ON THE GELFAND-FUKS COHOMOLOGY

Autor(en): Haefliger, André
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 24 (1978)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
19.04.2024

Persistenter Link: https://doi.org/10.5169/seals-49696

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

ON THE GELFAND-FUKS COHOMOLOGY ${ }^{1}$

by André Haefliger

In this talk, we would like to report on the work of Gelfand and Fuks on the cohomology of the Lie algebra L_{M} of smooth vector fields on a manifold M, as well as on more recent developments, some of them obtained in collaboration with Raoul Bott.

1. Definitions

Gelfand-Fuks cohomology.

L_{M} will denote the Lie algebra of smooth vector fields on M, with the topology of uniform convergence of all derivatives on compact sets. For M compact, L_{M} can be thought as the Lie algebra of the group Diff $_{M}$ of diffeomorphisms of M.

Gelfand and Fuks [7], have considered the differential graded algebra $C^{*}\left(L_{M}\right)$ of continuous multilinear alternate forms on L_{M} with values in R, the differential of a k-form f being the $(k+1)$-form $d f$ defined by

$$
d f\left(v_{0}, \ldots, v_{k}\right)=\sum_{o \leq r<s \leq k}(-1)^{r+s} f\left(\left[v_{r}, v_{s}\right], v_{0}, \ldots, \hat{v}_{r}, \ldots, \hat{v}_{s}, \ldots, v_{k}\right)
$$

where the v_{i} 's are vector fields on M. So those cochains are like distributions.

Suppose that G is a Lie group acting smoothly and effectively on M. Then the Lie algebra g of G is identified with a subalgebra of L_{M}. We shall denote by $C^{*}\left(L_{M} ; G\right)$ the subalgebra of $C^{*}\left(L_{M}\right)$ of G-basic cochains, namely cochains invariant by G and which vanish if one of the argument v_{i} belongs to \mathfrak{g}.

The cohomology of $C^{*}\left(L_{M}\right)$ (resp. $\left.C^{*}\left(L_{M} ; G\right)\right)$ will be denoted by $H^{*}\left(L_{M}\right)\left(\right.$ resp. $\left.H^{*}\left(L_{M} ; G\right)\right)$, and will be called the Gelfand-Fuks cohomology of M (resp. of M rel. to G).

[^0]Models (Sullivan Theory) (cf. [18]).
$C^{*}\left(L_{M}\right)$ and $C^{*}\left(L_{M} ; G\right)$ are examples of differential graded commutative (in the graded sense) algebras over \mathbf{R}, abbreviated $D G$-algebras.

Among $D G$-algebras, we consider the equivalence relation generated by " $A \sim B$ " if there is a morphism $\varphi: A \rightarrow B$ of $D G$-algebras inducing an isomorphism on cohomology. We say that M is a model for A if M is equivalent to A under this equivalence relation. Following the terminology of Sullivan, we say that M is a minimal model for A (assuming $H^{o}(A)=R$ and $H^{1}(A)=0$) if M is a free algebra (namely the tensor product of a polynomial algebra on even dimensional generators by an exterior algebra on odd dimensional generators), the differential of each generator being decomposable (we also assume that generators are of degree bigger than one). The free algebra on a set of generators x_{α} will be denoted by $\Lambda\left(x_{\alpha}\right)$.

There is a contravariant functor from the category of topological spaces to the category of $D G$-algebras associating to the space X the $D G$-algebra $A^{*}(X)$ of real polynomial forms on its singular complex. If one takes instead rational polynomial forms, this functor induces an equivalence between rational homotopy types of 1-connected spaces with finite dimensional cohomology and equivalence classes of 1-connected $D G$ algebras over Q with finite dimensional cohomology. A minimal model corresponds to a Postnikov decomposition. In particular the vector space of generators in the minimal model is the dual of the graded vector space $\pi_{*}(X) \otimes R$, where $\pi_{i}(X)$ is the i-th homotopy group of X.

We shall say that a $D G$-algebra A is a model for the space X if it is a model for the $D G$-algebra $A^{*}(X)$.

The main problem is to find good models for the $D G$-algebras $C^{*}\left(L_{M}\right)$ or $C^{*}\left(L_{M} ; G\right)$, if possible finite dimensional in each degree.

As an example computed by Gelfand and Fuks [6], consider the case of the circle S^{1}. Then $H^{*}\left(L_{S^{1}}\right)$ is the free algebra on generators u and v of degree 2 and 3 represented by the cocycles

$$
u(f, g)=\int_{0}^{1}\left|\begin{array}{cc}
f^{\prime} & f^{\prime \prime} \\
g^{\prime} & g^{\prime \prime}
\end{array}\right| d x \quad \text { and } v(f, g, h)=\int\left|\begin{array}{ccc}
f & f^{\prime} & f^{\prime \prime} \\
g & g^{\prime} & g^{\prime \prime} \\
h & h^{\prime} & h^{\prime \prime}
\end{array}\right| d x
$$

where the vector fields on S^{1} are identified with functions of period 1 on R. This is also a model for $C^{*}\left(L_{S^{1}}\right)$.

If G is the group SO_{2} of rotations of S^{1}, then $H\left(L_{S 1} ; S O_{2}\right)$ is a model for $C^{*}\left(L_{S^{1}} ; \mathrm{SO}_{2}\right)$. It is generated by u and by an element e of degree 2 represented by

$$
e(f, g)=\int_{0}^{1}\left|\begin{array}{ll}
f, & g \\
f^{\prime}, & g^{\prime}
\end{array}\right| d x
$$

The only relation is $e u=0$.

2. Connection with foliations

Let me indicate very briefly the relation with characteristic classes of flat bundles (cf. [12]).
$H^{*}\left(L_{M}, G\right)$ could also be interpreted as the differentiable cohomology of a suitable differentiable category (for more informations see [4] and [15]).

We consider on the product $X \times M$ of a smooth manifold X with M a smooth foliation F whose leaves have the same dimension as X and cut each fibers $\{x\} \times M$ transversally.

