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PERMUTATION GROUPS GENERATED BY A TRANSPOSITION

AND ANOTHER ELEMENT

by Gerald J. Janusz

Abstract: The subgroup of the symmetric group Sym(«) generated by a

transposition and another element is described explicitly using data easily

obtained from the two elements. The proofs use a graph that is defined for

any subgroup of Sym(«) that contains a transposition. Application is made

to prove that a rational, irreducible polynomial of degree n having exactly

n - 2 real roots is not solvable by radicals provided that n is not divisible by

2 or 3.

In the begining study of the symmetric group Sym(Q) of all permutations

on a set Q the student learns the standard fact that every permutation can be

expressed as a product of transpositions; otherwise put, Sym(Q) is generated

by its transpositions. In some expositions, other generating sets are mentioned.

For example for a prime p, it is not difficult to show that the symmetric group
Sym(p) on p symbols is generated by a /?-cycle and a transposition. In fact

any p-cyc\e and any transposition will generate Sym (p).
A well-known theorem of Galois theory folklore (see [1, Theorem 4.16])

uses this information about the generation of the symmetric group to prove
the existence of polynomials not solvable by radicals. In this theorem one
considers a polynomial/(x) of prime degree p ^ 5 having rational coefficients.
Assume thatf (x) is irreducible over the rational numbers and has exactly p — 2

real roots. Then the Galois group of the splitting field of /(x) over the rational
field is not solvable. In fact the Galois group is isomorphic to the symmetric
group on p symbols. In particular the polynomial is not solvable by radicals.
Here is a sketch of the proof. When the Galois group is regarded as a permutation

group on the p roots of /(x), the hypothesis implies that the Galois group
contains a p-cycle and a transposition and hence it must be the full symmetric
group on the p roots.

This proof breaks down for nonprime degree. If n is not prime, an «-cycle
may be paired with a transposition in Sym(«) to generate a subgroup smaller
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than Sym («) (see Corollary 5). The simplest example is the group of order 8

generated by (1, 2, 3 ,4) and (1, 3) having index 3 in Sym(4).
The object of this note is to show how the subgroup of Sym(n) generated

by a transposition and one other element can be determined. In particular we

will define a graph associated with a cycle o and a transposition x. (In fact
the graph will be defined for a somewhat more general situation.) An easily

computable condition on o and x (or on the graph) will determine if the group
generated by o and x is the full symmetric group. To show that a wide variety
of groups can be generated by a transposition and a cycle, we mention three

cases. Let o (1,2,3,4,5,6,7,8) and x one of the 28 transpositions in
Sym (8). Then the subgroup of Sym (8) generated by o and x is all of Sym (8),
a group of order 40 320, for 16 choices of x; is a group of order 1152 for
8 choices of x and a group of order 64 for 4 choices of x.

Once the case of an «-cycle and a transposition has been done, it is fairly
straight forward to do the general case. We determine the group generated by
a transposition and any other element. As an application of these ideas we
show that the theorem on Galois groups mentioned above remains valid for
polynomials of degree n not divisible by 2 or 3.

1. A GRAPH FOR A SUBGROUP CONTAINING A TRANSPOSITION

We consider a subgroup of Sym(«) that contains a transposition

x {a, b). We will define a graph depending on and x and use it to prove
the existence of a normal subgroup of whose structure can be described

explicitly.

Let T x) be the graph whose vertex set is V {1, 2, • ••,«} on
which P^acts as permutations. An edge of F is a two element subset {i,j}
of vertices such that the transposition (ij) is conjugate to x in Thus {i,j}
is an edge of T if and only if there is some element ri e atif such that

rrni-1 (f,j) •

For any transposition (r, s) we have

(1) y\{r,5)ti(n(/-),Ti(s))

so it follows that {i,j} is an edge of T if and only if {i,j} {r| (a), r|(£)} for
some r| e The action of on the vertices of T permutes the edges and

so is part of the automorphism group of T. The notion of a path and
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connected vertices will be used to examine the structure of We remind the

reader of the relevant concepts associated with the graph.

A path in T is a sequence of edges such that adjacent terms of the sequence
have a vertex in common. Two vertices u and v are connected if there is a path
in T with u and v vertices of some edges in the path. A component of T is

a maximal subgraph in which any two vertices are connected by a path. It is

easy to see that connectedness is an equivalence relation on the set of vertices

and so the vertex set V is partitioned into disjoint subsets V\, • • •, Vt maximal

with the property that two vertices in a subset are connected. Then T is

a disjoint union

r Ti u r2 u • • • u r,, t ^ 1,

with each T; a component of F.

