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164 G. TENENBAUM

2. Functions of moderate growth

In this section, we investigate uniform distribution on divisors and
effective pp / upper bounds for the discrepancy in the case of functions /
for which the sets sd{z\f) defined in (2) may be tackled by Theorem 4

or techniques of similar strength.
We say that a function /: R+ -> R+ has moderate growth if it satisfies

for some increasing function R satisfying (6) and having the property that

An easy calculation shows that this implies R(x) > exp {(log x)c} for some

positive c.

Our first result establishes a connection between usual uniform
distribution modulo 1 and uniform distribution on divisors. It was announced,
with a sketched proof (and incidentally a slightly deficient statement),
in [13].

Theorem 9 (Hall & Tenenbaum). Let F:R+ R* be differentiable
and satisfy

(i) F\x) o(1) (*-><»),
(ii) is uniformly distributed modulo 1.

Suppose that 0:R+->R + has moderate growth and is ultimately of
class C1. Furthermore assume that, for large x,

(32) x*->xQ'(x) is monotonie, and 0(x) x0'(x)log*
Then f : F o 0 is erd.

Proof. We observe that the assumptions on 0(x) imply that 0(x) - oo

and in fact 0(x) > (logx)c for some positive c. Moreover, we may modify 0

on any fixed, finite interval and hence assume without loss of generality that

0'(x) exists and is positive for all x > 0, and that (32) holds for all x > f.
Let z e (0, 1). We shall show that Dsd(z\f) - z, which implies the

stated result in view of Theorem 1 : indeed, the cases z 0 or 1 then follow
by a straightforward argument. For fixed s e (0, min (z, 1 - z)), we set

(30) f(t) < R(t°^) (t^ oo)

(31) lb > 0:R(]/~t) < R(t)l~b (t>l)

(8) : {d ^ 1 : <F([0(rf)])> ^ z ± 8}
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Our first aim is to prove that

(33) ô.o/±(e) z±e
We only consider s/+(e) since the other case is similar. Let x be large

and put N [0(x)]. Denoting by \ji the inverse function of 0, we have

(34) X ~= L X + 0(1 + log (x/y (TV)))
d^x d 1 ^ n < N \|/(/7) < d ^ \\i(n + 1) d

d e &?+ (s) (F(n)) ^ z + e

where the error term corresponds to those d with d ^ \j/(l) or i|/(iV) ^ d ^ x.
The inner sum is

a(n) + 0(\/\\}(n)), with a(n) := log(\j/(/3 + l)/\j/(ft)) •

Since 0 has moderate growth, we certainly have Q(x) < x0{l) < }/x,
whence \|/(«) > n2. Therefore the double sum on the right-hand side of (34)
is equal to

(35) X a(n) + 0(\) (z + s) X X + O(l)
1 ^ n < N n < N n < N

(F(n)y ^ z + s

where

1 - (z +s) if (F(n)) < Z + e,

- (z + s) otherwise.

We have tQ'(t) ^ to0'(to) > I for t ^ t0i so 0(a:) - 0(cx) > 1 for
sufficiently small c and large x. This implies ex ^ y (AT) ^ x and hence

log (x/y (TV)) < 1, £ a(n) log \|/(AO + O(l) logx + O(l)
n <N

Inserting these estimates into (35), we see that proving (33) reduces to
showing the asymptotic formula

(36) X X(n)a(n)o(logx)
n < N

This will follow by partial summation, noting that the assumption that
(F(n)}"=1 is uniformly distributed modulo 1 immediately implies

(37) H{y):= X %(n) o(y)
n ^ y
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We first observe that we have for all y ^ N - 1

(38)
a{y),r^dt=r «

)yV(0 J;, V(06'(v(0)
fy+l log \|/(0 log \y(j> + 1) log

at <

where we have used (32) in the third stage. Now the left-hand side of (36) is

N- 1 fN-l
a{y)AH{y)a(N- 1 )H(N-1) - I

By (37) and (38), and since

a'(y) l/y{y + l)0'(yO> + 1)) - l/vOOO'CvOO)

has constant sign for large y by the monotonicity assumption on x0'(x),
this is

logx
o(N) + o

N || a'{y)ydyô(logx)+ || «OOdyj

where we estimated the integral over a'(y) by another partial summation.