To such a foliation is naturally associated a continuous $D G$-algebra map

$$
\chi_{F}: C^{*}\left(L_{M}\right) \rightarrow \Omega_{X}
$$

where Ω_{X} is the $D G$-algebra of differential forms on X. In fact there is a bijection between such morphisms and foliations F as above.

Passing to cohomology, we get the characteristic map

$$
H^{*}\left(L_{M}\right) \rightarrow H^{*}(X ; R)
$$

If we replace the trivial bundle by a bundle E with fiber M, base space X and structural group G, then for a foliation F on E complementary to the fibers, we still get a morphism

$$
\chi_{F}: C^{*}\left(L_{M} ; G\right) \rightarrow \Omega_{X}
$$

hence a characteristic homomorphism

$$
H^{*}\left(L_{M}, G\right) \rightarrow H^{*}(X ; R)
$$

Denoting by $B G$ the classifying space for G-bundles, we also have the usual characteristic map $H^{*}(B G ; R) \rightarrow H^{*}(X ; R)$. This map factorizes
through a map $H^{*}(B G ; R) \rightarrow H^{*}\left(L_{M} ; G\right)$ so that we get a commutative diagram

So it is important to compute the map $H^{*}(B G ; R) \rightarrow H^{*}\left(L_{M} ; G\right)$. When G is a compact connected Lie group, then $H^{*}(B G ; R)$ is the algebra $I(G)$ of invariant polynomials on the Lie algebra of G, and the map from $I(G)$ to $C^{*}\left(L_{M} ; G\right)$ is given by a G-connexion in $C^{*}\left(L_{M}\right)$ (cf. [5]).

In the example above, namely $M=S^{1}$ and $G=\mathrm{SO}_{2}$, then $H^{*}\left(\mathrm{BSO}_{2}\right)$ is a polynomial algebra in a generator of degree 2, the Euler class, which is mapped on a non zero multiple of e.
3. The formal vector fields and the diagonal complex

Given a point x on M, we can consider the Lie algebra L_{M}^{x} of infinite jets at x of vector fields on M with the quotient topology. It is isomorphic to the Lie algebra a_{n} of formal vector fields $\sum v_{i}(x) \partial / \partial x^{i}$ in R^{n}, where the $v_{i}(x)$ are formal power series in the coordinates x^{1}, \ldots, x^{n}.

The natural map $L_{M} \rightarrow L_{M}^{x}$ associating to a vector field its jet at x gives a $D G$-algebra morphism

$$
C^{*}\left(L_{M}^{x}\right) \rightarrow C^{*}\left(L_{M}\right)
$$

where $C^{*}\left(L_{M}^{x}\right)$ is the algebra of multilinear alternate forms on L_{M}^{X} depending only on finite order jets.

The first and most important step in the work of Gelfand-Fuks was the complete determination of the cohomology $H^{*}\left(\mathfrak{a}_{n}\right)$ of the topological Lie algebra of formal vector fields on R^{n}.

Theorem 1. (Gelfand-Fuks [8], [9]). Let $E\left(h_{1}, \ldots, h_{n}\right)$ be the exterior algebra on generators h_{i} of degree $2 i-1$ and let $R\left[c_{1}, \ldots, c_{n}\right]_{2 n}^{\hat{n}}$ be the quotient of the polynomial algebra in generators c_{i} of degree $2 i$ by the ideal of elements of degree $>2 n$.

Then a model for $C^{*}\left(\mathfrak{a}_{n}\right)$ is the DG-algebra

$$
W U_{n}=E\left(h_{1}, \ldots, h_{n}\right) \otimes R\left[c_{1}, \ldots, c_{n}\right] \hat{2 n}
$$

with $d h_{i}=c_{i}$ and $d c_{i}=0$.
It follows that $H^{i}\left(a_{n}\right)=0$ for $1 \leqslant i \leqslant 2 n$ and $i>n^{2}+2 n$. Also the multiplicative structure is trivial; more precisely, $W U_{n}$ is a model for a wedge of spheres (for instance S^{3} for $n=1, S^{5} \vee S^{5} \vee S^{7} \vee S^{8} \vee S^{8}$ for $n=2$) (cf. Vey [9]).
$W U_{n}$ is also a model for the space F_{n} obtained by taking the restriction of the U_{n}-universal bundle over the $2 n$-skeleton of its base space $B U_{n}$ (cf. Gelfand-Fuks [8]). Note that this representation is compatible with the natural actions of $O_{n} \subset U_{n}$.

One can also consider the relative complex $C^{*}\left(\mathfrak{a}_{n}, O_{n}\right)$ or $C^{*}\left(\mathfrak{a}_{n}, S O_{n}\right)$ of O_{n} or $S O_{n}$-basic elements in $C^{*}\left(\mathfrak{a}_{n}\right)$, where O_{n} is the orthogonal group acting in the usual way on R^{n}, hence on \mathfrak{a}_{n}.

Define $W O_{n}$ as the subalgebra of $W U_{n}$ generated by the h_{i} with i odd and all the c_{i}. From theorem 1, it is easy to deduce the

Theorem 1^{\prime} [12]. $W O_{n}$ is a model for $C^{*}\left(\mathfrak{a}_{n}, O_{n}\right)$.
A model for $C^{*}\left(\mathfrak{a}_{n}, S O_{n}\right)$ is $W O_{n}$ for n odd and

$$
W S O_{n}=W O_{n} \otimes R[e] /\left(e^{2}-c_{n}\right)
$$

for n even, where $\operatorname{deg} e=n$ and $d e=0$.
From the finite dimensionality of $H^{*}\left(a_{n}\right)$, using a suitable spectral sequence, Gelfand and Fuks prove in particular [7].

Theorem 2. If $H^{*}(M)$ is finite dimensional, then $H^{*}\left(L_{M}\right)$ is finite dimensional in each degree.
The Guillemin-Losik double complex.
First define $C^{*}\left(L_{M}, \Omega_{M}\right)$ as the algebra of continuous alternate multilinear forms on L_{M} with values in the algebra Ω_{M} of differential forms on M. We have two differentials, the first one defined as in 1 and the second one by the exterior differential in Ω_{M}. So this is a double complex and we can consider the associated total differential.
$C_{\triangle}^{*}\left(L_{M}, \Omega_{M}\right)$ is the subcomplex of $C^{*}\left(L_{M}, \Omega_{M}\right)$ of those forms associating to a sequence v_{1}, \ldots, v_{k} of vector fields on M a differential form $f\left(v_{1}, \ldots, v_{k}\right)$ whose value at $x \in M$ depends only on finite order jets of the $v_{i}^{\prime} s$ at x.

