Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR CERTAINES ÉQUATIONS FONCTIONNELLES LIÉES A LA LOI

NORMALE

Autor: Fuchs, Aimé / Letta, Giorgio

Kapitel: 4. Le théorème de Bernstein-Darmois

DOI: https://doi.org/10.5169/seals-50371

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

- (a) μ est normale;
- (b) il existe un voisinage V de l'origine dans \mathbf{R} et une application θ de V dans \mathbf{C} telle que l'on ait

$$(3.2) \qquad (\varphi(t))^2 = \varphi(t+u) \varphi(t-u) \theta(u)$$

pour tout couple t, u d'éléments de V.

Démonstration. Il suffit de démontrer l'implication (b) \Rightarrow (a). Supposons donc la propriété (b) vérifiée. Quitte à remplacer φ par $\varphi \overline{\varphi}$, on peut supposer φ réelle. L'équation (3.2) fournit alors, pour t = 0, $1 = (\varphi(u))^2 \theta(u)$, de sorte qu'elle peut s'écrire sous la forme équivalente

$$(\varphi(t)\varphi(u))^2 = \varphi(t+u)\varphi(t-u).$$

En particulier, pour t = u = s/2, on trouve $(\varphi(s/2))^4 = \varphi(s)$. La conclusion résulte alors du Théorème (1.2) pour c = 4.

(3.3) Remarque. Le cas d'une loi μ dégénérée correspond à celui où l'équation (3.2) est vérifiée avec une fonction θ identiquement égale à 1.

4. Le théorème de Bernstein-Darmois

Soit (X_1, X_2) un couple de variables aléatoires réelles, de même loi. Si le couple $(X_1 + X_2, X_1 - X_2)$ est formé de variables aléatoires indépendantes, alors la loi commune de X_1 et de X_2 est normale: c'est le théorème de Bernstein-Darmois sous sa forme primitive. Il fut d'abord démontré par S. Bernstein [1] avec l'hypothèse que la loi commune de X_1 et de X_2 possède des moments finis jusqu'à l'ordre 4. Plus tard G. Darmois [2] réussit à généraliser ce résultat, tout en s'affranchissant de l'hypothèse concernant l'existence des moments. Il employa à cet effet une technique de différences finies, qui lui permit également de démontrer une généralisation ultérieure, bien plus profonde, connue sous le nom de théorème de Skitovitch-Darmois (cf. [6]).

Nous présentons ci-dessous le théorème de Bernstein-Darmois, que nous démontrons à l'aide de l'équation fonctionnelle du paragraphe 3.

(4.1) Théorème. Soit X un vecteur aléatoire à valeurs dans \mathbb{R}^2 , dont les composantes X_1, X_2 sont des variables aléatoires indépendantes. Soit $A = (a_{ij})$ une matrice réelle (2, 2), et supposons que les composantes du

vecteur aléatoire Y=AX, c'est-à-dire les deux variables aléatoires réelles $Y_1,\ Y_2$ définies par

$$\begin{cases} Y_1 = a_{11}X_1 + a_{12}X_2 \\ Y_2 = a_{21}X_1 + a_{22}X_2 \end{cases},$$

soient elles aussi indépendantes. Alors, pour chaque indice i tel que la i-ème colonne de A soit formée d'éléments non nuls, la loi de X_i est normale (éventuellement dégénérée).

Pour rendre plus claire la démonstration, nous commencerons par démontrer un lemme préliminaire:

- (4.2) Lemme. Soit X un vecteur aléatoire à valeurs dans \mathbb{R}^2 , de composantes X_1, X_2 , et soit Φ sa fonction caractéristique. Les deux propriétés suivantes sont alors équivalentes :
 - (a) (X_1, X_2) est un couple de variables aléatoires indépendantes;
 - (b) pour tout système de scalaires s_1, s_2, u, v , on a

$$\Phi(s_1, s_2)\Phi(s_1 + u, s_2 + v) = \Phi(s_1 + u, s_2)\Phi(s_1, s_2 + v).$$

Démonstration du lemme.

Il suffit de démontrer (b) \Rightarrow (a). Si l'on désigne par φ_i la fonction caractéristique de X_i , l'hypothèse (b) fournit (pour $s_1 = s_2 = 0$)

$$\Phi(u, v) = \Phi(u, 0) \Phi(0, v) = \varphi_1(u) \varphi_2(v)$$

c'est-à-dire l'indépendance du couple (X_1, X_2) .

Démonstration du théorème. Supposons, pour fixer les idées, que la première colonne de A soit formée d'éléments non nuls, et montrons que la loi de X_1 est normale. Quitte à multiplier chacune des lignes de A par un scalaire convenable, on pourra supposer

$$(4.3) a_{11} = a_{21} = 1.$$

1) Supposons d'abord que la matrice A soit singulière. En vertu de notre hypothèse on a alors $Y_1 = Y_2$. Par conséquent Y_1 est indépendante d'elle même, c'est-à-dire p.s. égale à une constante:

$$Y_1 = X_1 + a_{12}X_2 = c$$
 p.s.:

il en résulte

$$X_1 = c - a_{12}X_2$$
 p.s.,

de sorte que X_1 est également indépendante d'elle même, c'est-à-dire p.s. égale à une constante.