Now

t"-1 f*+i V'(0 fNf'(0
a{y)dyl I dtdy ^ | logx + 0(1)

1 Jl JyV(0 Ji V(0

This shows that (36) holds and hence establishes (33).

We may now apply Theorem 4 to the sequences sd± (e): indeed they are

composed of at most [0(x)] + 1 blocks, and this has the required order

of magnitude since 0 is of moderate growth. Thus we obtain

(39) T>sd± (c) z ± E

From the facts that 0(d) oo and F'(x) o(l), we deduce that, for
each s > 0, there exists a d0(s) such that

|F([0(d)])-F(0(rf»|<8 (d>d0(s)).
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This implies that for all n

t(n, sé~ (s)) - do(s) ^ T(n, sé) < t(n, ^+(s)) + d0(e)

whence, in view of (39),

{z - s + o(l)}x(«) < T(n, jaf) ^ {z + £ + o(l)}x(fl) pp

Since s is arbitrary, a routine argument yields x(«, ^) {z+o(l)}x(«)pp,
as required. This completes the proof of Theorem 9.

The following corollary was also stated (with a slight oversight in the

monotonicity assumption) in [13].

Corollary 4 (Hall & Tenenbaum). Let f:R + ~>R+ be differentiate

and such that\ for some function 0(x) satisfying the conditions of
Theorem 9,

(i) Q'(x)/f'(x) + 1 /xf'{x) is ultimately monotonie,

(ii) I B'(x)/f'(x)I + I xf'(x)Io(0(x))(*-> oo)

Then f is erd.

Proof. Set 0i(x):= 0(x)logx. Then 0i also satisfies the assumptions

of Theorem 9. The only condition which is non-trivial to check is that (30)
holds for / 0i; however we have by (31), for some function r|(x) -> 0

sufficiently slowly,

0i(x) R(x^x)) logx ^(x211^)1 ~b\ogx < R(xly\{x))

We also observe that 0J(x)/0i(x) x 0'(x)/0(x) by (32).
It is clear that 0i is ultimately strictly increasing, and hence ultimately

one-to-one. Let yi denote the inverse of 01, and put F{x) / ° tyi(x) for
sufficiently large x, so that /(x) F(0j(x)). We want to apply Theorem 9

to F and hence must check that F'(x) o(l) and that {T,(«)}^°=1 is

uniformly distributed modulo 1.

By a well-known criterion of Fejér (see e.g. Rauzy [20], corollary II. 1.2)
we only need to prove, in addition to F'{x) o(l), that F' is ultimately
monotonie and that xF'(x) -» oo. Since, for large x,

F'(e,(x)) f'(x)/B[(x)x f'(x)B(x)/B'(x)el(x) -4 xf'(x)/Q(x)
Ql(x)F'(Bi(x)) - f'(x)Q(x)/Q'(x)

our assumption (ii) implies that F'(x) -> 0, xF'(x) oo. Moreover, replacing
B\(x) by 0'(x) + 1 /x in the first equality above yields, by assumption (i),
that F' is monotonie. This completes the proof of Corollary 4.
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Our next result provides effective pp / bounds for the discrepancy under
slightly stronger assumptions. This is a refinement of theorem 5 of [13] and
is obtained by the same technique. The proof has been (re)written jointly
with R.R. Hall.

Theorem 10 (Hall & Tenenbaum). Let /: R+ R+ be continuously
differentiable, such that xf'{x) is ultimately monotonie. Assume that, for
some increasing function R satisfying (6) and (31), there is a further
non-decreasing function cp:R+-»R+ such that cpj (x) : (logx)/cp(x)
is ultimately non-decreasing and

(40) cp(x) > (log2x)2, cpi(x) oo

(41) l/(p(x) x | f'{x) I R(e^{x))

Then f is erd and we have for any ^(n) oo

/ log (pi (ft)\QW/2
(42) A(n\f) < t(7?)E,(t?) I 1 — I logtvdn) pp/

\ 21og2n

We note that the upper bound (42) is always non trivial under the conditions
of the theorem. It yields in fact

