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hence so is g~lHgT. This shows that Hz HgT/T is closed, thus proving

the proposition.

We recall that if cp is a homeomorphism of a topological space X then x e X
is said to be a recurrent point for (p if there exists a sequence {nk} of natural

numbers such that nk^> oo and nkx~*x. For the proof of the theorem we

also need the following general fact.

1.7. Proposition. Let cp be a homeomorphism of a compact metric

space X. Then there exists a recurrent point for (p.

Proof. Given X and (p as in the hypothesis there exists a (p-invariant

probability (Borel) measure on X (cf. [DGS], Proposition 3.8, for instance).
The Proposition now follows from the Poincare recurrence theorem; see [M],
Theorem 2.3, for a version of the Theorem in the form required here.

It can be seen, by perusing the proofs of the results quoted, from the
references mentioned, that the above proof is indeed independent of the axiom
of choice. For expositional purposes we also give in the Appendix a more self-
contained proof of the Proposition. For this we use the same general idea as

above but argue with invariant integrals (positive linear functional on the

space of continuous functions) constructed from the data, without actually
using any measure theory.

Incidentally, it may be noted that the assertion in the Proposition is obvious
if we assume Zorn's lemma, since in that case there exist compact minimal
(nonempty) (p-invariant subsets of X and any point of such a subset is a

recurrent point.

2. Proof of the Theorem

We will prove the Theorem after some technical preparation.

2.1. Proposition. Let xeG/T and X Hx. Let yeX and
suppose that there exists a neighbourhood Q of I in G such that
{& £ & I gy £ X} c HV2. Then at least one of the following conditions
holds: (i) Hx is open in X and y e Hx, (ii) Hy and DV\y are open
in their (respective) closures or (iii) Vy ç X.

Proof. First suppose that in fact there exists a neighbourhood Q' of I
in G such that {g e Q' | gy e X} c H. Then Hy is open in X Since Hx is
dense in X it follows that Hx Hy. Then Hx is open in X and y e Hx, so



54 S. G. DANI

condition (i) holds in this case. We may therefore assume that there does

not exist any neighbourhood Q' as above. In view of Proposition 1.5, (i),
and the //-invariance of X this implies that there exists a sequence {i>/}

in V2 - {/} such that ut I and vty e X for all i.

Observe that if Vx (V n Ty) is dense in V, then clearly Vy c Vxy c X
so condition (iii) is satisfied. We may therefore assume that it is not the case.

Hence by Lemma 1.4, (ii), there exists a neighbourhood 0 of / in V2 such

that BG n Ty ç B. By replacing Q as in the hypothesis by a smaller

neighbourhood we may assume that Q is open and Q n HV2 ç (Q n //)0,
the latter being possible because of Proposition 1.5,(i). Now let g e //be any
element such that gy e Qj; then there exist h e Q n H and u e G such

that hu e Q and gy hoy. Hence guty (gUig~l)gy — {gVig~l)huy.
Since gutg~lI and Q is a neighbourhood of hu it follows that
guxg~lhu e Q for all large /. Also guxg~lhuy guxy e X and hence by the

hypothesis we get that for all large /, guig~lhu e HV2 and hence

Uig~lh e HV2. Since ut ^ /, for any /, by Proposition 1.5, (ii), this implies
that g'lh e B. Then g~lhv e BG. Also, since gy huy, g~lhu e Ty. By
the choice of 0 these two conditions imply that u /. Hence gy hy. This
shows that Hy n Qy ç (Q n H)y. Similarly, since we had g~lh e B, it also

shows that By n Qy c (Q n B)y. These conditions imply that Hy and By are

open in their closures and since DVi is open in B it also follows that DVxy
is open in its closure; therefore condition (ii) holds in this case. This proves
the Proposition.
2.2. Proposition. Let x e G/T be such that Hx is not closed and
let X Hx. Let Y be a compact Vinvariant subset of X and
let y e Y be recurrent for the action of some u e Vx - {/}. Suppose

that either Hx is not open in X or y $ Hx. Then either Vy ç X
or I e {g e G — HV21 gy e X).

Proof. Suppose that the assertion does not hold. Then Vy is not contained
in X and there exists a neighbourhood Q of / in G such that
{g e Q I gy e X} c HV2. Then Proposition 2.1 and the condition as in the

hypothesis imply that Hy and DVxy are open in their respective closures

and y $ Hx. Let O DVX n Ty. Since DVxy is open in its closure, it is

locally compact and hence gO gy is a homeomorphism of DVX/O on to
DVxy commuting with DVi-action on the two spaces (cf. [MZ], Section 2.13,

for instance). By hypothesis there exists a u e Vx — {/} such that y is

recurrent for the action of u. The preceding observation therefore implies that
O is recurrent for the action of u on DVX/Q>. It is easy to see that this
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can not happen if O is contained in vDv1 for some v e F. Applying

Lemma 1.4, (i), we can conclude therefore that $ is a nontrivial subgroup

contained in Vx. Therefore y is a Fi-periodic point. Since y e X Hx and

{g e Q I gy e X} c HV2 it follows that there exists a sequence {*>,} in V2

such that Vf I and v^y e Hx for all i. For each i we have V\y e Hx Hvxy

and therefore there exists a sequence {hi) in H such that vtf hiVxy for

all i. Let z ^ 1 be arbitrary. Let A,- H n T^. Clearly A,- contains O and

by the above relation it also contains /z/O/z,"1. Since uty is Fi-periodic

and Hviy Hx is not closed, by Proposition 1.6 A / must be contained in B.

