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SOME KNOT THEORY OF COMPLEX PLANE CURVES *)

by Lee Rudolph 2)

§1. Aspects of the "placement problem"
FOR COMPLEX PLANE CURVES

How can a complex curve be placed in a complex surface?

The question is vague ; many different ways to make it more specific may be

imagined. The theory of deformations of complex structure, and their associated

moduli spaces, is one way. Differential geometry and function theory, curvatures
and currents, could be brought in. Even the generalized Nevanlinna theory of
value distribution, for analytic curves, can somehow be construed as an aspect of
the "placement problem".

By "knot theory" I mean to connote those aspects of the situation that are

more immediately topological. I hope to show that there is something of interest
there.

§2. A TRIPTYCH

Here are three ways to interpret the phrase "knot theory of complex plane
curves".

Globally : the "complex plane" is projective space CP2 or affine space C2 ; a

"curve" is an algebraic curve (in projective space) or an algebraic or analytic
curve (in affine space); here, "knot theory" has historically been largely
concerned with studying the "knot group", though there are also results on "knot
type".

Locally : a "complex plane curve" is the germ of a plane curve (algebraic,

analytic, or formal) over C ; this is the study of singularities, and "knot theory"
has been the classical knot theory of links in the 3-sphere, put to work in the
service of that study.

In between : a "complex plane curve" is an analytic curve in a reasonable

open set in a complex surface (chiefly, in the theory as so far developed, the

x) This article has already been published in Nœuds, tresses et singularités,
Monographie de l'Enseignement Mathématique N° 31, Genève 1983, p. 99-122,

2) Research partially supported by NSF Grant MCS 76-08230.
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interior of a ball or a bidisk), well-behaved at the boundary ; a knot-theorist can

study either of two codimension-2 situations—the complex curve in its ambient

space, or the boundary of this pair.
This middle panel of the triptych has been less studied than the other two,

though it is of obvious relevance to both.

§3. Résumé of basic definitions

By complex surface I mean a smooth manifold of 4 real dimensions, equipped
with a complex structure. A complex curve F in a complex surface M is a closed

subset which is locally of the form {(z, w) g U c C2 : f{z,w) 0} where / : U

C is a nonconstant complex analytic function. A Riemann surface is a smooth
manifold of 2 real dimensions, equipped with a complex structure.

It is a fundamental fact, to which is due the especial appositeness of classical

knot theory to the study of curves in surfaces, that any complex curve F cz M
has a resolution of the following sort: There is a Riemann surface R, and a

holomorphic mapping r : R M, so that r(R) T ; in fact, there is a discrete

(possibly empty) subset SP(F) cz T, the singular locus of F in M, so that the

regular locus &(F) F — SP(F) is a Riemann surface, and R is the union (with
what turns out to be a unique topology and complex structure) of S#(F), on which

r is the identity, and a discrete set r_1(^(r)) c R mapping finitely-to-one onto

nn
The singular locus is, of course, exactly the set of points of F at which, no

matter what the local representation of F as the zeroes of an analytic function

/(z, w), the (complex) gradient vector V/ vanishes.

If P is a point of T, and Q e r~ 1(P) c: R, then the germ at P of the r-image of a

small disk on R centered at Q is called a branch of F at P. (Abusively, "branch"

may also be used below to refer to some representatives of this germ.) Naturally,
at a regular point there is only one branch ; but there may be only one branch at a

point, and the point still be singular.
References : [G-R], [Mi 2].

§4. Local knot theory in brief

Using local coordinates in the resolution R and the ambient surface M, one

sees that each branch of a curve F can be parametrized either by z t,w 0 or
(more interestingly) by some pair z tm, w tn + cn+1tn+1 +
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+ cNtN, t e C, with n > m. (In the original choice of coordinates, r might well

involve genuine power series ; but it is not hard to make a formal change of

coordinates to one of the forms above, involving only polynomials ; and it is not

much harder to prove a comparison theorem, the remote ancestor of that of M.

Artin, which shows that actually the formal change of coordinates can be taken

to be somewhere convergent.) Consider the "approximations" to such a branch,

gotten by dropping all terms of w from some degree on up: so the first

approximation is (tm, tn\ and the (N — n+l)st is the branch we began with. Each

of these is itself a map onto a branch of some curve ; generally not one-to-one.

Define integers 0(1),..., g(N-n+ 1) by saying that the k-th approximation is

0(/c)-to-one in a punctured neighborhood of t 0. Then 0(1) GCD(m, n), g(k

+ 1) divides g(k), and g(N — n+1) 1. These integers can be calculated as

follows. Let C[[£]] be the algebra of formal power series, with unique maximal
ideal m £C[[t]]. Let Ak be the m-adically closed subalgebra generated by 1

and the components of the k-th approximation. Then g(k) is the least integer g
such that Ak c= C[[£9]] c= C[[£]]. (One gets the same answer starting from the

algebra C{t} of somewhere-convergent power series.) A parametrization of the

branch covered by the k-th approximation is z tm/9{k\ w tn/9{k) 4-
I p f(n + k)/g(k)

~r cn + k- 1L

The knots in which we are interested arise when we intersect the branch
under investigation with the boundary of an infinitesimal 4-disk containing the

singular point. The 4-disk used may be either a round disk Df {(z, w): | z |2

+ I w |2 s2} with boundary the round sphere S2, or a bidisk D(el5 s2)

{(z, w) : I z I ^ Si, I w I s2}, with boundary comprised of two solid tori
TiD(£i, e2) {I z I el91 w | ^ e2} and d2D(eu s2) - {| z | ^ eit \ w \ s2}
which together make up a 3-sphere with corners. Whether one uses round disks

or bidisks, one obtains a knot of the same type. The bidisk boundary is more
convenient here, when we are studying the branch parametrically ; from the

assumption that n > m we can see that, for sufficiently small 8 > 0, the branch
intersects ôD(s, s) only along d1D(8, e).

The first approximation to the branch actually meets d1D on the torus
|j z I 8,1 w'| en/m}, where it covers, 0(1) to one, a torus knot of type
O{m/0(1), m/0(1)}. (Here is the notation I am using, cf. [Ru 4]. IfK is any oriented
knot in an oriented 3-sphere, with closed tubular neighborhood N(K), let L be an
oriented simple closed curve on dN{K) which is not null-homologous on this
torus ; then there are relatively prime integers p and q so that L has linking
number q with K and represents p times the class of K in H^NiK) ; Z). We then
call L a cable of type (p, q) about K and denote it by K{p, q}. When cabling is
iterated, excess curly braces become semicolons. The unknot is denoted by 0 ; a



188 L. RUDOLPH

cable about the unknot is also called a torus knot ; a cable about... a cable about
the unknot is an iterated torus knot.) This knot type does not change when £ is

made smaller.

