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The proof that these elements generate over proceeds as above for p ^ q,
and proceeds as in the proof of Lemma 9 when p q. Details are easily supplied.

§6. On Q-linear relations

S. Chowla and P. Chowla have suggested the following conjecture in a

private communication to the author. Let au a2,... be a sequence of integers
which is periodic, an an+p, for some prime p. Then

(11) Er ajn2 * 0

except in the special case

ai ap.1ap/{l-p2).
If we use the Hurwitz function

Ç2(fc/p) P2(k~2

then the inequality (11) can be written as

I?a*C#/p) * 0;

and the exceptional case corresponds to the Kubert relation

Ç2(l) P~2B

Thus the Chowlas' conjecture is true if and only if the real numbers

UVp),-,U(P-!)/p)
are linearly independent over the rational numbers. More generally, for any m ^ 2

one might conjecture that the cp(m) real numbers ^{fjm), where k varies over all

relatively prime integers between 1 and m — 1, are Q-linearly independent.

Using Lemma 9, a completely equivalent statement would be the following.

Conjecture : Every Q-linear relation between the real numbers Ç2M> where

x is rational with 0 < x ^ 1 is a consequence of the Kubert relations (*_!).
In fact, since Ç2(*+l) Ç2W m°d Q for positive rational x, it might be

more natural to sharpen this conjecture by taking the values of Ç2 modulo Q. In
other words, it is conjectured that the mapping

Q/Z -> R/Q

induced by Ç2 is a "universal " function satisfying (* _ J. It follows easily from
Theorem 3 below that the corresponding conjecture for the even part,

Ç2W + £2(1—x) 7t2/sin2 nx,
of Ç2 is indeed true ; but the odd part of Ç2 seems difficult to work with.
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One can make analogous and equally plausible conjectures for the Hurwitz

functions Ç3, Ç4,... In Appendix 2 we will describe analogous conjectures for

certain functions closely related to the gamma function.

Bass [2], studying multiplicative relations between cyclotomic units, has

proved the following result. Let

f0(x) log I 1 - e2nix I log(2 sin nx)

for 0 < x < 1. Note that /0(1-x) /0(x).

Theorem of Bass. Every Q-linear relation between the numbers fo(x) for
rational x g (0, 1) is a consequence of the Kubert relations (*0, together with

evenness.

A proof will be indicated at the end of this section.

Note that this is the exceptional case in which Lemma 7 does not apply, so

that/o(0) cannot be defined.

Bass' theorem is equivalent, using the results of §5, to the following classical

statement. Fixing some integer m ^ 3, let E, e2m/m, and let Vm be the

multiplicative group generated by the elements

1 - E,, 1 - ^2,..., 1 - E,"1'1

in the cyclotomic field Q[E,]. Elements of the intersection Vm n Z[£]" are called

circular units (or cyclotomic units).

Corollary. This group Vm n Z[£]' ofcircular units hasfinite index in the

group Z[E,]' consisting of all units of the cyclotomic field.

Compare Hilbert [8], as well as Sinnott [25].

Proof Let m qt qn be the factorization of m into powers of distinct
primes. By Lemmas 8 and 10, Bass' theorem is equivalent to the statement
that the additive group generated by the elements

f0(k/m) log I 1 - e I

has rank cp(m)/2 + n — 1. Since each generator of Vm is equal to a real number
multiplied by a root of unity, this is equivalent to the statement that Vm has rank
cp(m)/2 + n — 1. However it is not difficult to check that Vm splits as the direct
sum of the group of circular units and a free abelian group generated by the
elements 1 — e2ni/qj. Hence Bass' theorem is also equivalent to the statement that
the group of circular units has rank cp(m)/2 — 1. According to the Dirichlet unit
theorem, this implies that it has finite index in the group of all units of Z[£].
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The author [21] has conjectured that the function Q/Z — R defined by

x I— A(tix) m — jo* log I 2 sin 0 |

is a universal odd function satisfying (*2). This seems very difficult. However, W.
Sinnott has pointed out to the author this the situation for the derivatives of
log 2 sin 9 is much easier to analyze.

Let ft(x) be the t-th derivative of log | 2 sin 0 |, evaluated at 0 nx. For
example ffix) cot(nx), f2(x) — csc2(nx). Note that /j(l — x) (—1 )'/f(x).
The values at x 0 are to be defined as in §4.

