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POLYGON SPACES AND GRASSMANNIANS

by Jean-Claude Hausmann and Allen Knutson *)

Abstract. We study the moduli spaces of polygons in R2 and R identifying

them with subquotients of 2-Grassmannians using a symplectic version of the

Gel'fand-MacPherson correspondence. We show that the bending flows defined by
Kapovich-Millson arise as a reduction of the Gel'fand-Cetlin system on the Grassman-

nian, and with these determine the pentagon and hexagon spaces up to equivariant
symplectomorphism. Other than invocation of Delzant's theorem, our proofs are purely
polygon-theoretic in nature.

1. Introduction

Let mVk be the space of m-gons in Rk up to translation and positive
homotheties (precise definitions in §2). This space comes with several

structures : an action of 0(k), an action of Sm permuting the edges, and

a function £ : mVk —> R'" taking a polygon p to the lengths of its edges

(once the perimeter of p is fixed). The quotients of mVk by SO^ (or
are the moduli spaces mV\ (respectively, mVk). Fixing a reflection in 0{k)
provides an involution on mVk and mpk+ whose fixed point sets are m/pk~{ and
m-pk-1

_ jYit goal of this paper is to understand the topology of these various

spaces and the geometric structures that they naturally carry when k — 2 or 3.

They are closely related to more familiar objects (Grassmannians, projective
spaces, Hopf bundles, etc.) The spaces mVk(a) £~l(a) of polygons with
given side-lengths a G R;" are of particular interest.

The great miracle occurs when k 3, because R3 is isomorphic to the

space 7H of pure imaginary quaternions, and the 2-sphere in R3 is Kahler.
The tools of symplectic geometry can then be used. Most prominent is a

*) Both authors thank the Fonds National Suisse de la Recherche Scientifique for its support.
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symplectic version of the Gel'fand-MacPherson correspondence identifying
the spaces mV3(a) as symplectic quotients of the Grassmannian of 2-planes
in Cm. Earlier occurrences of symplectic geometry in the study of polygon
spaces can be found in [Kl] and [KM2].

While this paper illustrates many phenomena in symplectic geometry, the

proofs are entirely polygon-theoretic and involve only classical differential
topology. Nonetheless, many of the examples are new, interesting in their own
right and instructive for both fields.

Among our results :

1. The identification of the polygon space mV3 with G2{Cm)/(U{\)m)
intertwines complex conjugation on the complex Grassmannian (with fixed

point set the real Grassmannian) and spatial reflection on the polygon moduli

space (with fixed point set planar polygons). The fact that 3-dimensional and

planar polygons have the same allowed values of t is then an illustration of a

theorem of Duistermaat ([Du]). (As is always true, and yet always mysterious,
it is helpful for studying the real case — here planar polygons — to extend

to the complex case — here polygons in R3.)

2. Identification of the densely defined "bending flows" ([Kl] and [KM2])
on the polygon spaces with the reduction of the GelTand-Cetlin system [GS1]

on the Grassmannian.

3. In some cases, the bending flows are globally defined, and by Delzant's
reconstruction theory the spaces are equivariantly symplectomorphic to toric
varieties (for instance when m < 6, as noted in [KM2]). We give a precise

description of the moment polytope and so explicitly identify the toric varieties.

Contrary to the usual custom in symplectic reduction, it turned out here to
be more natural to take symplectic quotients by first quotienting the original
manifold by the group, and to then pick out a symplectic leaf of the resulting
Poisson space — the intermediate quotient spaces all have natural polygon-
theoretic interpretations. However, they are never complex; readers wishing a

more geometric-invariant-theoretic construction of these spaces should look at

[KM2].
This paper is structured as follows. Section 2 gives the definitions and

elementary properties of polygon spaces. Sections 3 and 4 relate them to

Grassmannians, and prove some facts about the moment map for the torus

action on the Grassmannian by polygon-theoretic means. In section 4 is also

calculated the exact relation between the Kähler structures in this paper and

the ones in [KM2]. Section 5 relates the "bending flows" of [Kl] and [KM2]
with the Gel'fand-Cetlin system on the Grassmannian. Section 6 uses this to
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calculate the quadrilateral, pentagon and hexagon spaces. Section 7 lists some

open problems.
The study of the polygon spaces will be pursued in a forthcoming paper

[HK] in which we shall compute the cohomology ring of these spaces.
The first author was incited by Sylvain Cappell to introduce symplectic

geometry in his study of polygon spaces. He is also grateful to Lisa Jeffrey
and Michèle Audin for useful conversations. The two authors started this work
at the workshop in symplectic geometry organized in Cambridge by the Isaac

Newton Institute (Fall 1994). The second author would like to thank Richard

Montgomery for teaching him about dual pairs, and Michael Thaddeus for
pointing out the link to moduli spaces of flat connections ; also the University
of Geneva for its hospitality while this paper was being written.

2. The polygon spaces

(2.1) Let V be a real vector space and m a positive integer. Let
mT(V) be the real vector space of all maps p: {1,2, ...,m} —» V such
that YljLi P(J) — 0- An element p G mJ7(V) will be regarded as a closed
polygonal path in V

m

0 p(1) •-+-« p(l)+ p{2)Y20

j= 1

of m steps, or, alternately, as a configuration in V (up to translation) of a

polygon of m sides. We shall call an element p G mJ7(V) an m-polygon (in
V) and a proper polygon when p(j) / 0 Vj. We use the notation mTk for
the space mT(R*).

The group R+ of positive homotheties of V acts freely and properly
on mT(V) - {0}. The quotient mV(V) := (mT(V) ~ {0})/R+ then inherits
a jtructure of smooth manifold diffeomorphic to a sphere. For instance,
mpk ._ çnjrk _ {o})/R+ is diffeomorphic to the sphere 1.

(2.2) Suppose now that V is oriented and is a Euclidean space, namely
y is endowed with a scalar product. The group 0(V) of isometries of y acts
on kTm and mV(V) ; we define the moduli spaces

mV(V)+ := SO(V)\nV(V) and mV(V) := 0(V)\mV(V)
of m-polygons in V, up to similitude (where SO(V) is the identity component
of 0(V)). Observe that any orientation preserving isometry h: V ^ R^
produces identifications
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mV(V)+~ mVk+ := SOk\mVk and ~ mVk := Ok\nVk.