Now suppose that for all sufficiently small 8 > 0, the k-th approximation to a
branch intersects dD(s, 8) in a knot of type 0{pu q1 ;... ; pk, qk}. Considering how
we pass to the next approximation we see that there are relatively prime integers

pk+1 and qk + 1 so that, for all sufficiently small 8 > 0, the (Tc-fl)-st
approximation to the branch intersects dD(8,8) in a knot of type
0{Pu qi ;Pk, qk\pfc + i, qk+1}» (The difference between successive

approximations is 0 or a monomial cn + ktn + k ^ 0, which contributes an

"epicycle" that for small enough 8 precisely creates a cabling.) In fact, pk + 1

9(k)lg(k + 1) (note that for any K and q, K{ 1, q) is the same knot type as K);
the formula for qk+1 is more complicated, and we won't give it.

Consider a curve with a singular point at which there are two or more
branches. Coordinates in the ambient surface can be chosen so that each branch
differs only by a diagonal linear transformation in (z, w) from one of the form just
studied (including the non-singular case z t, w 0). Each branch

individually contributes an iterated torus knot to the link of the singularity,

r n dD(e, s) ; and in fact they all fit together nicely. An elegant description of how
they do is given in [E-N] ; see also, and for this section generally, [Lê] and [Mi 2]
and references cited therein.

After Burau, Zariski, et al., had established that any point of a curve in a (non-
singular) surface had local topology that was completely described by this link-
type invariant, the strictly topological investigation of singular points seems to
have languished for some decades. (The algebraic geometers, of course, had also

established that this link-type invariant—more precisely, the sequences of pairs
(ph qt) for each branch, and the linking numbers between the iterated torus knots
of different branches, from which the whole link of the singularity can be

reconstructed—was equivalent to some numerical invariants which had long
been known and which could be detected purely algebraically, namely, the

Puiseux pairs of the various branches and the intersection multiplicity of the

pairs of branches. They also pressed forward with their investigations of
continuous invariants within the family of singularities of a given link type. But
that is another story.) However, in the late 1960's, Milnor [Mi 2] gave new life to
the subject when he showed that the link of a singularity was a "fibred", or
Neuwirth-Stallings, link.

Milnor's proof uses the round-sphere model. He shows that, if T c= C2 is the

zero-locus of p(z, w) e C[z, w], p{0, 0) 0, then for all sufficiently small 8 > 0, <

the restriction c() of the map arg p : C2 — T - S1 : (z, w) i— p(z, w)/| p(z, w) | to
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S3 — T is the projection map of a fibration over S1. The fibre is diffeomorphic to

the interior of the surface F0 S3 n {(z, w) : p(z, w) is real and non-negative}.

(Note that the change in viewpoint from bidisk boundary to round sphere is

accompanied by a change from branch-as-parametrized-disk to branch-as-level-

set.)

We will see below that the link of a singularity is in a natural way a closed

strictly positive braid ; I will give a geometric proof of the well-known fact that
such a closed braid is a fibred link.

Inspired by Milnor's Fibration Theorem, a number ofmathematicians began

investigations of knot-theoretical properties of the links of singularities. The

fibration cj) determines an autodiffeomorphism of F0 (fixed on the boundary),
unique up to isotopy relative to the boundary, which is variously called the

characteristic map, holonomy, or monodromy of the fibration; it induces an

automorphism (also called the monodromy) of the integral homology of F0.

From the homology monodromy one can calculate the Alexander polynomial of
the link of the singularity; this was done in [Lê], where it was also shown that
two branches defined iterated torus knots in the same knot-cobordism class if
and only if they defined knots of the same knot type, the proof following from a

study of the roots of the Alexander polynomials.
I wondered how independent these distinct knot-cobordism classes might be,

in the knot-cobordism group ; in particular, I asked [Ru 6] whether the equation
n

[K0] Yj [^i]' in which [KJ represents the (non-trivial) knot-cobordism
i=1

class of the link of a singular branch, i 0,n, had any solutions other than
K K0,n 1. Litherland, using his calculations of the signatures of iterated

torus knots [Li], was able to show that there were only such trivial solutions. It
follows that, for instance, there is no family {rs}, | of (local) curves in a
small ball in C2 so that rs for s#0 has two singular points each with a single
branch, while T0 has only one singularity, locally of the form z t2,w t5. Is
there another proof of the non-existence of such a deformation? (Multiplicities
would allow two cusps.)

Litherland's formulas, of course, give all the various signatures of the links of
singularities (though the expression is in closed form only by the use of a
counting function involving "greatest integer in ...", which makes them rather a
bore to calculate). If one lowers one's sights, and asks only about the classical
signature (that corresponding to the root -1 of unity), and then only about its
sign, an easy direct proof—again, using the representation of the link as a closed
positive braid—shows that the signature of the link of a singularity is positive
[Ru 5],
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Finally, some conjectures on less algebraic knot invariants of links of
singularities should be mentioned. The Milnor number p of a singularity is the
rank of H^Fq ; Z). Let us look at a single branch, for convenience. Then Milnor
conjectured [Mi 2] that p/2, which is the genus of F0 and therefore (by a general
theorem about fibred links) the genus of the knot dF0, actually is the slice genus
of ôF0. One can make the weaker conjecture that at least p/2 is the ribbon

genus of dF0. Milnor also wondered if this integer equalled the
Überschneidung szahl, or gordian number, of dF0; again the conjecture can be

weakened, if one introduces the concepts of "slice Überschneidungszahl" and
"ribbon Überschneidungszahr, cf. [Ru 2]. The conjectures are true in various
cases where direct calculations can be made (e.g., the cusps z t2, w t3),

but I know of no general results.

§5. Global knot theory in brief—the projective case

A curve T c= CP2 can be given by its resolution r : R -+ T (a complex-
analytic map from a compact Riemann surface into CP2 which is generically
one-to-one on R) or by its polynomial F(z0, zu z2) e C[z0, zu z2] (the
homogeneous polynomial of least degree, not identically zero, which vanishes at

every point of T). These suggest different kinds of knot-theoretical questions.
One can consider all curves with diffeomorphic resolutions (the requirement that
the curves have complex-analytically equivalent resolutions would be too
stringent, and is less topological), and ask how differently they can be placed in
the plane. Or one can consider families of curves, each cut out by a polynomial of
some fixed degree.

