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ON THE NUMBER OF RESTRICTED PRIME FACTORS

OF AN INTEGER. Ill

by Karl K. Norton

§1. Introduction

Let P be the set of all (positive rational) prime numbers, and let E be an

arbitrary nonempty subset of P. Throughout this paper, let denote a general

member of P, and for non-negative integers a, write p" if p" and 1

For each positive integer n, define

© (n ; £) X !' X
p\n, peE Pa || n, peE

We usually write to (n;P) co(n),fi(n;P) Q (n). In this paper, we shall

estimate the functions

S (x, y ; £, co) card {n ^ x : co (n ; £) > y}
(1.1)

S (x, y ; £, Q) card {n ^ x:Q.(n; E) > y}

when y is appreciably larger than the normal order of co (n ; E) and Q (n ; £) ; y

may even be as large as the maximum order of co (n ; E) or Q(n; £), respectively.

(Here and throughout, card B means the number of members of the set B, and if
Q (n) is a statement about the integer n, we often write {n ^ x : Q (n)} instead of

{n: 1 ^ n ^ x and Q (n)}.)

Define E(x)-X P'1 (x real). (1.2)
p^x, peE

In [13], it was observed that if E (x) -> + ooasx^ + oo, then both the average
order and the normal order of00 (n; E) are equal to E (n), and the same statement
holds for Q (n ; E). In [13], we obtained sharp inequalities for the functions (1.1)

when 0 < y < 2E (x), roughly. In [14], we gave asymptotic formulas for the

same functions when E (x) -» + 00 and y E (x) + o (E (x)) as x - + 00. It
is well-known, however, that

E (x) ^ log log x + 0 (1) for x ^ 2

1980 Mathematics Subject Classification. Primary 10H15, 10H25. Secondary 10A20,
10A21.



32 K. K. NORTON

whereas if x is large, co (n ; E) and Q (n ; E) may be much larger than log log x for
some values of n ^ x. For example, the method of [6, pp. 262-263, 359] shows

that
© (n)loglog

lim sup 1 (1.3)
n^ + oo log n

and a more precise version of (1.3) was obtained in [12, pp. 96-100]. (See also the

remarks at the beginning of §3 below.) Before stating estimates for the functions
(1.1) when y is large, it seems worthwhile to generalize results like 1.3) to co (n ; E).

First define

n(x;E) Yj 1 (x real), (1.4)
p ^ x, peE

and write
log2 X log log x, logr X log (logr- :x)

for r 3,4,... (1.5)

Theorem 1.6. Suppose that there exists a real number y (E) > 0 suchthat

n(x;E) y(E)(x/log x) {1 + 1/log x)}

for all x > 2. (1.7)

Then for each n ^ 3, we have

/ loë n {1 + !°g Y (£)} log «
® (n ; E)sg+ "5

log2 n (log2 ny

with equality for infinitely many n.

Here and throughout, the notation 05 e implies a constant depending at

most on 5, 8,..., while 0 without subscripts implies an absolute constant.

Likewise, for i 1,2,..., we shall write c, (5, 8,...) for a positive number

depending at most on 8, 8,..., while c, will mean a positive absolute constant.

It is interesting to observe that a much weaker hypothesis than (1.7) still

implies that the maximum order of co (n; E) is approximately (log n) (log2 n)~ F

See the remarks after the proof of Theorem 1.6 in §3.

After (1.3) .and Theorem 1.6, it is natural to ask how often co (n; E) and

Q {n ; E) assume values appreciably larger than their normal order E (n). It
appears that rather little was known about this problem until very recently. The

earliest contribution was by Hardy and Ramanujan [5] (reprinted in [15,
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pp. 262-275]), whose estimate for card {n ^ x: co (/?) m} leads easily to a

good upper bound for S (x, y ; P, co) (essentially the same as the bound given in

Theorem 1.14 below). However, they did not state explicitly a result of the latter

type. For arbitrary £, much weaker upper bounds for S (x, y;F, co) and

S (x, y; E, £2) can be derived from a general theorem of Turân [19] on the

distribution of values of additive functions. (See also Turân [18] or Hardy and

Wright [6, pp. 356-358] for the case E P, and see [13, §§1, 3] and [14, pp. 18-

19] for remarks on all of this early work.) For the particular functions co (n; E)

and £2 (n ; F), Turân's bounds were improved considerably in the author's paper

[13; (5.16), (5.15), (1.11)], where it was observed that for any set £,

S (x, olE (x); P, co) ^ x exp {(a— 1 — aloga) E (x)} (1.9)