Theorem 3. (Guillemin [10], Losik [17]). $C_{\triangle}^{*}\left(L_{M}, \Omega_{M}\right)$ is a model for a bundle E with fiber F_{n}, base space M, associated to the tangent bundle of M.

More precisely, a model for $C_{\triangle}^{*}\left(L_{M}, \Omega_{M}\right)$ is the DG-algebra $\Omega_{M} \otimes W U_{n}$ over Ω_{M}, where

$$
d\left(1 \otimes c_{i}\right)=0 \quad d\left(1 \otimes h_{i}\right)=1 \otimes c_{i}-p_{i / 2} \otimes 1
$$

where $p_{i / 2}$ is zero if i is odd and is a form representing the Pontrjagin class of M of degree $2 i$ if i is even.

Note that if a foliation F on $X \times M$ transverse to the fibers $\{x\} \times M$ is given, one has a characteristic homomorphism

$$
C^{*}\left(L_{M}, \Omega_{M}\right) \rightarrow \Omega_{X \times M}
$$

One has also a morphism

$$
W O_{n} \rightarrow C_{\triangle}^{*}\left(L_{M}, \Omega_{M}\right)
$$

(or $W U_{n} \rightarrow C^{*}\left(L_{M}, \Omega_{M}\right)$ in case M has trivial Pontrjagin classes) whose composition with the previous one is the usual characteristic homomorphism for the foliation F (cf. [3], [12]).

4. Main theorem

Theorem 1. $C^{*}\left(L_{M}\right)$ is a model for the space Γ of continuous sections of the bundle E described in the theorem above.

This result, first conjectured by Bott (and also Fuks), has been proved by several people (Bott-Segal ${ }^{1}$), Fuks-Segal, Haefliger [13], Ph. Trauber, and others).

Suppose that G is a compact connected Lie group acting on M. Then it also acts on the bundle E and on its space of sections. Let us denote by Γ_{G} the total space of the bundle with fiber Γ associated to the universal G bundle with base space $B G$.

Theorem 1'. $C^{*}\left(L_{M} ; G\right)$ is a model for the space Γ_{G}.
The way I proved theorem 1 was to construct first a tentative algebraic model A for Γ following ideas of R. Thom [20] and D. Sullivan [18], and

[^1]a morphism of A in $C^{*}\left(L_{M}\right)$. Then one proves directly that it induces an isomorphism in cohomology. The fact that A is also a model for Γ was proved in a similar way (cf. [14]).

When M has a finite dimensional model, one can construct a model for Γ which is finite dimensional in each degree, and with it one can make explicit calculations.

Note that the inclusion $C_{\triangle}^{*}\left(L_{M}, \Omega_{M}\right) \rightarrow C^{*}\left(L_{M}, \Omega_{M}\right)$ is a model for the evaluation map $\Gamma \times M \rightarrow E$ associating to a section s and a point x of M the element $s(x)$ of E.

For computations along the lines of the spectral sequence of GelfandFuks, see Cohen and Taylor [22].

The proof of theorem 1^{\prime} is very similar to the proof of theorem 1. In the next paragraph, we explain the construction of an algebraic model for Γ_{G} suitable for computations. In § 6, we indicate briefly why this is a model for Γ_{G}.
5. Construction of an algebraic model for the space of sections of a fiber bundle ([20], [18], [13]).

As a guide, consider first the geometric situation. Let $p: E \rightarrow M$ be a fiber bundle with base space M, fiber F and let Γ be the space of continuous sections of E.

We have the commutative diagramm
1)

$$
M \times \Gamma \longrightarrow E
$$

where e is the evaluation map associating to the point x of M and the section s the point $s(x)$ of E. The other maps are natural projections (* is a point).

Suppose that a topological group G acts on M and also on E in a way compatible with p. Then G acts also on Γ, and all the maps in the diagramm are equivariant.

For a space X on which G acts, let us denote by X_{G} the bundle with fiber X associated to the principal universal G-bundle P with base space $B G\left(={ }_{G}\right)$.

From 1) we get the corresponding commutative diagramm
2)

We try now to construct an algebraic analogue of this diagramm. We assume that the connectivity of the fiber F of E is bigger than the dimension n of M.

Choose a $D G$-algebra B which is a model of $B G$ and assume that we can represent the bundle M_{G} by a DG-algebra A, the projection being represented by a morphism $B \rightarrow A$, and such that A, as a module over B, is free and finite dimensional with a basis s_{1}, \ldots, s_{k}, where the degree of s_{i} is not bigger than n (see examples below).

Then we construct the Postnikov decomposition (or minimal model) of the bundle $E_{G} \rightarrow M_{G}$. Algebraically, this means that we take a model for E_{G} which is a tensor product $A \otimes \Lambda\left(x_{\alpha}\right)$, where $\Lambda\left(x_{\alpha}\right)$ is a free graded algebra on an ordered set of generators x_{α}, the differential of each x_{α}, being in the subalgebra generated by A and the preceding x_{β}. Of course the natural inclusion of A in $A \otimes A\left(x_{\alpha}\right)$ has to be a model for the projection $E_{G} \rightarrow M_{G}$. Such a model, with a finite number of generators x_{α} in each degree, always exists if F is 1 -connected and with finite dimensional cohomology, and if G is a connected Lie group (cf. [13], [18]).

A model for Γ_{G} will be the algebra $B \otimes \Lambda\left(x_{\alpha}^{i}\right)$, where $\Lambda\left(x_{\alpha}^{i}\right)$ is the free algebra on generators $x_{\alpha}^{i}, i=1, \ldots, k$, and $\operatorname{deg} x_{\alpha}^{i}=\operatorname{deg} x_{\alpha}-\operatorname{deg} s^{i}$. By our assumptions, $\operatorname{deg} x_{\alpha}^{i}>0$.