Let Pd denote the projective space of the vector space of homogeneous

complex polynomials in (z0, zl5 z2) of degree d. Because we never want to
consider curves with multiple components, we throw out of Pd the algebraic
subset corresponding to reducible polynomials with a multiple factor; the

remaining Zariski-open subset Qd corresponds to the set of what we may call

curves of geometric degree d. If (the equivalence class of) F(z0, z1? z2) belongs to
Pd, let rF {(z0 : zx : z2) g CP2 : F(z0, zl9 z2) 0} ; then F g Qd if and only if
there is an open dense set of lines in CP2 which intersect TF transversely in d

distinct points.
The condition that Ff have a singular point is, of course, an algebraic

condition on F. Let Sd c= Pd be the algebraic subset of singular curves without
multiple components, and Rd Qd — Sd the Zariski-open subset of
polynomials of geometrically regular curves of geometric degree d. Any curve

rF, F g Rd, is its own resolution (r identity). By connecting any two F,G e Rd



KNOT THEORY OF COMPLEX PLANE CURVES 191

with a path in Rd, one may construct an isotopy (which may be effected by an

ambient isotopy) between the curves FF and TG in CP2 ; so all these curves are

diffeomorphic, and of the same knot type in the plane. More generally, F e Qd lies

in a maximal connected subset of Qd of polynomials G such that FF and FG are

ambient isotopic, through algebraic curves. These subsets form a stratification of

Qd which is little understood. Zariski [Z] showed that two (singular) curves in g6,

homeomorphic and with the same type and number of singularities (cusps), were

not in the same stratum, by showing that the knot groups tt^CP2 — Ff) and

^(CP2 — rG) were not isomorphic. In general, as we will see below, the knot

group cannot distinguish strata.
An interesting question (I do not know to whom it is due : I heard of it in

Dennis Sullivan's problem seminar at M.I.T. in the summer of 1974) is whether

there are curves Ff and TG which are ambient isotopic but not so through
algebraic curves. I know of no results here.

The incidence structure of this stratification of Qd by "algebraic ambient

isotopy types" is, especially, not understood : this is the theory of degenerations.

It can be proved that the knot group associated to a given stratum is the

homomorphic image of the knot group associated to any stratum incident to the

given stratum. Partly, it was the desire to apply this fact to the proof of the

Zariski Conjecture (see below) which led investigators for many years to the

study of some particular (unions of) strata to which we now turn.
First we recall the two simplest sorts of singularities. A cusp has a single

branch, locally given by z f2, w t3 ; the link of a cusp is a trefoil knot (of a

fixed handedness once one establishes conventions). A node has two branches,
each itself nonsingular, with distinct tangent lines ; it can be locally given by the

equation zw 0, and its link is a Hopf link of two components (linking number
+ 1). A curve F is a node curve if all its singularities (if any) are nodes, and a cusp
curve if all its singularities are either nodes or cusps.

We also recall, what we have not needed before, the notion of reducibility : a

curve T is reducible if its resolution is not connected ; alternatively Ff is reducible
if and only if F is reducible but square-free. A curve that is not reducible is
irreducible.

The extreme of reducibility is displayed by any F e Qd which is the product of
d linear factors. Then the curve Ff is the union of d projective lines, which we will
say (here) are in general position ifFf is a node curve, that is, ifno three of the lines
are concurrent. Let Ld a Qd be the set of all such completely reducible curves.
Then Ld is a single stratum. Let Nd a Qd be the set of polynomials of node
curves ; Nd is a union of strata. What is now called the Severi Conjecture is the
statement that Ld is incident to every stratum in Nd ; in other words, that every
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node curve can be degenerated to d lines in general position. We will compute the
knot group of à lines in general position below. It is, in particular, abelian.
Consequently, the truth of the Severi Conjecture would imply that the knot group
ofany node curve is abelian—a statement long known as the Zariski Conjecture,
which has recently been proved true by quite other means [F-H, De]. Of course,
independent of the truth of the Severi Conjecture, one can study the union Md

a Nd of those strata which actually are incident to Ld. Moishezon [Mo] calls Md
the mainstream of node curves in his investigation of "normal forms for braid
monodromies". Such normal forms (when they exist) enrich the datum of the
knot group by giving it in a particularly nice presentation related to the algebraic
geometry.

Now let Kd a Qd correspond to the cusp curves. Here the knot groups need

no longer be abelian. In fact, for

F(z0, Zi,z2) z\z\+ 4z0(z2 —zi) + 6ZoZiZ2 - 27zq

in K4, a curve with three cusps and no nodes (which has resolution

r :CP1 TF : (f0 : t j) i-> (tfâ : + 2 : 2t0t\ +1%)

the knot group can be computed (as by Zariski [Z] or, algebraically, by
Abhyankar [Ab]) to have the presentation (a, b : aba bab, a4 1, a2 b2),

making it non-abelian of order 12.

The knot groups of cusp curves have been studied because of their

application to the study and possible classification of complex (algebraic)
surfaces. In fact, iff : Y -> CP2 is a so-called stable finite morphism, X' c= Tthe
locus where /is not étale, X /(£')> then X is a cusp curve.

Zariski commissioned van Kampen, in the early 1930's, to calculate the knot

group of an arbitrary curve [vK] ; van Kampen gave his solution in terms of a

certain presentation of the knot group. If T has (geometric) degree d, then van

Kampen's presentation has d generators xl5..., xd which represent loops in a

fixed projective line CP^ transverse to T ; the intersection T n CPJo contains d

points Pu Pd, and xt is a loop from a basepoint * e CP^ out to Ph around it
once counterclockwise, and back to *. One relation is then that x1 xd 1. The

rest arise by carrying CP^ around certain loops of lines. In fact, let CP2* be the

dual projective plane, each point of which is a line in CP2 ; and let T* contain all
lines which are either tangent to T or pass through one of its singular points.
Then T* is a curve in CP2*. If * and CP^ are sufficiently general, then the pencil

of lines in CP2 through *, which is itself a line in CP2*, will be transverse to T*.
The (free) fundamental group of the complement of T* in this pencil is naturally
represented in the automorphism group of the free group (x1?..., xd : xq xd
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1). The rest of the relations needed for the van Kampen presentation of

tt^CP2 — T ; *) come, then, by declaring this representation trivial. One obtains a

finite presentation, of course, by choosing generators of the acting free group ;

Moishezon's problem of "normal forms" is essentially the problem of making a

good choice. Several modernizations [Abe], [Che], [Cha] of van Kampen's

proof have been published in recent years.
In a standard van Kampen presentation (where the generators of the acting

free group are free generators), each relation corresponds either to a singularity
of T or to a simple vertical tangent to T ; and (up to the action of the

corresponding free generator) each relation is of a certain canonical form, which

depends only on the closed braid type (§7) of the link of the branch(es) at the point
of T, through which the line in the pencil passes that gives the relation in

question, where this line itself is used to find the axis of the closed braid. In
particular, the knot group of a node curve always has a standard van Kampen
presentation in which each relation either sets conjugates of two xt equal (from
a simple vertical tangent) or says that two such conjugates commute (from a

node) ; if "conjugates" could be deleted, the Zariski Conjecture would be trivially
true.

