) Pn(D)

for the link L presented by D. Then Pn is a version of the HOMFLY

polynomial [1], [13].

Remark 3.4. If we define [D]n to be

v/2 - A

and

A"V1/2 A~

with A an indeterminate, we also have a framed link invariant.

When n 2 and A — q~^4, we have a version of the Kauffman bracket

naturally defined from representation theory of Uq(si(2,0)) [6, Theorem 4.3].
For n — 3 we have G. Kuperberg's recursive formula [8] as follows.

Consider an oriented, trivalent, plane graph with flow less than or equal to

three. If we reverse the orientations of all the edges with flow two, remove all
the edges with flow three, and forget the flow, then we have a trivalent graph
without flow such that at every vertex all the edges are in or out. Putting
A q~1/6 and replacing q with q~l, we have Kuperberg's formula. (This
corresponds to the fact that the two-fold anti-symmetric tensor of the vector
representation of SU(3) is isomorphic to its dual.) See also [12].
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§4. State model of Turaev and Jones

In this section we show that our definition of the HOMFLY polynomial
gives the state model due to V. G. Turaev and V. F. R. Jones [16], [4]. Moreover

we can recover the R -matrix for the q-deformation of the universal enveloping
algebra Uq(si(n, C)) found by M. Jimbo [2].

For readers' convenience, we first review Turaev's state model. Let

r : y®2 y®2 be an isomorphism with V an n -dimensional vector space

over C. It is called an R-matrix if it satisfies the so-called Yang-Baxter
equation :

(R 0 id) o (id 0/?) o (R<g) id) — (id <g>R) o (R 0 id) o (id 0/?).

Let {eiy e2,..., en} be a basis of F and Rkj be the entry of R with respect
to a fixed basis of V, which is the coefficient of ek 0 of R(ej 0 ej).

Given a link diagram D, we regard it as a 4-valent graph (a crossing

corresponding to a 4-valent vertex) and denote it by D. See Figure 4.1. Here

the H- —, respectively) sign indicates that the vertex comes from a positive
(negative, respectively) crossing.

Figure 4.1

Change crossings to 4-valent vertices

A state cr of D is a mapping from the edge set of D to Af. Then we
define the weight wt^(ïï, a) of a vertex v to be Rcadb if v comes from a positive

crossing and (R~l)ab if it comes from a negative one, where a,b,c,d G TV

are the values of the four edges adjacent to v (see Figure 4.2).

Figure 4.2

State around a vertex v
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If we can define a suitable "rotation number" rot(cr) for each state, then

the quantity

£{ nwt R®
er: state v:vertex

becomes a framed link invariant.

Now we will proceed conversely and define an R -matrix from our framed
link invariant (D)n.

First we define a weight wt(ïï, a) by using (D)n as follows. We assume
that for a state a, a,b,c,d e N appear around a vertex v. We define

wt
+

d\ /{C\ Jld]
b) \{a}{ ^1

f{c\
=q1'2wt

\{fl)

id)

{b)
wt

{c}AAW}N
jT( a,b

and

wt I

{cR J}{d\

\a\C |(M

c\
=q 1/,2wt

id}\

I b).
wt

C1

jfUM

Here the first terms of the right hand sides are zero if ^ c or
and the second terms are zero if {a, b} ^ {c, d}. Therefore, for
(a / b) we have

wt
a +

- q1!1wt|
t&}\ {a

— wt
IM/ \{a}.

{b)\
a,b\ ;

lb)/

— ql/2 _ ^sign(i-a)/2

(ql/2_q-l/2 if a > b,

if a < b.
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Similarly we have

-1 and <7
1/2

We have a similar formula for a negative crossing.

Therefore we see that our graph invariant gives an R -matrix of the form

Rv <

q

K 0

7l/2_ ^-1/2

-1
1/2

if i k > j /,

if i I j
if i j k I,

otherwise ;

and

1/2 + ^-1/2

-1

f 0

-1/2

if / k < y /,

if i i ± j k9

if i — j k /,

otherwise ;

which coincides with —R(q1/2) 1, where 7?(^1//2) is the -matrix given in
[16], replacing q with q1/2.

