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BARKER SEQUENCES AND DIFFERENCE SETS

by Shalom Eliahou and Michel Kervaire

Introduction

This paper deals with binary sequences A (au ai), i.e. at ±1 for
/ 1,...,/, and classical coefficients associated with them, the aperiodic and

periodic correlation coefficients. The aperiodic correlation coefficients of A

are defined as

i -j
CAA) Ya'ai+J>for J •••' 1 '

/ 1

and the periodic correlation coefficients of A as

i

iM) YdiCi+j, for j 1,/ - 1

i 1

where the indices are read modulo /, i.e. ar ar-t if r ^ I + 1.

It is well-known that yy Cj + C/_y for j 11.There are many interesting and difficult problems concerned with the
existence of binary sequences whose correlation coefficients (or correlations,
for short) are subject to various conditions. We will examine here three
classical situations.

(1) One may require the periodic correlations jj to be constant, i.e.

Yi 72 yi-1 y

We will see below that binary sequences satisfying this condition are
equivalent to the classical notion of cyclic difference sets.

(2) In addition to the condition above, one may furthermore impose the
constant y to be small, i.e. y 0, or y 1, or y - 1. We will call such

The authors gratefully acknowledge partial support from the Fonds National Suisse de
la Recherche Scientifique during the preparation of this paper.



346 S. ELIAHOU AND M. KERVAIRE

sequences periodic Barker sequences. Periodic Barker sequences with y 0 are
equivalent to circulant Hadamard matrices. We will not follow the link with
Hadamard matrices any further here.

(3) Without any condition on the periodic correlations, one may require
the aperiodic correlations to be small, i.e.

cj e {0, 1, - 1} for j 1, / - 1

Such sequences are known as Barker sequences. They were invented by Barker

[Bar] in connection with radar theory. Note that we cannot impose the cj to
be constant, since Cj I - j mod 2.

Barker sequences of odd length have been classified in 1961 by Storer and

Turyn [ST]. Their lengths are bounded by 13. In the even length case, a

longstanding conjecture states that the only such sequences are of length 2 or
4. It is known since Turyn [T2] that if the length of a Barker sequence is even
and greater than 4, then it must be at least 12 100. We will show in Section 3

that this lower bound can be improved to 1 898 884, thanks to a recent result

on Golay pairs and Barker sequences [EKS], and an observation in [JL].
Here is a summary of the content of this paper. In Section 0, we prove

that Barker sequences of length greater than 2 are in fact periodic Barker

sequences (i.e., (3) => (2)), an elementary and well known fact. It is sometimes

asserted in the literature that the converse holds as well. This is not true, and

clarifying the situation was one of our motivations to write this survey.
Another motivation was our exploration of the existence question of periodic
Barker sequences for an extensive range of possible lengths. This work is

summarized in Tables I and II at the end of the paper.
In Section 1, we show that binary sequences with constant periodic correlations

(condition (1)) are equivalent to cyclic difference sets. We then recall the

main results concerning these difference sets.

Section 2 deals with condition (2), that is, periodic Barker sequences. We

examine the cases y 0, 1 and - 1 separately. In the case y 0, it is widely
believed that the only possible length is / 4. We recall a theorem of Turyn
stating that / must be of the form / 4TV2, where N is an odd integer.
Further results of Turyn imply that N must necessarily be greater than or equal

to 55. In the case y « 1, there is only one known example. The case y - 1,

in contrast, provides many interesting classical examples. In that case we make

explicit the complete classification of (4n - 1,2n - 1, n - 1) cyclic difference
sets up to n 100. (See Sections 4 and 5, and Tables I and II.)

In Section 3, we show that there exists no aperiodic Barker sequence of
length divisible by 2p, when p is a prime number congruent to 3 mod 4.
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Finally, in Section 4 and 5, we give several examples of the use of the

Multiplier Theorem.

In this section, we establish the simple relationship between periodic and

aperiodic correlation coefficients, and show that every Barker sequence of
length greater than 2 is also a periodic Barker sequence.

Lemma. Let A (au ai) be a binary sequence. Then

yfA) Cj(A) + Ci_j(A)

for all j 1, / - 1.

Proof. We have

as claimed.

For the next result, we will use, as other papers on binary sequences do,
the simple observation that

ab a + b - 1 mod 4

for all a, b e { + 1, - 1}.

Proposition 2. Let A (ax,..., a{) be a Barker sequence, with
I ^ 3. Then A is also a periodic Barker sequence.

Proof. We have to prove that yj y j (A) is independent of j 1,
/ - 1, and equal to 0 or ±1. First of all, we have (with Cj cfA))

0. Preliminaries

/ i-j
yM) E aiai+j E aiai + J +

i I - j + 1

CM) + E ai+j-iai Cj(A) + Ci-j(A)

(1)
0 if I — j is even

± 1 if I - j is odd

for all j 1, / - 1.
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This follows from the obvious congruence cy I - j mod 2, and the fact
that Cj e { - 1, 0, + 1}, for all j 1, / - 1.

Now, applying the relation ab a + b - 1 mod 4 for any a,b ± 1, we
have

i-j i-j
(2) Cj —X a'a<+j X («, + ö,+7) - (/-y) mod 4

/ 1 / 1

for j 1, I - 1.

Comparing the above congruences for two successive values of y, we obtain

(3) Cj - Cj+i ai-j + aJ+i - 1 mod 4

for j 1, 1-2.
Changing j to I - j - 1 leaves the right-hand-side unchanged. Therefore,

we have

(4) cj - cj+i ci-j-i - ci-j mod 4

for y 1, 2. Since | c} - cJ+1 | < 1 for all y by (1), we have in fact an

equality:
Cj — Cj+ 1 C{ j 2 — C[-j

for j 1, 2. Using Lemma 1, it follows that

Yy Yy'+ 1

for all j 1, 2, and thus yy is independent of y, as claimed.

Now I yj I I Cj + Ci-j I ^ 2, and equality can occur only if cy C/_y

± 1, which by (1) implies in particular that y must be odd. But this is

impossible, because yy is independent of y. Therefore |yy|^l, as

claimed.

1. Difference sets

In this section, we show that the notion of a binary sequence with constant

periodic correlations is equivalent to that of a difference set on a cyclic group.
We then recall basic results concerning these difference sets.

Definition. A difference set D on a group G is a subset D C G such that
the cardinality of the intersection

D n g - D
is independent of g for g e G\{e}. Here, gD {gx \ x e D) is the translate

of D by the element g e G, and e is the neutral element of G.
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It is traditional to denote by v the cardinality of G, by k the cardinality
of D and by X the cardinality of the intersection D n gD :

u \G\, k \D\, X \DngD\.
The difference set D in G is then said to have parameters (v9k,X). It is also

traditional to denote by n the difference k - X.

Observe that if D C G is a difference set, then so is D' - G\D. Thus we

can and will always assume that k | D | ^ \ v.

Note that if D C G is a difference set, the collection of right translates of
Z>, including D itself, viz.

SB {Dg\g e G}

constitutes a symmetric block design on G. This means that each element of
G is contained in exactly k blocks (recall k | D |), and every pair of (distinct)
elements of G belongs to precisely X blocks.

Indeed, if g e G, let gx x~lg; then

g e Dgx if and only if x e D

and therefore the correspondence x Dgx provides a bijection between D
and the set of blocks containing g.

If gu g2 6 G is a pair of distinct elements of G, set gx x~lgi. Then,

gug2e Dgx if and only if x e D n gxg~lD

and the assignment x^>Dgx establishes a bijection between Dngxg^D
of cardinality X and the set of blocks Dg containing the pair gug2.

Proposition. There is a bijection between the set of binary sequences
A (a!,a0) with constant periodic correlation y, i.e.

y E Oi • ai+j
i mod L>

f°r j1 V -1, and difference sets D on the cyclic group
of order u with parameters (v,k, X), where X k - (o - y)/ The
set D associated to the sequence A is given by {/1 a-t - 1}.

Remark. In particular, if there is a binary sequence of length v with
constant periodic correlation y, then one must have o mod 4, and y is
given by

y u - An

where, as above, n k - X.
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We call y u - 4n the correlation of the cyclic difference set D with
parameters

In the proposition we must momentarily relax our convention

\D\^\G\/2.
Proof. Let G Z/uZ. We will represent the elements of G by {1, 2, u}.

Suppose A — (alta0) is a binary sequence and y £-=1 a/ai+j is

independent of j for j 1, v - To A we associate the subset

D {i\at - 1} C G

Set k I D |. We claim that

X I D n (j + D) I k - (u - y)/4

for all j & 0. Indeed, we have

y É a,a, ,j I D' n {j + D') | + | D n (J + D) | - | D n (J + D') \

I i

-\D'n(j+D)\,
where D' G\D.