A model for the map e will be the morphism

$$
\varepsilon: A \otimes \Lambda\left(x_{\alpha}\right) \rightarrow A \otimes \Lambda\left(x_{\alpha}^{i}\right)
$$

of A-algebras defined by

$$
\varepsilon\left(1 \otimes x_{\alpha}\right)=\sum_{i} s^{i} \otimes x_{\alpha}^{i} .
$$

The differential on $B \otimes \Lambda\left(x^{i}\right)$ is then uniquely defined by the conditions that $B \otimes \Lambda\left(x^{i}\right)$ should be a $D G$-algebra over B and that ε should commute with the differential given by the isomorphism with $A \otimes{ }_{B}\left(B \otimes \Lambda\left(x_{\alpha}^{i}\right)\right)$.

The algebraic analogue of diagramm 2) is the commutative diagramm of $D G$-algebras

$$
A \otimes_{B}\left(B \otimes \Lambda\left(x_{\alpha}^{i}\right)\right) \longleftarrow A \otimes \Lambda\left(x_{\alpha}\right)
$$

2)

$$
B \otimes \Lambda\left(x_{\alpha}^{i}\right) \quad A
$$

B

Examples.

1. For M, take the 2 -sphere S^{2} and for E the trivial bundle $S^{2} \times S^{4}$, so that Γ is the space of continuous maps of S^{2} in S^{4}. The group G will be the rotation group SO_{3} acting on S^{2} as usual and trivialy on S^{4}.

As model B for $B G$ we take the polynomial algebra $R\left[p_{1}\right]$ in a generator p_{1} of degree 4. A model for M_{G} is the algebra A quotient of the polynomial algebra $\Lambda\left(s, p_{1}\right)$, where $\operatorname{deg} s=2$, by the ideal generated by $s^{2}-p_{1}$. The differential is zero. The elements 1 and s form a basis for the B-module A.

A minimal model for the bundle E_{G} is $A \otimes \Lambda(x, y)$, where $\Lambda(x, y)$ is the free algebra with generators x of degree 4 , and y of degree 7 , and $d y=x^{2}$.

According to the preceding recipe, a model for Γ_{G} is the algebra $R\left[p_{1}\right]$ $\otimes \Lambda(x, y, \bar{x}, \bar{y})$ with $\operatorname{deg} \bar{x}=2, \operatorname{deg} \bar{y}=5$, the image of x by ε being $1 \otimes x+s \otimes \bar{x}$, similarly for y. The differential is given by $d x=d \bar{x}=0$, $d y=x^{2}+p_{1} \bar{x}^{2}, d \bar{y}=2 x \bar{x}$.
2. Take M as the circle, E as the product $S^{1} \times F$, where F is a simply connected space, so that Γ is just the space of continuous maps of S^{1} in F (case studied by Sullivan [19]). For G we take the group of rotations of the circle, acting trivially on F.

Represent F by its minimal model $\Lambda\left(x_{\alpha}\right)$. A model B for $B G$ is the polynomial algebra $R[e]$ in a generator e of degree 2 and a model A for M_{G}
is the free commutative algebra $\Lambda(s, e)$, where $\operatorname{deg} s=1$ and $d s=e$. As a B-module, it is free with basis 1 and s. A model for E_{G} is just $A \otimes \Lambda\left(x_{\alpha}\right)$.

As model for Γ_{G}, we take $R[e] \otimes \Lambda\left(x_{\alpha}, \bar{x}_{\alpha}\right)$, where $\operatorname{deg} \bar{x}_{\alpha}=\operatorname{deg} x_{\alpha}-1$, the image of x_{α} by ε being $1 \otimes x_{\alpha}+s \otimes \bar{x}_{\alpha}$. The differential d is described as follows (compare with Sullivan [18] or [19]). Let h be the derivation of degree -1 of $\Lambda\left(x_{\alpha}, \bar{x}_{\alpha}\right)$ given by $h x_{\alpha}=\bar{x}_{\alpha}$ and $h \bar{x}_{\alpha}=0$. Then if d_{0} denotes the differential in $\Lambda\left(x_{\alpha}\right)$ identified to a subalgebra of $\Lambda\left(x_{\alpha}, \bar{x}_{\alpha}\right)$, we have

$$
d e=0, d x_{\alpha}=d_{0} x_{\alpha}-e \bar{x}_{\alpha}, d \bar{x}_{\alpha}=-h d_{0} x_{\alpha}
$$

Remark. In the case where E is the bundle described in $\S 4$, its minimal model $A \otimes \Lambda\left(x_{\alpha}\right)$ over M_{G} is complicated, because there is an infinite number of generators x_{α} (except for $n=1$) labelled by a basis of the rational homotopy of a wedge of spheres, so by a basis of the free graded Lie algebra $L(n)$ generated by the spheres of this wedge (cf. [13]).

6. Sketch of the proof of the main theorem and applications

We represent the universal principal G-bundle as a limit of finite dimensional bundles P_{k} and we denote by Ω_{P} the inverse limit of algebras of forms $\Omega_{P_{k}}$.

First note that we can replace $C^{*}\left(L_{M} ; G\right)$ by the $D G$-algebra $C^{*}\left(L_{M}, \Omega_{P}\right)_{G}$ of G-basic elements in $C^{*}\left(L_{M}, \Omega_{P}\right)$ (compare with Cartan [5], exposé 20).

A model for E_{G} will be the algebra $C_{\triangle}^{*}\left(L_{M}, \Omega_{M \times P}\right)_{G}=\left[C_{\triangle}^{*}\left(L_{M}, \Omega_{M}\right.\right.$ $\left.\hat{\otimes} \Omega_{P}\right]_{G}$ and a model for the evaluation map will be the inclusion of this $D G$-algebra in $C^{*}\left(L_{M}, \Omega_{M \times P}\right)_{G}$.