Since /z/O/z,"1 is contained in A, and consists of unipotent elements, this

implies that h^h;x ç Vx. This implies that h{ e B (since the subspaces

spanned by {ex} and {ex,e2} have to be hrinvariant). Therefore there

exist di e D* and ut e Vx such that hi diUi. Now, since /z/O/zf1

rMjV n Fi Tu.y n Vl O and since O is a nontrivial subgroup of V{ it
follows that the diagonal entries of dt are ±1. Since vxy is a Vx-periodic

point, the preceding conclusion implies that the sequence {hiVxy} has a limit
point in Hvxy Hx. But hfVxy vty y and therefore we get that y e Hx,
contradicting an earlier conclusion. This shows that the Proposition
must hold.

Proof of the Theorem. We shall asssume that Hx is not closed and

that X does not contain any F-orbit, since in either of these cases there is

nothing more to be proved. Let X' X - Hx if Hx is open in X and Xr X
otherwise. Then X' is a closed nonempty Vx-invariant subset of X. By
Propositions 2.2 and 1.7 any compact Vx-invariant subset of X' contains

a y such that I e {g e G - HV21 gy e X}. Let {/*/} be an enumeration of
the set of all rational numbers. We now construct a decreasing sequence {Yk}
of compact Fi-invariant subsets of X' and a sequence {tk} of rational
numbers as follows. Recall that by Proposition 13 Xr contains a compact
nonempty Fi-invariant subset. Let Yx be such a subset and let tx 0. After
the sets Ti, Yk and the numbers tXf ...,tk are chosen, for some k ^ 1, we
proceed to choose Yk+ x and tk+x as follows. As observed above, Yk contains
a point y such that I e M where M {g e G - HV2 \ gy e X}. Then by
Proposition 1.2 HMVX contains either F2+ or F2~ Now let i be the smallest
natural number satisfying the following conditions: a) rt ± tj for any

j 1, ...fk and b) rt is positive if F2+ ç HMVX and negative otherwise.
Put tk+x rt. Then v2(tk+x) e HMVx and hence by Lemma 1.1 there exists
a y' g Vxy ç Yk such that v2(tk+x)y' c X. Put Yk+X Vxy'. This
completes the inductive construction of the sequences {Y^} and {tk}. It is
clear from the construction that {Yk} is a decreasing sequence of compact
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Ki-invariant subsets of X and v2(tk)Yk ç X for all k. Also it is easy to
see that {tk\k^\} contains either all positive rational or all negative
rational numbers. Now let Y' nk=lYk. Since {Yk} is a decreasing

sequence of compact subsets, Y' is nonempty. Now if {tk \ k ^ 1} contains all
positive rational numbers then v2 (r)Y' ç X for all positive rational numbers

r and hence by continuity F2+ F ç I and, similarly, in the alternative
case F2~ Y' ç X. This completes the proof of the theorem.

Appendix: Recurrent points

For a compact metric space X we denote by C(X) the space of all
continuous real-valued functions on X equipped with the sup-norm topology and

by C(X)+ the subset of C(X) consisting of all nonnegative functions; the

supremum norm of f e C(X), namely sup{ | f(x) | \x e X}, will be denoted

by ||/||. By an integral on C(X) we mean a linear functional on C(X) which
takes nonnegative values on C{X)+. For an integral A on C(X) the support
of A is defined to be the subset of X consisting of all x e X such that A (/) > 0

for any / e C(X)+ for which f(x) > 0; the support is easily seen to be a

closed subset of X. It can also be verified by a simple point-set topological
argument that if A is an integral on C{X) and / e C(X) vanishes on the

support of A then A(/) 0. If A is an integral on C(X), where Ais a compact
metrizable space, and X' is the support of A then there exists a unique integral
A' on C(X') such that A'(/\X') A(/) for all f e C(X), where f\x>
denotes the restriction of / to X' ; this follows from the Tietze-Urysohn
extension theorem (cf. [D], (4.5.1)) and the above mentioned property of the

support. We note also that the support of A' as above is the whole of X'.
For any homeomorphism (p of a compact (metrizable) space X an

integral A on C(X) is said to be (p-invariant if A(/ o (p) A(/) for
all / e C{X)\ clearly the support of a (p-invariant integral on C(X) is

a (p-invariant (closed) subset of X.

Proof of Proposition 1.7. We fix a dense sequence in C(A), say

fj,j= 1,2, Let x0 e X. Given /y, for any sequence {mk} of natural
numbers mkl o

*

fj ° <P'(*o) is a bounded sequence and therefore admits

a convergent subsequence. Using a standard procedure (finding {m^}, with
each sequence a subsequence of the previous one, such that the corresponding

sequence for fj as above converges and considering we get a sequence

{nk} of natural numbers such that nk
1

Y,"k= o1 fj ° ^'(^o) converges
for all j; also, the limit is between - |) fj || and ||/y||. Since {ff is dense
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