Now, we have

(1) I n (y + D) I + J £> n (y + D') \ — k

(2) I Dn (y + D) \+ | D' n (y + D) \

(3) \D'nU + D')\ + \Dn{j + D')\= v-k

(4) I D'n(y + D') \ + \ D' n (j + D) \ u - k

from which we conclude (by comparing (1) and (2)):

I D n (J + D') I I D' n (J + D) | k - X

and (by substracting (3) from (1)):

I Dn (y + D) \ - \D'n(y + D') \ 2k - u

Comparing this with

Y I D n (j + D) I + I D' n (J + D') | - 2(k - X)

we get the desired relation

2\ 2k - u + y + 2{k - X)

Conversely, if D C Z/oZ is a cyclic difference set, then viewing D as a subset

of {1, t;}, define a, + 1 if i $ D and at - 1 if i e £>. The periodic
correlations y= £/möduaiai+j (J 1, ^ — 1) are independent of y and
have the common value y v — 4n.
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Equivalently, we may recast the proof as follows: write

D(z)= £ zdeZ[z}/(z"- 1)
d eD

if D C Z/uZ. We see that D is a difference set with parameters (u, k, X) if and

only if

(1) D(z)D(z'x) n + XT,

where n k — X and 7" 1 + z + • • • + z°~l. Now, A(z) i ai%1
1

has constant periodic correlation y if and only if

(2) A(z)A(z~1) u + y(T- 1) in Z[z\/(zv - 1)

If D C Z/vZ is the set of exponents of the monomials zl occurring with
coefficient - 1 in A(z), then A(z) T - 2D(z), where D(z) HdeDzd as

above.

An easy calculation, using T{z~l) T(z) and z ' T(z) T(z), shows that

(2) is equivalent to

v - y / v - y\
D(z)D(z~l) -j1 + Ik T

and therefore (2) is equivalent to D being a cyclic difference set with parameters

(u, k, X), where X k - -—-
4

Note that a difference set on a group- G could equivalently be defined as

a subset D of a G - set E such that

(1) \E\ \G\,

(2) G acts transitively on E, i.e. E affords the regular representation of
G, and

(3) X I D n gD I is independent of g for g e G\{ 1}.

We shall sometimes use this presentation in the sequel.
Several necessary conditions must be satisfied by a given triple (v, k, X) to

be realized as the parameters of some difference set. These well known conditions

are recalled below. We refer to [L] for more details.

First of all, the triple (u, k, À,) must satisfy the equation

k(k - 1) X(u - 1)
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This follows easily from the definition of a symmetric block design. Next, we
have:

(1) if v is even, then n k - X must be a square (Schiitzenberger) ;

(2) if v is odd, the equation
l
; (ü-i)

nX2 + (- 1) XY2 Z2

must have a solution (X, Y, Z) (0,0,0) in integers (Chowla-Ryser)

A deeper condition on the parameters of a difference set in an abelian

group is provided by the following result. First we need a

Definition. A prime number p is said to be semi-primitive modulo the

positive integer w if there is some integer / for which the equation

pf - 1 mod w

holds. A number m is said to be semi-primitive modulo w if all its prime factors

are. Finally, the number m is said to be self-conjugate modulo w, if m is semi-

primitive modulo w', where w' denotes the largest divisor of w which is prime
to m.

Semi-primitivity Theorem. Suppose that there exists a (v,k,X)~
difference set in an abelian group G. Let p be any prime divisor of
n k - X. Then p is not semi-primitive modulo the exponent e(G)

of G.

Furthermore, if p divides the square-free part of n, then there is no
divisor w > 1 of v | G \ for which p is semi-primitive mod w.

(See [L], Theorem 4.5, page 134.)

Another very useful theorem of R. Turyn is:

Turyn's Inequality. Assume a non-trivial (v, k, X) difference set in a

cyclic group exists. Let m > 1 be an integer such that m2 divides

n k - X and such that m is self-conjugate modulo w for some divisor

w > 1 of v. If gcd(m,w) 1 then m ^ v/w. If gcd(m, w) > 1 then

m ^ 2r~lv/w

where r is the number of distinct prime factors of gcd (m, w).

(See [Tl]; in the special case r 1, see also [Y] and [R].)

We now turn to one of the multiplier theorems, which sometimes describes

a difference set as a union of orbits under multiplication by a certain integer.
' First a
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Definition. Let G be a finite abelian group and D a difference set on G.

The integer m is a multiplier for D if m is prime to u | G |, and if the isomorphism

m: G G induced by multiplication by m, permutes the translates

a + D {a e G) of D.
Thus, m is a multiplier if (m,u) 1, and if m • D a + D for some

cl g G.

We will also need the following result:

Proposition. Let m be a multiplier of a difference set D in an

abelian group G. Then some translate D' - a + D (a eG) of D, is

fixed under multiplication by m, i.e. m • D' D'.
This follows at once from a more general result, stating that an

automorphism of a symmetric block design fixes as many points as blocks. (See

[L], Theorem 3.1, page 78.) In our context, the multiplication by m in G
fixes 0, hence it must fix at least one translate of D.

As a consequence, if an abelian difference set D admits a multiplier m, we

may very well suppose that D is fixed under multiplication by m, and thus,
that D is a union of orbits under multiplication by m.

The multiplier theorem below tells us how to find multipliers of abelian

difference sets.

Multiplier Theorem. Let D be a (u,k,X) difference set in an
abelian group G. Let n{ be a divisor of n k - X such that nx > X.

Suppose m is an integer satisfying

(1) gcd(m,u)=l;
(2) for every prime divisor p of nx, m is a power of p modulo

the exponent e of G.

Then, m is a multiplier of the difference set D.

In Section 4, we will use this theorem to exclude the existence of periodic
Barker sequences of various lengths.

2. Periodic Barker sequences

This section deals with periodic Barker sequences, i.e. binary sequences
whose periodic correlations y} are constant and equal to y e {0,1, - 1}.

Case y 0. In this case, the parameters (v,k,X) and n k - X of the
associated cyclic difference set (see Section 1) satisfy:

n N2 v AN2 k IN2 - N, X N2 - N.
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These follow respectively from Schützenberger's theorem for v even, the
relations u - An y, k(k - 1) X(v - 1), and our assumption k ^ v/2.

We will now prove a theorem of R. Turyn [Tl], stating that N must
necessarily be odd. (See also [Bau].)

Theorem 1. Let D be a cyclic difference set with parameters
v AN2, k 2N2 - N and X TV2 - N. Then N is odd.

For the proof, we will need the following two lemmas.

Lemma 1. Let r| r\r be a primitive 2r-th root of unity (r>0).
Let 0 e Z[rj] satisfy

00 0 mod (2)25 (s > 0)

where ~ denotes complex conjugation. Then

0 0 mod (2)s

Proof. In Z[r|], the ideal (2) is a power of the prime ideal P — (1 - rj),
and clearly P P. We have (2) Pk, say.

Suppose 0 e Pm where m is maximal. Then 00 e P2m, and 2m is also

maximal. But 00 e (2)2s P2sk, which implies 2m ^ 2sk, i.e. m ^ sk, and

hence 0 e (2)s, as claimed.

On the level of group rings, there is a similar result, albeit necessarily

weaker. For i > 0, we will use the following notation:

(1) r|/ is a primitive 2'-th root of unity;

(2) Ti is the multiplicative cyclic group of order V with generator xr,

(3) p: ZF/ -> Z[ti/] is the map induced by p(x,j r|,;

(4) v,: Zr, -> Zri„j is the map induced by vy(x,) Xj-j (j < i).

Lemma 2. Let 0 e Z[r>,] (r > 0) satisfy

00 s 0 mod(2)2s, (0<5<r)
and let a e Zr, be any element such that p(a) 0. Then

vs (a) 0 mod (2)s

in Zrr-S
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Proof. By induction on 5.

(1) Case 5 =1. Let us write a as

2r - 1

a £ a,x'r.
i - 0

Then

2r_ 1

— 1

e p(a) X (a/ - a/ + 2r-i)rir »

/ o

since ri^"1 - 1. Furthermore, the powers r\kr with 0 ^ k ^ 2r~l - 1 form

a Z-basis of Z [t| r]. By Lemma 1, we have 0 0 mod (2), and therefore

(*) a/ a/+2r-i mod (2)

for all i 0, 2r~l - 1.

On the other hand,

2r~ 1

— 1

vl(a) S (a/ F a/+2r-0*r-i »

i 0

and (*) implies that Vi(a) 0 mod (2) in Zrr_i, as claimed.

(2) Case 5 > 1. By (1) above, we have Vi(a) 0 mod (2) in ZTa_i.
Thus we have Vi(a) 2ß in ZTr_i. Now p(ß) — ^p(a), so that

P(ß)p(ß) 0 mod (2)2(5_1)

in Z [rir _ i]. By the induction hypothesis, we have v5_i(ß) 0 mod (2)5"1 in

ZTr_5, and therefore v5(a) 0 mod (2)5 in ZTr_s.

Proof of the Theorem. Let D C Z/vZ Cv denote a difference set with

parameters (u ,k,X) (47V2, 2N2 - TV, N2 - TV). Identifying ZCV with

Z[x]/(x° - 1), we will denote by 0(x) the element 0(x) £ deDxd e ZCU. We

have by hypothesis,

(1) 0(x)0(x~l) N2 + ^(1 + a + • • • T- xu~l)

Given any element z in some ring A, we will denote by 0 (z) the image of
0(x) under the map 4>: ZCV -> A induced by

Let us write TV 2tNx with Nx odd. Thus, w 22t + 2 is the highest power
of 2 dividing u 47V2. Let Tz denote, as above, the cyclic group of order 2'
with generator x,-.
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If ri is a primitive 22/ + 2-th root of unity, we have 0(r|) • 0(r|) TV2 0

mod (2)2'. Hence, Lemma 2 implies 0(x, + 2) 0 mod (2)t in ZT,+2. Denoting
xt+2 by y, we thus have

e(y) 2%(y),
for some 0iO>) e ZTt + 2.