§5. Invariants corresponding to anti-symetric tensors

In this section, we will show briefly that our graph invariant gives the

quantum link invariant each of its component equipped with an anti-symmetric
tensor of the standard n -dimensional representation of SU(n).

Let D be a link diagram each of its component colored with an integer
i (1 < i < n). This corresponds to the i-fold anti-symmetric tensor of the

standard representation of SU(n).



HOMFLY POLYNOMIAL 341

Then (D)n is defined by

X). '1 j \
^ k)/ll

j+k- k i-k j
k=0 1

\j. k ^,1
i-k> for i<J

and

T /. k~0

11 7 \

U ^ i+k J

\, r \ J 1

i+k) » f°r >J

For a negative crossing, replace q with q 1.

Now we will show

THEOREM 5.1. The quantity (D)n with D a colored link diagram is

invariant under the Reidemeister moves II and III. Thus it is a colored framed
link invariant.

To prove the theorem above, we prepare some lemmas:

Lemma 5.2.

Proof The proof of this lemma is similar to that of Lemma 2.4 and we
leave it to the reader.
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Lemma 5.3.

(5.1)

f+j I
n

Proof. It suffices to prove the case 1 or 1 since we have

f+J I
n

TTM+/-1

1

'71 >f
,1

Ny

1

y1 >
V*

^ >

,1

[/] W"I

/+/ /
• J 1 n

and the conclusion follows from the case i 1 or 7 1 and induction. Here

we use Lemma A.l in the first equality.
We only prove the case j 1 and i < k since the remaining case is

similar. From the definition, the left hand side of (5.1) with j 1 equals

/+1

/=0 7—/+1 /

z+1
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The right hand side becomes

y^(_i)H-(£+i)(LHi)g(/-/+i)/2|
/=0

k+l

k+l-i

k-1
k

i-l
i

i+1

_i_ y^^_/[y+(^+i)z'+^(^-o/2|
1=0

k+l

k+l-i k

i-l 1

i+1

Sliding the bar colored with / using Lemma 2.6, the first diagram becomes

\k+l

k+l-i

k-1

i-l
i—l+1

\

"k 1 1 i'

4 1

['-4
k+l>

<i+1 /
n \ k,

i-l+1 +
\k+l

i+1

k+l-i

k+l—i—lj

i—l+1

i+1

i

i k+l

k

k+l-i
k+l \ j i+i

+
i-l+1 I i k+l

i+1

>1- yk 1

r—f\I-I;,2
\

1

s '
v—l+l /

/

/ ^ i+1 j

where the first equality follows from Lemma A.7 below.
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The second diagram turns out to be

11 Jk\

i k+l

k

k+l-i
k+l

' i—l+1

i-l(\l
— [/ — / + 1](

i-l+l
i+1

I k+l

k

iKJk \

^ k+l
k+l-i

i-l+l

z+1

Therefore the right hand side of (5.1) becomes

|^(-1)/+(^1)(/+1)^/-/+1)/2jy _ /] + y^(-l)/+(*+1 )^kg^~l)/2[/ -z+1]
1=0 1=0

I k+l

k

ll Jk\

<k+l
k+l-i

z+1

Z-/+1

z+1

k

_i_ ^ ^(_iy+{k+i)(p+i) H-I)/2/

1=0 k+l

k

k+l-i-1

fi—l+l I

z+1

_ Y^(-i)i+(/!+,)(i+i)
1=0 \ k+l

k

k+l-i
k+l

i—l+1

z+1
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z+1 >

_l_ y y_-^y+(/:+i)(/+i)^(/-/+i)/2|
1=0 k-vl

k

k+l-i-1

z—/+1 /

z+1

We finally see that the right hand side of (5.1) minus the left hand side equals

^(_1)/+(^+i)h+i)+t
1=0

i k+l

k

H-1

— ^(_iy+(^'+i)('+i)+i/
/=0

iV >*1

^+i
k+l-i 0.