We now show that each component is a complete graph on its vertices; i.e.

every pair of vertices of T/ lie on an edge. Let / and j be two vertices
connected by a path in F. Then there are transpositions

Xi (j, Q\) t2 (ci\, af) •, Tr (ar -1, Qf) j
* * *, x^ — (ßk _ i, y)

in 2? and each is conjugate to x. Then each of the following transpositions
is in and is also conjugate to x:

t2^iT2 - (/, a2)

x3(/, a2)t3 « (/, a3)

t4(i, a3)x4 (/, a4)

tk(i, ak- i)Tk (ij)
Thus (i,j) e and there is an edge of T connecting i and j. In other words
this argument shows that contains every transposition of Sym {n) that
exchanges a pair of connected vertices. This gives the information needed in
the following statement:

Theorem 1. Let be a subgroup of the symmetric group Sym (n);
assume contains a transposition x. Let the components of the graph
F(^» x) be rlt • • •, T, and let Vt denote the set of vertices of Tz. Let
S be the subgroup of generated by all the conjugates of x in
Then S is a normal subgroup of ^ and is isomorphic to the directproduct
S1 x • • • x St where St is the symmetric group of all permutations of Vh
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Assume is transitive on {1, 2, • • •, n}. Then the groups Su - * •, St

are isomorphic and S is isomorphic to Sym(Ar)w, the direct product of
t copies of Sym (A:) where tk n and k > 1. The elements of
permute the components Tj, * • •, T, and only the elements of S leave all
the Tz fixed (as sets). Thus %?/S is isomorphic to a transitive subgroup of
Sym (t).

Proof. The statement that S is a normal subgroup of ^follows at once
because the set of generators of S is closed under conjugation by elements of
Pf7. The conjugate class of t consists of transpositions corresponding one-to-
one with the edges of T. Let 5/ be the subgroup generated by the transpositions

corresponding to edges of Tz. Since we have seen that Tz has an edge

joining every pair of vertices, Sz- contains every transposition permuting two
elements of Vh Thus S, is the full symmetric group Sym(F/) of permutations
of Vj. Since the Sj permute disjoint sets of vertices, the group S is the direct
product of the groups Su • • •, St.

Now suppose that is transitive on V. For any pair of indices i and j
and verticies u e Tz and v e Ty, there is an element r| e a#* with v\(u) v. It
follows that p(Tz) Ty, r|(F/) Vj and riS/Tj ~1 ~ Sj. So any two of the

groups Sj, • - •, St are conjugate, hence isomorphic. If k is the number of
vertices of T, (for any i) then

S Si x • • • x St Sym (A:) x • • • x Sym (A:) Sym (k)(t)

Because k is the number of vertices in each Tj, and since Tz contains at least

one edge, Tz must contain at least two vertices. Thus k ^ 2.

We have already seen that permutes the set {Tx, • • - TJ of components;

the elements in S leave each Tz fixed because Sj is generated by
transpositions which leave every Tz fixed. We will now prove that the only
elements of that leave every Tz fixed are the elements of S. Suppose

rI e ^and r| (F/) Tz for 1 < / < t. Then rj5zri-1 Sz ; conjugation by r|

induces an automorphism of St. A great deal is known about the

automorphisms of symmetric groups. An automorphism of Sym (A:) is a conjugation
by an element of Sym (A:) except possibly when k 6 (see [4, Theorem 7.4,

page 133]). An automorphism of Sym(6) is either a conjugation by an element

of Sym (6) or it has the property that every transposition is mapped to the

product of three transpositions (see [2]). In the present case, the automorphism
X^T[Xr{~1 must send transpositions to transpositions. Hence there is an
element yz e Sz such that riXri-1 yz_1Xyz for all X e Si. The elements of
different Sz commute with each other so it follows that
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Yi • • • YAIÀTTHYI X

for every X e S,- and for every /. The element a Yi * * * Y/H commutes with

every element of S; in particular a commutes with every transposition in S.

In view of Equation (1), an element centralizing each transposition must leave

every edge of T fixed. There are only two possibilities for an automorphism
of T that fixes all edges. If there is a path in T with two or more edges, then

every edge lies on a path with two or more edges (because the components are

complete graphs and two components are isomorphic). In this case the only
automorphism fixing every edge is the identity on the vertices. Thus in this

case Ji • - - y/H e and r| e S.