There is also a great body of work on "knot groups" of curves in (compact,
smooth) complex surfaces other than CP2, and on the related issue of
fundamental groups of surfaces ; we cannot touch on these topics here.

§6. Global knot theory in brief—the affine case

Little appears to be known about algebraic curves in affine space, from the
knot-theoretical viewpoint. The gross algebraic topology (even just homology
theory) of CP2 is implicated with the quite rigid geometry ; but affine space is

contractible, and on the other hand its geometry is "infinite" (for instance in the
sense that there are Lie groups of arbitrarily high dimension contained in the

group of biregular automorphisms of C2), so that the conspirators have fallen
out and neither can give away much about the other.

One might think, for example, to study the embedding of a curve T in C2 by
first embedding C2 itself into CP2. Then the affine complement C2 - T becomes
the projective complement CP2 - (TuCPjJ, where T u CP^, is a (reducible)
projective algebraic curve. The obstacle to this program is the unfortunate fact
that C2, just as an algebraic surface, without distinguished coordinates, is not
uniquely embedded as CP2 - CP^. Any biregular automorphism of C2 (in
particular, one of the vast majority which cannot be extended biregularly to CP2)
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will move F around, and so the configuration of F u CPL is not determined by
the embedding of F in C2. (For instance, though the geometric number of points
at infinity on F is determined by T, the algebraic intersection number of the
closure of F with the line at infinity can be made arbitrarily large. Likewise the
local singularities at infinity are not determined by the affine curve.)

The main theorems known here have been proved by Abhyankar and his

collaborators [A-M, A-S]. They are unknotting theorems, in the sense that they
take this form : "Let F be a certain curve in C2, and let i : F -> C2 be any
algebraic embedding ; then there is a biregular automorphism of C2 returning i

to the inclusion map". Briefly, such a curve F cannot be knotted in C2.

However, for most of the curves they deal with, these theorems are not
genuinely topological, for the reimbedding i is required to be an embedding of F
with its given structure as a variety, and generally there might be moduli. Only in
the original theorem [A-M] (which had been stated, but not correctly proved, by
Segre) are there no conceivable moduli, when F is a straight line. Then the

theorem is this.

Theorem. Let F a C2 be an algebraic curve without singularities,
homeomorphic to C. Then there is a biregular change of coordinates A : C2

— C2 so that AF is a straight (complex) line.

A topological proof has been given in [Ru 4]. It goes like this. One shows

(just as for a singular point) that the intersection of F (which we can assume to be

parametrized by z p(t), w q(t), p, q e C[t]) with a very large bidisk
boundary is an iterated torus knot K 0{mu n1 ;... ; ms, ns}f with m1

m/GCD(m, n),n1 n/GCD(m,n\m deg p, n deg q. By hypothesis, K is

a slice knot. This forces K 0, in particular, one of mu nfs 1. Thereafter the

argument is as in [A-M]—if (say) m1 1 and p and q are monic, then the

biregular change of coordinates (z, w) i— (z, w — zm/n) carries F to" another curve
satisfying the hypotheses, of lower bidegree ; and so we proceed until one of z, w is

linear and the other constant.

As to analytic curves in affine space, almost nothing is known. The obvious

analogue of the Theorem above is definitely false : for it is known that the unit
disk in C can be properly analytically embedded in C2 [H] ; since the disk and the

line are analytically inequivalent, no analytic change of coordinates in C2 could

unknot the disk to a line. It is, however, perfectly possible that every such disk is

smoothly unknotted. Presently I am unable even to prove that an analytic line in
C2 is smoothly unknotted.
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§7. The middle range

We return, as at the beginning of §4, to the study of intersections of curves in

C2 with round disks Df and their boundaries S3> and bidisks D(ru r2) and their

boundaries. Now the (bi)radii are no longer required to be very small.

An embedding i : (S, dS) (D;, Sr3) of a surface-with-boundary S into a

round disk is a ribbon embedding provided that N ° i is a Morse function without
local maxima on Int S, where N(z, w) |z|2 + |w|2; and a surface-with-

boundary S a Df with dS S3 n S, is a ribbon surface if the inclusion (S, dS)

a (Df S3) is isotopic through embeddings of pairs to a ribbon embedding. To

demand that a surface be ribbon is to place genuine topological restrictions on
the embedding.

A theorem of Milnor [Mi 1], specialized to our dimensions, shows that if T
c= C2 is a nonsingular analytic curve then for almost all choices of origin and

radius, the inclusion of (TnDf TnS3) into (D*, Sf) is a ribbon embedding. A

continuity argument easily shows that for no matter what choice of origin, N \ T
has critical points, possibly degenerate, of index no greater than 1. It is easy to see

that if T has singularities, an analogous theorem holds for N ° r : R -> [0, oo [ on
the resolution. All these results generalize the Maximum Modulus Principle.
Nothing much more seems to be known about big round disks and complex
plane curves.

Turning our attention to bidisks, we let the way that they separate the
variables z and w suggest an attitude to adopt towards our curves : consider one
variable (conventionally w) as an analytic but possibly multiple-valued function
of the other.

More precisely, let En be the space of unordered «-tuples of points of C
(duplications allowed). Then En inherits a topology, and a structure of algebraic
variety (affine, and singular if n ^ 2), from its description as Cn/£fn9 where the
symmetric group acts by permuting coordinates. Let En keep its topology,
but normalize- and resolve its algebraic variety structure, by using the map C"
-> En which carries (cl9..., cn) to {rl9..., rn} such that (w-rj (w-rj w"

+ CiW"-1 + + Cn. Now any function F : X -> En can be called an n-valued
(complex) function on X. The graph of an «-valued function on X is the
obvious subset of X x C; adjectives like "continuous", "analytic", "algebraic"
apply to «-valued functions in the obvious way.

We make the convention that (if X is not discrete) the entire image F(X)
should not lie in the subset A c En of unordered «-tuples with at least one
duplication ; A is an algebraic hypersurface (irreducible, and singular if« ^ 3) in
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the affine space En, called the discriminant locus. Its complement En — A is called
the configuration space (of n distinct points in C).

To allow infinity as a value, we could replace C by CP1, En by CP", and so on.

