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element Hq, et. We may and shall choose the positive roots so that they take

strictly positive values on H0. The action of W on t is generated by
reflections about the kernels of the positive roots.

Since each m, is also preserved by ad(t), we can choose an orthonormal
basis {Xi,Xv + i} of m, such that, for H et, the matrix of ad(H) |m. with
respect to this basis is

0 a(H)\
-a (H) 0 /

Note that the «^-invariance of the inner product < > implies, for all
1 ^ i ^ v, all 1 < j ^ 2v and all H e t that

<//, [Xi9Xj]> {[H,Xi\,Xj) - ai(H)(Xi + v,Xj)
By orthonormality, this last pairing can only be nontrivial if j i + v.
Hence if j =£ i + v, we have [Xt, Xj ] em. The same thing happens if
i > v and j ^ i - v.

On the other hand, for 1 ^ i ^ v, set Ht [Xt ,Xv + i]. This is

Ad{T)~invariant, so Ht e t, and ad(Hi)mi Q m,. It follows that the span
of Xi,Xi + v, Hi is a Lie subalgebra of g. It is always isomorphic to §u(2).

3. Invariant Theory

All proofs missing from this section may be found in the textbook [H],
the expository article [F], or [Bk].

(3.1) Let

oo /

@ <Xp and A ® (/ dimt)
p 0 q 0

be the symmetric and exterior algebras on t*, respectively. The adjoint action

of W on t induces representations of W on 9* and A by degree-preserving

algebra automorphisms. For example, the action of IF on A7 is multiplication
by the sign character

e:W^{± 1} given by e(w) detAd(w)t

Note that s(w) is the parity of the number of reflections needed to express

Ad(w)t.
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We are interested in IE-invariant polynomials, and more generally,

W-invariant differential forms with polynomial coefficients. For the unitary

group U(n), the ring of invariants is generated by the elementary

symmetric polynomials Si, ...,sn in variables X\, defined as

Sd(x1,...,*„)= F X,-,
1 ^ < • • • < i(j ^ n

The elementary symmetric polynomials are algebraically independent, and

their number equals the dimension n of a maximal torus of U{n). In general,

we have

(3.2) Theorem (Chevalley). The ring 5^ has algebraically
independent homogeneous generators Fx, F/, hence is a polynomial ring

9W R [Fl9...,F,]

We number these generators so that deg Fx ^ deg F2 ^ ^ deg Fi.
(Note to experts: Since we are not assuming G to be semisimple, some of
the F- s could have degree one.) The exponents mx ^ m2 ^ ^ m/
of W acting on t are defined by the relations mt + 1 degF/. It is known
that mx + • • • + mi v, and (1 + m{) • • • (1 + mi) \ W\.

Every compact connected Lie group is, up to finite covering, the product
of a central torus with a direct product of classical groups SU(n), SO(n),
Spin), and exceptional groups G2, F4, E6, E2, E8. For these groups the m - s

are given as follows:

SU(n): 1,2, ...,n - 1. SO(2n): 1,3, ...,2n - 3, n - 1

SO(2n + 1) and Sp(n): 1, 3, 2^-1.
G2: 1,5. F4: 1,5,7, 11.

E6: 1,4,5,7,8,11.
E1: 1,5,7,9, 11, 13, 17.

E% : 1,7, 11, 13, 17, 19,23,29.

These numbers are easy to verify for the classical groups and G2 (whose
maximal torus T is that of SU{3) with Weyl group S3 extended by the inverse
map on T), using elementary symmetric polynomials as above. Computing the
exponents for the other exceptional groups is more difficult. See [C].

(3.3) The IE-module structure of the whole polynomial ring 9* is given as
follows. Let Q be the ring of constant coefficient differential operators
on .r. We can think of as the symmetric algebra S(t), where Hei
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corresponds to the derivation of 5^ extending the functional on t* given by
evaluation at H. Then PLacts naturally on & and one defines the "harmonic
polynomials" in & to be those annihilated by the PL-invariant differential
operators :

^ {/ 6 9*: 2)wf 0}

Let %fp - n 2/p. Then ®p2^fp9 since a differential operator
is PL-invariant only if each of its homogeneous components is so. The action
of PL on .5^ leaves 2tif invariant.