Now, a direct computation yields

eiOOëlôô + n\(n-l)(i + J + • • • +^'+2->),
so that the constant term (i.e., the coefficient of 1 y°) of 0iöO0iOO is

equal to N] + TV* (TV- 1). On the other hand, write 0iO>) as

2' + 2— 1

0i (J) I d,y<
i 0

in Zr/ + 2. In this notation, the constant term of 0i(j^)0i(j7) is equal to
Y, d), so that

N\ + N\(JN-1) X d]

Now, E d2j(E dj)1 mod 2, and

(E di)2e^l)2 N\+ N\{N~ 1)2' + 2

Thus,

N] + N\(N-1) s N\+ N\(N-1)2'+2 mod 2

which implies N 1 mod 2, as claimed.

Another very strong restriction on the parameter N is provided by the

following easy consequence of Turyn's Inequality, Section 1.

Theorem 2. Let N be an odd integer. If N has a prime factor p
which is self-conjugate modulo N, then there is no periodic Barker sequence

of length I 47V2.

Recall that, by definition, p is self-conjugate modulo TV if and only if there
is a positive integer / such that pf - 1 mod TV', where TV' is the largest
divisor of TV which is relatively prime to p.

Proof. In the notation of Turyn's Inequality, take v 47V2 of course,

m p, and w - v/2 27V2. Thus v/w 2 and r, the number of distinct

prime factors of gcd(m,w) p is equal to 1 here.
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Let now TV' denote the largest divisor of TV which is relatively prime to p.
By hypothesis, there is a positive integer / such that pf - I mod TV'. Since

TV' and p are odd, we also have pN'f - 1 mod 27V'2. Therefore p is self-

conjugate modulo 27V2 w9 because 27V'2 is the largest divisor of 27V2 which

is relatively prime to p. If a periodic Barker sequence of length 47V2 existed,

Turyn's Inequality would then imply

p m ^ 2r~lv/w 2

contrary to the fact that p divides TV.

An immediate corollary is that TV cannot be a prime or a prime power.
R. Turyn used his inequality to show that there exists no periodic Barker

sequence of length / 47V2 with 1 < TV < 55. (The case N= 39 required a

special argument.) See [T2].

As an example, suppose that TV px • q^9 where both p, q are prime and
3 mod 4. The hypothesis of Theorem 2 is then satisfied, i.e. either p or q

is self-conjugate modulo TV.

Q- 1

This follows from quadratic reciprocity, which implies that either p 2

p -1

- 1 mod q, or q 2 - 1 mod p.

More generally, suppose that TV px • q» • Nx, where p, q are as above,
and where Nx is coprime to p, q9 and satisfies furthermore N\ < min(p, q).
Then there are no periodic Barker sequences of length 47V2. This follows
from Turyn's Inequality, by choosing w Ap2Xq2^, and m p or q,
according as to wether p is self-conjugate modulo q9 or q is self-conjugate
modulo p.

(As observed by J. Jedwab, it even suffices to have N\ < min(/?\
taking m px or q^9 as the case may be.)

Case y 1. In this case, the parameters (v9k9X) and n k - X satisfy

v 2t(t + 1) + 1

k t2

X -t(t- 1)
2

and n -t(t + 1)
2
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for some positive integer t. Indeed, u 4n + 1 (since v - y 4n for a periodic
Barker sequence with correlation y), and the symmetric block design relation

k(k - 1) X(u - 1) yields k (k - 2X)2. Setting t k - 2X, we find the

parametrization above. Since the parameter values are the same for - t and

t- 1, we may assume t ^ 1. (Recall also our convention k ^ \ v.) Observe

that the Chowla-Ryser condition is here always satisfied: the triple
X - 1, Y 1 and Z t is a nontrivial integral solution to the equation

i

nX2 + (- l)2
1}

XY2 Z2. The case t 1 is trivial: X 0. It does however

correspond to the Barker sequence 1,1,1,-1,1. For t 2, we have the

parameter values (13,4, 1) and the essentially unique cyclic difference set

D { 0,1,3,9}.

More geometrically, we can describe this difference set using the projective
plane P2(F3) over the field F3 with 3 elements which possesses an automorphism,

the Singer automorphism of order 13. Viewing E P2(F3) as a G-set

with G cyclic of order 13, the difference set D C E is then given by any line

PHF3) C P2(F3). The Singer automorphism is best described by taking the

orbits of the Ff-action on F27. The map S: P2(F3) -> P2(F3) then corresponds

to the multiplication by a generator a of the cyclic group Ff7. (See [L],
page 125.)

We will prove that there is no other cyclic difference set with parameters

2t{t + 1), t2, - t(t - 1) I for f ^ 100, except perhaps for t 50, where the
2 /

existence of a cyclic difference set with parameters (5101,2500, 1225) still
remains unsettled. We only know that 191 is a multiplier if such a difference
set exists.

These non-existence claims are obtained by using the semi-primitivity and

multiplier theorems of Section 1. Table I at the end of the paper indicates in
each case which of these two results was used. When relevant, the semi-

primitivity theorem is very easy to use. In our case, where the parameters are

of the form {v,k,X) ^2t(t + 1) + 1, t2, - t{t - l)j there is one further

simplification; the semi-primitivity theorem implies the non-existence of a

cyclic difference set with n even, in the following two instances:

(1) v 2t(t + 1) + 1 is a prime power

(2) n k- X -t(t- 1) is square-free.
2
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(Unfortunately, this simplified criterion does not apply for n odd.) Indeed,

since v An + 1, we have

An - 1 mod u

so that one of the primes dividing An must be of even order in the group of
units (Z/uZ)*.

If n is even, then An and n are divisible by the same primes and one of
the primes dividing n must be of even order modulo v. Let p, say, be a prime
divisor of n and let 2/be its order in (Z/uZ)*.

If v is a prime power, the group (Z/vZ)* is cyclic (yes, v is odd) and

pf - 1 mod v. The semi-primitivity theorem applies. If v is not a prime

power, there is a prime power divisor w of v such that p is of even order, 2/'
say, in (Z/wZ)*. Again, (Z/wZ)* being cyclic, this implies pfr - 1 mod w,
and the semi-primitivity theorem applies. In the range 3 ^ / ^ 100, the semi-

primitivity theorem takes care of all the cases, except the values t 9, 49, 50

and 82. (See Table I.)
In contrast, applying the multiplier theorem may require quite lengthy

computations on the structure of multiplier orbits. The cases t 9, / 82 (easy)
and t 49 (harder) are treated in Section 4 using the multiplier theorem.

Case y - 1. The symmetric block design equation &(&-l) A,(i>-l)in
this case yields the parameter values (i;, k, X) (An - 1,2n - 1 ,n- 1), where

n k - X as usual. Recall that we are assuming k ^ \ v, without loss of
generality.

i
- (U- 1)

Again the Chowla-Ryser equation nX2 + (- l)2 XY2 Z2 is non-
trivially solvable in integers: X 1, Y I, Z 1.

However, here the situation is quite different from the one in case y 1.

There are well known families of cyclic difference sets with parameters of the
form (An - 1, 2n - 1, n - 1).

(1) Quadratic residues.

Suppose v a An « 1 - p is a prime. Let D C Z/pZ be the set of non-zero
quadratic residues mod p. Then,

k \D\~ - (p - 1) 2n - 1

2

and D is a difference set with X (p - 3)/4 n - 1. We shall denote this
difference set by QR(p).
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(2) Projective spaces.

Let E P*(F2) be the projective öf-space over the field with two elements

F2. Of course, \E\ 2d+l — 1. The hyperplanes in E form a symmetric
block design with parameters

(2d+1 - 1,2*- 1, 2*"1 - 1)

The Singer automorphism exhibits this design as a cyclic design on the cyclic

group of order v 2d+l - 1. We use P*(F2) as a notation for this cyclic
difference set.

(3) Gordon-Mills-Welch difference sets.

Other difference sets with the same parameters as projective spaces have
been discovered by B. Gordon, W. H. Mills and L. R. Welch. (See [GMW].)
They appear in Table II under the label GMW. We give some details of their
construction in Section 5.

(4) Twin primes cyclic difference sets.

If p and q are twin primes, q p + 2, there is a difference set onIl 1 \
Z/pqZ Z/pZ x Z/qZ with parameters pqy - {pq - 1), - {pq - 3) and

I 2 4 J

which we shall denote by TP(p, q).
The set D C Z/pZ x Z/qZ is defined by

D {Z/pZ x {0}) u (Sp x Sq) u (Np x Nq)

where Sp and Np denote the (non-zero) squares and non-squares mod p
respectively, and similarly for Sq and Nq.

(5) Marshall Hall cyclic difference sets.

If v is a prime number of the form v 4x2 + 27 where x is an integer,
/ v- 1 Ü-3\there is a cyclic difference set with parameters f, I [H],
\ 2 4 /

page 170. We will denote this difference set by MH{v). In Table II, they occur
for the values n 56 and n 71 of the parameter n.

In Table II, we settle the existence question for a cyclic difference set with
parameters (4n - 1, 2n - 1, n - 1) for n 2, 100.

It turns out that the cyclic difference sets with parameters (7, 3, 1) provided
by P2(F2) and QR{1) are isomorphic. In the two other cases of Table II where

4n - 1 is a prime p of the form p 2d - 1 (that is, n 8 and 32), Vd~ l(P2)
and QR(p) are non-isomorphic difference sets. (According to [BF], there

actually are 6 distinct examples for n 32.)
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In the fourth column of Table II, we have indicated the known existing

cyclic difference sets or the relevant prime power exhibiting non-existence by
the semi-primitivity theorem of Section 1. The values of the parameter n left
out by these two classes are n 7, 25, 28, 37, 43, 44, 49, 52, 61, 67, 72, 75,

76, 86, 97, 99 and 100. We have reached a non-existence conclusion in these

cases by using the multiplier theorem of Section 1. The required calculations

being quite lengthy, it is impossible to expose them all. Instead, Section 4

contains some typical examples of application of this theorem.