for real x ^ 1, a ^ 1, where E (x) is defined by (1.2). A similar (slightly less

precise) result was stated for £2 (n; E) when 1 ^ a < pu where p1 is the smallest

member of E. No lower bound was obtained in either case for a ^ 2, so that the

precision of (1.9) for large a was not clear. In a later paper [2], Erdös and Nicolas
obtained a rather good estimate in the special case E P. They showed that for

any fixed a with 0 < a < 1,

card {n ^ x : co (n) > a (log x) (log2 x)~ x1 "a + 0 (1) (1.10)

as x -> + oo. (In fact, they obtained a somewhat more precise result resembling
Theorem 4.13 below.) However, they did not get an analogous result for £2 (n),

nor did they generalize to co (n; E) or £2 (n; E). Furthermore, their method did
not give good upper estimates for S (x, y ; P, co) when y is appreciably smaller
than (log x) (log2 x)~ h We propose to remedy all of these drawbacks to some
extent. First, we obtain the following lower bound by a refinement of the Erdös-
Nicolas method :

Tfieorem 1.11. Suppose that there exists a real number y (E) > 0 suchthat
(1.7) holds. Let 8 > 0, and suppose that x ^ c1 (£, s) and

c2 (E) ^ y ^ (log x)(log2 x)"1

+ {1 + log Y (E)-s} (log x) (log2 x)~2. (1.12)

Then

S (x, y;E,to)^ x exp {-y(logy + log2 log y (£) - 1)

+ 0E(y(log2 y)/log y)} • (1.13)

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 3



34 K. K. NORTON

1.8) shows that only a very small weakening of the hypothesis (1.12) would be

of any interest. In Theorem 3.20, we assume much less than (1.7) and derive a

result similar to Theorem 1.11 (but somewhat weaker).

Concerning upper bounds for S (x, y; £, co), we have obtained only a modest

improvement of (1.9); see Theorem 4.8 and Corollary 4.12. It should be

emphasized that (1.9) and Theorem 4.8 hold for an arbitrary set E (without the

assumption (1.7)). Using the same methods, we deduce

Theorem 1.14. Suppose that there exists a real number y (E) > 0 such

that (1.7) holds. If x ^ 3 and y ^ y (E) log2 x, then

S (x, y ; £, co) ^ x exp { — y (log y — log3 x — log y (E) — 1)

Although there is a considerable gap between (1.13) and (1.15), the results are

more general and somewhat sharper than those of Erdös and Nicolas [2]. In

particular, we get a generalization of (1.10) (see Theorem 4.13). Theorems 1.11

and 1.14 also yield immediately the following result which could not be obtained

by the Erdös-Nicolas method:

Corollary 1.16. Suppose that there exists a real number y (E) > 0 such

that (1.7) holds. If 0 < a < 1 and x ^ c3 (£, a), then

S (x, (log x)a ; E, co)

x exp {— a (log x)° log2 x + 0 ((log x)a log3 x)}

It should be mentioned that when E P (the set of all primes) and y/log2 x
is bounded and not too close to 1, Theorems 1.11 and 1.14 can be replaced by a

striking asymptotic formula which was recently obtained by H. Delange (for the

proof, see [2]):

Theorem 1.17 (Delange). Let x, a, ru r2 be real with x ^ 3, 1

< r1 ^ a ^ r2. Then

y (E) log2 x + 0E log2 (1.15)

S (x, a log2 co)
F (a) a1/2+alog2 x~ [alo82 M

(2k)1 12 (a— 1)

(log x)1"a+a,08a(log2 x)1'2

X
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where [z] means the largest integer ^z and

Delange obtained a similar result for card {n ^ x: co (n) ^ a log2 x} when

x > 3, (log2 x)"1 ^ a ^ r3 < 1 (see [2]). In this connection, it is interesting to

note the estimate

F (a) exp { — a log a — a log2 a + (1 — y) a + 0 (a/log a)}

for real a > 2, where y is Euler's constant. (Some effort is required to show this,

and we omit the proof.)
For values of a near 1, Kubilius [8, Theorem 9.2] proved a result on the

distribution of co (n) which is similar to Theorem 1.17. His theorem was later
extended by himself [9] and Laurincikas [10] to somewhat more general
additive functions, and it was generalized to co (n; E) and Q(n; E) by Norton
[14]. The estimates for S (x, y\ E, co) derived in the present paper are not as

precise as Theorem 1.17 or the earlier work cited, but they are more general with
respect to E (except for [14]), and they hold for much larger values of y.

We now consider the function Q(n;E). Here we assume that E is any
nonempty set of primes; in particular, nothing like (1.7) is assumed. For
completeness, we begin by stating the following easy result :

Tfteorem 1.18. Let px be the smallest member of E. Then

Q (n; E) ^ (log n) (log pj-1 for all n ^ 1, (1.19)

with equality if and only if n p\ for some integer a ^ 0.

