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cists. The simplest symmetric spaces are the real and complex projective spaces.
In [Cal], Calabi gave an effective parametrization of isotropic harmonic

maps from surfaces into real projective space. Following Calabi and the work
of physicists, Eells and Wood [EW2] set up a bijective correspondence
between full isotropic harmonic maps (j) : M 2 CP" and pairs (/, r) where

/ : M 2 CP" is a full holomorphic map and 0 ^ r ^ n is an integer
(see [Cal] and [EW2] for definitions). Their idea is based on the fact

that if (j) : M -> CP" is a full isotropic map, then for some r, s, r + s n,

the map

/=[(<(>© D" 4) © ••• © {DJ-1 (j> © (£>' 4> © - © 4>)]x

is full holomorphic. Here D' and D" are the (1, 0) and (0, 1) components
of the covariant derivative.

Later, Bryant ([Brl], [Br2]) treated conformai harmonic maps from
surfaces into S6 and S4. Inspired by the twistor construction of Calabi and

Penrose, he considered a restricted class of conformai harmonic maps,
namely superminimal surfaces. (Note that Hopf already studied these surfaces

in its primitive form). He established a one-to-one correspondence between

superminimal surfaces and curves horizontal in CP3 with respect to the

twistor fibration CP3 i S4 By constructing such a curve, Bryant showed

that any Riemann surface be conformally immersed as a minimal surface

in S4. For the construction in a general 4-manifold, see [ESa].
Recently, K. Uhlenbeck [U3] has dealt with the space H of harmonic

maps from a simply-connected 2-dimensional domain into a real Lie group
Gr (which is the chiral model in the language of theoretical physics).
She studied the algebraic structure of the manifold H and its relation with
Kac-Moody algebras.

Another uncultivated area in harmonic maps is the classification of
harmonic maps from a surface into a Ricci flat Kähler three-fold. The

interest in this comes from the study of superstring theory in theoretical

physics.

§ 4. Minimal submanifolds

The study of minimal submanifolds is another important topic in
differential geometry. In this section we will mainly consider minimal surfaces

in compact three manifolds. The minimal surfaces will be assumed to be

regular and embedded, except when otherwise indicated.
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In general, it is not too difficult to find an immersed minimal surface

in a manifold M if the topology of M prevents the surface from contracting

to a point. Additionally, one can sometimes prove the embeddedness of this

surface. For example, Meeks-Yau [MY] proved that if tt2(M) ^ 0, then there

exist embedded minimal S2's and RP2's in M which span n2(M) as a

7i1(M)-module. This theorem can be used to study finite groups acting on

a three dimensional manifold.

It is relatively hard to find minimal surfaces by using the "mountain

pass principle". Also, it is also unclear how to apply the Ljusternik-
Schnirelmann theory to find many minimal surfaces with restricted topological

type. Sacks-Uhlenbeck [Sa-U] used a perturbed energy combined with
the "Morse theory" to show that any n-dimensional manifold, with nk(M) 7^ 0

for some k, contains at least one immersed minimal S2. This work
of Sachs-Uhlenbeck was used by Siu-Yau to settle the Frankel conjecture
in Kähler geometry. Recently a similar type of argument was used by
M. Micalif [Mc] and D. Moore [MD] to give a proof of the classical

pinching theorem in Riemannian geometry. In fact, they need weaker pinching
assumptions.

In his thesis, Pitts [Pi] introduced the notion of "almost minimizing
varifold", which roughly speaking is a varifold close to a locally minimizing
varifold. Using the nontriviality of the homotopy groups of the integral
cycle groups [Al], he proved that any manifold of dimension ^ 6 supports a

nonempty, compact, embedded smooth minimal hypersurface. His idea was to
apply the mini-max principle to maps from S1 into integral currents,
which are nontrivial under the isomorphism set up by Almgren [Al].
Since this construction is so general, we do not obtain any topological
information about the minimal hypersurface. Recently, R. Schoen-L. Simon

[SS] generalized Pitts' work. They showed that any manifold admits a minimal
hypersurface with the singular set of Hausdorff codimension at least seven.