In the remaining case there are no paths of length two in T and so every
Sj is of order 2. The element a leaves every edge fixed and so either fixes or
permutes the two vertices of T, If S/ ((u, v)) and if a moves u then a must
interchange u and v because edges are preserved. It follows that (u, v) a fixes

u and v. By repeating this argument for each component of T we get a
multiplied by certain transpositions in S leaves all vertices fixed and hence is

the identity. It follows that r| is the product of the transpositions in certain
of the Sj. Thus in this case we also have r\ e S and the only elements

of fixing the sets Vt are the elements of S. Thus the group of permutations

of the T/ induced by the action of is the group 2Xf/S. So 2/tf/S is

isomorphic to a subgroup of Sym(0- Note that if 2F acts transitively on
{1,2, • • -, n}, then W/S acts transitively on {Tu • • TJ.

The graph T t) can be used to give an easy criterion to determine when
— Sym(fl).

Corollary 1. The subgroup of Sym(n) generated by a subgroup
containing a transposition t is all of Sym(fl) if and only if the graph

T t) is connected.

Proof If \ t) is connected then ^contains every transposition
(/, j) because the graph is a complete graph containing every possible edge,
as shown earlier. Since every permutation in Sym(fl) is a product of transpositions,

and all the transpositions are in PT, it follows that Sym(/i).
Conversely if Sym (n), then every transposition in is conjugate to t
and the graph t) contains every possible edge; in particular the graph
is connected.

The graph T provides a tool that enables us to give a quick proof of a
special case of a theorem first proved by C. Jordan.
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Corollary 2 (C. Jordan [3]). A primitive subgroup of Sym(ri)
containing a transposition is all of Sym (ft).

Proof. Let be a primitive subgroup of Sym (n) and x a transposition
in Then permutes the components T/ of x) and so the vertex
sets Vi of the T, are permuted by The primitivity of implies that the
set {1, 2, •••,«} can be partitioned into disjoint subsets permuted by only
if each subset has order one or there is just one subset of order n. Since the
vertex set of T/ has more than one element, there is only one component and

Sym (ft) by Corollary 1.

2. An application to Galois theory

We extend the theorem mentioned in the introduction replacing the

condition that the degree of the polynomial be a prime greater than 3 by the

condition that the degree of the polynomial be divisible only by primes greater
than 3.

Theorem 2. Left f{x) be a polynomial of degree n with rational
coefficients and irreducible over the rational field. Assume that f(x) has

exactly n - 2 real roots. If n is divisible only by primes greater than 3

then the Galois group of the splitting field of f{x) is not solvable and

f (x) is not solvable by radicals.

Proof. Let be the Galois group of f(x) over the rational field. We

view ^ as a permutation group on the n roots of f. Then complex conjugation,

x, is a transposition in of the two nonreal roots. Since /(x) is

irreducible, P^is transitive on the set of n roots. By theorem 1, contains

a subgroup isomorphic to the direct product of t copies of Sym (k) where

tk ft. Since k is a divisor of n and k > 1, the hypothesis on the divisors of
ft implies k ^ 5. Thus Sym(/:) is not a solvable group and ^is not solvable

as it contains a nonsolvable subgroup. Thus /(x) is not solvable by radicals.

3. Two GENERATOR SUBGROUPS OF Sym (ft)

Next we apply Theorem 1 to determine the subgroup of Sym (ft) generated

by a transposition and one other element. We first consider the case in which
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the other element is an «-cycle. Let o (1, 2, • • •, «) and t (a, b) with
1 ^ a < b ^ « and let G < o, t > be the group generated by the two elements.

Then G is transitive on {1,2, •••,«} because the cyclic subgroup <o> is

transitive. Theorem 1 will be applied to prove the following result.

Theorem 3. Let o be an n-cycle and x {a, b) a transposition in

Sym(«) and G the subgroup of Sym (n) generated by o and x. Let

q be a positive integer such that Gq{a) - b and let t - gcd(n, q). Then t
is the least positive integer such that x and g'xg-' correspond to edges

in the same connected component of the graph T (G, x) defined above. If
we write n tk for some integer k then G contains a normal

subgroup S isomorphic to the direct product of t copies of Sym(&). The

quotient G/S is cyclic of order t. In particular G is a solvable group if
and only if k < 4.