Let /(z, w) f0{z)wn -f f1(z)wn~1 + +/B(z)eC[z,w]. Historically [Bl],
the equation f(z, w) 0 (or equivalently the curve it defines) was said to give w

as an algebraic function of z, provided only that /(z, w) was without repeated
factors and without factors of the form z — c. (Also, of course,/0(z) ^ 0.) Then,
in fact, on the complement in C of the zero-locus of f0(z), the assignment
z h- {w :/(z, w) 0} is an algebraic n-valued complex function. A zero of/0(z) is

called a pole of the algebraic function, and can be accounted for by letting infinity
be a value.

If/0(z) 1, so that there are no poles at all, the algebraic function is entire.

More generally, if/0(z), >*;f„(z) are allowed to be entire functions of z (in the usual

sense), then/(z, w) 0 gives w as an rc-valued meromorphic function ; and if also

/0(z) 1, w is an entire analytic n-valued function. The graph of an n-valued
entire function is a curve (algebraic or analytic as the case may be) ; when there

are poles, the graph must be closed up to provide fibres over them.

Conversely, any algebraic curve in C2 becomes, after almost any linear
change ofcoordinates, such a graph for some n. (This is not so for analytic curves,
in general.) Thus we can study plane curves by studying certain curves in En.

Let y c C be a simple closed curve, R the compact simply-connected region
it bounds, F : R ^ En a continuous n-valued function analytic on Int R with
F{y) n A — 0. Then there is some radius M > 0 so that the graph of F | y lies in
the open solid torus y x {w e C : | w | < M) ; and this graph is a (not necessarily

connected) n-sheeted covering space of y. An application of one version of the

Maximum Modulus Principle [G-R] shows that actually the graph of F itself is

contained in D R x {w : | w | ^ M} c= C2, a topological 4-ball (with
boundary 3-sphere piecewise as smooth as y). Now, F(R) n A must be finite ; let

F~ X(A) c= R be called the branch locus, and denoted B. One can easily see that
the graph of F in D is a 2-dimensional pseudomanifold-with-boundary (i.e.,

geometric relative cycle), with any singularities lying in B x {w : \ w \ < M}
a Int D ; its boundary in 3D is exactly the link L which is the graph of F | y.

Furthermore, the graph of F is naturally oriented (by its complex structure at the

regular points), so L has a natural orientation, and the projection L-> y

preserves orientations.
At this point it is convenient to introduce braids ; a general reference is [Bi].

The braid group on n strings is the fundamental group Bn %(£„ — A; *) of
the configuration space. Let I : [0, 2tc] -> En — A, 1(0) l(2n\ be a r,

parametrization of a loop in the configuration space. Then the graph of I in
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[0, 2iz] x C is a geometric braid, that is, the union of disjoint arcs, on which prx is

a covering projection to [0, 2tc], and such that the unordered «-tuples of top and

bottom endpoints are identical; each arc is called a string. Under the map
[0, 2tc] x C - S1 x C : (0, w) i—> (eiQ, w), a geometric braid is carried to a closed

braid in the open solid torus. When S1 x C is identified with the tubular
neighborhood of an unknotted circle in S3, in such a way that distinct circles S1

x {z0} and S1 x {zx} are (algebraically, and therefore geometrically) unlinked,
then any closed braid becomes a knot or link in S3, and it is naturally oriented.

For ß g Bn, any closed braid constructed in this way from a loop which

represents ß is denoted ß. If, conversely, L c= S1 x C is an oriented link on which

pr1 is an orientation-preserving «-sheeted covering map, then any choice of a

basepoint elQ e S1 yields a loop in En — A, based at * {weC: (eiQ, w) g L},
and thus a braid Lg Bn n1(En — A; *), with (L)" L.

Since A is irreducible, the abelianization of Bn is infinite cyclic, and in fact Bn is

normally generated by one element, that is, generated by a single conjugacy class.

Choose for the basepoint * of En — A the (real) «-tuple {1,..., «}. Let

giz,w) ^w2 - (2/+ l)w + ß-2 + / + I (1 ~z)^ ' ft (W~J) e C[z, w]

for i 1,..., « — 1 ; and let Gt : C -> En be the «-valued function corresponding
to 0f(z, w) 0. If R {z : 1 z 1 ^ 1}, then each Gt | K is an embedding of R as a
normal disk to A (at a regular point), with center

G;(0) jl,-J - l,i +~,i+I,i + 2,

on A, and basepoint G,(l) *. Giving dR its positive (counterclockwise)
orientation, we get oriented loops in En - A, and the homotopy class of GiidR) is
denoted by a; and called the i-th standard generator of B„. (The geometric
braids corresponding to the given construction are the standard pictures of the
cr,.) The set of standard generators does, in fact, generate B„, cf. [Bi], Each ct; is
conjugate to a,. Following [Ru 2], let any braid in B„ conjugate to be called a
positive band in Bn ; a loop in the configuration space represents a positive band
if and only if it is the oriented boundary of an oriented disk in E„ which meets the
discriminant locus transversely in a single positive (regular) point. The inverse of
a positive band is a negative band.

An ordered /c-tuple b (h(l),..., h(k)) of bands in J3„ is a band representation
of length k of the braid ß(b) b(1) - b(k). (A braid word is a band
representation where each band is a standard generator or the inverse of a
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standard generator.) Each braid has many band representations, corresponding
to the various null-homotopies, transverse to A, of a loop representing the braid
in En — A to a point in En. (See [Ru 2] for a precise statement and proof.) Such a

null-homotopy gives a map of a disk into En, transverse to A—the length of any
corresponding band representation is the geometric number of intersections of
the disk with A, and the number of positive (resp., negative) bands is the number
of positive (resp., negative) intersections with A. In particular, suppose each such

intersection is positive, so each band b(s) is positive. Then b, ß(b), and the closed

braid ß(b) are all called (in [Ru 1-4]) quasipositive. The closed braid L, associated

to an analytic n-valued function F and a simple closed curve y which bounds a

simply-connected region in the domain of F, is quasipositive. (If F as given is not
transverse to A in R, almost any small translation of F in En will become so, while
the braid type of L won't change ; and complex analytic intersections are

positive.)
Conversely, it is shown in [Ru 1] that for every quasipositive band

representation b in Bn, there are an algebraic n-valued function and simple closed

curve yielding the given band representation in the manner just exposed. It is also

shown (and this is why we have excluded poles) that any type of closed braid
whatever can occur as the graph over S1 of a meromorphic (algebraic) n-valued
function on C. (But note that when poles actually do occur inside the simple
closed curve, the closed braid is never the complete boundary of the piece of

analytic curve inside a bidisk ; a typical example is given by/(z, w) zw — in

D( 1, 1), y S1.)