On certain three manifolds, R. Schoen and the author can give an
estimate of the genus of the minimal surface constructed by Pitts. The

argument was done a long time ago. Since this has not been published yet,
we give an outline of the proof here.

Let M denote the 3-manifold, R, Rtj and RWJ its scalar, Ricci and
sectional curvature. Let £ be the minimal surface constructed by Pitts;
K, A, and e3 the Gaussian curvature, second fundamental form and normal
vector field of £. By Pitts' construction, we know that the minimal surface
must have index 1. This condition is equivalent to the nonnegativity of the
second eigenvalue of the operator L, where
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L — A — (Ric(e3) + \\ A \\ 2)

and A is the intrinsic Laplacian of the surface E. In other words,

(Ric(e3) + \\ A|| 2)/2 • ^ I Vf\2'dv

for all functions / orthogonal to the first eigenfunction u1.
We are now going to use the concept of conformai area, which is a

conformai invariant, to give an upper estimate of the second eigenvalue %2

in terms of M and the genus of E.

Let F : E -> Sn be a conformai immersion into the unit rc-sphere. Then F
composed with any conformai transformation g g Conf(Sn) is also a conformai
immersion. Since ux is a positive function, by using the argument in [LY2],
one can find g0 e Conf(Sn) such that g0 ° F _L i.e.,

(go o F) u^dv 0

Now consider the new map g0 ° F, which we will also denote by
F, F (fi). E/f « 1. Since E has index 1,

(Ric(e3 + || <

and by taking the summation,

V/i I 2dv

(Ric(e3) + M II 2)dv E I V/; 12 • rft;.

Since F is conformai, E I V/i 12dv 2 Area(F(i:)). Hence

(Ric(e3 + M II2 inf sup Area(^ ° F(E)) >
F g e Conf(5")

The term on the left hand side is a conformai invariant, Fc(n, E), called the

n-dimensional conformai area; its infimum over all n is FC(E), the conformai

area of the surface E.
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By using the branched covering of E over S2, one can show FC(E)

® + l^j 7i, where g(L) is the genus of E. Hence

(Ric(e3) + M II 2)dvf+n«.
On the other hand, since Ric(e3) + || A ||

2 Ric(ej) + Ric(e2) — 2K, if we

assume M has nonnegative Ricci curvature, then

/% /•

(Ric(e3) + \\A||2) > - 2 • 4jt(2gf(E) - 2).

I
Combining the previous two inequalities, we have

871 f^+ fU47t(20(Z)-2).

Hence #(E) < 4, which is the required upper bound for the genus of E.

Actually, one should be able to improve this estimate since the estimate on

VC{M) is not sharp. Can one generalize the arguments here to study
minimal surfaces with higher index

The reason one would like to estimate the genus of minimal surfaces

is because they contain information about the ambient manifold M. For
example, an embedded minimal surface in a 3-manifold M with positive
scalar curvature provides a good candidate for a Heagard splitting of M.
Moreover, if M is a homotopy 3-sphere and the genus of this surface is

less than or equal to 2, then M is actually a sphere. Thus, if one can
construct a minimal surface which provides a Heagard splitting and find
a good bound for its genus, then one has made substantial progress towards
the Poincaré conjecture.

An important problem in minimal surface theory is the existence of more
than one minimal surface (or even infinitely many) in a manifold. An
analogous situation is that of closed geodesies. On a 2-sphere, there exist at
least three closed, embedded geodesies. An ellipsoid has exactly three, so
this estimate is sharp.

For the three-sphere, one hopes to show that there exist at least four
minimal two-spheres. One would also like to know if, for an ellipsoid
centered at the origin in R4, the only minimal 2-spheres are the four
coming from the intersections with the coordinate 3-spaces.



