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Examples of groups that are not automatic:

1. Infinite torsion groups. The mere existence of such groups is far from

trivial, so it is not very disconcerting that such groups are not automatic (it
is, perhaps, heartening). That infinite torsion groups are not automatic follows

immediately from the well-known "pumping lemma" for finite state automata

(see [Gil for the proof).

2. Nilpotent groups. Finitely generated nilpotent groups which do not
contain an abelian subgroup of finite index are not automatic. This was first
proved by Holt. For example the three-dimensional Heisenberg group
H3 < a,b,c: [a,b] c, [a,c] 1 [b,c] > the simplest non-abelian

nilpotent group, has a cubic isoperimetric function (see property 7 below) and

so is not automatic. The fact that nilpotent groups are not automatic is a bit
surprising and annoying, considering the fact that nilpotent groups are quite
common and have an easily solved word problem.

3. SLn(Z),n ^ 3. Note that SL2(Z) contains a free subgroup of index
six, and so is automatic. The proof that SLn(Z),n ^ 3 is not automatic
involves finding a contractible manifold on which SLn(Z) acts with compact
quotient, and showing that a higher-dimensional isoperimetric inequality is not
satisfied by that space. The search for this manifold involves the study of the
symmetric space S£„(R) / 50„(R).

4. Baumslag-Solitar Groups. The group Gp>q < x,y:yxpy~l
xq > is not automatic unless p - 0, <7 0 or p ±q. These groups

provide examples of groups which are not automatic but are asynchronously
automatic (see [BGSS, E et al.}).

5. Hyperbolic groups are automatic

It is most often the case that proving that a group G is automatic requires
doing quite a bit of geometry in a space on which G acts in a geometric way.
As an example we prove the result of Cannon that cocompact discrete groups
of hyperbolic isometries are automatic; in fact we show this more generally
for fundamental groups of compact manifolds with (not necessarily constant)
strictly negative sectional curvatures.

A path a: [a,b] -> X in a metric space X is a quasi-geodesic if it is a
geodesic up to constants; that is, there exists a K such that

1 / K(t2 ~h)-K< dx{a(tx), a (t2)) < K(t2 - t{) + K
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for all ti < t2 in [a,b]; in this case a is called a K-quasi-geodesic. A quasi-
geodesic is a 'geodesic in-the-large' (hence the adding and subtracting of the

constant K). One of the most important facts about negatively curved spaces
is that quasi-geodesics are close to geodesies.

Lemma 2 (Morse-Mostow). Let M be a compact manifold with strictly
negative sectional curvatures. Then there exists a constant C C(K) such

that any finite K-quasi-geodesic a in the universal cover M lies in the C-

neighborhood of the geodesic joining the endpoints of a.

This lemma, implicit in a 1924 paper of Morse ([Mo]), was used in the

proof of Mostow's rigidity theorem; a proof is given in [Th2]. Note that the
situation is quite different for spaces which are not negatively curved; consider
the logarithmic spiral in the euclidean plane.

If G is the fundamental group of a compact Riemannian manifold M, then
a natural copy of the Cayley graph TS(G) sits inside of the universal cover M
of M\ namely, choose a basepoint m e M and a lift m e M of m, put a

vertex at g(m) for each deck transformation g e G, and for each edge from
g to g • s in the Cayley graph connect g(m) and gs{rh) by a geodesic in M
(here M is given the metric induced by that on M, so that the deck

transformations act as isometries). It is a fundamental fact that paths in the

Cayley graph TS(G) that are geodesic are actually quasi-geodesics in M. This
ties the (quasi-)geometry of the fundamental group together with the

(quasi-)geometry of the universal cover.

Theorem 3. If M is a compact manifold with strictly negative
sectional curvatures, and if S is any generating set for G 7ti(M), then

the set of geodesic (shortest) words in TS(G) is a regular language, and is

part of an automatic structure for G; in particular G is automatic.

We follow the proof idea given in [Thl].

Proof. We shall prove that the set L of geodesies in TS(G) is a regular
language satisfying the /r-fellow traveller property for some k.

By the comment above there is some constant K such that geodesies

u,u e L which represent elements of G at distance one apart in TS(G) are K-
quasi-geodesics in M, so by Mostow's Lemma they lie in a C-neighborhood
of geodesies u' and v' in M with the same endpoints as u and u; this is the

only place where the strictly negative curvature assumption is used. Now u'
and vr form two sides of a triangle whose third side has length at most 2K,

by the equation on page 13. Since M is a non-positively curved space, u' and
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v' are within Hausdorff distance 2K from each other. Hence u and u are

Hausdorff distance of at most 2K + C + C apart (see figure 6), and from this

it follows easily that, since u and v are geodesies in TS(G), they are k-fellow

travellers for some constant k, and this k depends only on the curvature bound

Figure 6

Why geodesies in Ts(G) are fellow travellers

Notice that the subwords ut and vt consisting of the first i letters of u and

v are geodesies, and UiVf1 lies in the k-bdl\ Bk around the identity in TS(G).

We now build a finite state automaton W which recognizes precisely the

set of geodesies in TS(G). As state set S of W we take the set of subsets of
the A:-ball Bk together with a fail state F, let the subset consisting of the

identity be the start state, and take every state of S except for F as an accept

state. Suppose the generator g of the word w is read when W is in the state

T. Then W should go into the fail state if either T is the fail state or g e T\
otherwise W should go into the state

{g'Ha: t e T, a e S u S~l u {e}}n Bk

(see figure 7). The idea is to keep track of all paths which are competing with
w for being the shortest path to w; w is rejected as soon as a subword of w
is longer than one of its competitors. The amount of information to remember
is finite since we need to keep track only of word differences, all of which lie
in a finite set (namely Bk). More precisely, after reading in the first i letters
of w, the current state St (if it isn't the fail state) consists of precisely those
elements t of Bk which satisfy the property that there is some path of
length i from 1 to w, • t which is a /:-fellow traveller with wt; this follows
easily by induction on i.



306 B. FÄRB

g-%a g'lha

aa'

1

Figure 7

How to determine the new state after being in state T and reading the generator g

We claim that the finite state automaton W accepts precisely the set of
geodesies. If the (z + l)'st generator of w lies in Si, then wi+ \ (hence w) is not
a geodesic since wi+i can be represented by a word of length /. Hence W

accepts every geodesic word. Now suppose that w is not a geodesic; so there
is some i such that wt is a geodesic but there is some path u from 1 to wi+1
which is shorter than the path wi+i; we may assume that u is geodesic. Since

Wi and v are geodesies ending a distance one apart in the Cayley graph, they
are /:-fellow travellers. Note that v has length at most i, so by padding u we

can make a path v' of length i which is a ^-fellow traveller with W/. But v'
and wi+1 Wi • g represent the same group element; hence g e St. This
shows that the fail state is entered upon reading the smallest initial subword

of w which is not a geodesic; in particular the FSA W accepts only geodesic

words.

Cannon's original proof of theorem 3 is based on the notion of 'cone type'
(see [Cal, Epi]). The idea is that geodesies in a hyperbolic group have only
finitely many asymptotic behaviors (i.e. cone types), so building a geodesic

generator by generator requires looking at a finite set (the set of cone types)
and applying finitely many rules (determining the possible cone types after
adding the next generator).

Here t\ ,t2 e T, a e S u S 1
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