Theorem 3. For each fixed t 1,2,..., the function

f Q/z - R

is a universal even or odd function satisfying (*i_r).

That is every Q-linear relation between the values f{x) for x in Q/Z follows
from together with evenness or oddnes according as t is even or odd.

Fixing some integer m ^ 3, let e2m/m. If tis even, the proof will show that
the values

/,(l/m), 1

span the real part of the cyclotomic field Q[£]. Similarly, if t is odd, the values

ift(k/m) span the totally imaginary subspace of Q[£]. In either case, these values

span a rational vector space of dimension cp(m)/2, as required by Lemma 8.

Compare Ewing [7] for an analogous discussion of the values of cscfzx) and

its derivatives at rational x.
The proof will depend upon well known properties of Dirichlet L-functions.

Fixing some positive integer m, let

X : (Z/mZ)- - C

be an arbitrary Dirichlet character modulo m. We allow the degenerate case m
1 with the understanding that the only character modulo 1 is the constant

function XoM F Recall that such a character is primitive (or has conductor

generated by m) if it cannot be factored through the projection

(Z/mZ)' -+ (Z/dZ)'

for any divisor d < m. As usual, we set %(k) 0 if k is a non-unit modulo m.

The associated L-function is defined by

00

Us, X) £ x(k)/ks
1
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for Re{s) > 1. In terms of the Hurwitz function

Çs(/c/m)/ms k~s + (k + m)~s +

we can clearly write this as a finite sum

m

(12) L(s,x)£ X(fc) C.

1

It follows that L(s, x) extends to a function which is holomorphic in s for all

complex s, whenever % / Xo- For it is easy to check that the difference Çs(x)

— (s - I)"1 is holomorphic in s ; and the (s -1)"1 terms cancel whenever x ^ Xo-

On the other hand, for the trivial character Xo> evidently L(s, Xo) *s equal to
the Riemann zeta function, with a pole at s 1.

Now let us restrict to integer values of s.

Lemma 13. For primitive % / Xo> and for integer values of s, the

function L(s, x) is zero if and only if s ^ 0 and x(~l) —

For s > 1, the statement that L(s, x) # 1 is fairly easy to prove, while for s

1 it is a basic result of Dirichlet. See for example [5] or [23]. For s ^ 0, this
lemma is proved using the functional equation relating L(s, x) and L(l — s, %).

(Compare [10].) Details of this last argument may be found in Appendix 1.

In the case of the trivial character Xo> this lemma remains true except for
anomalous behavior at s 0 (where Ç(s) is non-zero) and s 1 (where Ç(s) has a

pole).
These Dirichlet L-functions can also be expressed as finite linear

combinations of polylogarithms, via Fourier analysis, as follows. Let £, e2ni/m.

Lemma 14. If % / Xo is primitive modulo m, then

m

Us, x) £ x(k)ls(k/m)/x
1

where
m

T t(X) £
1

is a complex constant with absolute value yfm.

In the case of the trivial character x0, this lemma remains true provided that
/s(l) is interpreted as in §4.

ProofofLemma 14. Since both sides are holomorphic in 5 for all complex 5,

it will suffice to consider the case Re(s) > 1. First note that the "Fourier
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transform" of the complex valued function % on the finite ring Z/mZ is equal to

IX ; that is

(13) X x(jW ^n).j mod m

If k is a unit modulo m, this follows from the equation %(j) %{k)%(jk), while if k is

a non-unit modulo m then, using the hypothesis that % is primitive, it is not
difficult to check that both sides of this equation are zero. Now dividing both
sides by ks and summing over all positive integers k, we obtain

X "cL(s, Ï)
j mod m

Since ££J£f) ls(j/m), this implies the required equation.
To compute | x | combine (13) with the complex conjugate equation to obtain

mkn) X x(j)XXr""XxO%kJjkkjXrtaTx(fe) Tix(n);
k

hence m xx as asserted.

Remark. Similar arguments prove that the Fourier transform of the

Hurwitz function Çs(j/m) on the finite ring Z/mZ is a multiple of ls(k/m). More
generally, one can show that any function on Z/mZ satisfies (*s) if and only if its

Fourier transform satisfies (*i-s).