3. Barker sequences

Recall that a Barker sequence is a binary sequence A {au •••, ai) such
that the aperiodic correlations Cj (A) \aiai+j belong to {- 1,0, 1}
for all j 1, / - 1.

The set of Barker sequences of a given length is preserved by the following
transformations :

A^aA, where (cu4), - at

A where (ß^4), (- I)'#,
A y^4, where (yA)t a^i+l

with / length (^4).
The group of transformations of Barker sequences generated by a, ß and

Y is the elementary abelian 2-group Z/2Z x Z/2Z x Z/2Z of rank 3 if / is odd,
and is the non-abelian dihedral 2-group of order 8 with presentation

A < a, ß, y: a2 ß2 y2 1, aß ßa, ay ya, yßY aß >
for / even. Note that in this case, A is also generated by p ßy and y with
presentation

A : < P, Y-* P4 Y2 1, YPY P"1 >
Case of odd length. The complete list of Barker sequences of odd length was
established by R. Turyn and J. Storer, [ST] and reads as follows (in
lengths ^ 3) :

0,1,-1)
(1,1,1, -1,1)
(1,1,1, -1, -1,1, -1)
(1, 1, 1, - I, - 1, - 1, 1, - l, _ i,\9 _ i)
(1, 1, 1, 1, 1, - 1, - 1, 1, 1, - 1, 1, - 1, 1)
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The list is complete up to the transformations a, ß and y given above. The orbit
of each Barker sequence in the above Turyn-Storer list under this transformation

group consists of 4 sequences.

Case of even length. The situation here is completely different. The only
known examples are

(1,1) and (1,1,1,-1),
again up to modifications by the above transformations a, ß and y. Note that
the sequence (1,1,1, - 1) gives rise to 8 sequences under this transformation

group.
It is widely believed that these are the only Barker sequences of even length.

We will show that this is true up to length 1 898 884.

We know from Section 1 that a Barker sequence of even length ^ 4) is

also a periodic Barker sequence with correlation y 0, and we know from
Section 2 that the length / must be of the form / 4TV2 with TV odd, if / ^ 4.

We also know from Section 2 that if TV is an odd integer with a prime factor

p such that p is self-conjugate modulo TV, then there is no (periodic) Barker

sequence of length 47V2. In other words, N is excluded if, for p as above,
there is some positive integer / such that pf - 1 mod TV', where N' is the

largest divisor of TV which is relatively prime to p. An immediate consequence
is that TV cannot be a prime or a prime power. R. Turyn used the above theorem

to show that, if there exists a (periodic) Barker sequence of length / 47V2

with TV > 1, then necessarily TV ^ 55. With the following result of [EKS], this
bound can be improved to TV ^ 689, but only for true (i.e. aperiodic) Barker

sequences.

Theorem. Let I be an even integer having a prime factor p 3

mod 4. Then there is no Barker sequence of length I.

For the proof, we will need the following

Lemma. Let f(z), g(z) e Tp[z, z~l] be non-zero elements satisfying

f(z)f(z-l) + g(z)g(z-') 0.

Then either p - 2 or p 1 mod 4.

Proof. Since Fp[z,z~x] is a unique factorization domain, we may

suppose that /(z), g(z) are coprime, by clearing any common factor. But then,
the equation implies that f(z) divides g(z~l). We may thus write

g(z~')h(z)f(z)
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for some A(z) e Fp[z, z~1]. Substituting these expressions for g(z) and g(z_1)

and clearing the common factor f(z)f(z~l) in the resulting equation,

we obtain

1 + h(z)h(z~l) 0

Letting z 1, this gives - 1 h(l)2 in ¥p, and therefore p is not congruent

to 3 mod 4.

Proof of the Theorem. Let A (a{,a() be a Barker sequence of
even length /, and consider the two polynomials

/ /

F(z) X aiZi~l and G(z) F(-z) £ (- 1 )/_1a/z/"1
/ l / i

Claim: Then, (.F, G) is a Go lay pair, i.e.

F(z)F(z-1) + G(z)G(z~l) 21 inZ[z,z-{]

Indeed, the constant term of F(z)F(z~l) + G(z)G(z~l) is equal to
2 £ a] 21. On the other hand, for j > 0, the coefficient of zj + z~j in

F(z)F(z~l) + G(z)G(z_1) is equal to

i -j
£ (a,a,•+; + (-1 ya,ai+

i 1

which is zero if j is odd, and is equal to 2cj (A) if j is even. But Cj(A) 0

if j is even and positive, since Cj(A) belongs to { - 1,0,1} by hypothesis, and

Cj j mod 2. Therefore, F(z)F(z~l) + G(z)G(z~l) 21 in Z[z, z_1], as

claimed.

Reducing the above equation modulo p, we obtain two non-zero elements

f(z),g(z) in F,[z, Z"1] satisfying

f(z)f(z~l) + gfe)g(z_1) 0

By the lemma above, we conclude that p cannot be congruent to 3 mod 4.

Application. There is no Barker sequence of length I 47V2, if
1 < N < 689. In particular, there is no Barker sequence ofeven length greater
than 4 and less than 1 898 884.

Of course, it suffices to consider only those N < 689 which are odd, are
not a prime or a prime power, and have no factor congruent to 3 mod 4. Since
the square root of 689 is smaller than 26, every such N must have a prime
factor equal to 5, 13 or 17.
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The remaining candidates are listed below, together with an indication in
parenthesis showing that each one (except 505) is excluded by Theorem 2 in
Section 2: if N has a prime factor p such that pf - 1 mod N', where N'
is the largest divisor of N relatively prime to p, then there is no (periodic)
Barker sequence of length AN2.

Remaining candidates (excluded by Theorem 2, except N= 505.)

N N
65 5 • 13 (52 - 1 mod 13) 425 52 • 17 (58 - 1 mod 17)

85 5 • 17 (172 - 1 mod 5) 445 5 • 89 (89 s - 1 mod 5)
145 5 • 29 (29 - 1 mod 5) 481 13 • 37 (37 6 - 1 mod 13)
185 5 • 37 (37 2 - 1 mod 5) 485 5 • 97 (97 2 - 1 mod 5)
205 m 5 • 41 (510 - 1 mod 41) 493 17 • 29 (172 - 1 mod 29)
221 13 • 17 (13 2 - 1 mod 17) 505 5 • 101

265 5 • 53 (53 2 s - 1 mod 5) 533 13 • 43 (433 s - 1 mod 13)

305 5 • 61 (515 - 1 mod 61) 545 5 • 109 (109 - 1 mod 5)

325 52 • 13 (52 - 1 mod 13) 565 * 5 • 113 (113 2 - 1 mod 5)

365 5 • 73 (73 2 - 1 mod 5) 629 17 • 37 (378 s - 1 mod 17)

377 13 • 29 (137 - 1 mod 29) 685 5 • 137 (137 2 - 1 mod 5)

The case N 505 5 • 101 cannot be excluded by Theorem 2, because

101 1 mod 5 and 5 25 s 1 mod 101. However, 505 can still be excluded by

Turyn's Inequality, as observed in [JL]: choosing p 101 and w 2 • 1012,

so that p is trivially semi-primitive modulo w, we would have

p < - 2•52 50
w

a contradiction to the assumed existence of a Barker sequence of length
4 • 5052.

The first open case is thus N 689 13 • 53. We have 53 1 mod 13 and
1313 1 mod 53, so that neither 53 is semi-primitive mod 13, nor 13 is semi-

primitive mod 53. The next open case is N 793 13-61.

4. The use of the Multiplier Theorem

In this section we give the details of some (typical) non-existence proofs
needed to establish the tables, using the multiplier theorem.

Recall that if D is a cyclic difference set with parameters (u,k9X), and if
n k - X is greater than X, then the group of multipliers of D contains the

intersection M in (Z/uZ)* of the subgroups generated by lÏ9 ...,/r, where

l\, lr are the prime factors of n.
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(1) Parameters (v - 181, k 81, X 36), Table I with t 9.

Here, n 32 • 5, and since 5 36 mod 181, the multiplier theorem says

that if an abelian difference set exists with these parameters, then 5 is a

multiplier. The orbits of the multiplication by 5 in Z/181Z are {0} and

12 orbits of cardinality 15, e.g.

{1, 5, 25, 125, 82, 48, 59, 114, 27, 135, 132, 117, 42, 29, 145}

(Note that 181 is a prime number.) No subset of G Z/181Z of cardinality
k 81 may thus be a union of orbits.

(2) Parameters (v 4901, k 2401, X 1176), Table I with t 49.

Here, n 52 • 72. We have 25 52 76 mod 4901. Therefore, if an abelian

difference set exists, m 25 must be a multiplier. Writing the group
G Z/4901Z as G Z/132Z x Z/29Z, with group operation (a, b) • (a',b')

{a + a', b + b'), the orbits under multiplication by m 25 are

E ={(0,0)}
G, {(13/,0),(-13/,0)} / 1, 2, 3, 4, 5, 6

Vj {(y, 0), (25./, 0), (118./, 0), (777,0), (667,0), (129/, 0), (147,0), (127,0),
(1317,0), (647,0), (797,0), (1167,0), (277,0), (-7,0),...}
7 1,..., 6, each of cardinality 26.