In the construction of $\S 5$, we choose $B=\Omega_{B G}$ as model for $B G$ and, instead of taking for A a finite dimensional module over B, we take the $D G$-algebra $\Omega_{M_{G}} \approx\left[\Omega_{M \times P}\right]_{G}$ as model for M_{G}. We have to build the model for Γ_{G} along the same lines as in $\S 5$, but in more intrinsic terms like in [13]. The minimal model (or Postnikov decomposition of E_{G}) will be of the form $A \otimes S^{*}(V)$, where $S^{*}(V)$ denotes the algebra of symmetric multilinear forms on a graded vector space V (cf. [13]).

As an algebra, the model for Γ_{G} will be the algebra $S_{B}^{*}(A \otimes V, B)$ of continuous symmetric B-multilinear forms on the graded B-module $A \otimes V$. One can construct a map of this model in $C^{*}\left(L_{M}, \Omega_{M \times P}\right)_{G}$ and prove that it induces an isomorphism in cohomology.

Similarly, one can prove that $S_{B}^{*}(A \otimes V, B)$ is effectively a model for the space of sections Γ_{G} (cf. [14]).

Eventually for computations, one proves that one gets also a model for Γ_{G} by using instead of $\Omega_{M_{G}}$ a $D G$-algebra A as in $\S 5$ which is a finite dimensional free B-module.

7. Example of a computation

Let us consider the case where M is the n-sphere S^{n}, G the rotation group $S O_{n+1}$ and E the bundle described in $\S 3$. A model for M_{G} is the $D G$-algebra A defined by
or

$$
\begin{array}{llll}
A=R\left[p_{1}, \ldots, p_{k}, s\right] /\left(s^{2}-p_{k}\right) & d \equiv 0 & \text { for } & n=2 k \\
A=R\left[p_{1}, \ldots, p_{k-1}, \chi\right] \otimes E(s) & d s=\chi & \text { for } & n=2 k-1
\end{array}
$$

where $\operatorname{deg} p_{i}=4 i$ and $\operatorname{deg} s=n$.
A model for E_{G} is obtained by taking the tensor product of A with $W U_{n}$, the differential being defined by

$$
d h_{i}=c_{i}-p_{i / 2} \quad \text { and } \quad d c_{i}=0
$$

By the way, $W S O_{n}$ is also a model for E_{G}.
We now consider the case $n=2$. The minimal model of E_{G} is the $D G$ algebra which begins as

$$
A \otimes \Lambda\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{12}, x_{13}, x_{23}, \ldots\right)
$$

where

$$
\begin{aligned}
\operatorname{deg} x_{1}=\operatorname{deg} x_{2} & =5, \operatorname{deg} x_{3}=7, \operatorname{deg} x_{4}=\operatorname{deg} x_{5}=8 \\
\operatorname{deg} x_{12} & =9, \operatorname{deg} x_{13}=\operatorname{deg} x_{23}=11
\end{aligned}
$$

etc.
(there is an infinite number of generators).
The differential is defined by

$$
\begin{aligned}
& d x_{1}=d x_{2}=0, d x_{3}=-p_{l}^{2}, d x_{4}=p_{1} x_{1}, d x_{5}=p_{1} x_{2} \\
& d x_{12}=x_{1} x_{2}, d x_{13}=x_{1} x_{3}-p_{1} x_{4}, d x_{23}=x_{2} x_{3}-p_{1} x_{5}
\end{aligned}
$$

etc.
According to the construction of $\S 5$, a minimal model for the bundle $\Gamma_{G} \rightarrow B_{G}$ begins as

$$
R\left[p_{1}\right] \otimes \Lambda\left(\bar{x}_{1}, \bar{x}_{2}, x_{1}, x_{2}, \bar{x}_{3}, \bar{x}_{4}, \bar{x}_{5}, x_{3}, \bar{x}_{12}, x_{4}, x_{5}, \ldots\right)
$$

where

$$
\operatorname{deg} \bar{x}_{1}=\operatorname{deg} x_{i}-2, \varepsilon\left(x_{i}\right)=1 \otimes x_{i}+s \otimes \bar{x}_{i},
$$

$d x_{i}$ is as above and $d x_{12}=x_{1} x_{2}+p_{1} \bar{x}_{1} \bar{x}_{2}$

$$
\begin{gathered}
d \bar{x}_{1}=d \bar{x}_{2}=d \bar{x}_{3}=0, d \bar{x}_{4}=p_{1} \bar{x}_{1}, d \bar{x}_{5}=p_{1} \bar{x}_{2} \\
d \bar{x}_{12}=\bar{x}_{1} x_{2}+x_{1} \bar{x}_{2},
\end{gathered}
$$

etc.
A basis for $H^{*}\left(\Gamma_{G}\right)=H^{*}\left(L_{S^{2}}, S O_{3}\right)$ is given by the classes of the cocycles

$$
\begin{gathered}
\bar{x}_{1}, \bar{x}_{2}, p_{1}, x_{1}, x_{2}, \bar{x}_{3}, \bar{x}_{1} \bar{x}_{2}, x_{1} \bar{x}_{1}, x_{1} \bar{x}_{2}, x_{2} \bar{x}_{2}, \bar{x}_{1} \bar{x}_{3}, \\
\bar{x}_{2} \bar{x}_{3}, \bar{x}_{1} \bar{x}_{4}, \bar{x}_{2} \bar{x}_{5}, \bar{x}_{1} \bar{x}_{5}+\bar{x}_{2} \bar{x}_{4}, p_{1} \bar{x}_{3},
\end{gathered}
$$

etc.
The first multiplicative relations are

$$
p_{1} \bar{x}_{1} \sim 0, p_{1} \bar{x}_{2} \sim 0, \bar{x}_{1} x_{2} \sim \bar{x}_{2} x_{1}, p_{1}^{2} \sim 0, \text { etc. }
$$

The first "exotic" class is given by the cocycle $\bar{x}_{1} \bar{x}_{2} \bar{x}_{12}$ of degree 13 .
The classes \bar{x}_{1} and \bar{x}_{2} correspond to the classes described by Raoul in his lecture [4], for $n=2$.

We now give an example of a general statement

Theorem. The kernel of the map

$$
H^{*}\left(B S O_{n+1}\right) \rightarrow H^{*}\left(L_{S n}, S O_{n+1}\right)
$$

is the ideal generated by the elements which are polynomials of degree $>2 n$ in the Pontrjagin classes $p_{1}, \ldots, p_{[n / 2]}$.