Proof. Let S be the subgroup of G generated by all the transpositions
conjugate in G to x. By Theorem 1, S is the direct product of t copies of Sym (k)
where t is the number of components of the graph T(G, x). Let Tu • • •, Tt be

the components of T(G, x). Since o is an «-cycle, the cyclic group <o>

permutes the components transitively. It follows that o' fixes each T/ and so

g1 e S and no smaller positive power of o fixes any one of the Tz. Thus t is

the least positive integer such that the edges corresponding to x and GtXG~t

lie in the same component of T (G, x). The fact that G/S is cyclic follows from
the fact that G is generated by g and x and x is in S. Thus G/S is generated
by the coset gS.

The group G is solvable if and only if S and G/S are solvable; G/S is cyclic,
hence solvable. S is solvable if and only if Sym(/:) is solvable. It is well known
that Sym(k) is solvable if and only if k ^ 4.

We must now show that t is obtained as stated. We make a change of
notation to facilitate the proof. Let R denote the ring Z/(«) of integers modulo
« and view Sym(«) as a group of permutations of R. By renaming the elements,
we may assume that o is the «-cycle defined by g(x) x + 1 (with the addition
in R used, of course). Let x (a, b) with a, b e R and take q b - a. Since
Gq(a) a + q b, any other integer power of o that carries a to b will have
exponent congruent modulo « to b - a so there is no harm in assuming
q b - a.

Let G < g, x > ; we will show that the connected components of the graph
F(G, x) have the cosets x + qR as the vertex sets. The case in which qR has
only two elements is somewhat exceptional and easy so we treat it first. When
qR has two elements then « is even and q n/2 (mod «) and
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a + qR a + {b - a)R {a, b}.

Thus t fixes every coset x + qR and g carries x + qR to x + 1 + gi?. Thus
the edges of T (G, t) are the pairs in the distinct cosets and each connected
component consists of two vertices and one edge. There are n/2 components and

so the number t of Theorem 3 is t n/2 which equals gcd{n, q) as required.
Let r be the number of elements in qR and now assume r > 2. Thus

r n/gcd(n, q) and rq 0 in R. The elements in a coset u + qR have the form
u + jq, with 1 < j ^ r. The cosets are permuted transitively by < g > Each
coset is left invariant by t. This is clear for cosets not containing a or b. Since

a + q b, both a and b lie in a + qR so t also leaves a + qR invariant. The
edges of T are generated by applying the elements of G to the edge {a, b). Thus
the endpoints of an edge of T lie in the same coset of qR. Hence a connected

component has all its vertices in one coset and thus a component has at most

r vertices. Now we show that all vertices in a coset are connected. It is sufficient
to show this for the coset a + qR since G is transitive on the components. The

following computation is crucial for this verification:

(2) (tGq)J{a,b} {a,b + jq} for l^y^r-2.
We verify this by induction on j. For j 1 we have

x<5q{a, b) %{a + q,b + q) i{b,b + q}.

If we had b + q a, then 0 b- a + q 2q and it follows that qR has only

two elements. In the present case we have r > 2 so b + q & a and

t (b + q) b + q. Since x(b) a we see that (2) holds for y « 1. Now assume

(2) holds for j and that j + 1 < r — 2. Then

(toq)j+l{a, b} toq{a, b + jq)
x{a + q,b + (j + 1 )q)

t{6, b + (j + 1 )q).

If b + (j + \)q a then (j + 2)q 0. This implies y + 2 ^ r contrary to the

choices of y. Thus x{b + (y + 1 )q) b + (y + 1 )q and t(b) a; thus (2)

holds.

This computation shows that there are r - 2 edges connecting a to verticies

I) + jqt xhe edge {a, b} is not counted among these. Thus we account for

r - 1 edges containing a and r vertices in the connected component containing

a. We have already seen that the components contain no more than r vertices.

Hence there are exactly r n/gcd(n, q) vertices in a component and the

number of components is n/r gcd(n, q) as we wanted to prove.
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The group < o, t > equals Sym(«) precisely when the graph T has just one

component, that is t 1 in Theorem 3. We have the following easily applied

criterion.

Corollary 4. Let o be an n-cycle and t (<a, b) a transposition in

Sym(«). Let q be an integer such that oq(a) b. Then the group

generated by o and x is all of Sym(«) if and only if gcd(n,q) 1.

We give two examples that determine the two generator groups using

Theorem 3.