We shall use the fact that these identifications do not depend on the choice of
h and thus mV(V)+ and mV(V), for any Euclidean space V, are canonically
identified with mV\ and mpk.

(2.3) The "degree of improperness" of polygons provides a stratification

0 ExmV(V) C E2mV(V) C - • C Em-XmV(V) C EmmV(V) mV(V)

where

EjmV(V):={, oemV(V) I #{s I 0} > -j}
The "open stratum" E/nV(V) — Ej-xl1iV(V) is a smooth submanifold of
mV(V) of dimension (j — \)k — 1 if k — dimV. The top open stratum

mV(V) — Em-\mV(V), open and dense in mV(V), is the space of proper
polygons.

As this stratification is 0(V)-invariant, it projects onto stratifications

{EjmV\_} and {E/nVk} of the moduli spaces (using the canonical
identifications of (2.2)). We shall see in §3 that the above stratifications describe

the singular loci of smooth orbifold structures on the spaces mV(V), mV\
and mVk.

(2.4) The map p \-t \p\ := YljLi IpO')| which associates to a polygon p
its total perimeter is a norm on mJr(V). We denote by S^TÇV)) the sphere

of radius 2 for this norm. Each class in mV(V) has a unique representative in

S^TiV)) which gives a topological embedding i\ mV(V) —> mT(V) whose

image is S(m.F(V)). The image by % of Em-\mV(V) is the subset of S^TiV))
where 5(m^(V)) fails to be a smooth submanifold of However, the

restriction of i to each E/nV(V) — Ej^\mV(V) is a smooth embedding.

The map £: mT(y) —> Rm defined by £(p) := (|p(l)|,..., \p(m)\)
associates to a polygon its side-lengths. We define I : mV{V) —» Rm by £ := £oi.
We shall also use the notation £t(p) for \p(i)\. These maps are invariant under

the 0(V)-action and thus define maps (always called £)

£ : mV% —* Rm and £ : mVk —> R

which are smooth on each open stratum.

(2.5) Let r: V —* V be the orthogonal reflection through some

hyperplane n in V. One has the involution p i—> p := Top on m\F(V) and

mT{V) whose fixed-point space is naturally mJ^(lT) and mV(Tl). If he SO(V),
one has
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Toit (ro/îoTo/r1) ohoT

£SO(V)

Hence the involution descends to an involution (still denoted p p) on mp>\.

If t' is an orthogonal reflection with respect to another hyperplane IT, then

the formula Top' (r/or)orop shows that the induced involution on mV\
does not depend on the choice of r. The fixed point space of " is mpk~l.
Observe that p p in 111Vk.

Examples

(2.6) Polygons in the line. The space mVx - mV\_ is diffeomorphic
to the sphere Sm~2. Under this identification, the Oi -action becomes the

antipodal map and thus mVx is a smooth manifold diffeomorphic to RP'"~2.
For example, 3VX Sl and 3VX RP1. The stratum E2VX consists of 3 pairs
of antipodal points and thus E2VX is a set of 3 points, the three triangles with
one side of length 0. This corresponds to the fact that SQTx) is a regular
hexagon and 0\ \SQTx) is a triangle. Actually, the map t : 3VX —* R3

produces homeomorphisms

^Ex —> {(x, y, /) G R>o 1 x, + y -i~ z — 2 and ± x A y ± z 0}

(2.7) Polygons in the plane. Identifying R2 with C, the space mT2
is a complex vector space isomoiphic to Cw_1 and the (free) S02 -action
corresponds to the diagonal U{ -action. As in (2.6) one establishes the

diffeomorphisms

mpy 2 — g2m — 3

I 1

mV\ —=—t CP'"-2

The above diffeomoiphisms conjugate the involutions " with the complex
conjugations of C"'_1 and CP'"-2. Also, the involution v on mV\ coincides
with the residual O, action and therefore is the quotient of CP"1-2 by
its complex conjugation.

For example, 3V2, the space of planar triangles, is diffeomorphic to the
sphere S3. The singular stratum E2(3Vi)isa link of three circles which are
S02-orbits (therefore, any two of themjconstitute a Hopf link). The quotient
3V\ is identified with CP1 and E2(3Vl+) is a set of three points in CP1.
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Finally, 3V2 ~ CPl/{z rsj z} is homeomorphic, via the length-side map £, to
the solid triangle

3V2 3V3 {(^1,^25^3) ^ R3 I xi +*2 +-^3 2 and 0 < X[ < 1}

with boundary 3Vl.

(3.1) Let H C® C7 be the skew-field of quaternions; the space 7H of

pure imaginary quaternions is equipped with the orthonormal basis 1, j and

k ij, giving rise to an isometry with R3 which turns the pure imaginary part
of the quaternionic multiplication pq into the usual cross product p x q. The

space mT3 is thus identified with mT(IH) which gives rise to the canonical

identifications on the the various moduli spaces (see (2.2)).
Recall that the correspondence

enables a matrix P G U2 to act on the right or on the left on H. It also

identifies the group S3 of unit quaternions with SU2

(3.2) The Hopf map 0 : H —> 7H defined by

sends the 3-sphere of radius ^fr in H onto the 2-sphere of radius r in 7H. (The
formulae given in the original paper by Hopf [Ho, §5] actually correspond to

the map q 1— qkq.) The equality <j>(q) <f>(q') occurs if and only if qf ew q.
The map (j) satisfies the equivariance relation (j){q-P) — P~~x -cj)(q)-P. Writing
q — u + vj with m,ugC, one has

<p(u + vj) (Ü — jv) i(u + vj) i(I + jv) (u + vj) i\(\u\2 — \v\2) + 2Tivj]

(3.3) Observe that if q s + tj with s,t E R, then <p(q) iq2. This plane
R Q Ry of its images is the fixed point set of the involution a + bj + bj
that will be used later. Its image under <j> is RiQKk.