(43) A (n; f) < (n) ~1/4 + 0(1) pp/,

since the normal order of Q(^) is log2ft. It is clear that the theorem only
applies to functions of moderate growth, and one can get a fairly precise

idea of the quality of the quantitative result by considering the functions

f(x) (logx)a with a > 0 and f(x) (log2x)ß with ß > 1. In the first
instance we may choose cp(x) (logx)1_a + (log2x)2, and hence obtain

(44) A(ft ; loga) < t(^)1 _K(a) + 0(1) pp/

with K(a) - log (l - \ min(l, a))/log 4 > 0. In the second instance, we

select cp(x) (logx)/(log2x)ß_ 1 and get similarly

(45) A(n; log2) < t(«) (log2 n) ~(ß~1)/4 + 0(1) pp/
From the point of view of constructing Behrend sequences, the uniform

distribution approach is usually weaker than the block sequences technique
developed in the author's recent paper [24], which rests upon a probabilistic
argument. This is to be expected since, in the former case, one derives the

conclusion from a very strong hypothesis (namely that f(d) is occasionally
small modulo 1 because the corresponding frequency is asymptotically equal

to the expectation), whereas, in the latter case, the density of the set of
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multiples is tackled by an ad hoc method. Thus, from (44) one can only

infer, via Theorem 3, that

(46) j/(a, t) := {d > 1: <(logd)a> ^ (log ^/) -r}

is Behrend for t<K(a)log2= log (l — |min(l,a)), whereas

Theorem 1 of [24] provides, after a straightforward calculation, the larger

range

(47) t < t0(a) := (log2)min{l, a/(l - log2)}

which is sharp except for the possibility of taking t t0(a). However, some

upper bounds methods for exponential sums are so powerful that the

discrepancy approach enables one to deal with block sequences composed
of intervals which are far too short for the induction technique of [24] to be

applicable. We shall discuss some examples of this situation in the next two
sections.

At this stage, it is worthwhile to note that one can deduce lower bounds
for the discrepancy from theorem 1 of Hall & Tenenbaum [15], which
provides a necessary condition for block sequences to be Behrend. Indeed,
if a block sequence s>/ is defined, for some function s (ri) which fulfils the
assumptions of Theorem 3, by a formula of the type

{ d>1 : </(</)> < z(d)}

and yet does not satisfy the corresponding necessary condition of [15],
we may deduce that

A(«;/) SÎ s(n)r

on a set of positive logarithmic density. Actually the necessary condition
of [15] and the sufficient condition of [24] are "adjacent" (in a sense
precisely described in [24]), and it follows in particular that the sequence
s/(a, t) of (46) is not Behrend when t > ?o(ot). As a consequence, we
obtain that, for all a < 1 — log 2, the lower bound

(48) A(«;loga) > (log«)lo82~,o(a) + °(1) (log«)(lo82)(l-a/(l-log2)) + o(l)

holds on a set of positive logarithmic density. It is not very difficult to
show by a direct argument (using theorem 07 of [14] or exercise III.5.6
of [25]) that (48) in fact holds pp.

The true order of magnitude of A(«,loga) pp is an interesting open
problem, especially in the case a 1. From (44) we have

A(rc; log) < x(«)1/2 + 0<1) pp/,
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and, as shown in section 5, the exponent \ can be further reduced to
log (4/7i)/log 2 « 0-34850 by exploiting the additivity of \ogd. However,
in view of the fact explained above that jaf (1 ,t) is Behrend for all t < log 2,

it seems not unreasonable to conjecture that

A(/?; log) t(fl)0(1) pp/.
For the sake of further reference, we make the following formal and more
general statement.