Example 1. Let o (1, 2, 3, 4, 5, 6, 7, 8) and x - (1, 5). The description

of T T« o, x >, x) may be obtained using Theorem 3. Since o4(l) 5 we

find there are t - gcd(S, 4) 4 components with 2 vertices in each.

In order to determine the group G= <o,x> explicitly, we find the

component of T. We find the edges of T by repeatedly applying o to the edge

{1,5} to obtain the edges

{2,6},{3,7},{4,8},{1,5}.

Application of x does not yield any new edges and so these are all the edges

in T. The groups of permutations of the components are:

Si - < (2, 6) > S2 < (3, 7) > S3 < (4, 8) > S4 <(1,5)>.

The conjugation action of o is to cyclically permute the factors Si, S2, S3, S4

and o4 (1, 5)(2, 6)(3, 7)(4, 8) is in Si x • • • x S4. Thus the order of G is

[S*! f I <g> /<G4> I 24 • 4 64

Example 2. Let o (1, 2, 3, 4, 5, 6, 7, 8) and x (1, 6). Since o5 (1) 6

and gcd(8, 5) 1, Corollary 4 implies < o, x> Sym(8).

Now we consider the description of <g, x> with x a transposition and o

any element of Sym(«), not necessarily an «-cycle. The discussion will be

broken into cases depending on how o and x are realted.

To make the notation simpler, let us assume x (1,2). We may express o
as a product of disjoint cycles

ö ^2 ••In a cycle

Let Vi be the set of symbols moved by so that £/ permutes the elements of
Vi transitively and fixes the elements of Vj for j =£ /.

The first case in which o is a cycle and x is a transposition moving two
symbols that are also moved by g is covered in Theorem 3.



50 G. J. JANUSZ

Second case. 1,2e Vx This is the case in which the two elements

moved by x are moved by a single cycle appearing in the decomposition of o.
Since o(Vi) Vx and x(Vx) V1} we obtain a homomorphism p of

G < o, t > into Sym(F!) defined by letting p(r|) be the restriction to Vx of
ri eG. Thus p(o) ^x and p(x) x. The group p(G) < E,i, x > is determined

by Theorem 3 since ^x is a cycle on Vx and t is a transposition. The kernel
of p is the set of elements in G that leave fixed each element of Vx.

We will describe the kernel of p precisely but first we examine a potentially
larger group containing G.

Let y ^i_1o so that

O ^2 - '£>r=Z>lY Y^l •

Of course ^ need not be in G so y need not be in G. Let ^ be the group
generated by o, x, and y. Then we also have S7 < £i, x, y >. The subgroup
<£i, x> of S7 operates on Lj while fixing each point in its complement and
< y > operates on the complement of Vx while fixing each point of Vx. It
follows that the group ^ is the direct product

^ <£i,x>x<y>. (*)

The subgroup of ^ fixing Vx is <y> and so the kernel of p:G — <£,i, x> is

the cyclic group G n <y>.

The subgroup S of < £i, x > generated by all the conjugates of x is actually
a subgroup of G. To see this we note that any element rj of G can be expressed

as

h p(ti)y' for some integer i.

Thus

rixri ~1 P^Y'TY^pOl)"1 p(ri)Tp(ri) ~1

Since p maps G onto < £,i, x > it follows that every conjugate of x in < x >

is also conjugate of x in G and conversely. The subgroup generated by all these

conjugates, denoted as S in Theorem 3, is contained in G and in the first factor
of Sf in (*).

We will factor out the normal subgroup S from both G and ^ Since xeS
it follows that

Sf- <Çj> x <y>
S

— s <o> <^iY>
S
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where rj is the coset r\S. This factor will be used in two ways: We will
determine the index of S in G and thereby determine the order of G and we

will also determine the smallest power of y that lies in G thereby finding the

kernel of p.
We are dealing with a two-generator abelian group S7S and the subgroup

G/S generated by the product of the two generators. The first generator ^
has order t9 the number of connected components of the graph T(£i, x). Let

g denote the order of y. Note that g is also the order of y because

S n < y > e. Then the order of o ^y is the least common multiple of t
and g, denoted as [t, g]. Thus the order of G is the order of S times [t,g].
The order of < £1, x > is the order of S times t (as we known from Theorem 3)

and p maps G onto this group. Hence the kernel of p has order

|S|[f,*] I*,*] *
I ker p I

\S\t t (t,g)

where (t, g) is the greatest common divisor of t and g. Since the order of y/
is g/(t,g) it follows that yf generates the kernel of p; we have

G n <y > <y'>.
We summarize this case in a theorem.