Let e : Bn - Z be abelianization. Thus e(ß) is the exponent sum of ß, when ß is

written as a braid word in the standard generators ; or more generally it is the

number of positive bands in b, minus the number of negative bands in b, when

ß(b) =5 ß. Geometrically, e(ß) is the linking number of (any loop representing) ß

with A, in En. Analytically, e(ß) can be given by an integral formula, as by Laufer

[Lau], where it is called self-winding (and is generalized to links that aren't

necessarily given as closed braids).
When b is quasipositive, e(ß(b)) is the length of b, a fact with the following

geometric meaning. When F : R -> En is smooth and transverse to A, then the

graph of F is a smooth surface in R x C ; the intersections with A correspond to

"simple vertical tangents" to the graph, and projection from the graph of F back

to R is a branched covering, with only two sheets coming together over each

branch point in R. Thus the Euler characteristic /(graph F) equals n%(R) — /, if /

is the number of branch points. When R is a disk and F corresponds to a

quasipositive band representation b, then I is the length of b and we recover a
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genus formula for the graph of F in terms of n, the number of components of the

boundary of the graph, and the exponent sum of the boundary. More generally,

when F is analytic, even if it is not transverse to A it will have a well-defined

positive intersection multiplicity at each point of intersection, which will equal

the number of geometric intersections of almost any small (analytic)

perturbation of F ; thus its graph, which will now be a singular curve, will have

well-defined multiplicities for each singular point, and again a genus formula can
be recovered, this time involving also these multiplicities: cf. [Lau].

A very interesting subclass of the quasipositive braids consists of the positive
braids. A braid in Bn is positive if it can be written as a word in the standard

generators without using their inverses, strictly positive if each of al5..., a„_x
actually occurs. Positive braids play an important algebraic role in the braid

group (cf. [Bi]). Closed positive braids enjoy various nice knot-theoretical
properties (cf. [St], [Ru 5]), and have turned up in diverse contexts—as knotted
orbits of some special dynamical systems [Bi-W] ; and, what is relevant here, as

the links of singular points of plane curves.
Let /(z, w) g C[z, w] be squarefree, not divisible by z, and satisfy /(0, 0) 0.

Then for s > 0 sufficiently small, /(z, w) 0 defines an n-valued analytic
function F : {z : | z j ^ a} - En with F~ 1(A) {0}. Let w2(z),..., w„(z) be the n

numbers in F(z); then it is readily seen that the assignment z i— (wf(z)
— Wj(z) : 1 ^ i,j ^ n, i ^ j} is an n(n — l)-valued analytic function. Without
loss of generality, we may taken and 8 so that w^O) «= w„(0) 0, and wf(z)

— Wj(z) ^ 0 for z / 0, I z I ^ 8. Now a straightforward calculation shows that
for z # 0, I z I < 8, we have d(arg (wf- Wy))/d(arg z) > 0. Consider the closed
braid L which is the graph oïF \{z:\z\ e}, and the link of the singularity of
{/ 0} at (0, 0). A braid diagram for L may be obtained by projecting its
ambient solid torus S1 x C onto S1 x eiQR orthogonally ; for almost all 0 this
will be a braid diagram in general position, from which a braid word may be read
off in the usual way ; and the signs of the crossings are precisely determined as the
signs at the appropriate points of d(arg (wf - Wj))/dd. Since 0 arg z, the link of
a singularity is a positive closed braid. In fact, it can be seen to be strictly positive ;

for if it were nojt, it would be a split link, in particular it would have components
with zero algebraic linking—but the linking number of two components of the
link of a singularity is the intersection number of the corresponding branches,
and is strictly positive.

It is known that a strictly positive closed braid is a fibred link, cf. [St], [Bi-
W], which provides another proof (in this dimension) of Milnor's Fibration
Theorem (that the link of a singularity is fibred—Milnor, of course, gives an
actual analytic formula for the fibration). Here is a simple proof which
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geometrically constructs a fibration of the complement of a strictly positive
closed braid. Let p : X -> C be the n-sheeted branched covering with branch
locus {1,n — 1}, where the permutation at j is the transposition j j+ 1).

Then X is homeomorphic to C again. For concreteness, we realize p as in

Figure 1 : cuts Cj {w : Re w j, Im w ^ 0} are made in the base space; we

coordinate X so that the singular point ofp~ 1(j) is j, and so that {z : Re z j} is
n- 1

one component of p~ 1(Cj) ; then the components of p~ X(C — u Cj) are the sets
j= i

X1 {z : Re z < 1}, X2 {z : 1 < Re z < 2},..., Xn {z : n — 1 < Re z}

known in the classical style as sheets of the branched cover. Now if we consider

En — A to be the configuration space of X, the inverse of the covering map
defines a continuous function from C — {1,..., n — 1} into En — A, inducing a

homomorphism from the free group — {1,..., n — 1} ; 0) to the braid group
7t1(£'„ — A;/?_1(0)). One readily checks that this homomorphism is onto,
carrying the obvious free generator of the free group (Figure 2) to the standard

generator <jj e Bn. Let v xjiU xm be any strictly positive word in

(p 1)*(x2) a2

y
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its strictly positive image in Bn. We use v to construct an auxiliary closed braid
in S1 x C, the closure of v' Alt j(1)... Altm g Bn+1> where Al j

{g1 a,-- i )Gj(a1 Gj-1)~1 is one of the standard generators Au j of the pure
braid group (cf. [Bi] or see below). Now, v' can be realized as a geometric braid in

two special ways : the first string can be made to wind in and out among the

others, which are all straight ; or the first string may be made straight, while the

others wind around it in a succession of loops (Figure 3). On the first

interpretation, identifying the straight strings with [0, 27t] x {1,..., n — 1}, the

winding first string becomes the graph of a loop

in the homotopy class v ; and its inverse image under the branched covering idsi

x p: S1 x X -> S1 x Cisa geometric braid representing ß. On the second

interpretation, identifying the single straight string with [0, 2it] x {0}, and

taking care that each other string winds monotonically around this axis, the

fibration of S1 x (C — {0}) over S1 by (e'e, w) arg w lifts back through the

branched covering to a fibration of (S1 x X) — ß over S1. (The strictness is used

at this point, to ensure that in fact there is a non-zero winding number for each

string. Positivity, however, could be weakened to "homogeneity" in the sense of

[St].) There is no trouble "at infinity", so that the fibration can be extended over
all of S3 — ß. Note that the fibre surface for ß is the union of n disks with a surface

that is the cover of an annulus branched at c(ß) points, so it has Euler

Figure 3 (n 4)

V XlX2X1X3

I : ([0, 27t], {0, 27t}) - (C - {1,n - 1), 0})

L'Enseignement mathém., t. XXIX, fasc. 3-4. 14
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characteristic n — e(ß) and hence (being connected) genus g 1 — - (n — e(ß)

+ c) if ß has c components. This is the same genus formula as before when the

link of a singularity is considered.
Besides exponent sum, there are other representations ofBn with applications

here. First recall the permutation representation n : Bn -> which takes Oj to
(j j + l),j 1,..., n — 1. The kernel ker n is the group of pure braids ; it is the

fundamental group of the space of ordered n-tuples of distinct complex

numbers. Let Sn be the free abelian group of rank ^-n(n— 1) consisting of

symmetric n-by-n integer matrices with 0 diagonal. Now, in general, a cycle in
7i(ß) corresponds to a component of 0 ; and in particular the closure of a pure
braid consists of n (unknotted) components which are naturally ordered 1,..., n.