128 S. T. YAU

Using an idea of Pitts, Smith and Simon [Sm-S] were able to show that

any 3-sphere supports an embedded 2-sphere. They considered degree one
mappings F : I x S2 -> S3 such that on each slice (except the ones at the

ends), F(t, • : S2 -> S3 is an embedding. They showed that by taking the
mini-max

min max Area(F(£, S2)),
F te[0,1]

one obtains an embedded minimal S2. Can one do similar theorems for
homotopic spheres

Another problem is to understand the space of minimal surfaces with
fixed genus g in three-manifolds with positive Ricci curvature. Recently,
Choi and Schoen [CS] proved that this space is actually compact for any
fixed genus g. We remark that this compactness is new even for the standard
sphere. Their proof is based on an upper estimate of the area of a

minimal surface due to Choi and Wang [CW]. The area bound will
then control the convergence of the minimal surfaces. Knowing this
compactness theorem, there are still several interesting questions. For example,
do there exist continuous families of minimal surfaces when M has no
symmetry? When M is symmetric, do all of these continuous families come
from the isometry group

Estimates for the first eigenvalue are always interesting, especially for
minimal surfaces. For minimal surfaces in the standard 3-sphere, the

coordinate functions are eigenfunctions with eigenvalue 2. The author
conjectured that 2 is actually the first eigenvalue in this case. In an attempt
to prove the conjecture, Choi and A. N. Wang [CW] showed that for a

minimal surface in a 3-manifold with Ricci curvature not less than 2, the

first eigenvalue X1 is at least 1. In terms of the conformai area of the

minimal surface, Li and Yau [LY2] obtained the following upper bound
for Xx,

2 conf area(S,)

area(S9) " U

It is in this way Choi-Wang obtained an upper bound of the area.

It would be interesting to generalize this inequality to higher eigenvalues and
also study higher eigenvalues of minimal surfaces.

Let M be a homotopy 3-sphere. If M is not a 3-sphere then it contains

a fake 3-disk. Put a metric which is asymptotically a product near the

boundary. If we minimize area among all S2's isotopic to the boundary,
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then the limiting S2 will enclose a fake disk. Take a Jordan curve on this

S2 so that it decomposes the S2 into two regions with equal area. Then

one expects this Jordan curve to bound an embedded minimal disk in the

fake disk. If one can achieve this, one can shrink the more and obtain

a contradiction which will give a proof of the Poincaré conjecture.

In conclusion, minimal surface theory is surprisingly successful in being

applied to three dimensional topology. I believe that a more thorough study

of minimal surfaces will reveal more secrets about three manifolds.

§ 5. Kahler Geometry

In the following we consider four basic topics in complex geometry.

1. Existence of complex and almost complex structure.

2. Existence of Kähler and algebraic structures on complex manifolds.

3. Uniformization problems and the parametrization of metrics.

4. Analytic objects over complex manifolds, e.g., analytic cycles, holo-

morphic vector bundles, etc.

We will divide this section into four parts corresponding to these topics.

1. Complex and almost complex structures

Let M be an even dimensional oriented differentiable manifold. The

existence of an almost complex structure J is equivalent to a reduction of
the structure group of the tangent bundle from GL(2n, R) to GL(n, C).

This is basically an algebraic problem and is well understood.

However, the question of when an almost complex structure is homotopic
to an integrable almost complex structure (i.e., one which comes from a

complex structure) is much harder. When n 1, every M2 admits an almost

complex structure and every such structure is integrable and algebraic.
For n 2, ven de Van [VI] gave several examples of compact M4's
which admit an almost complex structure but not a complex structure.
His argument is based on the computations of the first and second Chern
classes. When n > 3, there are no such examples known so far. In particular,
we do not know whether or not the almost complex manifold S6 admits
a complex structure. This problem has been open for a long time.

The topology of complex surfaces is not well understood. By the works
of Donaldson, one may believe that every simply connected four dimensional
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