This follows from

n ^ f] Pa > EI PÎ vVn;E).
pa\\n,peE pa || n, peE

We now proceed to estimate S (x,y;E,Q) (defined by (1.1)). For ^ (x),
rather little previous work has been done on this problem, and all of it was
restricted to the special case E P (the set of all primes). Selberg [17, p. 87]
stated without detailed proof the following asymptotic formula:

card {n<x: Q (n) m} ~ A2~m x log x

for integers m satisfying (2 + e) log2 x sS m < log2 x. (Here e > 0 is
arbitrarily small, while A and B are positive absolute constants; it is not clear
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from [17] how large B could be.) Selberg also gave an asymptotic formula for
card {n ^ x : co (n) m) when m/log2 x is bounded. His work was recently
extended to considerably larger values of m (roughly m < (log x)3/5) by Kolesnik
and Straus [7], whose theorems are quite complicated. These results, together
with the formula

S (x, y ; P, £2) £ card {n ^ x:Q{n) m) + S (x, Y ; P, Q)
y<m^Y

and different tools for estimating S(x, Y; P, £2) from above, would yield some
information about S (x, y; P, £2). However, it appears that neither [17] nor [7]
would thus lead to an estimate for S (x, y ; P, £2) which is both simple and

reasonably precise when y/log2 x is unbounded. To the best of our knowledge,
the only previous result of the latter type is due to Erdos and Sarközy [3], who

recently proved that

S (x, y; P, £2) ^ c4 y4 2~y x log x for x ^ 3, y ^ 1. (1.20)

We shall generalize their work to S (x, y ; E, £2) and get a sharper upper bound.

Although the result could be phrased in terms of the function E (x) (defined by
(1.2)), it is more convenient to state it in terms ofa real number v which in practice
is taken to be an approximation to E (x). (For example, if E P, we could take

V log2 X.)

Theorem 1.21. Let x,.v, y be real with x ^ 1, v ^ 1, and y ^ 0. Let
be the smallest member of E, and define

A A (x,v;E) max {2, | E (x) — v |} (1.22)

Then
S (x, y ; E, £2) ^ c5 (Pl) ply xpm eipi~1)v+plA (1.23)

We remark that (1.23) is our best upper bound when y > pxv — v112, but it
can be improved for smaller values of y (see Lemma 5.3).

Concerning the problem of estimating S (x, y ; P, £2) from below, we shall

state only the following simple result :

Theorem 1.24. Let px be the smallest member of E. If x ^ px and

0 ^ y ^ (log x) (log pj"1 - 1, then

S(x,y;E, £2) ^ (1/2) x.

To prove this, let k [y] + 1 (so k is the smallest integer greater than y),

and observe that the multiples n of p\ have the property that £2 (n ; E) ^ k > y.
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There are just [xpik] of these n ^ x, and since [z] ^ z/2 for z ^ 1, we get the

result.

It is clear that Theorem 1.24 is essentially best possible in certain extreme

cases (for example, if E (pj, or if x p\ and y a — 1).

WhenE P (the set of all primes), we can take v log2 x. Then A 0(1),
and we have the following corollary of Theorems 1.21 and 1.24:

Corollary 1.25. If x ^ ee and 0 ^ y ^ (log x) (log 2)_1 — 1, then

2~y~2 x ^ S (x, y ; P, Q) ^ c6 2~y x (log x) (log2 x)1/2

Corollary 1.25 should be compared with the Erdös-Särközy result (1.20)

and with the asymptotic formula of Selberg mentioned after Theorem 1.18.

When y < 2 log2 x (roughly), more precise estimates for S (x, y; P, f2) can be

obtained from [13] and [14].
In a later paper, we shall show that if is the smallest member of E and

e > 0 is fixed, then the precise order of magnitude of S(x,y;E,Q) is'

pîy x exp {(pi 1) E (x)}

when E (x) is sufficiently large and

Pi E(x) < yÜ(1-e)(log x) (log p^'1

This theorem is much more difficult to prove than Theorem 1.21. Its proof
depends on Theorem 1.21 and on an extension of Halasz's work [4] concerning
the local distribution of Q (n; E). Theorem 1.21 remains our best upper bound
when y is close to (log x) (log pj-1 (cf. Theorem 1.18), and it seems to be the

most we can achieve by a fairly simple method.