(3.4) REMARK. 7H, with the Lie bracket [p,q\ pq — qp 2 Im (pq),
is the Lie algebra for the group T/i(H) SU2 — S3. The pairing

3. Quaternions, Grassmannians
AND STRUCTURES ON THE FULL POLYGON SPACES

77

gives an injective R-algebra homomorphism 77 : H —» 2x2)(C). This

:= qiq
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faq>) ^ _Rt(qq<) (q,q') identifies 7H with its dual. If H - C © C

is endowed with the standard Kähler form, then the map \(p is the moment

map for the Hamiltonian action of on H (the factor ^ can be checked

by restricting the action to the S1 -action on C).

(3.5) Let V2(C777 be the space of {m x 2)-matrices

/ a\ bi \
(<L b) := e Mmx2(C)

\bmJ
such that \a\ \b\ 1 and (a,b) 0. V2(Cm) is the Stiefel manifold

of orthonormal 2 -frames in Cm. The group Um acts transitively on the left

on V?(Cm) producing the diffeomorphism V2(C7") Um/Um-2. One has

the conjugation on V2(C7") given by {a. b) i-> (a. b) with fixed-point space

the Stiefel manifold V?(R7") Om/Om-2 of orthonormal 2-frames in R".
Finally, the embedding V2(Cm) C H777 given by {a. b) ^ ar + br j....
intertwines the conjugation on V2(Cm) with the involution of (2.5) on HP".

One thus gets an embedding V?(R;") C (R 0 Rj)m.

Using the Hopf map cp of (3.2), one defines the smooth map
O : V2(Cm) — mT{IH) ~ mT3 by the formula

0(a, b) := (ô{ai + b\j). o(a2 + b2j)f... 5 6{am + bmj))

The fact that ^2ç{ar 0 brj) 0 is equivalent to (a.b) 0 and \a\ — \b\.
As \a\ \b\ 1, the image of O is exactly S^J73). By composing
with the projection mT3 — {0} —i mV3, one gets a surjective smooth map
O: V2(C"r) —> mV3. One checks that <$>(a.b) O(0. b') if and only if
(a. b) and {ab b') are in the same orbit under the action of the maximal
torus U"' of diagonal matrices in Um. This action is free when none of the

{cii.biYs vanishes, namely if and only if &(a.b) is a proper polygon. As

0(û. b) — 0(a. by, the restriction of O to the fixed points gives a smooth

map Or : V?(R;") —> 'nV(Ri 0 Rk) ^ mT2 with analogous properties. We
have thus proved

THEOREM 3.6. a) The smooth map O : V2(Cm) —» mV3 induces a

homeomorphism 6 : Uj"\V2(C7") mV3 such that 0(ä,fe) O{a. by. The

restriction of O above the space of proper polygons is a smooth principal
U'" -bundle.

b) The smooth map^ Or : V2(Rm) —» mV2 induces a homeomorphism
: Oj"\V2(R777 —» mV2. The restriction of Or above the space of proper

planar polygons is a principal O7" -covering.
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Corollary 3.7. mV3 ~ Uf\Um/Um^2 and mV2 ~ Of\Om/Om-2-

(3.8) Let G2(Cm) be the Grassmann manifold of 2-planes in Cm. The

map V2(Cm) —» G2(Cm) which associates to (a,b) the plane generated by
a and b is the projection V2(Cm) —» V2(Cm)/^2 (a principal U2 bundle),
for the natural right action of U2 on V2(Cm) C Mmx2(C). This projection is

Um -equivariant, equivalent to the projection Um/Um-2 —» Um/U2 x Um_2.

The map O : V2(Cm) —» mV3 satisfies

0((a, Z?)P) P~l 0(0, fc)P for (a, b) G V2(Cm), P G U2

The conjugation by P being an element of SO(IH), one thus gets a

map (still called O) from G2(Cm) onto mV\. The space
111V\ has a

smooth structure on the open-dense subset of non-lined polygons (which
is where the SO3 -action was free) and, above this open-dense subset,

the new map O is smooth. The map O intertwines the involutions
and so restricts to a map Or: G2(Rm) —> mV2, where G2(Rm) is

the Grassmannian of 2-planes in Rm. In this case, an intermediate

object is the Grassmannian G2(Rm) SOm/S02 x SOm-2 of oriented

2-planes in Rm with the smooth map OrG2(R,7î) —> mV\ CPm~2. The

action of Ljn on V2(Cm) descends to an action on G2(Cm) which is

no longer effective: its kernel is the diagonal subgroup À of U"1, the

center of Um, isomorphic to U\. The same holds true in the real case,

replacing U\ by 0\ (the diagonal subgroup of 0"1 is also denoted

by A).

Using Theorem 3.6, the reader will easily prove the following

THEOREM 3.9. a) The map O : G2(Cm) —> mV3 induces a homeomor-

phism O : Ujw\G2(Cm) —^ mV3 such that 0(ä, b) 0(a, by. The restriction

of O above the space of proper non-lined polygons is a smooth principal
(U\n/A)-bundle.

b) The smooth map Or : G2(Rm) —> m7Tj_ induces a homeomorphism

Or : 0^\G2{Rm) mV\. It is a smooth branched covering and, restricted

above the space of proper polygons, a principal (O"1 /A) -covering.

c) The map Or : G2(Rm) —± mV2 induces a homeomorphism

Or : Of\G2(Rm) —^—> mV2. The restriction of O above the space of proper
non-lined polygons is a principal (Of /A)-covering.
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COROLLARY 3.10. One has homeomorphisms between the polygon spaces

and the double cosets

a) mV3 ~ Uf\Um/(U2 x Um-2)

b) mV\ ~ S(0f)\S0m/(S02 x SO,„_2).

c) mV2 ~ 0'll\0m/(02 x Om-2).

