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Proof. For m 1 we can use p(y1) jq. The heart of the proof is the

case m 2. We divide the proof for m 2 into two cases.

Case 1. There exists an element a in k\K which is separable over k.

Let L be the normal closure of k(a) in k. Then L is a finite separable

extension of k and thus generated by one element ß. That is L k(ß).

Since L is normal all the conjugates ß ßi5 ß2, -, ßn of ß are in L and

clearly L /c(ß£) for z 1, 2,..., n. We have that L is not contained in

K because cn^K. Hence, none of the roots ßi,ß2»—>ßn °f niinimal

polynomial f(x)ek[x] of the element ß over k, are in K. Consequently,

the homogenization.

p(.yi ' j;2) yd2- f(yi-y 21)

of /, where d is the degree of /, has no non-trivial root in A|.

Case 2. All elements of k\K are purely inseparable over k. Choose an

element y e k\K. Then yq a is in k for some power q of the

characteristics of k and y is the only root of the polynomial xq — a. Hence

p(y 1^2) (yi~ay2)q

is a homogeneous polynomial without any non-trivial roots in A|.
The two cases above exhaust all possibilities for elements in k\K.

Hence we have proved the existence of homogeneous polynomials in k[y1, y2]
without any non trivial zeroes.

We now proceed by induction on m. Assume that m ^ 2 and that

we have proved the existence of a homogeneous polynomial p(yl9 y2, -, ym)

with only the trivial zero in A^. Let q(y1, y2) be a homogeneous polynomial
with only the trivial zero in A|. Then, if d is the degree of p, we have

that r(yi,y2,...,ym+1) q(p(y1 y2, -, yj, ydm+i) is a homogeneous poly-
nomial with only the trivial zero in A£ + 1. Indeed, the homogeneity is clear,
and if {alJa2,...,am + JeAf1 is a zero of r, we must have that
p(a1, a2,..., am) 0 and am + 1

0 since q has no non-trivial zeroes. Then

we must have that a1 a2 am 0 since the same is true for p.

§ 3. Proof of the Hilbert K-Nullstellensatz

There exists in the literature a great variety of proofs of the Hilbert
Nullstellensatz. Most of them start by proving the weak form and then
deducing the Nullstellensatz by localization procedures that are more or less
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related to a method called Rabinowitz trick. We shall next show that
Rabinowitz trick also can be used to deduce the Hilbert K-Nullstellensatz
from its weak form.

Proposition 6. We have that the Hilbert K-Nullstellensatz follows from its
weak form.

Proof It follows from Proposition 3 (i) that it suffices to prove that, if
the weak Nullstellensatz holds, then we have an inclusion

{feR I ZK(f)ZK(l)\ S ^7
for all ideals I in R.

Let / in R be an element that vanishes on ZK(I). Choose generators
h1,h2,...,hn of I and let J be the ideal, in the polynomial ring R[x]
in the variable x over R, which is generated by the elements

hl9 h2,..., hn, 1 - xf

of R[x]. Since / vanishes on the common zeroes of hl9h2,..., hn in A^,
it follows that the subset ZK(J) of A^+1 is empty. It then follows from

the weak K-Nullstellensatz that ffj R[x]. Hence there is a polynomial
p e PK(m) for some natural number m and elements /1? /2,..., fm-1 in R[x]
such that

P(/b/2v,/m-i, l)e J.

That is, there are polynomials gi,g2, 9m 9 in such that

P(fl,fl,/m- 1 > 1) Ê ^ + 00 -V) •

1=1

We substitute x y_1 in the latter equation and obtain, after multiplying
by a sufficiently high power yN of y and using the homogeneity of p, an

equation

p(f'i,f'2,~,f'm-i,yN)t, + g'{y-f)
i 1

in R[_yf If we substitute / for y in the latter equation we obtain that

p{eem_x,

where et f'j(x1,x2i„.,xr-1,f) for i 1,2,..., m — 1. Consequently we

have that /N g f/1. However, by Proposition 3 we have that f/1 is K-radical
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and hence radical by Proposition 2. We conclude that / e $7 as was to
be proved.

To prove the Hilbert K-Nullstellensatz we must now prove it in the

weak form. We shall here give a proof that emphasizes the difference

between the case when K is not algebraically closed, which is the main
theme of this article, and the traditional case when K is algebraically closed,

for which there exists at least as many presentations as there are textbooks in

algebra or geometry.