X {(0,1), (0,25), (0,16), (0,23), (0,24), (0,20), (0,7)}
Y {(0,2), (0,21), (0,3), (0,17), (0,19), (0,11), (0,14)}

X {(0, - x)I(0,x) e X)
Y ={(0,-y) |(0,y) e Y}

each of cardinality 7.

There are moreover, the 24 orbits (J, • X, Ut X, U, • U, Y of
cardinality 14, where

A • B {a bI a e A, b B)

Finally, there are 24 orbits V, X, V,Vr Y of cardinality 182.
Contrary to the preceding example, there are many ways of writing the
cardinality 2401 of a putative difference set as a sum of numbers taken from
the set of orbit cardinalities.

To ease calculations, we view a subset C as the element £ seSs in the
integral group ring. Note that, with this convention, the product Tin Z
coincides with the element of ZG associated with the product set
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S - T {s - t\s e S, t e T}. A difference set D, if it exists with the above

parameters, can be written as

D C + AX + BY + PX + QY

where C, as well as A, B, P, Q, is of the form

C aE + £ ßiUi+ t yjVj
i 1 7 1

with coefficients a, ßi, ß6, Yi> •••> Ï6 all equal to 0 or 1.

As in Section 1, D is a difference set if and only if

DD 1225 + 1176 • |l+ £ u< + ü j * (1 + * + X + r +

Now, writing G Gj x G2 as above, Gi Z/132Z, G2 Z/29Z, let tu: ZG

- ZGi be the projection on the group ring of G\. We have nX nX n Y
71F 7, and reducing modulo 7,

7t(Z)Z)) CC 0 in F7Gj

The involution of ZG, sending (a, b) to (a,b) (- a, - b), is the identity
on Ui9 Vj:

jjt Ui9 Vj

Therefore C C and C2 0 in F7Gi. However, F7Gi, where Gx is of order
132, prime to 7, is a semi-simple algebra and does not contain any nilpotent
element. It follows that C 0 in F7Gi. Since the coefficients of
C aE + Yé /= i ß/^/ + j YiVj are all 0 or 1, this implies C 0 in

ZGi, i.e.

D AX + BY + PX + QY

and kD 7 • S with

6 6

S r+ £ 5,t/, + £
i 1 7=1

where S A+ i? + P+<2. Thus, all coefficients r, ...,s6> ^,..., t6 are

non-negative integers ^ 4.

Again 7t(Z>Z)) 1225 + 1176 • (1+ £ t/, + £ '29- Therefore,

S2 25 + 696 • |l.+ £ C/f + £ Fyj
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With our (abuse of) notation, we set Gi 1 + £ + Ü Then,

G\ 169 • Gi. Thus, we see that

S±(5+ 2GO

are solutions of S2 25 + 696 • Gi. We claim that there is no other. This

will clearly finish the non-existence proof since < 4. Note the decomposition

QG, Q x Q(Ci3) X Q(Ci69)

of the algebra QG, as a product of fields, where Çi3 is a primitive 13-th root

of unity, and Ci69 a primitive 169-th root of unity.

The element G,£ 0 zk e ZGi corresponds on the right hand side to

(169,0,0) since Ç13 and Çi«9 are roots of the polynomial £ 11 follows

that S2(3432,52,52). Hence, any solution ZeZG, of the equation

Z2 25 + 696Gi must correspond to (±343, ± 5, ± 5). Changing Z to - Z,

we can assume Z (343, ± 5, ± 5). Now, the diagrams

ZG! - ZKu]
I I
z -» f13

and
ZG! - ZK,»]
I I
Z - F, 3

where the right vertical arrows send Ç13, resp. Ç169 to 1 e F13, are commutative.

Since 5 is not congruent to - 5 modulo 13, and 343 maps to +5 e Fu,
we see that Z (343,5,5) S.

(3) Parameters (u 13613, k 6724, A. 3321), Table I with t 82.

This case is as simple as case (1). Indeed, n - 3403 41 -83. Since

41 833 mod 13613, it follows from the multiplier theorem that if a cyclic
difference set D with parameters (13613, 6724, 3321) existed, then 41 would
be a multiplier, and D could be taken to be a union of orbits under multiplication

by 41 on the cyclic group Z/13613Z.
The order of 41 modulo 13613 is 3403, and beside the one-point orbit {0},

there are 4 orbits X, iX, i2X, PX each of cardinality 3403, where

X={1, 41, 1681, 13281}
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and i is a square root of - 1 mod 13613, e.g. / 165. Note that 13613 is a

prime number.

However, 6724 is not of the form n0 + 3403^1 with n0 0 or 1 and
0 ^ nx < 4. No difference set can therefore have the above parameters.
(4), (5), (6) Parameters (v,k,X) (33,13,6), (35,121,60) and (73,171,85)
of Table II, with n 7,61 and 86 respectively.

More generally, we will consider the case

/ p2t+ 1 _ i pit+i - 3 \
(u,k,X) P—

where p is a prime s 3 mod 4.

p2i+\ + I
We have n k - X Let lx, lr be the primes dividing n.

4

The group of multipliers for a putative difference set D with the above

parameters contains the intersection M in (Z/uZ)* of the subgroups generated

by /i,..., lr. Since (Z/uZ)* is cyclic, M is the unique subgroup of (Z/uZ)*
whose order is the greatest common divisor of the orders qx, qr of
lx, ...,/r in (Z/vZ)*. We will now assume that the orders qx, ...,qr of the

prime factors lx, lr of n k - X in (Z/vZ)* are all divisible by pt+l.

Theorem. There is no cyclic difference set with parameters

1
p2t+l — 1 p2t + l — 3

N

(u,k,X)= p2'4

where p is a prime 3 mod 4, provided that the orders qx, qr of
the prime factors lx, ...,/r of n k - X in (Z/uZ)* are all divisible

by pt+1.

Note that the hypotheses of the theorem above are satisfied for the three

examples we have in mind. (Cases n 7,61 and 86 in Table II.)
(1) n l:p 3,t=\, and 7 is of order 32 modulo 27;

(2) n 61 :p 3, t 2, and 61 is of order 34 modulo 243;

(3) n — 86\p 1
> t 1, and 2 is of order 3 • 72 modulo 343, 43 is of

order 72 modulo 343.

As expected, the hypothesis on the orders of the prime factors of n is not
113 + 1

satisfied in general. It fails for instance for p 11, t 1 : here n
4

333 32 • 37 and whereas 37 is of order 5 • ll2 modulo ll3, 3 is only of
order 5-11 modulo 113.
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However, failure of the hypothesis seems fairly rare: the next example with
t 1 occurs for p 3511. Note that 3511 is special for another reason: it
satisfies the congruence 2p~l 1 mod p2, the only other known solution
being the famous p 1093. Such prime numbers are known in the literature
as Wieferich prime numbers.

p2i+ 1
_j_ i

The behaviour of the orders of the prime factors of n — in
4

(Z/p2t+lZ)* is probably a difficult question.

Proof of the Theorem. The hypothesis on the orders q\,...,qr means
that m 1 + p(, which generates the subgroup of order pt+l in (Z/plt+lZ)*9
is contained in all the subgroups < f > < lr > of (Z/plt+lZ)*9 and thus
is a multiplier of any candidate difference set D C Z/p2t+xZ with the above

parameters.
What are the orbits of multiplication by m 1 + pl in the ring

Z/p2t+lZl If at i - pt+i, then a • m a mod p2t+l. Hence, there are pl
fixed points a0 0,au ...,^_1.

More generally, if au ipt~j+l with 1 ^ ^ pt - 1 and gcd(i,p) 1,

j 1, t + 1, then dij produces an orbit {aumv}v 0,...^-i of length pf
Here, we use the formula

(1 + pf)pS 1 + pt+s mod (/?'+5+1)

easily proved (for p odd) by induction on s, and which implies that m has
(multiplicative) order pj modulo pt+j.

The orbits Au of dtJ with ieZ/p'Z for j 0 ,ö a,), and
i e (Z/ptZ)* for j 1, t + 1 are easily verified to be disjoint. Together,
they sweep out

t+1

p'+ L (p-i)ppjp2i+i
j i

elements of the group Z/p2'+ 'Z. Hence, AtJ with for j 0
(ai,o ai)> sud ic(Z/p'Z)* for j=1,1 is the complete collection

of orbits under multiplication by m1 + in Z/p2,+ lZ. At this point,
it may be more convenient to write the group ring of Z/p2l + lZ as
Z[x]/(xp2,+'- 1). Identifying a subset C Z/p2t+lZ with the sum of the
corresponding elements %aeAa in the group ring, the orbits AUJ can then be
written as

pj - i
AiyJ £
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If a difference set D with the above parameters exists, it must be of the form

D= I xipt+l + £ £ ^ieS0 j I ieSj

where S0 C Z/plZ and »Sy C (Z/p(Z)* for y 1, t + 1. Now, let
n : Z[x]/(xp2t + l - 1) Z[y]/(yp - 1) be the projection of the group ring of
Z/p2t+lZ onto the group ring of the cyclic group of order p. We have

n(x) y and

nAij=Pi for y 0, 1,

nAitt+l pt+l • ^ for i e (Z/p'Z)*
It follows that

TiD — Sq ps\ + • • • + ptst + pt + l \ X y'( s
\ 'e +1

where Sj Card(Sy).
Let N s0 + psi + • • • + and a^ Card{/1 / e St+U i M< mod/?},

then

nD N + pt+l Yy

with Y= XI^ i av.yß- (Note that aQ is indeed 0 as St+i C (Z/ptZ)*.)
Therefore n(DD) n(D)n(D) has the form

p ~ 1

n(DD) - N2 +Np'+l£a»(y*
\l 1

On the other hand the condition for D being a difference set yields, after

applying tt,

p2,t+ l _j_ 1 pit + I — 3 lpZ_l
7i(DD) - + p2t Cr '

We will reach a contradiction by comparing the constant terms (coefficient
of 1 in Z[y]/(yp - 1)) in the two expressions for n(DD):

P ^ rj2t + \ I 1 n2/+ 1 — 3

N2 + p2<+2 £ a\
P

+ ——-—- p"
n 1

Note that k Card(£>) N + /?'+15v+1, where sv+i Card(S,+ 1), and
/72?+1 — 1

hence N= pt+lst+l. Substituting this in the above equation,
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we get

4s>+1 3pt~l(p - 1) mod pt+1

Writing 4sv+1 3pt~l(p - 1) + z ' Pt+l for z e Z, we observe that

p 3 mod 4 implies z 2 mod 4, and so 2pt+l <|z ' Pt+l |. But, st+1

Card(St+i) ^p'-^p - 1), since S,+ 1 C (Z/pfZ)*. It follows that

I z - pt+l\ ^ | 4sv+i - 3jp'~1(jp - 1) | ^3pt~1(p - 1) < 2pt+l < | z * pt+1 I.