§2. Notation

The symbols a, m, n always represent integers with a ^ 0, m ^ 0, n > 0. The
letter p always denotes a prime, while v, w, x, y, z, a, ß, 8, s, a are real numbers,

[x] means the largest integer ^x. The notation logr x is defined by (1.5), and the
notations 0, 05 E c,-, (8, e,...) are explained after Theorem 1.6. If a

condition such as "x ^ ct (8, 8,...)" is used as a hypothesis, it is to be understood
that c, (8, 8,...) is sufficiently large. We shall occasionally use the notations
«, » to imply constants which are absolute. (Thus A O (B) is equivalent to
A « B.)
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Empty sums mean 0, empty products 1, and we define 0° 1. The notation

••• xJyi y*

is sometimes used instead of

(*1 ••• XJCVl •••

Throughout this paper, E denotes a nonempty set of primes, to be regarded
as quite arbitrary unless further assumptions are stated. E (x) is always defined

by (1.2). p1 always means the smallest member of E, and if

E - {Pi}{p'-peEand

is not empty, then p2 denotes the smallest member of E — {p1}. When x and v are

positive, the function A A (x, v; E) is always defined by (1.22).

§3. Proofs of Theorems 1.6 and 1.11,

AND RELATED RESULTS

Before proving (1.8), we observe that a similar but weaker inequality has a

very simple proof. For if y > 1, then

log n>L loê P > Z lo8 p > (lo8 y) Z 1 '
p\n p\n,p^y p\n,p^y

and hence

©(«)- Z 1+ Z 1 ^ y + (log n) (log y)"1
p\n,p<y p\n,p^y

The right-hand side is approximately minimized by taking

y (log n) (log2

and we obtain

®(n) < jl +
1 for n^l6(>ee). (3.1)

log2 n I \log2 nJAnother simple proof of (3.1) can be based on Newman's observation [11, p. 652]
that if co (n) r, then n ^ r!.

To get the sharper inequality (1.8), it sepms to be necessary to use an

assumption such as (1.7) about the distribution of E. First we need a lemma

relating n (x; E) (defined by (1.4)) and

e(*;£)= Z log p. (3.2)
p^x, peE
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Lemma 3.3. Suppose that there exists a real number y (E) > 0 such that

(1.7) holds. Then for x > c„ (F),

0 (x; F) n (x; E)
J

log n(x;E) + log2 7r (x; F) - 1 - log y (F)

log2K(x;E) 1 \\+
log7ü(x;£) £Vlog^^;£)/J

Proof: For notational simplicity, we write lr logr x, Lr logr 7t (x; E)

whenever these are defined. First note that for x > c12 (E), (1.7) implies

Ll h -l2 + logy (E) + 0,(1/1,). (3.5)

In particular, Li ~ l,SindL2 ~ /2asx + oo,soforx > c13 (F), (3.5) implies

Li Ml + 0E (LJL,)}

and multiplication by (LJ,)'1 yields

Zj-1 - Lf1 {1 + Oe(L2/L,)} for x > c13 (F) • (3.6)

Taking logarithms in (3.5), then using (3.6), we get

L2 Z2(l - 1//! +

l2(1- 1/L, + 0£ (1/LiL,)) for x > c14

It follows that

l2L2(1+ 1/L1 + 0E(l/L1L2f)forX > cls (E). (3.7)

Substituting (3.7) in (3.5), replacing 0E (1 /by0E (1/LJ, and solving for we
get

Zt L1+ L2 - log y (E) + + 0£ (1/Lj)
for x > c16 (£). (3.8)

We now need to estimate 0 (x ; E)interms of tc (x ; E). We use the Stieltjes
integral, then integrate by parts and combine with (1.7):

0 (x; E) (log t) dn(t; E)ti (x ; E) —
1

dt

log t

+ 0
'

2

ti (x; E)/j — ti (x; E) + 0E(x/lf) (3.9)

(log t)2 ' 71(X; 'i ~ Y +
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for x ^ 2. Now, (1.7) shows that

xfll °E fa (*; E)/ll) 0E (n (x; Ej/Lj for x > c17 (E).

Using this fact as well as (3.9) and (3.8), we get (3.4). Q.E.D.

