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(4) This follows immediately from (3), and the commutativity of the diagram
of maps induced by the obvious inclusions

\ /7t| (.X)ab

Lemma 3. Let X be a smooth geometrically connected variety of finite
type over a field K, and let U c= X be any non-empty open set. Then the

natural map

Ker {U/K) Ker (X/K)
is surjective.

Proof The variety X ® K is normal and connected, as is the non-empty

open U ® K in it. Therefore the natural map n1 (U 0 K) - n1 (X 0 K) is

surjective (because both source and target are quotients of the galois group of
their common function field). The result now follows from the indicated
surjectivities in the commutative diagram

' n1(U®K)ab » Ker (U/K)

n^X^Kfh » Ker (X/K).

II. The Main theorem

Recall that a field K is said to be absolutely finitely generated if it is a finitely
generated extension of its prime field, i.e. of Q or of Fp.

Theorem 1. Let S be a normal, connected, locally noetherian scheme,

whose function field K is an absolutely finitely generated field. Let f : X
-» S be a smooth surjective morphism of finite type, whose geometric generic

fibre is connected. Then the group Ker (X/S) is finite if K has characteristic

zero, and it is the product of a finite group with a pro-p group in case K has

characteristic p.
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Proof. We will first reduce to the case in which is an elementary
fibration in the sense of M. Artin (SGA 4, Exp XI, 3.1), i.e. the complement, in a

proper and smooth curve C/S with geometrically connected fibres, of a divisor
Dc C which is finite etale over S. By lemma 2, part (4), Ker /S) is a quotient of

Ker {Xn/K\so we are reduced to the case S Spec (K). IfL is a finite extension
of K, then Ker (X/K) is a quotient of Ker (X ® L/L) (by lemma 1), so we may
further reduce to the case when X/K has a K-rational point, say x0. Thanks to
M. Artin's theory of good neighborhoods (SGA 4, Exp XI, 3.3), at the expense
of once again passing to a finite extension field L of K, we can find a Zariski
open neighborhood Uofx0inX®L which sits atop a finite tower

K

U U0

i fo

I fi
(2.1) U2

1

I
Un Spec (L)

in which each morphism f is an elementary fibration. By lemma 1 again, it
suffices to prove the theorem for X <g> L/L, and for this it suffices, by lemma 3, to
prove it for a good neighborhood U/L. By the exact sequence (1.4), it suffices to
prove the theorem for each step Ui/Ui+l individually.

This completes the reduction to the case of an elementary fibration. By
lemma 2, part (4) we may further reduce to the case Spec Again passing
to a finite extensionL/K,which is allowable by lemma 1, we may assume that our
elementary fibration X/K C —D)/K)has a K-rational point x0 and that the
divisor D ofpoints at infinity consists ofa finite set ofdistinct rational points of
C. We must show that the prime-to-p-part(p char of the group ofGalois
coinvariants

is finite.
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For this, we must recall the explicit description of the prime-to-p part of

7i! (X <g) K)ab as the Tate module of a generalized Jacobian. Let J denote the

Jacobian Picc/K, and let JD denote the generalized Jacobian of C/K with respect
to the modulus D. Thus JD is a smooth commutative group-scheme over K which
represents the functor on {schemes/K}

the group of PT-isomorphism classes ofpairs (j£f, s) consisting
of an invertible sheaf if on C x W which is fibre-by-fibre of

K

degree zero, together with a trivialization s of the restriction
of if to D x W.

"Forgetting e" defines a natural map JD -» J, which makes JD an extension of J
by a # (D) — 1 dimensional split torus :

(2-3) o(Gm)*^/Gm-> JD-+ J-0.
Kummer theory (cf. SGA 4, Exp. XVIII, 1.6 for a "modern" account)

furnishes a canonical isomorphism between the prime-to-p part of n1 (X 0 K)ab

and the prime-to-p Tate module of JD ; for any finite abelian group G killed by an

integer N prime to the characteristic p of K, it gives a canonical isomorphism

(2.4) Hlet(X®K,G)^ Horn (JD G)

where (JD (K))N is the "abstract" subgroup of points of order N in JD (K). In
terms of the prime-to-p Tate module

(2.5) Tnotp(JD (K))%i lim

PJtN

~IL Tt(JD(K)),
I T P

we can rewrite this

(2.6) Horn (tij (X ® Kf, G)^Horn (Tnot p (JD (K), G)

whence finally a canonical isomorphism

(2.7) n, X0Kfb^Tnot P(JD (K)) x (a pro

Thus we are reduced to showing the flniteness of the group

(TJiot p(Jd (^0))Gal (K/K)

