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254 S. ZUCKER

§3. The cohomology groups Hn(T ; p, V) 1

In this section, we will discuss the various approaches toward computing the [

Eilenberg-MacLane cohomology groups Hn (T ; p, V) for a finite-dimensional j

representation (p, V) of G, which we may as well take to be irreducible. I

We begin with the use of deRham cohomology, as carried out originally in j

[7]. Since M is contractible, there is a natural isomorphism I

Hn (T ; p, V) ~ Hn (S, V)

(with notation as in §2), hence we may compute these cohomology groups from
the complex of V-valued C00 forms on S (by the deRham theorem).

We will make use of the following obvious diagram of manifolds

gX;r\G(3.1) KIMAS
Let tj be an element of sén (S, V), the space of global C00 n-forms on M with

values in V. Then
(j) «=* K*7t*T|

is a F-valued form on G satisfying the equations

(3.2) i) y*<t> p (y) cj> if yeT
ii) oS?r(j) 0 if Y et,

if y Lie derivative (AwAd*)(T)

iii) i y(j) 0 if Y e I

ty interior multiplication by Y

Conversely, every element (j) e sén (G) V {sén (G) denoting the space of C°° n-

forms on G) that satisfies (3.2) is K*7i*rj for some r| e srfn (S, V). We then apply the

mapping S of (2.6) to ({>, obtaining the rc-form

(3.3) fi p(0~1)4)

which satisfies
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(3.4) i) y*f\ p if y e r,
ii) SeYf\ -p(Y)f\ if Y el,
iii) iYf\ — 0 if Y e f.

In particular, we may view p as a vector-valued form on V\G.
We next describe the Hodge theory for Hn (S, V) from this point of view, as

was done in [7] and [8]. Actually, one must work with the L2 cohomology when

S is non-compact. Since we have defined a metric on A (T, p) in Section 2, and

on the tangent bundle by the Killing form, there is an L2 norm || p ||(2) for

p e sén (S, V), and the L2 cohomology is defined by

(3.5)

H„ (S y)
{ri e st_ (S, V) : T| is L2 and dr\ 0}

<2) ' {rj as above: r\ d\\i for some L2

There is then an obvious mapping

(3.6) Hn{2) (S, V) -> Hn (S, V),

and one is ultimately interested in understanding the kernel and image of this

mapping. (See also [12].)

(3.7) Remark. We may compute the L2 cohomology groups (3.5) from the

complex of weakly differentiable L2 forms V); i.e., we may drop the
smoothness condition on forms (see [15, §8]). Then d becomes a densely-defined
differential for the "complex" of Hilbert spaces of V-valued L2 forms, and

H„ yx _
{weakly closed V-valued n-forms}

(2) '
{range of à on L2 (n— l)-forms}

We define the reduced L2 cohomology H"2) (S, V) by replacing the range of d
in the above quotient by its Hilbert space closure ; the reduced L2 cohomology
inherits a Hilbert space structure from the L2 inner product.

In discussing || p ||{2), we wish to make use of the form p of (3.4), and we have

(3.8) Lemma [7, p. 380]. If p e sén (S, V) and p e sén (T\G) ® ¥ is the

corresponding element, then

II T1 II mC II fi II (22)

where c equals the volume of K.
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While much of what follows holds in the absence of a complex structure, we
restrict ourselves to the Hermitian symmetric case for the purposes of this

exposition. For the general case see [7].
Choose an orthonormal basis of p+, so

{Xlt XuJQ
forms an orthonormal basis of pc. For r| e V), put

n,-, jq f\(Xiu_Xip,Xh(G) (g)

Let
d d' + d"

be the usual decomposition of the (flat) exterior derivative d on V) into
components of bidegree (1,0) and (0, 1). The bidegree (1,0) differential operators
D' and d'p are defined by the formulas

(3-9)

ï(-If1

ip + i;h,...,jq,
u= 1

(3-10) {dpVi)ilt ip + lijl, ...,jq

(- l)u" 1
P (Xiu) Tlilf ...X, ip + i; ju Jq '

One also puts D" — D' and d'p d'p. Then d' D' + d'p and d" D" + dp ; if
we put D D' + D" and dp d'p + dp, then d D + dp. We remark that D

gives a metric connection on O (p); heuristically, we regard k*E (p) as being

canonically flat.

Let Î) represent any of the above operators. One can obtain directly formulas
for the L2 adjoint D* and the Laplacian

(3.ii)

(see [9, pp. 68-70]). From these calculations, one obtains also the following
identities
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(3.12) Proposition. As operators on «a/*(S, V),

i) d Od' + Od"

ü) Od Od + Odp

iü) Od Od' + Od"

iv) nip Ddp + Ddp

v) Dd- + nip

(3.13) Remark. One always has

DtS + DT, +(®1®! + ®S©1 + »Î®2 + ®2®Î).
+ U>1 U2

so (3.12) amounts to establishing the vanishing of the expression in parentheses

on the right-hand side. The identities in (3.12) are not general formulas for flat
bundles on manifolds, but are particular to the group-theoretic context.

Since S is complete in the induced metric from M, the operators T> as above

have unique [3] closed extensions to S£\2) (S, V), so the identities (3.12) continue

to remain valid in the strict sense on L2. From this, one may conclude

(3.14) Proposition. If r| ejS?J2)(S, V), the following are equivalent :

i) /H 0 (r\ is harmonic),

Ü) Od'T] d"T| 0

hi) Dd'Ti D-r| Ddpti r| 0,

iv) D'r) (D')*ri D"r\(D")*r\ i\

(d'p)*r[ dpr\ (ip)*r| 0

Since is elliptic for any of the operators X) above, harmonic forms are
necessarily C°°. Let /?"2)S,V)denote the space of L2 harmonic «-forms with
values in V. We obtain by standard theory (see [15, §1]):

(3.15) Proposition. For all n,

i) h"2)(S,V) ~ (s, V),

ii) The mapping /[2) (S,V)- H(S,V) is injective, and is an
isomorphism if and only if d, operating on 1

(S, V), has closed range.
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(3.16) Remark. An easy way to guarantee that the mapping in (3.15, ii) is an

isomorphism is by showing that H"2) (S, V) is finite-dimensional.