Proof of Theorem 3. We will work with the polylogarithm function

sejg) Uk/m)

where ^ e2ni/m. If s 1 — t is a non-positive integer, recall from §2 that s(z)

is a rational function with rational coefficients. Hence ls(k/m) takes values in the

cyclotomic field QK].
The Galois group G ofQK] over Q can be identified with (Z/mZ)\ Evidently

the mapping

Us(Am) - QR]

induced by ls is G-equivariant, in the sense that the automorphism
u(k/m) h- u(gk/m) of Us(Am) corresponds to the automorphism /(£) h-> f(^g) of

QR] for every g in G (Z/mZ)\ Tensoring both sides with the complex

numbers, each splits into a direct sum of 1-dimensional eigenspaces under the

action of G. Hence, to compute the rank of this map, we need only decide how

many eigenspaces are mapped non-trivially.
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For each character x mod m, let %' : (Z/dZ) —> C be the associated primitive

character, where d | m generates the conductor of %. Evidently the sum

I iswd)®m
k mod d

belongs to the x-eigenspace under the action of G on QR] ® C. By Lemmas 13

and 14, its image %'(k)ls(k/d) in C is zero if and only if %(— 1) (— l)s ; except

for the single anomalous case when s 0 and x Xo- Thus the rank of this

mapping
Us(Am) -, QR]

is at least cp(m)/2 for s < 0, and at least 1 + cp(m)/2 when s 0.

It follows that the image ls(Am) spans the real part of the cyclotomic field

QR] when s 1 - t < 0 is odd, and the totally imaginary part of QR]
when s is even. Here ls is related to the real valued functions f of Theorem 3

by the identity
ii-t(x) + mm 0

for t ^ 2 ; which follows from (8) and (9). Similarly, for t 1, the image of the

function
iffik/m) 2l0(k/m) + 1

spans the totally imaginary subspace of QR].
Since the dimension cp(m)/2 of this image is the maximum allowed by Lemma

8, this completes the proof of Theorem 3.

Proof of Bass' Theorem. Recall that Vm is the multiplicative group in QR]
spanned by the 1 — if. Evidently the Galois group G of QR] operates on Vm.

Since each generator is the product of a real number and a root of unity, G

operates also on the additive group log | Vm |, generated by the images

fo(k/m) log I 1 - ¥ I

Note that f0(x) is precisely the even part — (Ifx) + li( — x))/2 of the function

-I fix) log(l — e2nix).

As in the proof of Theorem 3, we can consider the map

UfiAm-0) - log I Vm I

induced by /0, and split both sides into eigenspaces under the action of G

(Z/mZ)\ For each even character % / Xo> with conductor generated by d | m,
the corresponding L-function

I xWo (k/d)=-X -xL(l,?)
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is non-zero according to Dirichlet. Thus we obtain a contribution of
— 1 + cp(m)/2 to the rank coming from the non-trivial even characters.

On the other hand, for the eigenspace corresponding to the trivial character,

using formula (10) of §4 we obtain a contribution equal to the number of primes

dividing m. Lemmas 8 and 10 of §5 now complete the proof.

Appendix 1

Relations between polylogarithm and Hurwitz function

For every complex number s, it follows from Theorem 1 that there exists a

linear relation between the even [or the odd] part of the function ls(x) and of the

function C)1 _s(x) or ßs(x) — 5^_s(x). This appendix will work out the precise

form of these relations. Compare [3], [19], [27].
For integer values of s, the required relation can be obtained as follows.

Recall from formula (9) of §2 that

l0{x) — 1 + i cot 7dc)/2

hence

'o(x) + 'o(l-x) + ßoM 0-

Integrating, we see that

l^x) - hil-x) + 2tzi ßiM/l! 0

Z2(x) + Z2(l-x) + (2ni)2$2{x)/2l 0

and so on, for 0 < x < 1. For even values of the subscript, specializing to x 0

as in §4, this yields Euler's formula

2Ç(2k) + (2ni)2kb2k/(2k)\ 0

In particular, it follows that Ç(0) — and that the numbers b2, —b4, b6,

— b8,... are strictly positive. On the other hand, differentiating the formula for

/0(x), we obtain

l-i(x) — csc2(nx)/4

This is an even function satisfying (* _ J, so it must be some multiple of Ç2(x)

4- Ç2(l — x). Comparing asymptotic behavior as x -> 0, we obtain the classical

formula

Ç2(x) + Ç2(l —x) 7t2/sin2 m (2tui)2/-i(x)/1!
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