(2.2)

W
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The exact sequence (2.3)

o'-»(GJ -+JD^ J ^0
gives an exact sequence of K-valued points

0 - Gm (K)*"1 - JD (K) -» J (K) -> 0

Applying the snake lemma to the endomorphism "multiplication by N" of this

exact sequence, and passing to the inverse limit over ATs prime to p, we get a short

exact sequence of prime-to-p Tate modules

(2.8) 0 - Tnot p (Gm (K))#(D) 1
Tnot p (JD (K)) - Tnot p (J (K)) - 0

Because formation of Gal (K/K)-coinvariants is right-exact, we are reduced to

showing separately the finiteness of the groups

(Tnot p (Gm CK)))oal (K/K) ' (^not p (J (^)))cal (K/K) >

In fact, these groups are finite even if we replace Tnotp by the entire Tate

module T Tp x Tnotp.

Theorem 1 (bis). Let K be an absolutely finitely generated field, and

A/K an abelian variety. The groups

(T{Gm (-K))Gal (K/K) 5 T (A (X))Gal (^/X)

are finite.

Proof. We will reduce to the case when K is finite. Because K is absolutely
finitely generated, it is standard that we can find an integrally closed sub-ring R

of K, with fraction K, which is finitely generated as a Z-algebra, together with an
abelian scheme A over R whose generic fibre A ® K is A. If K has characteristic

jR

p > 0, we may further suppose that geometric fibres ofA/R have constant p-rank
(if g dim A/R, simply localize on R until the rank of the p'th iterate of the p-
linear Hasse-Witt operation on H1 (A, 0A) is constant).

Suppose first that K has characteristic p > 0. Then the Gal (K/K)
representations T (Gm (K)) and T (A (K)) are unramified over Spec (R), i.e. they
are actually representations of the fundamental group n1 (Spec (R), f|), viewed

as a quotient of Gal (K/K).
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Let p be a maximal ideal of R, i.e. a closed point of Spec (R), Fp its residue

field, Fp an algebraic closure of Fp, and p the corresponding geometric point of
Spec (R) (namely R -> R/p F^ c> F^). Pick a "chemin" from p to the

geometric generic point f\ (which is R c» K c* K), i.e. letting R denote the

integral closure of R in K, pick a homomorphism R -> Fp which extends p. Then

we get isomorphisms of Z-modules

T(A(F <- — T (A (R))
P chosen chemin R K

R -* F
P

which is Gal (Fp/Fp) equivariant when we make Gal (Fp/Fp) operate on

T [A (K)) via the composite

Gal (Fp/Fp) 7CX (Spec (Fp) ; p) X

(Spec (R),p)Che'"
> it, (Spec (R), f|)

Passing to coinvariants now yields a diagram

(T(A(F J))Gal(F /F ^ (T [A (X)))Gai(F /F
P P P P P

(T (A (K)))ni (Spec ^ I

T (A (K)))Gal (K/K) >

in which the vertical arrow is trivially surjective (because Gal (Fp/Fp) operates

through its image in (Spec (R), p)). Similarly for Gm.

When K is of characteristic zero, and A/K has been "spread out" to an

abelian scheme A/R, we argue as follows. Fix a closed point p of Spec (R). For

each prime I ^ p char (Fp), the /-adic Tate module Tt (A (K)) is unramified

over Spec (R [1//]) and the above specialization argument gives a surjection, for
each / # p,

T,(A(FJ)Gal (F /F 7^ (^4 (X))Gal {K/K).p p p
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Therefore the prime-to-p part of the order of (T (A (K)))GaI (k/K) divides the order

of (T (A (F^)))Gal (f^/f^)-
Now choose a second closed point X of Spec (R), with residue characteristic

I ^ p. [This is possible because, X being a characteristic zero, Spec (R)

necessarily dominates Spec (Z), and hence by Chevalley's theorem all but finitely
many primes occur as residue characteristics of closed points of Spec (R)"]. Then

the p-part (and indeed the prime to-/ part) of the order of (T (A (X)))Gal(^/A:)

divides the order of (T (A (FJ))Gal (fx/fx)- Similarly for Gm.