(3.11) Example. As in (2.7) the example of planar triangles (m 3

and k 2) is interesting. The Stiefel manifold V?(R3) is diffeomorphic to

the unit tangent bundle to S2, in turn diffeomorphic to S02. The oriented

Grassmannian G2(R3) can be identified with S2 by associating to an oriented

plane its unit normal vector. The smooth map

Or : S2 ~ G2(R3)) —> 3V\ ~ S2

is of degree 4, branched over the 3 points. This map can be visualized as

follows : tesselate R2 with equilateral triangles. Divide R2 by the subgroup of
isometries which preserve the tesselation and the orientation (it thus preserves
a checkerboard coloring of the triangle tesselation). This quotient is a well
known orbifold structure on S2 with three branched points. The projection
R2 —» S2 factors through an octahedron with a chess-board coloring of its
faces. The residual map from this octahedron to S2 is our map Or.

Take the pullback by Or of the Hopf bundle S3 —> S2. One gets a map
of degree 4 from some lens space L onto S3, with branched locus the link
formed by three S02 -orbits. The lens space will be doubly covered by S02.
We thus get the map

Ö : S03 ~ V2(R3) —> 3V2 ~ S3

of degree 8. Finally, one has G2(R3) ~ RP2 and Or is the quotient of RP2

by the action of O] on each homogeneous coordinate. This quotient is a

2-simplex and one sees again that 3V2 is a solid triangle.

_
(3.12) Orbifold structures. The maps 6R and Or provide, for the spaces

2V2 s S2m~3 and mV\ m CPm~2, a smooth orbifold structure. Each point
has a neighbourhood homeomoiphic to an open set of the quotient of (R2)*
by a subgroup of 0\, where Ox acts on each R2 via the antipodal map.
Observe that the map O^ is a "small cover" in the sense of [DJ]. The
branched loci are flV2 and Pw_xmV\ respectively. As for mV2 we
have to add the branched locus mVx. The generic points of mV{ have a
neighbourhood modelled on the quotient of Cm~2 by complex conjugation.
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^Analogously, the map O: G2(Cm) —> mV3 gives rise, for the space
mP3, to a smooth complex orbifold structure. By that we mean a space
locally modelled on the quotient of Cs by a subgroup of U\. We define the

space C°°(mV3) of smooth maps from mV3 to the reals as the subspace of
C°°(G2(Cm)) which is invariant by the action of U.

(3.13) Riemannian and Poisson structures. Let Him) be the space of
Hermitian {m x m) -matrices, identified with via the pairing

H(m)x um — R ^ tv(HX).

This identification turns the co-adjoint action of Um into the conjugation
action on Him). Consider the map *F : A4mX2(C) —* H(m) given by
*F(a,fc) (a,b) (a, by. One has W(Q • (a, b) • P) Q- ¥((a,b) • Q*

for P G U2 and Q G Um and thus C := vF(V2(Cm)) is the Um -orbit

through diag(l, 1,0,..., 0). This proves that *F descends to a diffeomorphism
vF:G2(Cm)^>C.

The complex vector space MmX2(C) is endowed with its classical
Hermitian structure (A,B) tr{AB*), with associated symplectic form
uj{ — Im The map above and the map O : MmX2(C) —> Ho(2)
given by

are moment maps for the Hamiltonian actions of Um and U2 respectively.
One has V2(Cm) O-1(0) and thus G2(Cm) occurs as symplectic reduction

of the Hermitian vector space AfmX2(C) and thereby inherits a Um -invariant
Kähler structure, using, for instance [Ki], §1.7. (Strictly speaking, one deals

in [Ki] with compact Kähler manifolds; to fulfill this condition, one can first
divide AfmX2(C) — {0} by the diagonal action of C* to put oneself into a

complex projective space.) The residual map ¥ : G2(Cm) C C Him) is a

moment map for the action of Um on G2(Cm).

Being thus a Kähler manifold, G2(Cm) is a Riemannian Poisson manifold.
This structure descends to the complex orbifold mV3 : the algebra C°°(mV3)
admits a unique Lie bracket so that the projection G2(Cm) —> mV3 is a

Poisson map.

(3.14) It is possible to endow with a Poisson structure the space mW3+ of
configurations of all m-gons in R3, without fixing the perimeter to 2. It suffices

in the above construction, to replace the U2 -reduction G2(Cm) O_1(0)/I/2
by the SU2 -reduction G2(Cm) := O_1(0)/SU2. The latter is a non-compact

space, the total space of the determinant bundle over G2(Cm) with the zero



POLYGON SPACES AND GRASSMANNIANS 183

section collapsed. The trace function on Mmx2(C) descends to GaCC"1) and

to the Casimir function "perimeter" on mVV\.

4. Polygons with given sides - Kähler structures

We now use the map t : '"f>KmV\,mVk -> R" defined in (2.4). Recall

that i(p),forp G '"Vk,isthe length of the successive sides of a representative

of r with total perimeter 2.

For (v (o; am)GR|0 with J2"U we define

>"Vk{a):=:Vk(a) := {p G '"Vk \ a} C '"Vk.

The space Vk(a) is invariant under the action of We define the moduli

spaces

Pk+(a) :=SOk\Pk(a)C mV%

and

Vk{a):=Ok\Pk{a) i~\a) C

The space Vl(a) consists of a finite number of points and is generically

empty. We call a generic if Vl(a) — 0.

THEOREM 4.1. The map p := riO : G2(C'?/) —> Rm is a moment map

for the action of U"1 on G2(Cm)-

Proof As seen in (3.13), the moment map ¥ : G2(CWZ) —H(m) for
the Um -action on G2(Cm) is induced from Y : MmX2(Q —* H(m) given

by ^(a.b) := (a.b) • (a.b)*. A moment map p for the action of Uis
obtained by composing with the projection TL(m) —> R7" associating to a

matrix its diagonal entries. So, if IT G G2(CW) is generated by a and b with
(a. b) G V2(C/??), one has

p(U) (|fll I2 + \b\ I2..... |am|2 + |M2) b).