By (3.14, ii) a form is harmonic if and only if it is annihilated by the

Laplacians of the bidegree-preserving operators d' and d". Therefore, a form is

harmonic if and only if its (p, q) components are harmonic, so

(3.17) ^»2)(S,V)= ©
p + q n

Passing this through the isomorphism (3.15, i), we get

(3.18) H"a) (S, V) © (S, V).
p + q n

If we take S to be compact, we have H"2) (S, V) Hn (5, V), and in (3.18) the

Hodge decomposition of [7].
The most significant assertion about Laplacians, as we will see in Section 5,

is given by

(3.19) Proposition [8, p. 14].

D" + Ddp ÜD' + ddp •

This fact was not fully exploited in the earlier work.

(3.20) Corollary. r| is harmonic if and only if

d"T1 ndpri 0

We close this section with a brief account of another way of viewing the

cohomology groups Hn (T ; p, V), currently preferred in representation theory.
For simplicity, we assume that S is compact, and mention at the end what
changes must be made in the non-compact case.

From the description (3.4), it is clear that we may regard an element of
sén (S, V) as a mapping from A"pc into (T\G) (g) V that satisfies a

transformation rule under f. This correspondence gives an isomorphism of
Hn (S, V) with the relative Lie algebra cohomology (see* e.g. [8, pp. 6-8] or [14,
Ch. I]):

(3.21) H" (qc,fc,s/0 (r\G) ® V),

associated to the cochain complex
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(3.22) Horn* (A* p S/0 (r\G) 0
Here, gc acts on ,k/° (r\G) by differentiation, induced by the regular

representation of G.

(3.23) Remark. By a theorem of van Est (see [5, p. 386]), the relative Lie

algebra cohomology is in turn isomorphic to the differentiable (or even

continuous) Eilenberg-MacLane cohomology

H2(G, (r\G) 0 V).

For this reason, (3.21) is often referred to as "continuous cohomology."
The cohomology (3.21) decomposes according to the splitting of

(T\G) <S> V. First, one decomposes L2 (T\G) as a representation of G:

(3.24) L2 (r\G) - © Ea
a

into the direct sum of irreducible unitary representations of finite multiplicity.
Then

(3.25) L2(r\GiV)^®(Ea®V)
a.

Taking C00 vectors gives the decomposition

(3.26) sl° (T\G) 0 VÄ® (0a

By a formula of Kuga (see [7, p. 385] or [14, p. 49]), in terms of the form rj, the

Laplacian is given by

(3.27) 15V C-C+ P(Q]fi,
where C is the Casimir element of the enveloping algebra of g. It follows that in
each summand of (3.26), there can be non-zero harmonic forms only if the
infinitesimal characters of (7ca, £a) and %p of (p, V) agree on C. In fact, if the

space of harmonic forms is non-zero one must have xa XP (see [1, (2.4)]). In
this case, every cochain with values in Ea is harmonic. Thus,

(3.28) H" GS, V) ~ © Horn* (A"pc, Ea® V)
xa xp

^ © (Anp*®Ea(g)V)K (K-invariants).
Xa — Xp

From (3.27) and (3.28), one obtains the following:
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(3.29) Proposition. Let (pls Vx) and (p2, V2) be two irreducible

representations of G, and suppose that px (C) p2 (C). Then every morphism

of K-representations

<j): A"1 p* ® V1 A"2 p* 0 V2

induces a mapping of harmonic forms

4>,:S"(S,Vl)^S» (S, V2).

and thus a mapping (j>+ : Hnl (S, VJ Hn2 (S, V2). (If the infinitesimal
characters of (pls FJ and (p2, V2) differ, then (j)^ is the zero mapping.)

If we now decompose each An p£ 0 Ea 0 V as a representation of K and

apply (3.29) to the projections onto each component, there is induced

decomposition of H" (S, V), much in the spirit of [2]. Ifwe decompose only A" p*,
we obtain the decomposition (3.18). We will refine that decomposition in §5.

If S is non-compact, then L2 (r\G) is the direct sum of its discrete spectrum
L2 (r\G)d and the continuous spectrum L2 (r\G)cf. One then has a

decomposition like (3.24) only for L2 (T\G)d. From there, one obtains an

injection

(3.30) ® (£?« V)-»<2) (r\G) ® V
a

whose image consists of those C00 V-valued functions for which all left-invariant
differential operators are in L2. Borel has shown that (3.30) induces an

isomorphism on cohomology. Also, if T is an arithmetic subgroup of G, then all
harmonic forms come from L2 (r\G)d. In this case, one therefore obtains, as in
(3.28), the isomorphism

(3.31) Hn{2) (S, V) - ® (A"p*®V)K
Xa Zp

Moreover, the above sum has only finitely many non-zero terms, as the reduced

L2 cohomology is finite-dimensional. Borel discovered the initially surprising
phenomenon that the (non-reduced) L2 cohomology is for some groups infinite-
dimensional, with d having non-closed range on the continuous spectrum in
certain dimensions; however, this never occurs in the Hermitian case. As a

reference for this paragraph, see [13] and the references cited therein l). (See also

[12] for a different approach to the L2 cohomology.)

x) See note added in proof.
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