As a consequence, we get exactly what is implied by the vanishing theorem of Bott [1]. For instance, for n odd, the image of the powers of the Euler class is non zero. So one can ask for examples of flat $(2 k+1)$-sphere bundles with a non zero power of the Euler class.

One can also check that the homomorphism (see end of § 3)

$$
W S O_{n} \rightarrow C^{*}\left(L_{S^{n}}, S O_{n+1}, \Omega_{S n}\right)
$$

induces an injection in cohomology.

8. CASE OF A MANIFOLD WITH BOUNDARY

More generally we consider a closed manifold N of dimension p in a manifold M of dimension n. $L_{M, N}$ will denote the subalgebra of L_{M} of those vector fields on M which are tangent to N. An interesting particular case is when N is the boundary ∂M of M. For M compact, $L_{M, \partial M}$ can be considered as the Lie algebra of the group of diffeomorphisms of M.

First we consider the formal vector fields. Let $\mathfrak{a}_{n, p}$ be the Lie subalgebra of formal vector fields on R^{n} which are tangent to R^{p} identified to a linear subspace of R^{n}. Again $C^{*}\left(\mathfrak{a}_{n, p}\right)$ denotes the $D G$-algebra of those multilinear alternate forms on $\mathfrak{a}_{n, p}$ depending only on finite order jets.

We describe a finite dimensional model for $C^{*}\left(\mathfrak{a}_{n, p}\right)$. Let $E\left(h_{1}^{\prime}, \ldots, h_{p}^{\prime}\right.$, $h^{\prime \prime}{ }_{1}, \ldots, h^{\prime \prime}{ }_{n-p}$) be the exterior algebra in generators $h^{\prime}{ }_{i}$ and $h^{\prime \prime}{ }_{j}$ of degree $2 i-1$. Let $R\left[c_{1}^{\prime}, \ldots, c_{p}^{\prime}, c_{1}^{\prime \prime}, \ldots, c_{n-p}^{\prime \prime}\right] \hat{2 p}$ be the quotient of the polynomial algebra in generators c_{i}^{\prime} and $c_{i}^{\prime \prime}$ of degree $2 i$ by the ideal of elements of degree $>2 p$.

Define

$$
\begin{gathered}
W U_{n, p}=E\left(h_{1}^{\prime}, \ldots, h_{p}^{\prime}, h_{1}^{\prime \prime}, \ldots, h_{n-p}^{\prime \prime}\right) \\
\otimes R\left[c_{1}^{\prime}, \ldots, c_{p}^{\prime}, c_{1}^{\prime \prime}, \ldots, c_{n-p}^{\prime \prime}\right]_{2 p} \hat{1}
\end{gathered}
$$

as the $D G$-algebra with differential defined by

$$
d h_{i}^{\prime}=c_{i}^{\prime}, d h_{i}^{\prime \prime}=c_{i}^{\prime \prime}, d c_{i}^{\prime}=0, d c_{i}^{\prime \prime}=0
$$

This is a model for the space $F_{n, p}$ obtained by restricting the universal principal ($U_{p} \times U_{n-p}$)-bundle over the $2 p$-skeleton of its basis represented by a product of Grassmanians with the usual even dimensional cell decomposition.

If $n \leqslant 2 p, W U_{n, p}$ is also a model for a wedge of spheres. When $n>2 p$, it is a model for the product of the wedge of spheres corresponding to $W U_{2 p, p}$ by $S^{2 p+1} \times S^{2 p+3} \ldots \times S^{2 n-2 p-1}$.

Theorem 1 (Koszul [11]). There is a natural morphism

$$
W U_{n, p} \rightarrow C^{*}\left(\mathfrak{a}_{n, p}\right)
$$

inducing an isomorphism in cohomology.
As a consequence, $H^{i}\left(\mathfrak{a}_{n, p}\right)=0$ for $0<i \leqslant 2 p$ and $i>p^{2}+(n-p)^{2}$ $+2 p$. When $n \leqslant 2 p$, the multiplication is trivial.

To have a model for the homomorphism induced by the inclusion of $\mathfrak{a}_{n, p}$ in \mathfrak{a}_{n}, we have the commutative diagramm

where the second horizontal map sends h_{i} on $h_{i}{ }^{\prime}+h_{i}{ }^{\prime \prime}$ and c_{i} on $c_{i}{ }^{\prime}+c_{i}{ }^{\prime \prime}$ (by convention, $h_{i}{ }^{\prime}$ or $h_{i}{ }^{\prime \prime}$ is zero for $i>p$ or $i>n-p$, idem for $c_{i}{ }^{\prime}$ and $c_{i}{ }^{\prime \prime}$). Note that the natural map of theorem 1 should map the $c_{i}{ }^{\prime} s$ and $c_{i}{ }^{\prime \prime}$ not on the usual Chern classes defined by the connection but on the polynomials in Chern classes corresponding to $\sum x_{k}^{i}$, the Chern classes being the elementary symmetric functions in the formal variables x_{k}. These horizontal maps are also models for an inclusion of $F_{n, p}$ in F_{n}.

We consider again the bundle E over M associated to the tangent bundle of M and with fiber F_{n}. Its restriction above N contains a subbundle E^{\prime} with fiber $F_{n, p}$.

Theorem. $C^{*}\left(L_{M, N}\right)$ is a model for the space $\Gamma_{M, N}$ of continuous sections of the bundle E whose restriction to N have values in the subbundle E^{\prime}.

To make explicit computations, we construct a model for $\Gamma_{M, N}$, which will be finite dimensional in each degree when M and N have finite dimensional models. This is the purpose of the next paragraph.
9. Construction of a model for $C^{*}\left(L_{M},{ }_{N}\right)$

Consider the commutative diagramm of Lie algebras

where L_{M}^{\prime} and $L_{M, N}^{\prime}$ are the quotients of L_{M} and $L_{M, N}$ by the subalgebra L_{M}^{0} of vector fields on M whose infinite jet vanish at points of N.