A now classic theorem of Atiyah and Guillemin-Sternberg [Au, §111.4.2]

asserts that the image of a moment map for a torus action is a convex polytope
(the moment polytope). The restriction of the moment map to the fixed point
set of an anti-symplectic involution has the same image [Du]. In our case,
one gets these facts directly:
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COROLLARY 4.2. The moment map p: G2(Cm) —$ Rm satisfies

/i(G2(Cm)) /i(G2(Rm)) Em, where Em is the hypersimplex

m

Em := {(x\,... xm) G Rm I 0 < Xi < 1 and 2}
/= l

Proof. One has Image (p) — Image (£). Further it is manifest that

Image(£) c Em. A proof that Image(f) Em is actually provided in [KM1],
Lemma 1, or [Ha]. We give here however another argument, for the pleasure
of constructing a continuous section a : Em —* mV2 of t. If m — 3, we have

already mentioned in (2.7) that 3V2 is homeomorphic to S3 via the map i.
Let a G Em. Define ßt := Ylj= 1 aj an<^

The numbers ßr, an 2 — /3r+i form a triple of S3 and are then the lengths of
a unique triangle r(a) G 3V2, which can be subdivided in the obvious way
to define the element a(a) G mV2(a) (see Figure 1).

The continuity of a comes from the fact that if the map r is discontinuous

at some a, the triangle r(a) is then lined.

Remarks. 1) Corollary 4.2 is also a consequence of our stronger
result (5.4).

2) The word "hypersimplex" is introduced in [GM]. Observe that H is

obtained by taking the convex hull of the middle point of each edge of a

standard (in — 1)-simplex.

We also obtain the critical values of p (compare [Ha]) :

r(a) \= min{/ | ßt < 1 and ßi+\ > 1}

Figure 1 : r{a)



POLYGON SPACES AND GRASSMANNIANS 185

PROPOSITION 4.3. The set of critical values of p on G2(C") -* or
G2(R777 —> Em consists of those points (at,.. .a,„) G E,„ satisfying one of the

following conditions :

a) one Xj vanishes;

b) one Xj is equal to 1 ;

c) there exist £/ ± 1 such that
L E/A/ 0, with at least two el 's of

each sign.

Remark. Points satisfying a) and b) constitute the boundary of E,„.
Points satisfying c) are "inner walls". Points satisfying a) correspond to non-

proper polygons. Those satisfying b) or c) are non-generic a's (Condition b)

implies that there exist ±1 such that £'x/ 0 wbh but one

of the same sign.)

Proof. The critical points of the moment map p are the points of G2(C777

for which the U\7 -action has a stabilizer of dimension bigger than 1. They are

the images of those (2 x m)-matrices in V2(C777 for which the (U"1 x^1 U%)-

action has a non-discrete stabilizer. There are such points whose stabilizer is

contained in U"1 x {1} ; they are the matrix with one row vanishing and their
values under p are the points of Em satisfying a). The other points give rise to

points in 7nV3 U]{}/NifC777 so that the action of ^/{center of Ui} — SO3

has non discrete stabilizer. Those points are the lined configurations mTx.
Their values in Em are the non generic a's, which are the points in Eni

satisfying b) or c).

We have proven most of the main result of this section: for generic and

proper a, the space V3(a) is a Kähler sub-quotient of G2(C777

THEOREM 4.4. For a G int Em generic, V\(a) is a Kähler manifold
isomorphic to the Kähler reduction U"2\p~l(a). The involution v is antiholo-
morphic and V2(a) can be seen as the real part of V\(a).

Proof By 44, one has V3(a) £~l(a) U,{1\p~l(a) and we have seen
in 3.9 that <&(a.b) 0(cy. bf.

We shall now compare the Kähler structure obtained on P+(a) from
the Grassmannian to that introduced by Klyachko [Kl] or Kapovich-Millson
([KM2], §3). Using the standard cross product x and scalar product .} on
R3, these authors put on the sphere Sj. of radius r the complex structure J
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defined by
1

9Jv := - x x v (v G TXS2)
r

and the Kähler metric

h(u,v) := -(w, v) —-(a, u x v) (u,v G TxS2r)

with associated symplectic form S(m, v) := (^u x v). Let W(a) := n^=i •

The map ß : Wa —> R3 defined by ß(z\,... ,zm) i z' moment

map for the diagonal action of SO3 on Wa. The space T\(a) thus occurs
as the symplectic reduction SO3\/3—!(0).

PROPOSITION 4.5. The complex structure J and Kähler metric h of 4.4

compare with those J and h of Kapovich-Millson in the following way :

J— J and h(u,v) 4 h(u,v).

Proof Starting from the Hermitian vector space A4 A4mX2(C) one

sees that V3(a) is obtained by two successive symplectic reductions

G2(Cm) O_1(0)/U2 and V3(a) U^\p~\a)

(we use the notation of §3). One can perform the reductions in the reverse
order. We first get

m

E/ryp-'ca) ncL
i= 1

where CPlr is the quotient of the 3-dimensional sphere

{(m,V) G C2 I \u\2 + \v\2 r}

by the diagonal action of U\. The moment map O : A4 —* 74(2) gives a

a moment map (still called O) from the product of projective spaces into

74o(2). One has a commutative diagram

nr=,cpi nr=14,

4 4
H0(2) —^ R3

where f : 74o(2) —> R3 R x C sends the matrix „
Z

] to (u,z).
V £ — u J



POLYGON SPACES AND GRASSMANNIANS 187

To prove Proposition 4.5, it is enough to establish that for all a G CP,1,

the tangent map Ta4> : TaCP1 —> Tp{a)Sl satisfies

Ta(j)(Jv) JTa(j)(v) and u(Tao(v)., Taç(Jv)) 4uj£vJv).

By Ui -equivariance, we can restrict ourselves to a [y/r.O]. The tangent

space TaCP). is identified with {0} x C and one can take v (0,1) and

jv (0. i). One has (j)(a) (r. 0, 0),

TMv) (0,2y/r, 0), Taq>{Jv) (0,0,2Vr)- ~JTaè{v)

and ù>(Ta<t>(v),Ta(j>(Jv)) =4, while ui(v,1.

Remarks

(4.6) The results of this section show that the spaces V+(a) for generic

a are the symplectic leaves of the Poisson structure on the regular part of

mV\, or mVV\ given in (3.13) and (3.14).

(4.7) If one works in the pure quaternions 7H, the complex structure J

on Si becomes

mg (V e /H).