Thus we have reduced theorem 1 (bis) to the case of finite fields, where it is

"classical". Explicitely, the result is

Theorem 1 (ter). Let k be a finite field, q #/c, and A an abelian

variety over k. Then we have the explicit formulas

$(T (A (/c)))GaI (fc/fc) t A (k)

I (Gm (/c)))Gal (T/fc) $Gm(k) q — 1

Proof Let F e Gal (k/k) denote the arithmetic Frobenius automorphism of

k/k (i.e. F (x) xq) which is a topological generator of Gal (k/k). In any
Gal (/c//c)-module T, the coinvariants are simply the cokernel of 1 — F :

T/(l~F)T^(T)Gaim.

In the case T — T (Gm (k)), Tis a. free module of rank one over Y[ on which
1 * p

F operates as multiplication by q, whence the asserted result. In the case T
T (A (k)), we have T Y\Tt (A (k)), the product extended to all primes /.

Each module Tt (A (k)) is a free Zrmodule of finite rank (2 dim A for I ^ p, the
"p-rank" of A for / p). Because # A (k) is non-zero, it is enough to prove that,
for each /, we have an equality of /-adic ordinals :

ord, (*(T,(A (k))/(l -F)T,(A ord, #/l (k)).

By the theory of elementary divisors, we have

ord, (# (7; / (1 —-F) 7/)) ord, (det (1-F|7J)).
Now for I ¥=p,wehave Weil's celebrated equality ([16], thm. 36)

«let (1 - F I 7J(X(k))) %A(k)(/#p).
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For I p, we have (cf. [13]) only the weaker, but adequate

det (1 — F I Tp (A (k))) (=)M (k)) x (a p-adic unit). QED

Remarks. (1) Given an abelian variety A over any field K, Kummer theory
and duality lead to a canonical isomorphism

TCi (A®K)^ T(A (K)).

Because abelian varities have rational points (e.g. their origins) we have

canonically

Ker (A/K)^(T(A(K)))GaliRlK).

From this point of view, Theorem 1 (bis) is simply the abelian variety case of
Theorem 1 with the added information that even the p-part is finite.

Now consider the special case when K k is a finite field. Then Theorem
1 (ter) gives us

#Ker (A/k) *A(k).
In fact, there is a canonical isomorphism of groups

Ker (A/k) * A (k).

To see this recall the interpretation of Ker (A/k) as the inverse limit of the galois

groups of connected finite etale A-schemes E/A which are galois over A with
abelian galois group, and completely decomposed over the origin (cf. 1.3). The

Lang isogeny

A

I 1 —F (F the Frobenius endomorphism of A/k)
A

is precisely such a covering, with structural group A (k). Therefore we have a

surjective homomorphism

Ker (A/k) -» A (k)

which is the required isomorphism (since source and target have the same

cardinality
(2) The Gm case of Theorem 1 (bis) could have been handled directly by

remarking that for any field K, the cardinality (as a supernatural number) of the

group of coinvariants T (Gm (K)))Gai (£/K) is equal to the number of roots ofunity
in the field K. But how, in fact, do we know that this number is finite for an
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absolutely finitely generated field The proof by specialization is pretty much the

simplest one Another approach, after "fattening" K into its finitely generated

sub-ring R, is to prove the stronger assertion, in Mordell-Weil style, that the

group Gm (R) Rx of units in such an absolutely finitely ring is a finitely
generated abelian group.

(3) In the case of an abelian variety A over an absolutely finitely generated

field K, the multiplicative upper bounds we get for # T(A (K))Gal (x/X)
(essentially # A (k) whenever we specialize to a finite field k, with the proviso that
we must ignore the p-parts when it's a mixed-characteristic specialization) are

exactly the same bounds usually used to control the size of the torsion subgroup
of A (K). There is a simple galois-theoretic interpretation of the group
(T (A (K)))g&1(k/K), or at least its prime-to-p part, in terms of "twisted-rational"
torsion points, which is perhaps worth pointing out. Thus let A v denote the dual

abelian variety to A, p the characteristic of K, Torsnotp Av (K) the Gal (K/K)-
module of all torsion points of order prime-to-p on A v and

(TorsnotpAv(K))(-l)

the Gal (iC/TQ-module obtained from this one by tensoring with the inverse of
the cyclotomic character % of Gal (K/K). Alternately, we could describe this last

module as the Gal (X/K)-module

Horn (T (Gm (K)), Torsnotp Aw (K)).