The corresponding geometric diagramm is

where $\Gamma^{\prime}{ }_{M}$ denotes the space of sections of E restricted to N and $\Gamma^{\prime}{ }_{M, N}$ the space of sections of E^{\prime}. The vertical maps associate to a section its restriction above N.
π is a fibration and $\Gamma_{M, N}$ is the fiber product of Γ_{M} and $\Gamma_{M, N}^{\prime}$ over $\Gamma^{\prime}{ }_{M}$.

The spectral sequence of the fibration $\Gamma_{M, N} \rightarrow \Gamma^{\prime}{ }_{M, N}$ will correspond to the Hochschild-Serre spectral sequence [16] associated to the ideal L_{M}^{0} in $L_{M, N}$ (using continuous cochains). The $D G$-algebra $C^{*}\left(L_{M}^{0}\right)$ will be a model for the fiber.

We assume that we can represent the inclusion of N in M by a surjection $r: A \rightarrow B$ of $D G$-algebras which are finite dimensional and such that $A^{i}=0$ for $i>n=\operatorname{dim} M$ and $B^{i}=0$ for $i>p=\operatorname{dim} N$.

This is possible in particular if M and N are simply connected with finite dimensional real cohomology.

Let $a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}$ be a basis of A such that the $a^{\prime}{ }_{i} s$ form a basis of the kernel \bar{A} of r. Hence the $r\left(b_{j}\right)$'s form a basis of B.

Let $\Lambda\left(x_{\alpha}\right)$ (resp. $\Lambda\left(y_{i}\right)$) be a minimal model for F_{n} (resp. $F_{n, p}$), or equivalently of $W U_{n}$ (resp. $W U_{n, p}$). Then the bundle E (resp. E^{\prime}) has a minimal model of the form $A \otimes \Lambda\left(x_{\alpha}\right)\left(\right.$ resp. $\left.B \otimes \Lambda\left(y_{\lambda}\right)\right)$, where the differential is twisted by terms depending on the choice of representatives for the Pontrjagin classes of M (cf. [13]).

A model for $\Gamma_{M, N}$ will be the free algebra $\Lambda\left(x_{\alpha}^{i}, y_{\lambda}{ }_{\lambda}\right)$ on generators $x_{\alpha}^{i}, \quad i=1, \ldots, s, \quad$ and $y^{j}{ }_{2}, j=1, \ldots, t, \quad \operatorname{deg} x_{\alpha}^{i}=\operatorname{deg} x-\operatorname{deg} a_{i}$, $\operatorname{deg} y_{\lambda}^{j}=\operatorname{deg} y_{\lambda}-\operatorname{deg} b_{j}$.

To get the differential, we proceed as follows. Recall that a model for Γ_{M} is the algebra $\Lambda\left(x_{\alpha}^{i}, z_{\alpha}^{j}\right), \operatorname{deg} z_{\alpha}^{j}=\operatorname{deg} x_{\alpha}-\operatorname{deg} b_{j}$, with a suitable differential (cf. [18], [13] or $\S 5$ with G the identity). Also models for $\Gamma^{\prime}{ }_{M, N}$ and $\Gamma^{\prime}{ }_{M}$ are of the form $\Lambda\left(y^{j}{ }_{\lambda}\right)$ and $\Lambda\left(z_{\alpha}^{i}\right)$, resp. with suitable differentials. One has $D G$-algebra maps

$$
\begin{aligned}
& \Lambda\left(z_{\alpha}^{j}\right) \rightarrow \Lambda\left(x_{\alpha}^{j}, z_{\alpha}^{j}\right) \\
& \Lambda\left(z_{\alpha}^{j}\right) \rightarrow \Lambda\left(y_{\lambda}^{j}\right)
\end{aligned}
$$

which are models for the maps $\Gamma_{M} \rightarrow \Gamma_{M}^{\prime}$ and $\Gamma_{M, N}^{\prime} \rightarrow \Gamma_{M}^{\prime}$. The first one is obvious and the second one is completely characterized by the map $W U_{n} \rightarrow W U_{n, p}$.

Now we get the differential on $\Lambda\left(x^{j}{ }_{\alpha}, y^{j}{ }_{\lambda}\right)$ by considering this algebra as the tensor product over $\Lambda\left(z^{j}{ }_{\alpha}\right)$ of $\Lambda\left(x^{j}{ }_{\alpha}, z^{j}{ }_{\lambda}\right)$ with $\Lambda\left(y^{j}{ }_{\lambda}\right)$.

One can make a similar construction using for A and B the $D G$-algebras Ω_{M} and Ω_{N} of differential forms on M and N. Of course one has to work again in more intrisic terms and use the C^{∞}-topology on Ω_{M} and Ω_{N} (compare with [13]). In this way one gets a $D G$-algebra which is also a model for $\Gamma_{M, N}$ (in fact one proves directly that it is a model for the $D G$-algebra constructed above), with a map in $C^{*}\left(L_{M, N}\right)$ inducing an isomorphism in cohomology.

Summing up, we get the following result.

Theorem. Assume that the inclusion of N in M has a model which is a surjection of finite dimensional DG-algebras. One can construct explicitely a model for $C^{*}\left(L_{M, N}\right)$ which is finite dimensional in each degree.

Example. Suppose that M is the disk D^{2} and N its boundary $\partial D^{2}=S^{1}$. As the inclusion of $F_{2,1}$ in F_{2} is homotopically trivial (equivalently the morphism $W U_{2} \rightarrow W U_{2,1}$ is homotopic to zero), the bundle $\Gamma_{M, N} \rightarrow \Gamma_{M, N}^{\prime}$ is trivial. $W U_{2}$ is a model for $S^{5} \vee S^{5} \vee S^{7} \vee S^{8} \vee S^{8}$ and $W U_{2,1}$ for $S^{3} \vee S^{3} \vee S^{3} \vee S^{4} \vee S^{4}$.

Hence $C^{*}\left(L_{D}{ }^{2},{ }_{\partial D}{ }^{2}\right)$ is a model for the space which is the product of the space of maps of S^{1} in $S^{3} \vee S^{3} \vee S^{3} \vee S^{4} \vee S^{4}$ with the second loop space of $S^{5} \vee S^{5} \vee S^{7} \vee S^{8} \vee S^{8}$.