Theorem 5. Suppose o * ' * £>r is the cycle decomposition of o
and x {a, b) is a transposition with both a and b moved by the cycle

appearing in o. Let G=<o,x>. Let y ^i_1o and let n be the
order of £,i ,g the order of y and t the number of connected

components of the graph r«^!,x>,x) and k n/t. Then the

subgroup S of G generated by all the G-conjugates of x is isomorphic to
the direct product of t copies of Sym {k). The quotient group G/S is

cyclic with order [t, g], the least common multiple of t and g. The order
of G is (k\y[t,g]. The homomorphism p:G—<^,x> defined by
restricting the action of G to the set of symbols moved by £i has kernel
<y'>.

Example 3. This example illustrates the ideas used in the proof of
Theorem 5. Let o (1, 2, 3, 4, 5, 6) (7, 8, 9) and x (1, 3). Then

(1, 2, 3, 4, 5, 6) and y (7, 8, 9) in the notation of Theorem 5. We first
describe the group < £j, x > using Theorem 3 and the graph
T T« Çj, x >, x). The lowest power of ^ that has the same effect as x on
1 is Thus the number of components of T is t gcd(6, 2) 2. Thus the
components of T have vertex sets {1, 3, 5} and {2, 4, 6} as we find by applying
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powers of to {1, 3}. Thus the subgroup generated by the G-conjugates of
r is S Si x S2 with each St Sym(3).

The group G < o, t > admits a homomorphism p onto < £i, x > defined
by restriction of elements of G to the action induced on {1, 2, 3, 4, 5, 6}, the
set moved by ^. The kernel of p is the subgroup of G fixing the symbols 1,

2, 3, 4, 5, 6. The kernel was shown to be G n < y > < y'>. Since t 2 and

y (7, 8, 9) has order 3, it follows that the kernel of p is the group <y > of
order 3. The group G must also contains ^ y_1o and so we have the

decomposition

G < o, t > <(1,2, 3,4, 5, 6)(7, 8, 9), (1, 3) >

<Si,T> X <y> <(1,2, 3, 4, 5, 6), (1, 3) > x <(7,8,9)>.

The order of G is (3 • 2 • 3 63.

If this example is changed by letting o (1, 2, 3, 4, 5, 6)(7, 8), so that

y (7, 8), but keeping the same x then t is unchanged and so the kernel of
p is <y2> e. Thus p: G - <£j, t> is an isomorphism. The order of G is

(3 !)2 • 2.

The two cases covered by Theorems 3 and 5 take care of the difficult cases.

All the remaining cases can be handled quickly.

Third Case, t (1,2) and o(l) 1 and g(2) 2; i.e. o fixes the two
symbols moved by x. Then

G * <o,t> <o> x <x>

is the direct product of two cyclic groups.

Fourth Case, x (1, 2) and g (1, a2, * • •, ar) (2, b2, • * •, bs)y where

r ^ 1, s ^ 1; i.e. o moves at least one of the symbols moved by x and if it
moves both, they do not appear in the same cycle of o. If r 1 then o(l) 1 ;

similarly for 5 1. If r s » 1 then we are in the third case so we may assume

either r or 5 is greater than 1. It is assumed that this is the cycle decomposition
of g and that y is the product of the disjoint cycles not moving 1 or 2. Then

we let Gi be the element

0l gx (l,flr2, •• •,<*/)(2, b2, - -,bs)y(1,2)
(1,Z?2, - ',bs, 2, 02, "',Clr)y •

Since the group generated by g and x is the same as the group generated by

Gi and x, we may replace g by Oi. We are back in the first case now because

both 1 and 2 are moved by the same cycle appearing in the generator Oi.
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We may collect the results as follows.

Summary. Let G <o,x> with o, x e Sym(n) and x a transposition.
1. If o is an «-cycle, the G is described in Theorem 3.

2. If o is a product of disjoint cycles, one of which moves both the symbols
moved by x, then G is described in Theorem 5.

3. If o fixes both symbols moved by x then G=<o>x<x>isan abelian

group.
4. If o moves one, but not both of, the symbols moved by x or if o moves

both symbols moved by x but not in the same cycle then o may be replaced
by Oi « to and then G < Oi, x > and G is described as in case 1 or 2.
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