The sphere Sj. is a co-adjoint orbit of Ui(H) and the Hermitian form w is

the Kirillov-Kostant form (see [Gu, Theorem 1.1]).

(4.8) The isomorphism between the symplectic reductions of the Grass-

mannian G2(Cm) and the product of CP1 's that underlies our results 3.9,

4.4 and the proof of 4.5 is a symplectic version of the Gefifand-MacPherson

correspondence ([GM] and [GGMS]). The fact that this isomorphism comes
from two reductions of M is the philosophy of "dual pairs" (see [Mo] and

the references therein).

5. The GelTand-Cetlin action

On mTk we have so far defined the length functions I measuring the
distances between successive vertices. We now introduce d : mTk —> Rw,
5(P) (Ip(I)Up(I) + p(2)|, |Xw=i p(0|), the lengths of the diagonals
connecting the vertices to the origin. (Only m - 3 of these functions are new,
as d(p)\ — £(p)i d(p)m^i £(p)m, and d(p)m 0. Hereafter we write only
!/. dj and the p is to be understood.)
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As with £, the function d descends to continuous but only generically
smooth functions d on mfl>k

9 m/p+ and m/pk. It is smooth where no dj

vanishes, that is to say the polygon does not return to the origin prematurely.
We call such a polygon P prodigal and call (£(P).d{P)) a prodigal value.

The set of prodigal polygons is open dense in mV+ with complement of
codimension k.

For k 3, there is in [KM2] (see also [Kl], §2.1) introduced an action of
a torus Tm~3 on prodigal polygons; the ith circle acts by rotating the section

of the polygon formed by the first i edges about the ith diagonal. (When that

diagonal is length zero, there is no well-defined axis about which to rotate,
and indeed the action cannot be extended continuously over this subset.) This
action plainly preserves the level sets of the functions c/, but more is true:

THEOREM 5.1 (KM2). On the subspace of prodigal polygons of V\(pt)>
the function d is a moment map for these "bending flows".

One important consequence of this is that the torus action also preserves the

symplectic structure. It does not, seemingly, preserve the Riemannian metric

nor the complex structure (the codimension of the singular set is not even;
see also §6).

These functions £,d lifted to V2(Cm) have simple matrix-theoretic

interpretations. For (a, b) G V2(Cm), i 1.... ,m, introduce the truncated matrices

rows of (a,b). Then the 2x2 matrix

has the eigenvalues

2 £(|ayM*/)±* (y^ßaj\2 " lfe/12

J= 1 \ V=1

These are calculable from £ and d, since

e(<S*a,b)) ,\ai\2 + \bi\2,..,)

and
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/

</(<!><«/./>» • (-.IEM'.M--)
y=i

/ / \ 2 i

+4\
\| 7 2=1

So ]C/=i is the sum of the two eigenvalues of MfM?, whereas J/ is the

difference. (Note that ^ » di as promised; M*Mi's lesser eigenvalue is 0.)

This (2 x 2)-matrix M*M/ has the same nonzero eigenvalues as the i x i
matrix M/M*. The latter matrix is more relevant in that it is the upper left
i x i submatrix of the m x m matrix (a. b) (a, b)* introduced in section (3.11).

This family of Hamiltonians — the eigenvalues of the upper left submatrices

— has been studied already in [Th] and is called the classical Gel'fand-Cetlin

system (our main reference is [GS1]). The linear relations established above

between them and d, £ are summed up in the following

THEOREM 5.2. The bending flows on mV\{a) are the residual torus action

from the Gel'fand-Cetlin system on the Grassmannian G2(C'").

The GeFfand-Cetlin action on the flag manifold has always been rather

mysterious (at least to us); it is pleasant that in this case it has a natural

geometric interpretation.
The GeFfand-Cetlin functions {G/j7</ (the jth eigenvalue of the upper

left i x i submatrix) satisfy some linear inequalities that can be established

using the minimax description of eigenvalues [Fr, p. 149] :

eiJ — ei—1,7+1 — G\ /+i •

For the polygon space functions /, d most of these say 0 < 0 ; for each
i « 0, —j n — 1 the nontrivial inequalities are

i /+1 i i+l
0 < —dj + 22 lL < —dj+1 + 22 4 < di + 22 < di+1 + 22 ^ •

4—1 4=1 6=1 6=1

But these are transparent in our situation, as they are just the triangle
inequalities

EN2-N2)

(i)
^/+1 5? dj + di+1

di < £{+1 + di+i

di+1 G -|- d[
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(The first one, di < Yl[=] ^ > can proved inductively from the others

starting from do 0.)
In [GS1] it is left as an exercise to show that (1) are the only inequalities

satisfied ; equivalently, that every point in the convex polytope Tm C Rm x Rm

defined by them (and do dm 0 and ffi ^ 2) is realized by some
Hermitian matrix. We show this directly :

THEOREM 5.3. The image of mJ>k^2 under the map (l^d) is the whole

polytope rm.

Proof We construct the polygons directly, vertex by vertex — really
establishing that each space mVk(a, 6) is nonempty (and so its quotient by
SO(k) is as well). We must place each new vertex on the intersection of two
Sk~l's, one of radius di+1 from the origin, the other of radius £i+\ from the

previous vertex. The inequalities £i+\ < dt -f di+\ and di+ \ < £t+\ + dt rule
out one Sk~x containing the other; the third inequality di < +d/+i rules

out their being separated balls. So they intersect in an Sk~2, a point or the

whole Sk~l, anywhere on which we may place the new vertex.

(5.4) Remarks

1) While the map £ is equivariant with respect to the usual action of
Sm on Rm, the map d can only be made equivariant under the involution

[i (n — 0], and the polytope Tm is correspondingly less symmetric than

the hypersimplex Em.

2) That the image of (£} d) is the same when restricted to planar polygons
has the flavor of a more general theorem of Duistermaat [D] on restricting
moment maps to the fixed-point sets of antisymplectic involutions. In fact
Duistermaat's theorem does not apply directly, because the subset where d is

smooth (and a moment map) is noncompact; in any case we preferred to give
a polygon-theoretic proof.