Proof of Theorem 1.6: Write E {pu p2, p3,where p1 < p2 < p3

< Define nr pxp2 pr for r ^ 1. By (3.4),

n, - 6fe;£) ,r log r) {l + ^ + + 0,( '
I log r log r (log r)z \(log r)

(3.10)
for r > cil (E). Hence for r > Cjg (E),

log2 nr log r+ log2 r + + 0E (r-3—) (3.11)
log \log r)

If r> c19 (£),then (3.10) and (3.11) yield

log nrr {log2 nr -1 - log y (£) + 0E (l/log2 nr)} (3.12)

If r > c20 (F), we can solve (3.12) for r to get

FN
log nr( l+logy(£) 1 Yl

CO {nr;E) r - <M + + -j > (3.13)
log2 nr I log2 nr \(log2 nr) J J

Now let n be any integer ^ 3, and write co (n ; E) r. Define

log n{1+ log Y (£)} log n logf (n, a) + ^ + a -3log2 n (log2 ny (log2 nY

for real a. For fixed positive a, / (n, a) increases with n for n > c21 (a, E). Thus if
r > c22 (E), it follows from (3.13) (since n ^ nr) that

CO (n;E)co (nr;E)< f(n„c23(£)) < / c23 (£)).

Now suppose that 0 ^ r co (n; E) ^ c22 (F). If n ^ c24 (F), then clearly

/ c23 (£)) Ss c22 (£) ^ CO ; £).

If 3 ^ n < c24 (F) and c25 (F) is sufficiently large, then (since y (F) ^ 1)

/ (n, c25 (£)) > (1^ ^3 jc25 (£) + (log y (£)) log2 c24 (£)j

> c22 (£) co (n; £).
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It follows that if

c26 (£) max {c23 (£),c25 (£)},
then

cd (n;£) sg fc26 (£))

for all n ^ 3. This proves (1.8), and (3.13) shows that equality holds in (1.8) for

infinitely many n. Q.E.D.
For a more precise version of (1.8) when E is the set of all primes, see [12,

p. 99].
Even a much weaker hypothesis than (1.7) implies that the maximum order of

co (n ; E) is nearly (log n) (log2 n)~1. Specifically, suppose that there exist positive
real numbers 5, x0 such that

n(x; E) ^ x5 for all x ^ x0 (3.14)

In the notation of the preceding proof, it is then clear that for r ^ x0,

log nr 0 (pr; E) > 7i (pr; E) - 1 > pi - 1 (3.15)

But trivially 0 (pr ; E) ^ r log pn so

CO (nr;E)r > (log (log pr)~\
and hence by (3.15),

co(n;E)log2nlim sup ^ 5 (3.16)
n-* +co log

Proof of Theorem 1.11 : We use the method of Erdös and Nicolas [2],
which we can refine and generalize by appealing to Lemma 3.3. As before, write

E {Pi> Pi, Pi, •••},
where

Pi < Pi < Pi <

Assume that ysatisfies (1.12) (where c2 (E)is sufficiently large), take r [>•] + 1,
and let nr p,p2... pr. There are exactly [x/nr] multiples n of such that n < .x,
and for each such n we have co (n;E)> r >y.Hence

S (x,y; E,cù)>[x/nj (3.17)
By (3.4),

log nrr {log r + log2r-1 - log y (£) + 0E ((log2 r)/log r)}
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for r > cxl (E). Define

g(t) t {log t -f log2 t - 1 - log y (£)}

for real t ^ 3 and note that

0 < g' (t) 0E (log t) for t ^ 3

By the mean-value theorem for derivatives,

g(r) g (y) + oE (log y),

and hence

log nr g (y) + 0E (y (log2 y)/log y) if y > c21 (E). (3.18)

In order to derive (1.13) from (3.17) and (3.18), we need to show that

[x/wr] » x/nr, (3.1.9)

i.e., that nr ^ x. For the remainder of this proof, write

lk logfc x, ß 1 + log y (E) — e,
and

z ih/h) + ß Ci/'i) •

It follows from (1.12) that

y (log2 y)f.log y •

Also, if x > c28 (E, s), then

log z ^ l2 — /3 + (ß/y ^ /2 /3 + (8/2),

log2 z < Z3

It follows from these inequalities and (3.18) that ifx > (F, e) (sufficiently large)
and (1.12) holds, then

log nr 0 (z) + 0E(IJi/lj)
< Ci/Ü (1 + ß/U {'2 - /3 + (e/2) + (ß + s)}

+ 0E(hl3/lj)

=l1(l-e/21J + 0E,t{lxl3/l%<l1,

so nr < x. Thus (3.19) holds, and (1.13) follows from (3.17) and (3.18). Q.E.D.
It is interesting to observe that a result somewhat like (1.13) can be deduced

from a much weaker assumption than (1.7):
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Theorem 3.20. Suppose there exist real numbers Ô > 0, x0 ^ 2 such that

(3.14) holds. If x ^ c29 (Ö) and x0 ^ y ^ 5 (log x) (log2 x)~\ then

S (x, y ; E, co) » x exp {— 5~1 (y log y + log y + 2)}

Proof: In the notation of the preceding proof, (3.17) holds, and trivially
log nr ^ r log pr. If y ^ x0, then pr > r ^ x0 and r n (pr; E) ^ pf, so

log nr ^ 8~1 r log r ^ Ô"1 (y+ 1) (log y + y-1)

^ 5_1 (y log y + logy + 2). (3.21)

But log y ^ log2 x — log3 x, so log nr < log x if x ^ c29 (5). Hence (3.19)

holds, and the result follows from (3.17) and (3.21). Q.E.D.