Proof of the weak Hilbert K-Nullstellensatz when K is not algebraically
closed

From Proposition 4 (iii) it follows that it suffices to prove that, if / is

and ideal of R such that ZK(I) 0, then we have that 1 e ffl.
To this end we choose generators h1,h2,...,hm of the ideal J. By

Proposition 5, there is a homogeneous polynomial p e k[y1, y2,..., ym] with
only the trivial zero in A£. Since the polynomials ht have no common zero
we see that the polynomial

g(xl9 x2?.., xr) p(hl9hl9...9 hm)

in R has no zeroes in A^. We homogenize g by substituting xL yt • yffx
for i 1, 2 r and multiplying by ydr+19 where d is the degree of g. The
resulting polynomial q(y1, y2, vr+1) is then in PK(r+ 1). Moreover, we have
the equalities

q{X1, x2, xr, 1) - g{x1, x2,.., xr) p{h,, h2 hm)

Since p is homogeneous and the ht are in /, all the members of the latter
equalities are in /. Since q e PK{r+1) we conclude that 1 g ,^7 as we wanted
to prove.

Proof of the weak Hilbert Nullstellensatz

For completeness we give one of the many short proofs of the weak
Nullstellensatz. It is based upon the following two elementary results

(a) Let L[x] be a polynomial ring in the variable x over a field L
and / a non-zero element of L[.x], Then L[x]r is not a field.

(b) Let A be an integral domain and x an element that is integral over
A. If A[x] is a field, then A is a field.

Of these results the second is trivial and the first follows immediately
from the existence of infinitely many irreducible polynomials over L.
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The weak Nullstellensatz is a consequence of the following more general
result.

Proposition 7. The following two assertions hold.

(i) Let P be a prime ideal in R. If (R/P)g is a field for some
element g in R/P, then P is maximal

(ii) Let M be a maximal ideal in R. Denote by S the polynomial ring
k[xx, x2, •••> xr-1] and let Q — M n S. Then Q is a maximal ideal in
S and the class x of xr in R/M is algebraic over S/Q.

Proof We shall prove the two assertions of the Proposition simultaneously

by induction on r. For r 1 the Proposition is assertion (a) above.

Assume that the assertions of the Proposition hold for S. We shall prove
that they hold for R.

Let P be a prime ideal of R and let g e R/P. We let Q P n S

and denote by L the field of fractions of S/Q.
Assume that (R/P)g is a field. If x denotes the class of xr in R/P

we then obtain that

(R/P), (S/ÔM L[x],.
From assertion (a) above it follows that x is algebraic over L. Hence L[x]
is a field and in particular L[x] L[x~]g.

We obtain on the one hand a relation

g~1 a~1(a0 + a1x +... + anxn)

with a and ai in S/Q for i 0, 1,..., m and consequently equalities

(R/P)g (R/P)a (S/Q)a\_X~\

On the other hand we obtain a relation

bxn + bn-1 x"-1 + + b0 0

with b and bt in S/Q for i 0, 1,..., n and consequently that x is integral
over (S/Q)ab. Since (S/Q)ab\_x~] (S/Q)a[x~\ is a field it follows from assertion (b)

above that (S/Q)ab is a field. By the induction assumption we then have

that Q is maximal. In particular we have that a is invertible in (S/Q) L,

so that (R/P)g (R/P)a R/P- Hence the ideal P is maximal. This proves
assertion (i) of the Proposition. However, the above proof applied to M
gives assertion (ii) so that we have proved the Proposition.
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To prove that, if K k and I is a proper ideal of R, we have that

ZK(I) # 0, we choose a maximal ideal M containing /. By repeated

application of assertion (ii) of Proposition 7 we see that there is a /c-homo-

morphism

a: R/M -> k K

Hence, if a1,a2,..., ar are the classes of xx,x2,.~, xr in R/M we have

that (a(oq), a(a2), a(aj) e ZK(M) ZK(I) and Zx(7) / 0 as we wanted to

prove.

§4. Connections with previous results

A less elegant form of the Hilbert K-Nullstellensatz, that do not involve

the K-radical explicitely, is the following :

Let J be an ideal of R. The following two assertions are equivalent :

(i) If f e R vanishes on ZK(J), then f e J.

(ii) If fi, f2, -, fm are polynomials in R such that p(fx, f2,fm) e J

for some p in PK{m\ then fm e J.

From Proposition 4 (ii) it follows that assertion (i) can be stated as

J {f e R \ZK(f)3ZK(J)}

and from the definition of the K-radical assertion (ii) can be stated as

J ffj. Hence the equivalence of the two assertions is the Hilbert
K-Nullstellensatz for K-radical ideals. However, if / is any ideal of R,

we have that J ^fl is K-radical by Proposition 3 and that ZK(I) ZK(J)
by Proposition 4(i). Hence, the above result is equivalent to the Hilbert
K-Nullstellensatz

^7 {/e RIZ3for /.
The sets PK(m) in the particular case k K, were introduced by Adkins,

Gianni and Tognoli [1] in order to prove the above result when k K.
As a consequence they obtained the Hilbert Nullstellensatz in the particular
case k K k. The reason for introducing the sets PK(m) in general is

to formulate the above more general result, that is a true generalization
of the Hilbert Nullstellensatz.
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