Conjecture. Let 1(a) be the infimum of the set of those real
numbers £, such that A(ft;loga) < x(«)^pp/. Then for all positive a

we have

1(a) 1 - t0(a)/\ogl max{0, 1 - a/(l - log 2)}

It follows from (48) that 1(a) ^ max{0, 1 - a/(l - log2)}

Proof of Theorem 10. We use Theorem 7 with 0 < y0 < 4, and set

out to find an upper bound for

cw,.,. v (y\a(m) e(vf(km))
Ay \K) — L I I

m i \4/ m1 + °

where 0 ^ y ^ y0, o 1/logx and v, k are positive integers. Let x0 be so

large that xf'(x) is monotonie, and (Pi(x) is decreasing, for x > x0. It will
be convenient to introduce a parameter M M(k) such that

(49) M>xo,<P(kM) < j log 1)

Such an M exists since (p(£M)/logM ~ 1 /(pi(kM) -> 0 as M-> oo for
each fixed k. We note that for u ^ M(k) we have

log(ku) log(ku) q> (kM) log (ku)
(p (ku) ^

cp i (ku) cp i (kM) log (kM)
logM log (£u),^ 2 ^ 2 'OS2

log (kM)2
For given k,v ^ put h(u):=e(v/ (ku:= 4)a<m>,

so that

h(u)
(51) Sv(k)=\ -±-l-dA(u),Îoo

1-
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and by (6), since 0 < y ^ y0 < 4,

1/2

A(u) I u1~t dXy/4(t) + 0(u/R(u))
o

We insert this into (51), make the trivial estimate | h(u) | ^ 1 for u ^ M
and integrate by parts on [M, oo) the contribution of the remainder term.
We obtain

h(u) 1/2

Sv(k) 0((logM)y/A) + —- (1 - t)u-(dXy/4(t)du
J u Jo

+ o (—) - [* A o (—) du.

The last term is

^(^cp(^w)) _|_ 1

(52)

f00 u I h'(u) I + I h(u) I f
I du < v I
J M U^°R(u) J

du
1,1 + 0 D/iAM ui + °R(u)

i?(l/w) f°° v
v I du<«v

ul + °R(u) lMtt/?(w)è

where we have used (50) in the third step, and (31) in the fourth. Next,
we consider the main term in Sv(k).This is

(53) I (1-0 I
1 1 ,,1 + c + r

h(u)
du

ij 1 + o + t
M U

t~y/4dt.

We substitute uMe"inthe inner integral which becomes

f" e(v/(£Me")) j _ f" H\v)f00(G +du ^ do ^ v 7
do

1 A/To + t „(n + fît) \ '
0 Ma + 'e<-a + ,îv J0 Ma + 'e^a + '^ I M0 + 'e(° + '>«

f°°
Jo + U

with H(v) : e{vf(kMewj)dThefunction

d
r—- \ vf(kMew)} vkMewf'(kMew)dw
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is monotonie on the whole half-line w ^ 0 by the choice of M, and, by (41),

it is > v/(p(kMew) > v/(p(kMev) for w ^ v. By a well-known lemma on

exponential integrals (see e.g. Titchmarsh [26], lemma 4.2), we obtain that

H(v) < v-I(p(kMev)

so the upper bound in (53) is

1 f1/2 f" (o + 0<P(A
dvdt

v Jo Jo Ma + te{a + t)vty/4

At this stage, we note that q>i(x) (Pi(x') for 1 ^ x ^ x'. This readily
follows from the facts that (pi is non-decreasing for x > x0 and that

(p(x) x 1 for 1 <x^x0, so we omit the details. Therefore, we have for
1, h > 1,

/e N „ lo^ to«1! ,e,(54) (P(Çti) —« —— + —— <P(0 + tp(Tl) •

(Pl(^Tl) <Pl(^) <Pl (T|)

Thus, the last double integral is

i/2^,+ rr (o+°(p(e") d^.
0 M'F/4 J0 J0 M'eto + ^ty*

The first term can be computed explicitly. In the inner u-integral of the

second term, we substitute v w/(g + t) and split the range at w 1. We

obtain altogether

(j) (p w/(o + 0)
(p(kM) (logM)y/4"1 + I I — dwdt

Mtewiy/4

1/2 poo

0 Jo

f1/2 (p(el/(° + t}) f1/z r00 (p(ew/(°-+*h
(p(kM) (logM)y/4~ 1 + I — —- dt + I — dwdt