§4. Proofs of Theorem 1.14 and related results

We begin by quoting the following easy result from [13, pp. 689-690] :

Lemma 4.1. For x ^ 1 and z ^ 1,

x *»<«•*> «xn {i+ (z-i)p-1}.
n^x p^x, peE

To put this in a more convenient form, we prove

Lemma 4.2. If x ^1 and w> -2, then (cf. (1.2);

Il (1+wp"1) < (4.3)
p^x, peE

If 1 < w < x, then
11 (1 + wp ')

p^x, peE

exp {w (E (x) - E (w)) + 0 (w/log (2w))} (4.4)

Proof : (4.3) follows immediately from the inequalities

0^1 + wp~1 < exp *).

To get (4.4), we first write

Il (1 + wp_1)< [] (2wp-1) • Y[ exp (w/T1)
p^x.peE p^w w<p^x,peE

exp {w (E (x) - E (w)) + il (w) log (2w) - 0 (w)},
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where n (w) 1 anc* Ö (w) log P• Since 71 (t) « t/log (2f) for
t ^ 1, we have

> (w) (log t) dn (t) n (w) log w
J i
K (w) log w + 0 (w/log (2w)),

n(t) t 1 dt

and it follows that the right-hand side of (4.4) is an upper bound for the left-hand
side. On the other hand, since log (1 +y) y + 0 {y2) for y > 0, we have

Y[ (i+wp-1) ^ Yl exP {wp
1 + o (w2p~2)}

p^x, peE w< p^x, peE

exp {w (E (x) - E (w)) + £ P 2)} •

But

I P'2
p> w

t 2 dn (t) < 2 t 3 n(t) dt « (w log (2w))
1

and (4.4) follows. Q.E.D.

Corollary 4.5. If x ^ 1 and z ^ 1, then

£ zco(n;E) ^ x e(z-l)E(x)
_

n^x

If 1 ^ z ^ x, then

^ zco (n; E)

n^x

< x exp {(z-1) (£ (x) - E (z)) + c30z/log (2z)}

Note that if 1 < z < 2, then (4.7) follows from (4.6).

(4.6)

(4.7)

Theorem 4.8. Let x>1, v>0,1 < a < x. Define A A(x,v;E)
by (1.22). Then

S (x, au ; E,co)< x exp {(a— 1 — alog a) v — (a) + c31 Aa}.

Proof : Suppose 1 < z < x. Then

£ z'" <"•'£) > £ zC0 E) > z"v s (x> av ; E, co).
<x, a) (n; E)> av

Combining this result with (4.7), we get

S (x, olv; E, co) ^ x exp {(z — 1) (HÀ) — z£ (z) — olv log z

+ c32 z/log (2z)} (4.9)
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In practice, we think of v as being a good approximation to E (x), so that A is

small compared to v. We want to minimize the right-hand side of (4.9)

approximately, and for simplicity, we choose z so as to minimize the expression (z

-1) v — av log z, i.e., we take z a. With this value of z, we get the result from

(4.9). Q.E.D.

Lemma 4.10. Suppose that there exists a real number y (E) > 0 suchthat

(1.7) holds. Then there is a real number 5 (E) such that

E(x) y (E) 1 og2 x + 5 (E) + 0E (1/log x) for x ^ 2 (4.11)

Proof: Write

E(x) t 1 dn(t; E),

integrate by parts, and use (1.7). Q.E.D.
From Theorem 4.8 and Lemma 4.10, we get

Corollary 4.12. Suppose that there exists a real number y (E) > 0 such

that (1.7) holds. Let x ^ 3, 2 ^ a ^ x. Then

S (x, ay (E) log2 x ; E, co)

^ x exp {(a— 1 —alog a) y (£) log2 x — ay (E) log2 a + e33 (E) a}

Using (1.8), it is easy to show that Corollary 4.12 actually holds for all a ^ 2,

but it is also clear from (1.8) that

S (x, ay (£) log2 x ; E, co) 0

whenever a is somewhat greater than (log x) (log2 x)~2.

The upper bound given in Corollary 4.12 compares favorably with the
theorem of Delange (Theorem 1.17 above), and our result is more general and
holds for a much wider range of a. Our proof is also much simpler than
Delange's. Unfortunately, our lower bound (1.13) is much smaller than the upper
bound in Corollary 4.12.