One can write down quite explicitely the minimal model for that space, but it is harder to compute the cohomology of the first factor. It has an infinite number of multiplicative generators.

10. Some other problems

1. As coefficient for the Gelfand-Fuks cochains, one might consider, instead of the field R with the trivial action of L_{M}, a topological L_{M}-algebra A. The problem is to find a model for the $D G$-algebra $C^{*}\left(L_{M}, A\right)$ of continuous multilinear alternate forms on L_{M} with values in A. The differential is defined by the usual formula involving the action of L_{M} on A.

For that case, results similar to the one mentionned in this report have been obtained by Fuks-Segal (unpublished) and by T. Tsujishita [21].

For instance, when A is the algebra of smooth functions on M on which L_{M} acts by Lie derivative, their result is as follows. As it is described in $\S 3$, the bundle E over M has a fiber F_{n} which is itself a principal $U_{n}-$ bundle. Let us fix a fiber $F_{n}^{\circ} \approx U_{n}$ of this bundle; as it is invariant by the structural group $O_{n} \subset U_{n}$ of E, we get a subbundle E_{o} of E with typical fiber F_{n}^{o}. Then $C^{*}\left(L_{M}, A\right)$ will be a model for the inverse image of E_{o} by the evaluation map $M \times \Gamma \rightarrow E$.
2. One of the most interesting problems is to know when, for a given class α in $H^{*}\left(L_{M}\right)$, there is a space X and a foliation F on $X \times M$ transverse to the fibers such that the image of α in $H^{*}(X)$ by the characteristic homomorphism (cf. 2) is non zero.

Very recent and remarkable results of Fuchs [23] show that this is the case for all classes coming from $W S O_{n}$. (For earlier partial results, see [4].) One might expect that his method will apply in general and show that the answer is affirmative for all classes in $H^{*}\left(L_{M}\right)$ (and also for the similar problem with $\left.H^{*}\left(L_{M} ; G\right)\right)$.

There is also the problem of the possible continuous variations of characteristic classes for flat bundles which would be interesting to study (cf. [23]).

REFERENCES

[1] Botт, R. A topological obstruction for integrability. Proc. Symp. Pure Math. 16 (1970), pp. 127-131.
[2] - On the Gelfand-Fuks cohomology, Differential Geometry. Proc. of Symp. A.M.S. 27, Part I, pp. 357-364.
[3] - Lectures on characteristic classes and foliations (Notes by Lawrence Conlon). Lecture Notes in Mathematics 279, pp. 1-94, Springer Verlag, New York, 1972.
[4] - On the characteristic classes of groups of diffeomorphisms. Ens. Math. 23 (1977), pp. 209-220.
[5] Cartan, H. Exposés 19 et 20 du Séminaire Henri Cartan 1949-1950 (Espaces fibrés et homotopie).
[6] Gelfand, I. M. and D. Fuks. The cohomology of the Lie algebra of vector fields on the circle. Funct. Anal. 3 (1968), pp. 92-93.
[7] - The cohomology of the Lie Algebra of Tangent Vector fields on a Smooth Manifold I and II. Funct. Anal. 3 (1969), pp. 32-52 and 4 (1970), pp. 23-32.
[8] - The Cohomology of the Lie Algebra of Formal Vector Fields. Izvestia ak. SSSR 34 (1970), pp. 322-337.
[9] Godbillon, G. Cohomologie d'algèbres de Lie de champs de vecteurs formels. Séminaire Bourbaki 421 (1972-1973).
[10] Guillemin, V. Cohomology of vector fields on a Manifold. Ad. in Math. 10 (1973), pp. 192-220.
[11] Koszul, J. L. Cohomologie des actions locales de groupes de Lie. Symposia Matematica 16 (1975), pp. 399-407.
[12] Haefliger, A. Sur les classes caractéristiques des feuilletages. Séminaire Bourbaki 412 (1971-1972).
[13] _- Sur la cohomologie de l'algèbre de Lie des champs de vecteurs. Ann. Scient. Ecole normale Supérieure, 4^{e} série, 9 (1976), pp. 503-532.
[14] - Un modèle pour l'espace des sections d'un fibré. Séminaire sur les formes différentielles sur les ensembles simpliciaux, 3^{e} cycle romand de mathématiques (1974-1975) - Exposé No 3.
[15] - Differentiable cohomology. Cours donné au CIME en 1976 (to appear).
[16] Hochschild, G. and J. P. Serre. Cohomology of Lie algebras. Annals of Math. 57 (1963), pp. 591-603.
[17] Losik, M. V. Cohomology of the Lie algebra of Vector fields with coefficients in a Trivial Unitary Representation. Func. Anal. 6 (1972), pp. 24-36.
[18] Sullivan, D. Infinitesimal Computations in Topology (to appear).
[19] Sullivan, D. and M. Vigué-Poirrier. The homology theory of the closed geodesic problem. J. of diff. geometry 11 (1976), pp. 633-644.
[20] Thом, R. L'homologie des espaces fonctionnels. Colloque de Topologie algébrique, Louvain 1956, pp. 29-39.
[21] Tsuilshita, T. Continuous cohomology of the Lie algebra of vector fields. Proc. Japan Acad. Ser. A (1977), pp. 134-138.
[22] Cohen, F. R. and L. R. Taylor. Computations of Gelfand-Fuks cohomology, the cohomology of function spaces and the cohomology of configuration space (to appear).
[23] Fuchs, D. Non-trivialité des classes caractéristiques de g-structures. Applications aux classes caractéristiques de feuilletages. C. R. Acad. Sc. Paris, Série A, 2.4 (1977), pp. 1017-1019 et 1105-1108.
(Reçu le 2 décembre 1977)
A. Haefliger

Université de Genève
Section de Mathématiques
2-4, rue du Lièvre
Case postale 124
$\mathrm{CH}-1211$ Genève 24

[^0]: $\left.{ }^{1}\right)$ Presented at the Colloquium on Topology and Algebra, April 1977, Zurich

[^1]: $\left.{ }^{1}\right)$ Added on proof: Topology 16 (1977), pp. 285-298.