We have reached the desired contradiction, i.e. no cyclic difference set
/ p2t+ 1 _ i p2t+l - 3 \

with parameters p2t+l, exists if the orders of the
\ 2 4

p2t + 1
_|_ J

prime factors of n in (Z/p2t+1Z)* are all divisible by pt+1.
• 4

(7) Parameters (u 399,k= 199, X 99), Table II. This is the last item in
Table II, corresponding to n k - X 100.

Since 4 22 58 mod 399, it follows that 4 must be a multiplier of any
abelian difference set D with the above parameters.

Writing Z/399Z as a direct product
Z/399Z Z/3Z x Z/7Z x Z/19Z

and accordingly writing the elements of Z/399Z as triples g (x,y,z),
x e Z/3Z, y e Z/7Z, z e Z/19Z, we have the following orbits of the multiplication

by 4 in Z/399Z: all monomials XYZ, with Ie{l,(/, Ü],
Y e {1, V, V}, Z e {1, W, Wj, where

1 {(0,0,0)}

U= {(1,0,0)}

V= {(0,1,0), (0, -3,0), (0,2,0)}
W={(0,0,1), (0,0,4), (0,0,-3), (0,0,7), (0,0,9), (0,0,-2),
(0,0,-8), (0,0,6), (0,0,5)}

and bar denotes the conjugate, i.e. if C then -g\g
All orbits, except I, U,Ü have cardinality divisible by 3. Since

A: 199 1 mod 3, any putative difference set D can be assumed to contain
a single one-point orbit 1, U or U.Multiplyingby or C7 if necessary, we
may assume that

D=\+A-V+B-V + P- W+Q-W,
where

A<x0 + aif/ + a2Ü, 0 ^ a, < 1

Bßo + ß,t/+ ß2C>, 0 < ß, ^ 1

and P, Q are polynomials in U, Ù and V,
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We first show that A and B must be 0. Let a a0 + oq + a2,
b ßo + ßi + ß2, and let n: Z/399Z -+ Z/7Z be the projection on the second

factor.
We indulge in various abuses of notation: we write iz for the group ring

projection as well and denote nV again by V. Note that nU nÜ 1,

nW nW 9. Then nD 1 + aV + bV mod 9, a congruence in the group
ring of Z/7Z.

Since DD 100 + 99 • (1 + U + Ü) (1 + V + V) (1 + W + W), the equation

expressing that D is a difference set with the required parameters, we have

DD 1 mod 9.

Consequently, using

VV=3+V+V, V2=V+2V, V2 2V+V,
we get, expanding n(DD) n(D)n(D), and after collecting terms,

3(a2 + b2) + (a + b + a2 + b2 + 3ab) (V + V) 0 mod 9

Thus, #2 -J- b2 0 mod 3, and this means a b 0 mod 3. But then
a2 + b2 + 3ab 0 mod 9, and so we must also have

a + b 0 mod 9

after looking at the coefficient of V + V in the above congruence.
Since 0^tf^3,0^&^3, this means a b 0 and therefore

A B 0. Any difference set D with parameters (399, 199, 99) can therefore
be assumed to have the form

D=\+P-W+Q'W.
Plugging D=\+P-W+Q'W into the equation

DD 100 + 99(1 + U+ Ü) (1 + V+ V) (1 + W+ W)

and using the multiplication table

WW= 9 + 4(W+ W) W2 4W+ 5W,
we get

1 + 9(PP + QQ) 100 + 99(1 + U+ Ü) (1 + V+V)
P + Q + 4(PP + QQ) + 5PQ + 4PQ 99(1 + U + Ü) (1 + V + V)

where

P p0 + px U + p2Ü + (p3 +p4U + p5Ü)V + (p6 + p-jU + p%Ü)V

Q Qo + q\U + q2Ü + (q3 + q4U + q5Ü)V + (q6 + q1U + qsÜ)V

with 0 < /?/, <7/ < 1, for / 0, 8.
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The first equation gives

pp + QQ ii + n(i + u+ Û) (l + v+ V).

Substituting in the second equation, we get

(*) p + q + 5pq + 4PQ - 44 + 55(1 + U + Ü) (1 + F + V)

Since UÜ =1, U2 Ü and FF 3 -F F + F, F2 F + 2F, the constant

terms in PQ and PQ are equal to + 3 c> say-

Hence, equating constant terms in the above equation (*), we must have

Po + Qo + 9c 11

The only solution to this equation with all pi9 qt being 0 or 1, is p0 qo 1,

p. - o for i 1, 8. This means P Q 1, contradicting (*).

5. Comments on the examples in Tables II

Difference sets with parameters (v,k,X) (4n - 1,2n - 1, n - 1) are

usually called Hadamard difference sets. Our purpose here is to discuss the

classification of these cyclic difference sets for 2 ^ n < 100.

In many cases where v An - 1 is a prime p, the quadratic residue

difference set, which we denote by QP(p) is unique for the given values of
the parameters. This is obviously the case if the multiplier m has order

1

k -(u — 1) in (Z/vZ)*. Indeed, in this case, there are exactly 3 orbits of

multiplication by m in Z/vZ, namely 1 ={0}, M {1, m, m2, mk~1}
and M { - 1, - m,..., - mk~1}. Thus the only choice for D is D M
or D M, which are isomorphic under conjugation o: Z/vZ Z/vZ,
g (a) - a.

In our Table II, this situation happens for n 3, 5, 6, 12, 15, 17, 18, 20,
21, 27, 33, 35, 41, 42, 45, 48, 53, 57, 60, 63, 66, 68, 77, 87, 90 and 96.

The remaining cases where v An - 1 is a prime p (for 2 ^ n < 100) have
been shown to lead to a single difference set, namely QP(p), by machine
enumeration of the various choices of D as a union of orbits under multiplication

by a multiplier m. This includes the cases n 26 (multiplier 8), n 38

(multiplier 19), n 50 (multiplier 5), n 78 (multiplier 13), n 83 (multiplier
83), and n 95 (multiplier 5). By far, the most difficult case (for the machine)
occurs with n 38, which required the examination of 37 442 160 combinations

of multiplier orbits.
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The case n 36, also leads by machine enumeration to the single difference
set 7P(11,13) of twin-prime type with parameters (143 11 • 13,71,35).

The only other values of n(^ 100) for which u An - 1 is not a prime and

a Hadamard cyclic difference set with parameters {An - 1, In - 1, n - 1) does

exist are powers of 2. The examples for n 2, 4 and 8 are easily seen to be

unique.
For n 16, there are 2 isomorphism classes of Hadamard difference sets

with parameters (63,31,15): Both have multiplier m 2, and denoting by Xa
the orbit of a under multiplication by 2 in Z/63Z, they are

Do 1 + X- 25 + X- 9 + Ä! + X3 + X7 + X9

which is isomorphic to P5(F2), and

A 1 + AT_9 + X-! + Xx + A3 + X9 + X25

which is of type GMW.
The difference sets D0 and A are not isomorphic, even as block designs,

as can be seen by computing the cardinalities of the intersection of triples of
blocks of A, giving the enumerating polynomial

10584t6 + 19656t7 + 3528t8 + 5880t9 + 63t15

in contrast to 39060t7 + 651t15 for P5(F2). (The coefficient of V being the

multiplicity of triple intersections of cardinality /.)
For n 32, L. Baumert and H. Fredricksen have found that there are

exactly 6 non-isomorphic examples. (See [BF].) Three of these, QR(121),
P6(F2) and MH{\21) are members of the classical families.

For n 64, we have found that there exist exactly 4 examples (up to
isomorphism). One of them is P7(F2), another one is of type GMW. The

other two seem to be new.

All 4 of them have multiplier 2, which is of order 8 modulo v 255. They
all contain the union U of the multiplier orbits of length < 8, viz.