3) When k 3 Theorem 5.1 guarantees that the bending torus acts

simply transitively on the fiber over an interior point of Fm, making this fiber

a torus U(l)m~3 (or 0(l)m-3 when k — 2). Over a prodigal boundary point
of Tm, the fiber is still a product of 0- or 1-spheres, but fewer of them.

4) Bending around other diagonals than the ones above can be done in the

same way, the moment map lifted to V2(Cm) being the difference of the two

eigenvalues of M*M for a corresponding submatrix M of (a,b) G V2(Cm).
For instance, we take
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for the diagonal 92.4 •= p(2) + p(3) + p(4). The bending flows around two

diagonals dp,q and dp>.q> commute if and only if the pairs {p.q} and {p'.q'}
intersect or are unlinked in R/mZ.

6. Toric manifold structures on mV\(a) for m — 4.5.6

In this section, we study examples of TTj_(a) C mVJ such that the m — 3

diagonal functions ri2.... -Am-i V]_(a) —» R never vanish. The whole space

V\{a) consists of prodigal polygons and, by §5, the bending flows give an

action of a big (i.e. half-dimensional) torus on VI(a). By Delzanris theorem

(see [De], or [Gu, §1]), we can construct from the moment polytope ÀQ

alone a toric manifold which is equivariantly symplectomorphic to the space
V:]_(a). This can be achieved also by [DJ,§ 1.5], though only up to equivariant

diffeomorphism. The latter also gives the real part, the planar polygon space
V2(a), as a 2'"-3 -sheeted branched cover of AQ. We sum up below some
results of these constructions without writing all the details.

Without explicit mention of the contrary, a is supposed to be generic.

Contrary to the previous sections, we do not require that the perimeter of
our polygons is 2. It was necessary to fix the perimeter in order to define
the map £ and the value 2 is the natural choice to deal with the map
O : V2(C"r) —> mVk. But mVk(a) makes sense for any a G R>0 and so do
the various moduli spaces mVk(a). etc. When ^ a,- 2, the polytope Aa is

a slice through the Geflfand-Cetlin moment polytope Tm of § 5 : for general
a it is a homothetic copy of this section.

(6.1) m 4 : The condition which guarantees that d2 never vanishes is

Gi 7^ ai or a3 ^ a4. The space of quadrilaterals 4V:i(a) is then a compact
toric manifold of dimension 2, therefore diffeomorphic to CP1. The moment
map d2 has image the interval Aa := 7) n I2 where

1\ ;= [|a] - q2|. ai + a2] and I2 := [|a4 - a3|. a4 4- a3].

The space AV2{a) is RP1. The quadrilateral spaces 4"P2(a)+ have long since
been classified (see for instance [Ha]). One has

1U Sl when Ix C h or h c I\
otherwise
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Observe also that a is generic if and only if the boundaries of the intervals

1\ and I2 do not meet.

By the Duistermaat-Heckman Theorem [Gu, §2], the symplectic volume of
4V3(a) is equal to the length of Aa. We would then obtain the same length

if we had used the other diagonal |p(2) + p(3)|. This produces a statement of
elementary Euclidean geometry : the variation intervals of the two diagonals
of a quadrilateral with given sides in R3 are the same length.

(6.2) m 5 : Conditions for which both d2 and d2 never vanish are

for instance a\ ^ a2 and d4 ^ 0^5. The space of pentagons 5V\(a) is then

a toric manifold of dimension 4. The moment polytope Aa G R2 for (d2,d2)
is the intersection of the rectangle Ia

with the non-compact rectangular region

-= {(x.y) e (R>o)2 \x + y>ai and y > x — a3 and y < x + a2}

(see Figure 2). One sees that Aa has at most 7 sides. The generic a are

exactly those for which the boundary of Qa contains no corner of îa and

5V\(a) is then obtained by symplectic blowings up from CP2 or S2 x S2.

The space of planar polygons 5V\ (a) is a closed surface obtained by gluing
4 copies of and its Euler characteristic is given by the formula

/a := [fai - a2\ s a\ + a2] x [|a5 - a4|,D5 + a4]

oc2| 5^ aj+ a2

FIGURE 2 : The moment polytope Aa
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x(5P2(&)} 4 — # (sides of Aa)

(see [DJ], Example 1.20) and is orientable if and only if Ia C uja. One has

of course x(5^2 <A>) 2X{5V2(a)) and 5V\(a) is an orientable surface

(mV+{a) is always orientable). The possible cases, depending on the number
of sides of Aa, are summed up in the following table.

# of sides V\(a) V2(a) V\(a) Ex. of a

3 CP2 RP S2 (2,1,5,1,2)

a) CP2#CP2 Klein bottle T2 (3,2,5,1,2)

4 or

b) S2 x S2 T2 T2U T2 (3,1,3,1,3)

5 (S2 x S2}#CP2 r2#R/>2 (2,1,3,1,2)

6 (,S 2x S2) # t2#2Rp2 £3 (2,1,1,1,2)

7 (S2 x S2)# r2#3RP2 S4 (4,3,4,3,4)

Figure 3 :

(6.3) Some embeddings of the regular pentagon a (1,1,1,11)
are not prodigal. However none are lined and thus the moduli space
Vo 5V3(a)is diffeomorphic for small e to V£ where Ve := 5V3(ae) and
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a£ :=(l+£,l,l,l,l+£). The moment polytope for a£ has then 7 sides and

thus V0 ^ V£ is diffeomorphic to (S2 x S2) # 3CF (if k 2, 5V2(a)+ ~ Z4).
The "limit moment polytope" is shown in Figure 3.

The pre-image in V£ of the segments {x e} D A'a and {y e} Pi A'a

are 2-spheres of symplectic volume proportional to e, by the Duistermaat-
Heckman Theorem. Passing to the limit Vq these spheres become Lagrangian,
and so cannot be complex. This shows that the action of the bending torus is

not complex — these polygon spaces are only equivariantly symplectomorphic,
not equivariantly isometric, to toric varieties.