The ^-pairings define a Gal (K/Kfequivariant pairing

-^not
p (A (Kj)x (Torsno, p Av(Kj)(-1)-» Q/Z

which makes the compact abelian group Tnot p and the discrete abelian group
(Torsnotp)(—1) the Pontryagin duals of each other. Thus we obtain a perfect
pairing

P (a (K))GiltKIKlX ((Torsnot p (A ' (K)) (- l))Gal Q/Z

The groupJ(Torsnot pAv(K))(-l))Ga,fK/K> is none other than the group
(Torsnot p Av of all prime-to-p (p char (Kj) torsion points in Av
which transform under Gal (K/K) by the cyclotomic character x- Thus we
obtain

Scholie. Over any field K of characteristic zero, the Pontryagin dual of
Ker (A/K) is the group (Tors Av (K))x.
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(4) The same reasoning as in (3) above, if carried "scheme-theoretically",
leads to a concrete interpretation of the Pontryagin dual of the entire group

T(A (K))gai(K/K) "in terms of" p-type subgroupschemes" of Av ;

Scholie. Over any field K, the Pontryagin dual of the compact group

T{A (^))oal (K/K) Is the discrete group

lim HomK_9p (pN,

N

where Horn is taken in the category of K-groupschemes, and the transition
"Af"

maps are those induced by pNM ^ pN

Still by Theorem 1 (bis), this group is finite for an absolutely finitely
generated field K.

For any given curve X over, say, Q, it is an interesting problem to compute
the maximal p-type subgroup of its Jacobian. For example, let p be an odd prime,
and consider the modular curves X0 ip) and (p). Then X1 (p) is a ramified

covering of X0 (p), cyclic of degree (p —1)/2, which is completely split over the

rational cusp at infinity. Let

N numerator of (p —1)/12

The unique intermediate covering of X0 (p) of degree N is unramified ; it is called
the Shimura covering. According to Mazur [20], the corresponding pN inside

J0 (p) is the maximal p-type subgroup of J0 (p) over Q. Therefore we have

Ker (X0 (p)/Q) * Z/N Z

with the Shimura covering as the maximal abelian unramified geometric

covering of X0 (p) defined over Q in which the rational cusp at infinity splits

completely.
On the other hand, we may extend X0 (p) to a normal scheme X0 (p) over Z.

At the prime p, the covering Xl (p) (and hence also the Shimura covering)
becomes completely ramified over one of the two components of X0 (p) ® Fp.

Therefore
Ker (X0 (p)/Z) 0

so that Spec (Z) being simply connected, we have

«1 (Xo (P)ab) 0 •
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(5) Consider the case when K is a finitely generated extension of an

algebraically closed constant field K0, and suppose that A/K is an abelian variety

over K which has no fixed part relative to K0. Because K0, and hence K, contains

all roots of unity, the cyclotomic of character of Gal (K/K) is trivial. Therefore

the Pontryagin dual of Tnotp (A (K))GaH^K) is simply the group of K-rational
torsion points of prime-to-p order on Av. By the Mordell-Weil theorem in the

function field case (cf. [4], V, thm. 2) the group A (K) of all K-rational points on A
is finitely generated so in particular its torsion subgroup is finite. Therefore the

group Tnot p (A (X))Gal (k/K) is also finite in this "geometric" case.

Whether or not the p-part (Tp (A (K))Gai (k/k) *s also finite under these

assumptions is unknown in general. When A/K is a non-constant elliptic curve,
this finiteness can be established by considering the ramification properties of the

"K-divisible group" of A near a supersingular point on the moduli scheme.

However, the general case would seem to require new ideas.

(6) Theorem 1 (bis) implies the finiteness of the group (Tors A v (K))x when
K is a finitely generated extension of Q, e.g. a number field. Let K (p) be the field
obtained by adjoining to K all roots of unity. We clearly have the inclusion

(Tors Tv (K)Y œ Tors Av (K (p)).

This leads to the conjecture :

For any abelian variety A over a number field K, the group
Tors A (K (p)) of K (p)-rational torsion points on A is finite.
When A is an elliptic curve without complex multiplication, this is an immediate
consequence of Serre's theorem that the Galois group of the torsion points is

open in f] GL2 (Zp).
For an arbitrary abelian variety, Imai [Im] shows that the group of torsion

points in K (pp, is finite for a fixed prime We shall prove below that the
conjecture is true when Aadmits complex multiplication. This was extended to a
proof of the conjecture in general by Ribet, cf. the appendix.