2) Supposons maintenant que la matrice A ne soit pas singulière, et désignons par φ_i la fonction caractéristique de X_i et par Φ celle de X:

$$\Phi(t_1, t_2) = \varphi_1(t_1) \varphi_2(t_2).$$

Désignons en outre par ψ la fonction caractéristique du vecteur aléatoire Y = AX, c'est-à-dire la fonction définie par

(4.5)
$$\psi(s_1, s_2) = \Phi(s_1 + s_2, s_1 a_{12} + s_2 a_{22}).$$

En appliquant le lemme précédent au couple de variables aléatoires indépendantes (Y_1, Y_2) , on trouve, pour tout système de scalaires s_1, s_2, u ,

$$\psi(s_1, s_2)\psi(s_1+u, s_2-u) = \psi(s_1+u, s_2)\psi(s_1, s_2-u).$$

Grâce à (4.5), cette relation s'écrit, en fonction de Φ ,

$$\begin{split} & \Phi\left(s_{1}+s_{2},\,s_{1}a_{12}+s_{2}a_{22}\right)\Phi\left(s_{1}+s_{2},\,s_{1}a_{12}+s_{2}a_{22}+ua_{12}-ua_{22}\right) \\ & = \Phi\left(s_{1}+s_{2}+u,\,s_{1}a_{12}+s_{2}a_{22}+ua_{12}\right)\Phi\left(s_{1}+s_{2}-u,\,s_{1}a_{12}+s_{2}a_{22}-ua_{22}\right). \end{split}$$

Etant donné le scalaire t, choisissons maintenant s_1 , s_2 de façon à satisfaire aux conditions

$$\begin{cases} s_1 + s_2 = t \\ s_1 a_{12} + s_2 a_{22} = 0 \end{cases}$$

(ce qui est possible, car la matrice A n'est pas singulière). La relation précédente devient alors

$$\Phi(t,0)\Phi(t,u(a_{12}-a_{22})) = \Phi(t+u,ua_{12})\Phi(t-u,-ua_{22}),$$

c'est-à-dire, grâce à (4.4),

(4.6)
$$\varphi_{1}(t) \varphi_{2}(0) \varphi_{1}(t) \varphi_{2}(u(a_{12} - a_{22}))$$

$$= \varphi_{1}(t+u) \varphi_{2}(ua_{12}) \varphi_{1}(t-u) \varphi_{2}(-ua_{22}).$$

Or, si |u| est assez petit, on a $\varphi_2(u(a_{12}-a_{22})) \neq 0$, de sorte que la relation précédente peut s'écrire sous la forme

$$(4.7) \qquad (\varphi_1(t))^2 = \varphi_1(t+u) \varphi_1(t-u) \theta(u).$$

Il en résulte, grâce à (3.1), que φ_1 est la fonction caractéristique d'une loi normale.

A titre d'exemple, nous analyserons l'énoncé (4.1) dans deux cas particuliers.

a) Supposons d'abord

$$A = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right),\,$$

c'est-à-dire $Y_1 = X_1$, $Y_2 = X_1 + X_2$. Si chacun des couples (X_1, X_2) , (Y_1, Y_2) est formé de variables aléatoires indépendantes, le Théorème (4.1) permet d'affirmer que la variable aléatoire X_1 est normale (en revanche, on ne peut rien affirmer sur X_2). On peut d'ailleurs préciser que la variable aléatoire X_1 est dégénérée. Il suffit pour cela de remarquer que, dans le cas présent, l'équation (4.6) se réduit à la forme (4.7) avec $\theta(u) = 1$ (cf. (3.3)).

b) Supposons ensuite

$$A = \begin{pmatrix} \cos \omega & -\sin \omega \\ \sin \omega & \cos \omega \end{pmatrix},$$

c'est-à-dire $Y_1 = X_1 \cos \omega - X_2 \sin \omega$, $Y_2 = X_1 \sin \omega + X_2 \cos \omega$. Si chacun des couples (X_1, X_2) , (Y_1, Y_2) est formé de variables aléatoires indépendantes, et si ω n'est pas un multiple entier de $\pi/2$, le Théorème (4.1) permet d'affirmer que chacune des variables aléatoires X_1 , X_2 est normale (en revanche, si ω est un multiple entier de $\pi/2$, on ne peut rien affirmer, ni sur X_1 ni sur X_2). On reconnaîtra ici un résultat ayant des analogies avec le Théorème (2.1).

Remarquons enfin que l'énoncé du théorème de Bernstein-Darmois tel qu'il figure dans [3] (pag. 77 et pag. 499) est incorrect. En effet il entraîne notamment que, dans les hypothèses du cas particulier a) ci-dessus, la variable aléatoire X_2 est normale, ce qui est manifestement faux (il suffit, pour s'en convaincre, de prendre X_1 constante et X_2 non normale).

5. Le théorème de Skitovitch-Darmois

Voici l'énoncé du théorème de Skitovitch-Darmois mentionné au paragraphe précédent:

(5.1) Théorème. Soit X un vecteur aléatoire, à valeurs dans \mathbb{R}^n , dont les composantes $X_1, ..., X_n$ sont indépendantes. Considérons les deux variables aléatoires Y_1, Y_2 définies par les relations