Let be the ideal in & generated by the elements of of positive
degree. It is known (see [H, p. 360] that 5^= c/", and the multiplication
map is a linear isomorphism ® â?w ^ 5^. The former implies that
cf'/.f and are isomorphic PL-modules. They are in fact isomorphic to
the regular representation of PL, as we shall see in (5.4). The isomorphism
2#* (x) 2/w — .9^ implies the identity

i
Y, dim 2^ptp n (l-M+/2+.-.+ tm/)

p~2- o / 1

which in turn shows that dim 1, and 2^p 0 for p > v.

(3.4) Let V be any irreducible PL-module. Suppose V is a constituent
of 9^b, and not a constituent of l^c, for any c < b. We call b the birthday
of V. Then the L-isotypic component of must consist of harmonic

polynomials, for otherwise, a PL-invariant differential operator of positive
degree would intertwine V with a space of polynomials of lower degree.

For example, the primordial harmonic polynomial is

n n aer»,
a e A +

where we recall that A+ is the set of positive roots. For U(n), n is the

van der Monde determinant Hi<jxi - xj9 which transforms under the

symmetric group Sn by the sign character. In general, n transforms by the

sign character s of PL, and any other polynomial transforming by 8 must vanish

on all root hyperplanes, hence be divisible by FL Therefore II is harmonic,
v is the birthday of 8 and (1.4) shows that is spanned by FL

We say that n is primordial because 2tf is spanned by the partial
derivatives of II (see [S]). This turns out to be the algebraic analogue of
Poincaré duality for G/T.

As we have seen, the sign character is also afforded by AL In general, if
g is simple then each exterior power A? is an irreducible PL-module. We shall

determine the birthday of each Ag shortly.



ON THE COHOMOLOGY OF COMPACT LIE GROUPS 187

(3.5) Now consider the algebra 5^® A of differential forms on t with

polynomial coefficients. Let Fx, Ft be homogeneous generators of 9*w as

in (3.2). Extending that result, Solomon [Sol] has described the fF-invariants

in 5^(x) A. Because it seems not so well known but is important here, we give

a proof, taken from [H].

(3.6) Theorem (Solomon). The space ® A)w of W-invariants

in y (x) A is a free y w-module with basis

{.dFh a • • • a dFiq : 1 ^ il < • • • < iq ^ 1}

Proof. It is a general fact about polynomials that the algebraic

independence of F\, F\ is equivalent to the form dF\ a • • adFi not being

identically zero. Let X\, X/ be a basis of t*. Then

dFx a • • • a dFi /dxi • • • dxj

where the Jacobian J is a polynomial of degree m, + ••• + W/ v. The

left side is JF-invariant and dx{A - • - Adxi affords the sign character s.

Hence J must also afford s and, because of its degree, J must be a nonzero

multiple of the primordial harmonic polynomial n. Thus

dF\ a • • • a dF[ clldxi a • • • a dxi

for some nonzero real number c.

For a sequence I z'i < • • • < iq, let F be the increasing sequence

of all integers in {1, ...,/}- {/i, iq). Set <£F/«= dFi{ a • • • a dFiq
for any sequence I. Let k be the quotient field of 5A If /7 e k are such

that Y,IfidFI 0 then multiplying by dFr kills all terms but /, leaving
± cffTLdxi - - • dx\ — 0, so // 0. Counting dimensions, we find that
the dFj are a k-basis of k ® A, and are in particular linearly independent
over '/'w. Now suppose co e 5^ (x) A is IL-invariant. We can express
® YsjgidFj for some gj e k. Multiplying by dFv again, we have

co a dFr ± cgj Ildxi • • • dxt e ® A] w

This forces gj to be not only IF-invariant, but also polynomial.