Define X : ker n -* Sn by setting X(ß)it j equal to twice the linking number of the i-
th and j-th components of p, for ß pure. These representations are combined in
od : Bn -> Sn ix where in the semidirect product Xfn acts on Sn by conjugation
with the standard permutation matrices, and

CÛ(CT,) ([8M+1 + 8;+!,;], (iI+1)), I 1,n- 1

Let Xfn act diagonally on {1,..., n}2, and let | x | • (/, j) denote the orbit of (the
cyclic subgroup generated by) on (i,j). Then fori^j, ß e B„, co(ß) ([apg],

the sum £ apq is an integer invariant of ß, and appropriate sums of such
(P, q)e\x\'(i, j)

invariants are conjugacy class invariants. In particular, when 7i(ß) is an n-cycle

(so that ß is a knot), such a conjugacy class invariant arises by summing over

pairs (i,j) with a fixed constant difference modulo n : and this may be seen to be

precisely twice one of the self-windings swt introduced by Laufer [Lau]. Laufer
showed that the swt(i 1,..., n) suffice to distinguish the knot types of links of
unibranch singularities ; in fact, he showed that the Puiseux pairs of a branch

could be reconstructed from the self-windings. Simple examples show that sw

e and the swt (and even their slight generalizations just given) can't tell apart
all quasipositive, or even all positive, closed braids. It is interesting to speculate

that there might be reasonable representations of ker X, X2 of ker Xl9..., which
could somehow be combined into a (faithful?) representation of Bn in which

quasipositivity might show up more clearly than it does in Bn itself. (Is there any
relation to Laufer's other numerical link invariants [Lau 2]? Perhaps X1 can be

constructed out of linking numbers in branched covers of S3, branched over one
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of the—unknotted!— components of a pure link in which every linking number

is 0; and so on.)
As a final topic, we return to "knot groups" of plane curves and related

matters, from a braid-theoretical point of view.

As before, let R be the compact region of C bounded by a simple closed curve

y. Let S be a compact oriented surface-with-boundary. Then a map / : S -» R

x C, or its image f{S), is a braided surface of degree n ^ 1 provided that

pr{ - / : S -» R is a branched covering of degree n : / is a smooth, analytic, or
algebraic braided surface if /(S) is smooth, complex analytic, or (complex)

algebraic. Let L} c= 5 and Fy c= R denote the branch sets of pr1 ° f finite sets

avoiding öS and y ; and let Wf, Vf a Wf tz R, be the set {z e R: ({z}
x C) n /(S) contains fewer than n points}. One can interpret /"1 as a map, as

smooth as f from R into En. As remarked earlier, when / _1 is transverse to A,

then Wf Vf and / is a smooth braided surface ; but / can be smooth without
/_1 being transverse to A. (Consider non-generic "vertical" tangencies.) Nor
need Wf be finite, but we will always assume that it is, even when /_1 is not
transverse to A. With this proviso, every braided surface f is a topological (even

p.l.) immersion, though not necessarily locally flat. To see this, define the local
braid of f at z g R, denoted ßy z g Bn, to be the homotopy class of the loop 0

f~ l{z + &elQ), 0 ^ 0 ^ 2k, for any sufficiently small s > 0. (Since the

basepoints of the various copies of Bn vary with z, ßy z
is really only defined up to

conjugacy.) This is well-defined when Wf is finite (or even as long as z is not an
accumulation point of Wf) ; of course ßy z

1 if and only if z e R — Wf. For
z g Wf, ßy z

has strictly fewer than n components, which will be grouped into
possibly yet fewer unsplittable links. Then f(S), above z, is embedded in R x C
like disjoint cones (with distinct vertices) on the unsplittable sublinks of ß/, z. For
example, if z e Vf lies under only a simple vertical tangent, then ß/; z is a band
(positive or negative), which might as well be taken to be ay1 g Bn, and ßy, z is a

split link of n — 1 unknotted components.
Recall (cf. [Bi]) that Bn acts (faithfully) as a group of automorphisms of the

free group Fn of rank n. Explicitly, if Fn nfC - {wl9..., wn} ; w0), the acting
is realized as KfEn - A ; {wu w„}) ; on standard free generators xl9..., xn of Fn
(positively oriented meridians around wl5..., wf, the action is

X-CTi XiXi+ i-X-i'1, Xh XjOi Xj

for j ^ U + 1. Pick a basepoint z0eR - Wf, and paths from z0 to the points
Zj,..., zk of Wf. By these paths, all the local braids can be taken to lie in one and
the same braid group, namely, n,{En - A; pr2(({zp} x C)n/(S)))—denote by
ß>, z

these braids. (Simple vertical tangents, for instance, will now give braids ß} z
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which are bands that cannot all at once be taken to be cr*1.) It may now be seen

that

(xl9.., x„ : xfi'ft z xh i 1,..., n, z e Wf)

is a presentation of the "knot group" n^R x C) — f(S) ; *). When / is algebraic
and y is a very large circle this is really van Kampen's presentation (except for the
relation "at infinity" to which we will return shortly).

A finite presentation of a group, in which each relation sets one generator
equal to some conjugate of another generator, is a Wirtinger presentation ; a

group with a Wirtinger presentation is a Wirtinger group. Any Wirtinger group
has a simple Wirtinger presentation, in which each relation is of the form xt-x7oq~1

xk, for not necessarily distinct generators xh xp xk. After possibly adding more
generators, and renumbering them, one can assume that each relation is of one of
the two forms x£- xj+1 or xt xjxj+-Lx]'1, i < j. These two relations are

contributed, respectively, by the action on Fn of

(criCT, + 1 CT; : tCTjlCT.rr,, 1 s +1 or -1
So every Wirtinger group has a simple Wirtinger presentation which is the van

Kampen presentation of the fundamental group 7u1({(z, w) g C2 : | z | ^ 1}

— f(S) ; *) for some smooth braided surface /(S) with boundary the closure of a

quasipositive braid (the product of the bands used to achieve the desired

relations); and actually f(S) can be taken to be non-singular complex analytic.
So we see that the class of knot groups of complex analytic curves in a bidisk is

exactly the class of Wirtinger groups, a refinement [Ru 2] of results of Yajima
[Ya] and Johnson [Jo] (who weren't concerned with complex analytic
structures).