Z-/+1

z+1

Here the last equality follows from Lemma A.9, completing the proof.

Proof of Theorem 5.1

The invariance under the Reidemeister move II. We will first show
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+ ([;' -1] - <?1/2L/1 ~ <? + U + !]) ZïE*
V y \1 jTlkJ s

where we use Lemma A.4 in the third equality.
Next we will show

J / n

It also suffices to show the case i 1 as above. We have

/ x Z1^
([« ~j + 1] -ql/2[n -j]—
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-= ([«-j +1] -<?1/2[" -i\-q1/2[«-j] + [n-j-1])

+ <

J ' n

J / n

where we use Lemma 5.2 in the third equality. Now the proof for the

Reidemeister move II is complete.

The invariance under the Reidemeister move III. This is proved by
repeated application of Lemma 5.3 and details are omitted. See the proof of
Theorem 3.1.

A. Appendix

In this appendix, we give proofs of lemmas used in the previous section.

Lemma A.l.

L/Jj\ ja-j)

for i > j > 0.

Proof. The proof for j 1 is similar to that of Lemma 2.2 and omitted.

For j > 1 we have

[A u\

i l\\f - i 11
.7-1. \ In' j. \

where the second equality follows from Lemma 2.6 and the fourth by induction.
The proof is complete.
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Lemma A.2.

/ 1
1

j+k-i;h /I ^ \ \
/ s " 1

\ i
f * N \

Ij+k, â-hHi-k,
> >

J+k

\ J, k
N JI

n
\t. rj+k-i J /

for j + k > i > k > 0.

Proof By a 7r-rotation and orientation reversing, we get the right hand

side from the left hand side. So there is a one to one correspondence between
the states of both hand sides and the equality follows from the definition.

Lemma A.3.

for j >1.

Proof. We can prove the equality directly from the definition as in the
proofs in the lemmas in §2. Details are omitted.

Lemma A.4.

for j>k> 1.
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Proof. From Lemma A.3 (substituting j with k) the left hand side becomes

k

k-1

k

f~k\ —[k1]( k( y-k)
J

'-k\ - [k1]
7" c\
k \

j - 1

k- 1

/I i J\j\/ r

\ 1\i, î Njl
r _ /îj
k \

[j-l}-[k-l} VI7"

Â A
7-1" C\

k \
where the third equality follows from Lemma A.3. The proof is complete.

Lemma A.5.

1 l

for j > 2.
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Proof. We have

where we use Lemma A.2 in the third equality and Lemma A.4 in the fourth
equality. The proof is complete.
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Lemma A.6.

f z+1

1 1

Proof. We have

/I
K

X J v'\
/ i+1 > J-l)
\ /
\ 1

N

\ h JI
[7-1]

z+1

1
y^ * '

\
\

irV-2
1 ^ >/-l /

J /

[j-1]
(z+L +2

[7-1]
l, 7-2

2]

[7-1]

M

^ 1
'7\
;+i)

/' 1 j /

'[/—2] [7]

[2] [7-1]
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where we use Lemmas A.3 and A.4 in the third and the fourth equalities

respectively. The proof is complete.

Lemma A.7.

for j> k>1.

Proof. We first prove the case 1. We will show

by induction on j. Note that Lemma A.3 is the case it 1.

The left hand side becomes

M\

i

+ \tzi\r
W

/-I j
i+j-1
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\ 11
* N

7 \
+ w|U U+1

\

L W i-2 4+/-1/

M \i
bl J

t+f-1/ n

i+j +
^V+/-l/ n

[J][i- 11

M

i'-l 'J

/+/-!

which is equal to the right hand side. Here we use Lemma A.6 in the first

equality and the inductive hypothesis in the second equality.
The proof for k > 1 is similar and omitted.

Lemma A.8.

/ < j+k-i 7+1 \ 11^ k ^
7+1 \ i vL 711v+i\

M
^ *

d-k+]
j+k-i

j+k+i Hi-k+L
j+k-i-l

7+*

\ * N
7+1 /

n
\ /.

r >

7+1 / \ f >

i+l/

for j > i > k > 1.