U {0} + {85, - 85} + {51,102, -51, - 102} + {17,34,68, - 119}

+ { - 17, -34, -68,119}

14

Denoting by (al9 a14) the union A \ Xa. of the orbits

Xa {a,2a, ...,2M,
the 4 examples are of the form A U + Vt-, where
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V0 (- 19, -9, - 7, - 1, 1, 3, 7, 13, 19, 23, 25, 27, 37, 45),

Fi (-43, -27, -25, - 13, -9, -5, -3, 7, 11, 13, 19, 23, 27, 43),

V2 (-43, -27, -23, - 13, - 11, - 3, 1, 3, 7, 13, 15, 25, 37, 43),

F3 (-43, -23, -21, - 11, -7, - 3, 7, 9, 11, 15, 19, 25, 37, 43)

The difference sets D2 and D3 appear to be exotic. D0 is isomorphic to
P7(F2). Finally, Dx is of type GMW, and can be constructed as follows.

Let L F256 be the extension of degree 8 over F F2. We will use the

trace Tr TrL/F:L -> F given by 7>(y) Xl=o72'- The extension L/F is

defined by the irreducible polynomial x8 + x4 + x3 + x2 + 1 e F[x]. The

multiplicative group FJ56 is generated by any root a of this polynomial. The
Hall polynomial F>0(x) of D0 is then given by

254

AM X d,x' e Z[x]/(x255 - 1),
I 0

where

dt
0 if Tr(a') ± 0

1 if 7>(a') 0

Thus a block of the difference set is the hyperplane ker(7>) C F256 F2.
Under the identification

Z/255Z - F*256

given by i^> a', the multiplication by 2 in Z/255Z becomes the Frobenius
automorphism in the extension F256/F2. The block ker(7>) is a union of
orbits under the action of the multiplier.

In order to construct D\, the example of type GMW, we need the
intermediate extension KF16 ,FCKCL.Setß a17, a generator of
K* F*6. Denote by tr trK/F:K^ F the trace.

Consider the complementary polynomial T - AM» where
T Yji=o*' e Z[x]/(x255-1). The crucial point is to observe that D'0(x)
splits as

AM ßW • e0(x17) e Z[x]/(x2S5 - 1)

where 0o(y) with
'

0 if tr(ßj) 0

1 if tr(ßj) * 0

and Q(x) x7 + x'4+ • • • + x246. Here,

0oOO y + y2+ T3 + y4 + y6+ y8 + y9 + y2
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Now define

D[(x) Q(x) • 0!(x17)

where 0iO) OoCy-1)- Then AC*) T - D[{x) is the Hall polynomial of
the difference set A.

The fact that D0i A, A and A are not isomorphic, even as block
designs, can again be seen by determining the cardinalities of all triple intersections

of blocks, for each A. Denoting by P, the corresponding enumerating
polynomial of triple intersections for A, we have

P0 2720340 A + 10795t63

A 919200t29 + 823140t31 + 734400t33 + 183600t35

+ 10200 t39 + 595t63

P2 9180t25 + 8160t26 + 45900 t27 + 163200t28 + 342720t29

+ 514080t30 + 518160 ^31 + 465120t32 + 358020t33

+ 179520t34 + 81090t35 + 18360t36 + 18360t37 + 6120t38

+ 3145t39

P3 4080t25 + 14280t26 + 40800t27 + 142800t28 + 385560t29

+ 403920t30 + 692580t31 + 424320t32 + 352920t33 + 128520t34

+ 79050t35 + 32640t36 + 9180t37 + 12240t38 + 7225t39 + 1020t45

Table I
Case y + 1 :

Non-existence of a cyclic difference set
with parameters (2t(t + 1) + 1, t2, \ t(t - 1)) for 3 < t ^ 100.

(The case t 50 is still undecided.)

t (v, k, X) n k - X reason for non-existence

3 (52, 9, 3)

4 (41, 16, 6)
5 (61, 25, 10)

2 • 3

2 • 5

3 • 5

3 • 7
22 • 7

22 • 32

32 • 5

5 • 11

22 - 1 mod 5

510 - 1 mod 41

35 - 1 mod 61

32 - 1 mod 5

77 — 1 mod 113

214 s -1 mod 145

6 (5 • 17, 36, 15)

7 (113, 49, 21)
8 (5 • 29, 64, 28)
9 (181, 81, 36) 5 36 mod 181 would be multiplier

10 (13 • 17, 100, 45)
11 (5 • 53, 121, 55)
12 (3 • 13, 144, 66)
13 (5 • 73, 169, 78)
14 (421, 196, 91)

2-3-11
2-3-13
7 • 13

3-5-7

52 -1 mod 13

22 -1 mod 5

278 s -1 mod 313
72 - 1 mod 5

5105 -1 mod 421
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Table I (continued)

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

(»,k, X)

(13 • 37, 225, 105)

(5 • 109, 256, 120)

(613, 289,136)
(5 • 137, 324, 153)

(761, 361, 171)

(292, 400, 190)
(52 • 37, 441, 210)

(1013, 484, 231)
(5 • 13 • 17, 529, 253)

(1201, 576, 276)

(1301, 625, 300)
(5 • 281, 676, 325)
(17 • 89, 729, 351)
(53 • 13, 784, 378)

(1741, 841, 406)

(1861, 900, 435)
(5 • 397, 961, 465)
(2113, 1024, 496)
(5 • 449, 1089, 528)

(2381, 1156, 561)

(2521, 1225, 595)

(5-13-41, 1296, 630)
(29 • 97, 1369, 666)
(5 • 593, 1444, 703)
(3121, 1521, 741)
(17 • 193, 1600, 780)
(5 • 13 • 53, 1681, 820)

(3613, 1764, 861)
(5 • 757, 1849, 903)
(17 • 233, 1936, 946)
(41 • 101, 2025, 990)
(52 • 173, 2116, 1035)

(4513, 2209, 1081)
(5 • 941, 2304, 1128)
(132 • 29, 2401, 1176)
(5101, 2500, 1225)
(5 •

(37

(5 2

(13

(61

(5 •

1061, 2601, 1275)

149, 2704, 1326)

229, 2809, 1378)
457, 2916, 1431)
101, 3025, 1485)

1277, 3136, 1540)
(17 • 389, 3249, 1596)

n k - X reason for non-existence

23 • 3 • 5 52 -1 mod 13

23 • 17 172 -1 mod 5

32 • 17 1751 -1 mod 613

32 • 19 19= — 1 mod 5

2-5-19 2190 -1 mod 761

2 • 3 • 5 • 7 214 -1 mod 29

3-7-11 32 - 1 mod 5

11 • 23 H23 _ i mod 1013

22 • 3 • 23 32 -1 mod 5

22 • 3 • 52 3150 -1 mod 1201

52 • 13 5325 — 1 mod 1301

33 • 13 132 -1 mod 5

2 • 33 • 7 24 — 1 mod 17

2-7-9 22 -1 mod 5

3-5-29 3435 - 1 mod 1741

3-5-31 3155 s -1 mod 1861

24 • 31 222 - 1 mod 1985
24 • 3 • 11 3528 - 1 mod 2113

3-11-17 32 -1 mod 5

5-7-17 5119 -1 mod 2381

2 • 32 • 5 • 7 2 630 - 1 mod 2521

2 • 32 • 37 22 -1 mod 5

19 • 37 1914 s -1 mod 29

3-13-19 32 - 1 mod 5

22• 3 • 5 • 13 278 - 1 mod 3121
22 • 5 • 41 58 s -1 mod 17

3-7-41 32 - 1 mod 5

3-7-43 3903 - 1 mod 3613

2-11-43 22 — 1 mod 5

2 • 32 • 5 • 11 24 — 1 mod 17

32 • 5 • 23 510 - 1 mod 41

23 • 47 232 s - 1 mod 5

23 • 3 • 47 3188 -1 mod 4513
23 • 3 • 72 32 -1 mod 5

52 • 72 52 76 mod 4901 would be multipli
3 • 52 • 17 existence unsettled
2 • 3 • 13 • 17 22 -1 mod 5

2-13-53 218 s -1 mod 37
33 • 53 532 - 1 mod 5

33 • 5 • 11 52 — 1 mod 13
22 • 5 • 7 • 11 515 - 1 mod 61
22 • 3 • 7 • 19 32 -1 mod 5

3-19-29 38 -1 mod 17
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Table I (continued)

t (v,k, X) n k - X reason for non-existence

58 (5 • 372, 3364, 1653) 29 • 59 29 --1 mod 5

59 (73 • 97, 3481, 1711) 2 • 3 • 5 • 59 36 --1 mod 73'

60 (7321, 3600, 1770) 2 • 3 • 5 • 61 2610 -1 mod 7321
61 (5 • 17, 3721, 1830) 31 • 61 318 - -1 mod 17

62 (13 • 601, 3844, 1891) 32 • 7 • 31 76 --1 mod 13

63 (5 • 1613, 3969, 1953) 25 • 32 • 7 72 --1 mod 5

64 (53 • 157, 4096, 2016) 25 5 • 13 526 » -1 mod 53

65 (8581, 4225, 2080) 3 • 5 • 11 13 3715 -1 mod 8581

66 (5-29-61, 4356, 2145) 3-11-67 32 --1 mod 5

67 (13 • 701, 4489, 2211) 2-17-67 26 3 --1 mod 13

68 (5 • 1877, 4624, 2278) 2 • 3 • 17 • 23 22 s --1 mod 5

69 (9661, 4761, 2346) 3 • 5 • 7 • 23 72415 i - 1 mod 9661

70 (9941, 4900, 2415) 5-7-71 72485 i - 1 mod 9941

71 (52 • 409, 5041, 2485) 22 • 32 • 71 2510 -1 mod 10225

72 (10513, 5184, 2556) 22 • 32 • 73 21314 : -1 mod 10513

73 (5 • 2161, 5329, 2628) 37 • 73 372 -1 mod 5

74 (17 • 653, 5476, 2701) 3 • 52 • 37 38 « --1 mod 17

75 (13 • 877, 5625, 2775) 2 • 3 • 52 • 19 26 --1 mod 13

76 (5 • 2341, 5776, 2850) 2 • 7 • 11 • 19 22 --1 mod 5

77 (41 • 293, 5929, 2926) 3 • 7 • 11 13 34 s --1 mod 41

78 (52 • 17 • 29, 6084, 3003) 3-13-79 32 s --1 mod 5

79 (12641, 6241, 3081) 23 • 5 • 79 5 1580
: -1 mod 12641

80 (13 • 997, 6400, 3160) 23 • 34 • 5 52 --1 mod 13

81 (5 • 2657, 6561, 3240) 34 • 41 41332 ^s - 1 mod 2657

82 (13613, 6724, 3321) 41 • 83 41 S 83i3 mod 13613 would be multipl
83 (5 • 2789, 6889, 3403) 2-3-7-83 22 — 1 mod 5