For co e TF ® A, let co' e y/y ® A be obtained by reducing the
coefficients of co modulo jC This induces an exact sequence

0 - (,/ (X) A) ^ (y 0 A) ^ B^ ® A) ^ o

It follows immediately from Solomon's theorem that a • • • :

1 ^ ^ spans (:/'/-./ ® A)w (over R). This is in fact \
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basis, since 9"/<# affords the regular representation of PL, so

dim (5^/t/" 0 A)w 2l. We therefore have the following

(3.7) Corollary. (.97,/" ® A) ^ /-s a?z exterior algebra with
generators

dF e (x) A1] w, for 1 ^ / ^ /

We will see later that this exterior algebra is, with degrees in 99/ doubled,
the cohomology ring of the compact Lie group G. As PL-representations,
we have 99/jf — 99 and the corollary gives the following

(3.8) Multiplicity Formula.
V

£ dim Horn ^ (A <?, 99n)un sq(um^, um')
n 0

where sq is the elementary symmetric polynomial in I-variables, and
the m i are the exponents of PL.

In particular, the birthday of Aq is mx + • • • + mq, if g is simple.

(3.9) We close this section with a digression. Suppose g is simple, so all Aq
are irreducible PL-modules. We can actually witness the birth of Aq in
99 using the differentials dFt, as follows. Choose a basis jc/ of t*,
and consider a q- form

CO Yi fix I,dx'xA• • • A dxiq 6 • ' & A''

The linear span of the coefficient polynomials fiu...jq is independent of the
choice of basis {*/}. Moreover, if co is PL-invariant and nonzero, then its
coefficients span a PL-invariant subspace of 99 which is isomorphic to A^
as a PL-module, since the latter is irreducible and self-contragredient.

For example, we have seen that

dFi a • • • a dFi - cUdxi a • • • a dxq

where c is a nonzero scalar, and n is the primordial harmonic polynomial,
affording the sign character of PL. We have a generalization of this for
all Aq.

(3.10) Proposition. For 1 < q ^ /, the coefficients of
dF\ a • • • a dFq are harmonic polynomials. They span an irreducible
PL-submodule of 99m\ + + isomorphic to Aq.
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Proof. The coefficients of dF{ a • • • a dFq e (Smi + + mQ ® Aq)w
span a IE-invariant subspace of Sm^+ " + m*, isomorphic to Aq. As in (3.4),

these coefficients are harmonic because m i + • • • + mq is the birthday
of Aq, by the multiplicity formula (3.8).

4. Invariant Differential Forms

The ideas in this section go back to E. Cartan and de Rham. For a thorough
exposition, see [C-E].

(4.1) Suppose a compact Lie group G acts transitively on a manifold M.
Let tg be the diffeomorphism of M corresponding to g e G. A differential
/7-form co e Qp(M) is G-invariant if t*cû co. Such a form is determined

by its value at any one point of M. One shows by averaging that every
de Rham cohomology class on M is represented by a G-invariant form, and

that the subcomplex of invariant forms is preserved by the exterior derivative.

Identify M G/K where K is the stabilizer of a point o e M. We have

an orthogonal decomposition g r © n, where r is the Lie algebra of K.
Moreover this decomposition is preserved by Ad(K). For example if G acts

on itself by left multiplication then K 1 and n g. For another example
take M G/T, so K Tand n m. In general, n is naturally identified with
the tangent space T0(M), so an invariant form co is determined by the
skew-symmetric multilinear map

co co0: n x ••• xn~>R.
That is, coeA^n*. The invariance of co under K implies the Ad(K)~
invariance of co. Conversely, any element co e (A^n*)* determines a
G-invariant form co on M by the formula

Ö* • o i(dTg)0 JCi, (dTg)0Xp^) co (X\, Xp)

for X\, Xp e n and g e G. Thus we may identify the G-invariant /7-forms
on M with the space (A^n*)*. In this view, the exterior derivative becomes
the map 8: (A^tt*)*-+ (A^ + 1n*)^ given by

8a(X0,...,Xp) =—L £ (- \y+Ju{[Xi,Xj]n,Xl,...,Xi,...,XJ,...,xp).
P+ I i <j

Here
A

means the term is omitted, and [X,, Xj]„ is the projection of [X,,Xj}
into n along r. The complex {(A"n*)*, 8} computes the de Rham
cohomology of M.
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