Proof. For k= 1 we have

1

'
H+iJHr > \

^
1

'

7+1 /

-
j-i+l

7+1

i-l 1 I 1

w

i+1

7+1

j-i+l

J

7+1

i+1

/I ^ l
' •M

L,
7+2

\ j—j'+i> /
w, 7+1 /

JP1
7+1

zTl

where we use Lemma A.7 in the last equality.
The proof for k > 1 is similar and left to the reader.
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Proposition A.9.

i-f i

k=o

/ ' j+k-4yr\Ij+k, ,z-£+l)

\ /\ L v
z'+l /

Proof. From Lemma A.8, we see that the left hand side equals

Jrl
7+1'

z+l
n k= 1

/IH7+1

\
z—

j+k-iy
J+*+l j

\
k
z+1 /

+y>pf*+i
k= 1

z'
Kk~l

'

* \
[;+1\

I

-/c+L

j+k-i-1
>+(

j, k
z+1 /

n

1\

7+!\ '

m) + £'' « k= 1

/ j» \

/ z-L f+k+l \
\ j+k-i; /
\ h k

z+1 /

i-1
+ ]T{-lL1 / A

<t=o

j 1K \ \P+1 \
/ c N \
i-k,

M-z
/ >

'M+i

\ j> >'+1 /
.Ä),

0, and the proof is complete.
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More generally we have the following formula, which was suggested by
J. Murakami. The proof is left to the reader.

Proposition A. 10.

/ j+k-i j \
Ij+k. J-k+l)-t/ m=0

I

k — m

\ j. J+l
1

n

11L "I P+/ \/ \
| i-m J+m+l \

\ J, J+l 1

for j > i > k > 1. Here 0 if y < 0 or y > a*
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B. Table of the invariant

The following is the table of Pn/\n\ for knots with crossings less than or
equal to eight. (Note that Pn is always divisible by [n].) We refer the reader

to [15] for the notations of knots. We used MAPLE V to tranlate the Homfly
polynomial table in [10] to our invariants.

3i -q2n + q"+l +

4, q" — q + 1 — q
1

+ q "

5, _(?3„+l _ ^3.-1 + ?2„+2 + qln+ q2n-2

52 -q3"+ q2n+' - q2"+ q2"~l+ q"+1 - q" + «/-'

6i q2"- q"+l + q"-q"~l- q + 2 - q~3+ ç"»

62 ^2,,+t _ ^2,, + q2n-i_q„+2 + q„+x _2q"+- + q + q~]

63 -qn+i+ q" - q'-1 + q2 - q+ 3 - q~x + -q-"+x+ -

7i -q4"+2- q4"- <?4"-2 + <?3"+3 + ?3"+' + + ç3"-3

72 -<?4" + <?3"+I - ?3" + <?3""1 + i?2"+1 - 2 + q2"-1 + q"+{ - q" + q"~l

73 q-2"+2- q~2"+l + q~2" - q~2"~l+ q~2"'2 + _ q-2n+l +lq-V,
- <r3"-1 + q~3"~2-<r4n+1 - q~4"~l

74 <?-"+' -2q~" +q~"~l +2q~2:'+l - 2q~2+<?"3"+1 -
+ q~3"~1 -q~*"

75 ~q4n+'+ q4n- q4"'1 + q3"+2- 2q3"+1- + q3"~2 + q2"+2

~q2n+l +2 q2" -q2"~l +q2"~2

7s -q3" +2q2"+l-2 q2"+2q2"~<-q"+2 - 3 - q"~2

+ q-i +<?"'

h -q"+] +2q" - q"~1+ q2-2^ + 4 - 2q~1+ q~2 - 2q~"+l +
— 2q~"~l + q~2"
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81 q3n- q2n+x+ q2n - q2"-x - q"+x+ 2 q" ~+ 2 - q-1 + q—