Theorem 1.14 is proved in the same way as Theorem 4.8, but we use (4.6)
instead of (4.7), apply Lemma 4.10, and take z y (y (E) log2 x)"1.

We conclude this section by generalizing the Erdös-Nicolas result (1.10).
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Theorem 4.13. Suppose that there exists a real number y (E) > 0 such that
(1.7) holds. Let 8 > 0, and suppose that x ^ c34 (E, e) and

(log2 x)2 (log x)-1 < a 1 + {1 + log y (£) - e} (log2 x)-1

Then

x1'" exp j-c35 (E)^* j sï (x, a(log x) (log2 x)"1; co)

«,-exp + lasjLl
log2 X log2 xj

This can be obtained from Theorems 1.11 and 1.14 (take

y a (log x) (log2 x)"1

and use the inequalities

log2 y ^ log3 x, y ^ log2 x ^ y (E) log2 x).

Theorem 4.13 should be compared with Theorem 1.6.

§5. Proofs of Theorem 1.21 and related results

In estimating S (x, y ; E, £2) (defined by (1.1)), we do not need any assumption
such as (1.7). Hence we emphasize that throughout the remainder of this paper, E

is merely assumed to be any nonempty set ofprimes. (We shall sometimes assume

explicitly that E has at least two members.) The smallest member of E will always
be denoted by px (and the smallest member of E — (pj, if it exists, by p2). When

x and v are positive real numbers, the function A A (x, v ; E) is always defined

by (1.22).

The subsequent work depends heavily on the following elementary lemma

[13, p. 690]:

Lemma 5.1. If x > 0 and 1 < z < pl5 then

Y znin;E) < pl (Pi-z)"1 xe{z~1)Eix) + 4z.
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For the special case EP,thereis a recent paper of DeKoninck and

*
Hensley [1] giving various estimates for £ zn{n\ where z is complex and

n < x

indicates that the prime factors of n are restricted to lie in a certain range.

DeKoninck and Hensley get sharp results, but their work is rather complicated

and does not seem applicable to the problems discussed here.

If yis real and z ^ 1, then

£ ZU (n,-E)£znWE)
n^x n^x,SÎ(n; E)^y

^ zy card {n ^ x: Q (n; E) ^ y}

Hence Lemma 5.1 immediately yields

Lemma 5.2. If x > 0, y is real, and 1 ^ z < px, then

card {n ^ x : Q. (n ; E) ^ y}

< Pi (Pi~z)_1 x exP {(z_1) E(x) - y logz + 4z).

Lemma 5.3. Let x > 0, 0 < v ^ y < pxv. Then

card {n ^ x: Q(n; E) ^ y}

< c31 (p^ iPi-y/v)"1 x exp {y - v - y log (y/v) + A}

Proof: In Lemma 5.2, use the inequality E (x) ^ v + A and take z y/v
to get an approximate minimum. Q.E.D.

We observe in passing that Lemma 5.2 can also be used when y ^ pxv. In
order to get a reasonably good result in this case by the same method, one needs

to minimize the function

9 (z) (z~ 1) v - y log z - log (Pi-z)

on the interval 1 ^ z < pv Assuming that y is rather large, one can see with
some computation that g (z) is approximately minimized when

Z Pi (1 - (2y)"1),

and this z satisfies 1 < z < p1whenever ^ 1. With this value of z, Lemma 5.2

yields

card {n < x:fi(n;£) ^ y} < c38 (pt) (5.4)

for x > 0, y ^ 1. When E is the set of all primes and x ^ 3, we can take
v log2 x, A 0(1). Thus (5.4) is already sharper and more general
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than (1.20) (which is due to Erdös and Sarközy [3]). However, Theorem
1.18 shows that it may be of interest to take y as large as

(log x) (log pi)~1, and we shall now prove that when y is relatively large,
the factor y on the right-hand side of (5.4) can be replaced by a much
smaller quantity.

Lemma 5.5. Write F E — {px} (if F is empty, we define

fl(n;F) 0 for all n). Let x > 0, y ^ 0, and let k [y] + 1.

For integers a with 0 ^ a ^ k, define

Ca {m ^ xp(a: p1 J( m and Q (m; F) ^ k — a}

Then

S (x, y; E,Q)[xprk] + £ card Ca.
a 0

Proof : For 0 ^ a ^ k, define

Ba — {n ^ * : P\ II n and fi (np(a ; F) ^ k — a]

(recall that p\ || n means pax \ n and p\+1 f n). It is easy to see that

k- 1

{n ^ x : Q (n ; E) > y) {n ^ x : p\ \ n} u (J Ba.
a 0

Since the sets {n^x: p\\n},B0, Bu Bk_Y are disjoint, we have

k- 1

S(x, y; E, Q) card {n^x : p\card Ba
a 0

But the mapping n h* np(a establishes a one-to-one correspondence
between Ba and Ca9 so the result follows. Q.E.D.