If one wishes to investigate knot groups for smooth braided surfaces of fixed

topological type, one still loses nothing by demanding that the surfaces be

complex curves : if /(S) is smooth, by slight jiggling / ~1 becomes transverse to À

while f(S) moves by an isotopy ; then the braids z are all bands, positive or
negative ; changing all the signs to positive reimbeds S as a quasipositive braided

surface, and therefore, up to isotopy, a complex analytic curve ; but it does not
change the knot group at all, since xß_1 x is the same relation as x xß.

So far, everything has been phrased for braided surfaces over a compact
(simply-connected) region R. Ifwe replace R by all of C, much stays the same ; it is

now appropriate to let Wf be infinite, but discrete. It ceases to be clear, however,

(at least to this author at the present time) that a quasipositive "infinite band

representation" can always be realized by an entire n-valued analytic function.

Also, as observed in [Ru 1], for compact R, at least as far as the boundary closed
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braid is concerned, every rc-valued analytic function can be assumed to be the

restriction of an entire n-valued algebraic function ; this is certainly not true for

R C, because the "local braid at infinity" ß/>G0 of an algebraic braided surface

over C—i.e., the braid over a simple closed curve large enough to enclose Vf

entirely—is severely restricted. Its closure, for instance, is an iterated torus link

(as we saw in the proof of the theorem of Abhyankar and Moh, § 6). And if the

projective completion of the algebraic braided surface (algebraic curve), in CP2,

meets the line at infinitely transversely, one actually has ß/oo the union of n

circles of the Hopf fibration S3 — CP1—the braid ß/ oo
is the generator of the

(infinite cyclic) center of Bn(n ^ 3), which bears the name A2 (unfortunately, in this

context), cf. [Bi]. Any knot group of a projective plane curve, then, can be

presented by starting with an expression of À2 as a product ß(/) - ß(/c) in Bn,

where each ß(i) is conjugate in Bn to some local braid associated to the link of a

singularity (including non-trivial local braids which are associated to the

unknotted link of a regular point then forming the presentation

(x 1?..., xn : x1x2-x„ 1, xfi(j) xh i 1,..., n, j 1,..., k).

For instance, a quasipositive band representation ofA2 (each ß(z) a positive band,
that is, conjugate to the nontrivial local braid ax associated to a simple vertical

tangent) corresponds to a non-singular curve of degree n, and presents Z/rcZ. A

quasipositive nodal band representation, where each ß(i) is either a positive band

or the square of a positive band, corresponds to a node curve ; if some ß(i) are
cubes of positive bands, others squares or first powers, we have a cuspidal band
representation ; and so on. There is a mapping from the set of strata of Qn (§ 5)

into a hierarchy of "types of expressions" of A2 g Bn as products ß(/) - ß(/c);

Moishezon's problem of normal forms is a first step in the study of this mapping,
about which little seems to be known. Is it onto? An affirmative answer would be

a strong generalization of Riemann's Existence Theorem. (Again, cf. [Mo].)
We conclude with three examples. First recall some formulas for A2 in Bn (cf.

[Bi] or [Mo]): A2 (a1a2-a„_1)n; also, A2 is pure, and in terms of the
standard generators

Aij (GrOj-JCTjfCT,-—(Tj-i)-1,1 /' < < U- 1

of the pure braid group,

~ ^1,U-"* ^1,1^2,n-1 ^2,2 ^w-l.u-1 *

Example 1.WriteA2 ß(Z) - ß(n2 - n),ß(i)ß; mod 1; asjust given. It is

easy to see that this expression for A2 does in fact correspond to a non-singular
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curve of degree n. The corresponding presentation of the knot group of the curve
includes among its relations x1x2'"Xn 1 and each equality xt xi+1, i

1,n— 1. So the knot group is a quotient of ZjnZ ; but a simple homological
argument shows that Z/nZ is the abelianization of the knot group, so the two

groups are equal.

Example 2. Write A2 ß(/) - ß((n2 —n)/2), where ß(z) «= APtq as above.

Each pair (p, q) arises. The relations in the corresponding presentation say that
for each pair p, q the generators xp, xq + 1 commute. (For instance, the action of

^1,1 al 0n Fn is X1G1 (X1X2X11)<J1 =* X1X2X1X2 1X± 1

x2gi xi<Ji xix2xl\ xkGi xk k ^ 1,2;

and the relations xl xlx2x1x21xl1 and x2 x1x2x^1 both say x1

commutes with x2) The group is free abelian of rank n— 1. Moishezon sketches a

proof that this presentation does arise geometrically; another proof could be

given by the method of [Ru 1].

Example 3. For n 4, A2 a1a2a3a1a2a3a1a2a3a1a2a3. Let us

suppress the symbol a, raise subscripts (so k denotes <jk\ and write, for instance,

234 to mean a2a3" 1a4a3a2 1. Then, by dogged manipulation, A2 e B4 can be

worked into the form (3*3*3) (321) (1*1*1) (2) (1*1*1) (321), the product of three

positive bands and three "cusps" (cubes of positive bands). The corresponding
presentation, before adjoining the relation at infinity, presents the group of the 5-

twist spun trefoil (as has been remarked by Dewitt Sumners) ; with that relation,

xix2x3x4 1, the group becomes the non-abelian group of order 12, (a, b : aba

bab, a4 =l,a2 b2). This is the correct group [Z] for a tricuspidal cubic curve,
and presumably the given "quasipositive cuspidal band representation" really
arises geometrically, but I have not had the courage to check this.—Similarly, for

n 6, A - 123451234123121, which can be written as (1*1*1) (l2l) (3*3*3) (343)

(5*5*5) (1332) (3554) (23) (45); the presentation for the square of this, with the

relation at infinity, is at an intermediate stage(x1? x2> x4> xs> x6: xi x3 xs>

x2 x4 x6, x1x2x1=x2x1x2, xlx2x3x4x5x6 l) which becomes (a, b: a2 bz

1), the group given in [Z] for a sextic with six cusps on a conic. On the other

hand, a less symmetrical way to write A2 g B6 is as (2^23) (4) (5) (2-2-2)1 (2*2*2) (32)

(4312) (1*1*1) (4321) (445) • (4423) (4*4*4) (1*1*1) (2l23)2 (1*1*1) (221) (2), which

presents the abelian group Z/6Z which [Z] gives for a sextic with six cusps not all

on the same conic.
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