First we need a lemma.

Lemma. Let k be a number field. There exists a positive integer m such
that, if F is any finite extension of k ramified at only one prime number p,
and contained in some cyclotomic field, then

F <= k(np00, pj
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Proof. There exists a finite set of primes S such that

Gal (k (p)//c) Gs x Yl Gt
its

where Gt « Zf, and Gs contains a subgroup

Hs= Y\ H,
leS

where Ht is open in Zz*. Without loss of generality, we may assume that S

contains p and all primes which ramify in k. If I $ S, then the inertia group at /

contains Gt (embedded as a component of the product). If I e S, then the inertia

group at I contains a subgroup H't open in Ht. Consequently the subgroup of the

Galois group generated by all the inertia groups at primes I # p contains

n h; x n g,.
leS ItS

I t P

This proves the lemma.

Now let A be an abelian variety defined over a number field k, and with
complex multiplication. Suppose that Ator (k (p)) is infinite, so contains points of
arbitrarily high order. We consider separately thé two cases when there is a point
of prime order p rational over k (p) for arbitrarily large p, or when for some fixed

p, there is a point of order pn with large n.

After extending k by a finite extension if necessary, we may assume without
loss of generality that A has good reduction at every prime of k. Let k! — k (pm)

where m is chosen as in the lemma. Let x be a point on A of order a power of the

prime p. Then k (x) is ramified only at p, and it follows that

k (x) <= k (Upoo)

Let K be the field of complex multiplication, which we may also assume

contained in k'. Furthermore, after an isogeny of A if necessary, we may assume

that the ring of algebraic integers in K acts on A via an embedding

i : oK End (A).
Let

poK pf - pf-

be the prime ideal decomposition of p in K, and let p1 p, say.

Suppose that x has order p, and that p is large, so p is unramified in k'. By

projection on the p-component, we may assume that x is a point of order p, that
is i(p) x 0. If r ^ 2, and ty' is a prime ideal of k' dividing one of p2,pr, then
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ty' is unramified in k! (x). But since p is unramified in k\ then k' (ppoo) is totally
ramified above every prime dividing p in k'. Therefore r 1 and p remains prime
in k\

In that case, k' (x) k' (4P) and Ap is a cyclic module over oK, or also a

vector space of dimension 1 over oK/poK. Furthermore, Gal (k' (Ap)/k') can be

identified with a subgroup of (oK/poK)*, which has order Np — 1, and in

particular is prime to p. By a theorem of Ribet [Ri], we have

I Gal (kf (Ap)/k) I » p2

where the sign » means that the left hand side is greater than some positive
constant times the right hand side. However, the prime-to-p part of
Gal (k (jipoo)A) has order « p. This contradiction proves the theorem in the

present case.

Consider finally the case when there is a point x„ of order pn with p fixed but n

arbitrarily large. Without loss of generality, we may assume that pp is contained
in k!. We shall prove again that r 1. For some prime p P! dividing p in K,
the point x„ will have a p-component of large p-power order, and hence without
loss of generality, we may assume that all the points xn lie in A [p00] (the union of
all the kernels of i(pv) for v -> oo). In particular, the degrees [k! (x„) : k!~\ contain
arbitrarily large powers of p, whence the fields k' (x„) contain arbitrarily large
extensions k' (ppv). If r ^ 2 and Sß' is any prime ideal of kf dividing some prime

p2,pr, then is unramified in k' (x„). But the ramification indices at all primes
dividing p in k' tend to infinity as n tends to infinity. Hence again r 1.

Now suppose that xn has order p", meaning that pn is the kernel of the map

a I— i(a) xn.

We shall prove that k' (xn) k' (A [p"]). We have an isomorphism

o/p" ä i(o) x„.
On the other hand, A [pn] is cyclic module over o/pn, generated by an element z,
so that xn i (a) z for some a. Then a must be a unit in the local ring of o at p,
whence in fact

i(o) x A [pn]

This proves that k! (xj k' (A [pn]).
Using arbitrarily large n, we conclude, that k' (A [p00]) is contained in

k' (ppoo). But according to Kubota [Ku], the Galois group Gal (k' (A [p°°])/fc') is
a Lie group of dimension g 2. Since the Galois group of the p-primary roots of
unity is a Lie group of dimension 1, we have a contradiction, which concludes the
proof.
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