Proof of Theorem 1.21 : If E {pj, then by Lemma 5.5,

S (x, y; £, Q) ^ xp(y

and (1.23) follows. Thus we may assume that F E — {px} is not
empty. Let p2 be the smallest member of F, and let k [y] + 1. By
Lemma 5.5,

S (x, y ; E,ß)[xPrk] + X card (5.6)
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To estimate

card Ck-a card {m ^ xpa1~k: pkand Q(m; F) ^ a}

from above, we apply Lemma 5.2 (with E replaced by F and p i by
Since

F (xp1~k) < F(x)^ E(x)< + A

we obtain

card Q_fl
< Pi (Pi~z)_1 xp1~k exp {(z— 1) (t + A) — log z + 4z}

H (a,z), (5.7)

say, and this holds for each integer and each real z with
1 < z < p2.In applying (5.7), we are free to choose z to depend on a.

Write Q max {k, pkv}, and for each (1 let za be any real
number satisfying 1 =% za<p2.Then by (5.6) and (5.7),

S(x,y;E,Q)^xp1k + X H {a, zj
a 1

< xPîk +X H(a,zy z„)
1^ v v<a^p v

+ X H{d,Za). (5.8)
p v<a^Q

1

For 1 ^ a ^ v, take za 1. With this choice, we have

X H(a,za)« xpîk X « xPiy + "

1^ v

« xpîy e{pl~l)v. (5.9)

For v < a ^ pxv, the quantity (z— 1) v — a log z in (5.7) is minimized by
taking z a/v za. With this choice of za, we have 1 < za ^ p1 and

PliPl-Za) PliPl-Pl)'<1 +Pl,
SO

H (a,za)sSc39 (pj) xpi
k eipl v/a"e ").

By Stirling's formula, a"e~a » a!a"1/2, so we get

X H(fl,zaXc40(p1)xpr'ii1'2«-''+>»A x iPiv)"

v<a^p^v v<a^p v CI

< c40(Pi) xpïy v1'2 (5.10)

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 4
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For pxv < a ^ Q, we let all the numbers za have the same value Pi (1 + 0),

where 0 is a real number about which we assume only that 0 < 0 < p2pï1 — 1

(the last inequality being needed in order to have za < p2). With this choice of za,

(5.7) yields

I H (a, za)
p v < a ^ Q

I

< Pi {Pi - Pi (1 + 9)}"1 xpïkexp{(Pi-l+PtQ)(v + A) + (1+0)}

x I (1+0)"°. (5.11)
p^v<a^Q

The last sum on the right does not exceed

X (1 + 0)'" < (1+0)0" 1(l+0)-pi". (5.12)
a> p v

1

After combining this estimate with (5.11), we would like to minimize the

contribution of the essential terms eplQv 0_1 (l+0)~pl,;. Since

log (1 + 0) ^ 0 - 02/2 for 0^0, (5.13)

we have

Pi$v — log 0 — pxv log (1 + 0) ^ —log 0 + Pit02/2,

and here the right-hand side would be minimized by taking 0 to be (Piv)~112.

However, we must also choose 0 < p2pî1 — 1 (so that za < p2). If we take

0 - (Ip^2)'1, (5.14)

then because of our assumption that v ^ 1, we have

0 < (2pi)-1 < PiPl1 ~ 1
•

Combining (5.11), (5.12), (5.13), and (5.14), and observing that

Pi {Pi ~ Pi (1 + 0)}"1 < Pi (p2~Pi —1/2)-1

1 + (Pi "F 1/2) (p2 —Pi — l/2)~1 <c41(pi),

we obtain finally
X H(a,za)< (5.15)

p^v<a^Q
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The theorem now follows from (5.8), (5.9), (5.10), and (5.15). Q.E.D.

Since

E (x) ^ £ P_1 log2 x + 0(1) for x^2,

one would always want to choose v ^ log2 x. Thus (1.23) is superior to (5.4)

whenever y ^ (log2 x)1/2. Furthermore, consideration of derivatives shows that

y — v — y log (y/v) ^ (pi — 1) v — y log for 0 < v ^ y ^ pyo

and hence Lemma 5.3 is superior to Theorem 1.21 whenever

1 ^ v ^ y ^ — v1/2
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