84 (14281, 7056, 3486) 2-3-5-7 • 17 21190 -1 mod 14281

85 (14621, 7225, 3570) 5-17-43 53655 -1 mod 14621

86 (5 • 41 • 73, 7396, 3655) 3-29-43 32 — 1 mod 5

87 (15313, 7569, 3741) 22 • 3 • 11 - 29 3 1276 -1 mod 15313

88 (5 • 13 • 241, 7744, 3828) 22 • 11 • 89 89 s - 1 mod 5

89 (37 • 433, 7921, 3916) 32 • 5 • 89 518 » --1 mod 37

90 (16381, 8100, 4005) 32 • 5 • 7 • 13 13 65 -1 mod 16381

91 (5 • 17 • 197, 8281, 4095) 2 • 7 • 13 • 23 22 — 1 mod 5

92 (109 • 157, 8464, 4186) 2 • 3 • 23 • 31 218 --1 mod 109

93 (5 • 13 • 269, 8649, 4278) 3-31-47 32 — 1 mod 5

94 (53 • 337, 8836, 4371) 5-19-47 5 26 -1 mod 53

95 (17 • 29 • 37, 9025, 4465) 24 • 3 • 5 • 19 38 — 1 mod 17

96 (53 • 149, 9216, 4560) 24 • 3 • 97 32 — 1 mod 5

97 (19013, 9409, 4656) 72 • 97 74753 -1 mod 19013

98 (5 • 3881, 9604, 4753) 32 • 72 • 11 ll97 - -1 mod 3881

99 (19801, 9801, 4851) 2 • 32 • 52 • 11 24950 -1 mod 19801

100 (20201, 10000, 4950) 2 • 52 - 101 25050 -1 mod 20201
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Table II

Case y - 1 :

Cyclic difference sets with parameters (4n — 1,2/2 — 1,/! — 1), 2 < /z < 100

n (4/1-1,2/1-1,/I-1) exists?

2 (7, 3, 1) Yes

3 (11, 5, 2) Yes

4 (3 • 5, 7, 3) Yes

5 (19, 9, 4) Yes

6 (23, 11, 5) Yes

7 (33, 13, 6) No
8 (31, 15, 7) Yes

9 (5 • 7, 17, 8) Yes

10 (3 • 13 19, 9) No
11 (43, 21, 10) Yes

12 (47, 23, 11) Yes

13 (3 • 17, 25, 12) No
14 (5 • 11, 27, 13) No
15 (59, 29, 14) Yes

16 (32 • 7, 31, 15) Yes
17 (67, 33, 16) Yes

18 (71, 35, 17) Yes

19 (3 • 52, 35, 18) No
20 (79, 39, 19) Yes
21 (83, 41, 20) Yes

22 (3 • 29, 43, 21) No
23 (7 • 13, 45, 22) No
24 (5 • 19, 47, 23) No
25 (32 • 11, 49, 24) No
26 (103, 51, 25) Yes

27 (107, 53, 26) Yes
28 (3 • 37, 55, 27) No
29 (5-23, 57, 28) No
30 (7 • 17, 59, 29) No
31 (3 • 41, 61, 30) No
32 (127, 63, 31) Yes
33 (131, 65, 32) Yes
34 (33 • 5, 67, 33) No
35 (139, 69, 34) Yes
36 (11 • 13, 71, 35) Yes
37 (3 • 72, 73, 36) No
38 (151, 75, 37) Yes
39 (5 • 31, 77, 38) No
40 (3 • 53, 79, 39) No

examples or comment to non-existence

P2(F2) QRÜ)
QR( ID
7Ï>(3, 5) P3(F2)

Qi? (19)

QR{23)
7 would be multiplier
P4(F2) and Qi?(31)
TP(5, 7)

2 -1 mod 3

QR(43)
QR(41)
132 s -1 mod 17

22 -1 mod 5

ß*(59)
P5(F2) and GMW
QR (67)

QR(ll)
19 — 1 mod 5

QR(19)
QR (83)
2 -1 mod 3

233 - 1 mod 13

32 -1 mod 5

25 would be multiplier
0^(103)
QR (107)
m — 1 232 would be multiplier
29 — 1 mod 5

24 — 1 mod 17

315 - 1 mod 41

P6(F2), QR( 127), MH(121\ and 3 others
QR( 131)
17 -1 mod 3

QR (139)

TP(11, 13)
37 would be multiplier
0^(151)
32 - 1 mod 5

5 -1 mod 3
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Table 2 (continued)

n {An - 1, In - 1, n - 1) exists? examples or comment to non-existence

41 (163, 81, 40) Yes QR (163)
42 (167, 83, 41) Yes QR(161)
43 (32 • 19, 85, 42) No 43 would be multiplier
44 (52 • 7, 87, 43) No m 11 256 mod 175 would be multiplier
45 (179, 89, 44) Yes QR(\19)
46 (3 • 61, 91, 45) No 23 -1 mod 3

47 (11 • 17, 93, 46) No 472 - 1 mod 17

48 (191, 95, 47) Yes QR{ 191)
49 (3 • 5 • 13, 97, 48) No 7 would be multiplier
50 (199, 99, 49) Yes QR{ 199)
51 (7 • 29, 101, 50) No 33 -1 mod 7

52 (32 • 23, 103, 51) No 13 would be multiplier
53 (211, 105, 52) Yes QR (211)
54 (5 • 43, 107, 53) No 22 - 1 mod 5

55 (3 • 73, 109, 54) No 5 - 1 mod 3

56 (223, 111, 55) Yes QR (223) and MH(223)
57 (227, 113, 56) Yes QR (227)
58 (3 • 7 • 11, 115, 57) No 2 -1 mod 3

59 (5 • 47, 117, 58) No 59 -1 mod 5

60 (239, 119, 59) Yes QR(239)
61 (35, 121, 60) No 61 would be multiplier
62 (13 • 19, 123, 61) No 26 -1 mod 13

63 (251, 125, 62) Yes QR (251)
64 (3 • 5 • 17, 127, 63) Yes P7(F2), GMW and 2 new ones
65 (7 • 37, 129, 64) No 53 — 1 mod 7

66 (263, 131, 65) Yes QR(263)
67 (3 • 89, 133, 66) No 67 would be multiplier
68 (271, 135, 67) Yes QR(211)
69 (52 • 11, 137, 68) No 32 - 1 mod 5

70 (32 • 31, 139, 69) No 2 -1 mod 3

71 (283, 141, 70) Yes QR(283) and MH(283)
72 (7 • 41, 143, 71) No m 9 255 32 mod 287 would be multiplier
73 (3 • 97, 145, 72) No 7312 - 1 mod 97

74 (5 • 59, 147, 73) No 22 -1 mod 5

75 (13 • 23, 149, 74) No m 33 54 mod 299 would be multiplier
76 (3 • 101, 151, 75) No m 19 29 mod 303 would be multiplier
77 (307, 153, 76) Yes QR (307)
78 (311, 155, 77) Yes 0^(311)
79 (32 • 5 • 7, 157, 78) No 79 -1 mod 5

80 (11 • 29, 159, 79) No 57 -1 mod 29

81 (17 • 19, 161, 80) Yes 7P(17, 19)

82 (3 • 109, 163, 81) No 2 -1 mod 3
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Table II (continued)

n (An - 1, In - 1, n- 1) exists? examples or comment to non-existence

83 (331, 165, 82) Yes QÄ(331)

84 (5 • 67, 167, 83) No 32 - 1 mod 5

85 (3 • 113, 169, 84) No 5 -1 mod 3

86 (73, 171, 85) No yn — 43 2144 mod 343 would be multiple

87 (347, 173, 86) Yes 2^(347)
88 (33 • 13, 175, 87) No 11= - 1 mod 3

89 (5 • 71, 177, 88) No 89 -1 mod 5

90 (359, 179, 89) Yes QR(359)
91 (3 • ll2, 181, 90) No 75 -1 mod 11

92 (367, 183, 91) Yes 0^(367)
93 (7 • 53, 185, 92) No 33 - 1 mod 7

94 (3 * 53, 187, 93) No 2 -1 mod 3

95 (379, 189, 94) Yes QR(379)
96 (383, 191, 95) Yes QR(383)
97 (32 • 43, 193, 96) No 97 would be multiplier
98 (17 • 23, 195, 97) No 24 -1 mod 17

99 (5 • 79, 197, 98) No 11 368 mod 395 would be multiplier
100 (3 • 7 • 19, 199, 99) No 4 22 58 mod 399 would be multiplier
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