(6.4) Any class r G 5Vk=2,3(a) has a unique representative in p G 5Pk(a)
with p(5) (—a5,0,0) and y(r) := p( 1) + p(2) in the half-plane
H {z 0,y > 0}. This provides a map 7 : 5V3(a) —> 7i whose

image AQ is the intersection R\ D R2 fi H where R\ and R2 are the rings

R\ := {u G R2 I \a\ — a2\ < |u| < a\ + a2}

R2 '.= {u G R2 I |a4 — a21 < |u| < a4 + 0^3}

Figure 4 :

The idea of reconstructing 5V2(a) by gluing copies of Aa goes back to

the early works of W. Thurston on planar linkages (see [TW, p. 100]). The

relationship with our theory is the following : the domain Aa is straightened up
into a PL-polytope Aa in R2 by the map v (\v\,\v — (0, <25) |) and Aa is

just the moment polytope for the bending Hamiltonians d\(p) |p(l) + p(2)|
and d2(p) \pO)+ p(4)|

(6.5) m 6 : The conditions a\ 7^ a2 and as ^ a6 imply that d2 and

d4 never vanish. However, one cannot guarantee generically d2 ^ 0. But we

can replace the d (d\1d2,d2>) by 6 := (<9i, d2,d2) where
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9, := dl |p(l) + p{2)1dl := |p(3) + p(4)1 := d3 |p(5) + p(6)|

and guarantee non-vanishing of the ô,'sby the generic condition asz-i 7^ a2/-

Observe that 9,o<I> : V2(Cm) —> R (i1,2,3) are the functions on V2(C"')

given (on (a. b) G V2(C'")) by the difference of the eigenvalues of the (2x2)-
matrices M*M/, where

«-=(:»:) «-(:»:)
The moment polytope in RJ is the intersection of the rectangular parallelepiped

Ia \= [|ai - a2|. ai + a2] x [|a4 - a3|. a4 + a3] x [\a6 - a5|, a6 + a5]

with the region

Q := {(x. y. /) G R3 | 0 < z < x + y 0 < x < y + z and 0 < y < x -f z}

The domain Q can be described as the convex hull of the three half-lines

{0 < x y and z 0} {0 < y — z and x 0} {0 < z x and y 0}

or the cone R+ • E3 on the hypersimplex E3. The polytope Aa has then at

most 9 facets. The length-system a is generic when the boundary of does

not contain corners of Ia. As 6 is even, the regular hexagon is not generic :

67^!( 1..... 1) contains 10 elements.

(6.6) The bending flows d occuring in (6.4) and 6 admit the following
generalization. For m 2n — 1 or 2n, we define the even-step map
e : mTk —* nTk by e(p) (/) := p(2i — 1) + p(2i) taking e(p)(n) := p(m)

if m is odd. We also call e the induced maps mVk —^ nVk\ mV\ —^ nV\
and mVk —-h« nVk. We call p G mTk even generic if e{p) is a proper
polygon. Above the space of proper polygons, the map e is a smooth

locally trivial bundle whose fiber is a product of (k — 1)-spheres. Define
d — (d\. dn) : mTk —> R/2 by d := toe. The map d gives the side

lengths of the new polygon e(p). It is always continuous and smooth when

e{p) is a proper polygon. As the map e is a submersion on even-generic
polygons, the critical values of 9 are the same as those of £, the walls of 4.3.

As for the map f, the map 9 can be defined on each mVk(a). Call a G Rm

even generic if mVk(a) only consists of even-generic polygons. For instance,

a is even-generic if a2/-i ot-ii for all 9 When k 3, 9 is a moment map
for the corresponding bending action of Tn defined on even-generic polygons.

Restrict to m1-:,3(a)+ for an even-generic a. Define the right-angled
polytope
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I°t •— — U2/-I I' a2i + &2i— 1 ]
/— 1

and consider the convex polytope Aa C Rn

f /ftn (R+ • En) when m 2n
Aa ;= <

I Ia H (R_|_ • n {x„ |p(m)|} when m 2n — I

Proposition 6.7. 1) The image of d : mVk(a)+ —» Rn the whole

polytope Aa.

2) If x E Aa is a regular value of d, the even-step map e induces, for
m 3, a symplectomorphism from the symplectic reduction Tn\d~l(x) onto

nV\(x).

7. Remarks and open problems

(7.1) Is there an octonionic version of Section 3 Alternately, are there

Ui(H) bendings in dimension 5 (like the U\(C) bending flows in dimension 3

and U\(R) flippings in dimension 2)7

(7.2) Observe that the inclusion mVk C m/pk+l becomes a bijection when
k > m — 1 (triangles are always planar, etc.). In what ways are these spaces
mspm—1 more natural than the unstable ones

(7.3) The m-polygons whose first diagonal is of a given length forms
a sphere bundle over a space of (m — 1)-polygons. (For k 3 this is just
symplectic reduction by the first bending circle.) This gives an inductive way
to construct the space of m-polygons by gluing together (sphere bundles over)
the spaces of (m — 1)-polygons; it would require identification of these sphere

bundles, which in k 3 might be done using the Duistermaat-Heckman
theorem (where the circle bundle is determined by its Euler class).

Alternately one might work out the fibers of the whole map d of section 5.

Unfortunately in dimensions above 3 these are always singular (at, in particular,
the planar polygons).

(7.4) In [KM1] and [Wa] there are presented "wall-crossing arguments"
for identifying the spaces mV2(a). It would be nice to relate these to a

combination of [Du] and the paper [GS2], which presents its own wall-crossing

arguments for any symplectic reduction by a torus.
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(7.5) A space of great interest nowadays is the moduli space of flat SU(2)
connections on a punctured Riemann sphere — in the language of this paper,

geodesic polygons in S3 (rather than R3). The spaces here can be seen as

limiting versions where the radius of S3 goes to infinity. We do not know how

to adapt the Gel'fand-MacPherson correspondence to this case; one definite

complication is that it is no longer the symmetric group but the braid group
which permutes the edges, and that action is not complex.

(7.6) By averaging the Riemannian metric with respect to the bending
torus, one can deform the complex structure on a space of prodigal polygons
to that of the corresponding tone variety. Is the original complex structure
that of a toric variety (not just in the same deformation class)
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