Mtty/4 J0 J j Mlewty/4

r/2 r°° w(p(^^tG+h)
< {<$>(kM) + q>(eu°)}(\ogM)y/4-1 + I I dwdt

Jo Ji Mtewty/4

< {(p(kM) + (p(e1/G)}(logM)->;/4~1

where we have used in the penultimate stage the upper bound

w w
(p(ew/(a + t)) w(p(e1/(G + /))

(o + t)(Pi(ew/{o + t)) (o + t)(pi(el/(ü + t))
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Collecting our estimates so far and inserting them into (52) we obtain,
since el/o x,

Sv(k)<(logMH/4 + vi? (M)~ b/1+ v"'{(p(kM) + cp(x)}(logM)-v/4~1
(55)

« (log M) ï/4 + vi? (M) "0/2 + v -1 (p (x),

as cp (kM) ^logM by (49). Let C be an absolute constant which is at
least three times as large as the implicit constant in (54). We select

so that, when x^Xi(C), we have cp(M) ^ (l/2C)logM (because M is

large) and hence

(p(kM) ^ 5 C{<p(M) + cp(Â:)} < ± log | log \ log

Thus (49) is satisfied with this choice of M. Moreover, we also have

cp(x)/v logM, so we finally obtain from (55) that

Sv(k) < (logM)y/4 + vR(M)~b/1 < cp(k)y/4 + q>(x)y/4 + vR(e(y{x))~b/1

<(p(jc)^/411 + j + vi?(ei>W)-i/2

where we have used in the last stage the inequality (Pi (v) ^ cpj (k) for k ^ x.
We are now in a position to embark on the final part of the proof.

Inserting the above estimate for Sv(k) into (25), we find that

M : £C(pW + (PW

Hv(x,y)= I y
4

Sv(k) I2 cp(x)y/2(logx)y/4 +
v2(log x)y/4

k= i \4 kl + ° R(e^))b
Hence, for T ^ 2,

1 ^ v < T V

We therefore deduce from (24) that

X - Hv (x) <cp(x) y'1 (log x) y* log T +
r2(iog x)y/4

R(e<PM)i

(log x)y~1
< ——— + (p(x)^/2(iogx)^/2-I(iogr)2

r2(iogr)(iogx)4'/2-'
R(e<pW)i
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We choose T q>\(x)y/4 (logx/<${x))y/A. The upper bound above

becomes

(56) (p (x)y/2 (log x)y/1 ~1 (log cp i (x))2

Indeed the last term is easily seen to be negligible by the lower bound (40)

imposed on (p(x), and because R(x) exp{(logx)4/7} is an admissible
choice for R. Thus we may define E2(x,y) as being equal to a suitable

constant multiple of the right-hand side of (56), and apply Theorem 7 to
obtain that

(57) A(«;/) « i,(n)T(n)ya^/2)/E2(n,y)pp/,
provided 0 ^ y< y0<4andy y{n) is such that E2(n,y) is slowly
increasing as a function of n. We choose

z/in- '°ei>(">) -1/(1- '""''"h,
/ \ log2n J / \ 2 log2 n

which minimises (log n) ~logyE2(n, y) up to a power of log2(Pi(ft). This
value of y is always in the range [1,2]. Inserting into (56) yields

Ei{n,y) x (logcpi(fl))2

which implies that this function is slowly decreasing. The required estimate (42)
hence follows from (57). This completes the proof of Theorem 10.

3. Functions of excessive growth: the case f(d) da

Here, we address the problem of bounding the discrepancy pp/ for
functions which increase too fast for the techniques of the previous section to
be applicable. More precisely, let us recall the quantity

0° / y\ I
(58) Hv(x,y):= I \-\—k=i \4j kl + °

with o: 1/logx, which appears implicitly in the upper bound (26) of
Theorem 7 for the discrepancy A (/?;/). This was primarily defined for

y < 8, but we restrict if here to values of y ^ 4. The functions of moderate

growth are essentially those for which the inner m -sum can be estimated by

partial summation, using the available results on the mean value of
m^> (y/4)Q(m). When the rate of growth of / prohibits such a treatment,
we may consider Hv(x,y) as a 'type II sum', according to the poetic

£ e(yf(km))
m i \4 / m1 + G
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