82 q3n+2 - q3n+l+ q3"- q3"~x+ q3"~2- 3 + q2"+2 -2 + q2n

-2 q2n~x+ q2"'2 - q2n~3+ qn+2 + q" +2

83 q2n — 2q + 3 — 2q~l- q"+] + 2q" -q"~x- <T"+1 + 2

84 q2„+\ _ qin + q2n-\ _ q„+2 + 2 qn+x_ 2 +2-
+ <?-' -q~2+<?-"+' +

85 ?-"+2 + 2<T" + q'"'2-<T2"+3 + q~2n- 3 q~+ - 3

+ q'2"-2 - q-2'"3 + q~3n+1 - q"3n+1+2 - + q~3n~2

86 q2"+l_ + q2„-1

_ ?2»+2 + 2^+' -3^" + 2<?2""1 - <?2""2 - /+2
+ 2q"+] -3 q"+ 2q"~l -q"'2+ q + q~l

87 -q2 + q - 1 + q-]-q~2 + q~"+3 - q'"+2 + 3 q~"+l - + 3 q~"~l

- q"-2 + q~"~3- q~2n+1 + q~2n+{-2 + q~2'-1 - q-2"'2

8g -qn+i+ q" - q"~] + q2 - 2q+ 4 - 2q+ q~2+ q~"+2 -2
+ 3 q~" - 2q-"~l + q-"~2 - q~2n+l + q~2" - q'2"'1

89 q"+2- q"+l +2q"-q"-l+q"~2 - q3 + q-3 q + 3 - 3 +
+ q-"+2-<?""+' +2 q~"- q-"-]+ q~"-2

810 -q2+ q -2 + q~l -q~2 + q~"+3 - q~"+2 + 4<?""+1 - 2q~" + 4

- q-"~2 + q-"~3 - q~2n+2 + q~2n+l - 3 + q~2"~x - q'2"'2

811 q3n+i_ q3n+ q3n-\ _ q2„+2 + 2 q2n+1+2 - q2"-2 + 1

+ <?-' — q"+2+ 3q"+l ~3qn +3q"-]-
812 -2 qn+i+ q2" - 2q"~x+ 3 q" + q2- 3 q+ 5 - 3 q~l + q~2 - 2q~"+i

+ 3q~"~ 2+q-2n
813 -q2n+l + q2n - q2n~]+ q"+2 - 2 q',+1+4 + - q~n+x

+ 2q" — q
11 '+ q3~3^+ 4— 3qx4- q

814 q2n+
1 _2q3" +q3»-l_(?2»+2+3(?2„+l _4<?2»+3?2«-1 _ ^,-2 _ ^,+2

+ 3q"+] -4q"+3qn-] - q"'2 + q - \ + q~]

815 q5n-3q4n+] +2q4"-3q4"~l + 2q3n+2 - 3 q3n+l + 5 q3n - 3 q3n"1 + 2 q3"'2

+ <?2"+2 - 2q2"+l + 3 q2n -2q2"~x+ q2"'2

816 —q2n+2+ 2q2n+]-3q2"+2q2n~x - q2"~2 + q"+3 - 2 qn+2 + 4 qn+x -4
+ 4q"~l-2q"-2 + q"~3-q2 + 2q-2 + 2q~1 -q~2
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817 q"+2 - 2q"+]+ 3q"- 2q"1 + q"2- <?3 + + 5 - 4q '+2
_ ?-3 + q~"+2 _ 2q~"+i+3 q- - 2q+ """2

818 q„+2 _ g qn+t+ 3 q„_3 qn-
1

+ qn-2_f+ 3 4 + 7 _ 4 q-l + 3 q~2

- q~3 + q-+2- 3 q-"+l + 3 q~" - 3 q~"'] + q'"'2

819 q-3l>+3+ q~3"+l + q~3" + q~3"~X + - q~*"+1 ~ q~*"+> ~ l''"
— q~4"~l — q~4"~2 + q~5"

820 -q2n+l - q2n~] + q"+2 +2 q" + q"~2 -+ 1 - <?_1

821 ?3„+l _ qm+ ^„-1 _ q2„+2 + q2n+
1

_ 3 + ?2„-l _ q2,,-2 + 2(?"+'

-qn+2q"-]
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