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ON THE GELFAND-FUKS COHOMOLOGY 1

by André Haefliger

In this talk, we would like to report on the work of Gelfand and Fuks

on the cohomology of the Lie algebra LM of smooth vector fields on a

manifold M, as well as on more recent developments, some of them obtained

in collaboration with Raoul Bott.

1. Definitions

Gelfand-Fuks cohomology.

Lm will denote the Lie algebra of smooth vector fields on M, with the

topology of uniform convergence of all derivatives on compact sets. For M
compact, Lm can be thought as the Lie algebra of the group DiffM of diffeo-

morphisms of M.
Gelfand and Fuks [7], have considered the differential graded algebra

C* (Lm) of continuous multilinear alternate forms on LM with values in R,
the differential of a &-form/being the (k+ l)-form df defined by

df(v0,...,vk-) £ (-1 y*°f([vr
o-^-r < s-^k

where the v/s are vector fields on M. So those cochains are like distributions.

Suppose that G is a Lie group acting smoothly and effectively on M.
Then the Lie algebra g of G is identified with a subalgebra of LM. We shall
denote by C* (LM; G) the subalgebra of C* (LM) of G-basic cochains,
namely cochains invariant by G and which vanish if one of the argument vt
belongs to g.

The cohomology of C* (LM) (resp. C* (LM; G)) will be denoted by
77* (Lm) (resp. 77* (LM; G)), and will be called the Gelfand-Fuks
cohomology of M (resp. of M rel. to G).

1) Presented at the Colloquium on Topology and Algebra, April 1977, Zurich



Models (Sullivan Theory) (cf. [18]).

C* (Lm) and C* (LM; G) are examples of differential graded
commutative (in the graded sense) algebras over R, abbreviated DG-algebras.

Among ZXF-algebras, we consider the equivalence relation generated
by "A ~ B" if there is a morphism cp : A -> 5 of Z)G-algebras inducing an
isomorphism on cohomology. We say that M is a moé/ for v4 if M is

equivalent to ^4 under this equivalence relation. Following the terminology
of Sullivan, we say that M is a minimal model for A (assuming H° (A) — R
and H1 (A) 0) if M is a /ree algebra (namely the tensor product of a

polynomial algebra on even dimensional generators by an exterior algebra
on odd dimensional generators), the differential of each generator being
decomposable (we also assume that generators are of degree bigger than
one). The free algebra on a set of generators xa will be denoted by

There is a contravariant functor from the category of topological spaces
to the category of TXF-algebras associating to the space X the DG-algebra
A* (X) of real polynomial forms on its singular complex. If one takes instead
rational polynomial forms, this functor induces an equivalence between

rational homotopy types of 1-connected spaces with finite dimensional
cohomology and equivalence classes of 1-connected DG algebras over Q

with finite dimensional cohomology. A minimal model corresponds to a

Postnikov decomposition. In particular the vector space of generators in
the minimal model is the dual of the graded vector space tc* (X) (x) R,
where i(X) is the z'-th homotopy group of X.

We shall say that a TX7-algebra A is a model for the space X if it is a

model for the DG-algebra A* (X).
The main problem is to find good models for the .DG-algebras C* (LM)

or C* (Lm; G), if possible finite dimensional in each degree.

As an example computed by Gelfand and Fuks [6], consider the case

of the circle S1. Then FT* (Lsi) is the free algebra on generators u and v

of degree 2 and 3 represented by the cocycles

A (xa).

dx and v (f,g,h) g" dx
J h h' h"

f /'
n n' n "

0

where the vector fields on S1 are identified with functions of period 1 on R.

This is also a model for C* (Lsi).
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If Gis the group S02 of rotations of then H (Lsi ; S02) is a model

for C* (Lsl; S02).It is generated by u and by an element e of degree 2

represented by

e(Lg)

The only relation is e u 0.

H f, g

J 0 /', g'
dx

2. Connection with foliations

Let me indicate very briefly the relation with characteristic classes of flat
I bundles (cf. [12]).

if* (Lm, C) could also be interpreted as the diflerentiable cohomology
j of a suitable differentiable category (for more informations see [4] and [15]).

i We consider on the product X x M of a smooth manifold X with M
a smooth foliation F whose leaves have the same dimension as X and cut
each fibers {x} x M transversally.

To such a foliation is naturally associated a continuous DC-algebra map

XF : C * (Lm) -> Qx

where Qx is the DC-algebra of differential forms on X. In fact there is a

bijection between such morphisms and foliations F as above.

I Passing to cohomology, we get the characteristic map

[ H*(LM)->H*(X;R)
t

I If we replace the trivial bundle by a bundle E with fiber M, base space X
I and structural group C, then for a foliation F on E complementary to the

I fibers, we still get a morphism

!Xf : C * (Lm; C) -» Qx

hence a characteristic homomorphism

H*(LM,G)->H*(X;R)

Denoting by BG the classifying space for C-bundles, we also have the
usual characteristic map if* (DC; R) -» H* (X; R). This map factorizes

L'Enseignement mathém., t. XXIV, fasc. 1-2. 10
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through a map H* (BG; R) -> if* (LM; G) so that we get a commutative
diagram

H*(LM; G)

H * (BG; R)

^ H*(X;R)

So it is important to compute the map H* (BG; R) -> H* (LM; G).
When G is a compact connected Lie group, then H* (BG; R) is the algebra

I (G) of invariant polynomials on the Lie algebra of G, and the map from
1(G) to C* (Lm; G) is given by a G-connexion in C* (LM) (cf. [5]).

In the example above, namely M S1 and G S02, then H* (.BS02)
is a polynomial algebra in a generator of degree 2, the Euler class, which is

mapped on a non zero multiple of e.

3. The formal vector fields and the diagonal complex

Given a point x on M, we can consider the Lie algebra Lm of infinite
jets at x of vector fields on M with the quotient topology. It is isomorphic
to the Lie algebra an of formal vector fields y£,vi(x) did xl in Rn, where the

vt (x) are formal power series in the coordinates x1, xn.

The natural map LM -» Lm associating to a vector field its jet at x gives

a DG-algebra morphism

C* (L^) -+ C*(Lm)

where C* (L^) is the algebra of multilinear alternate forms onL^ depending
only on finite order jets.

The first and most important step in the work of Gelfand-Fuks was the

complete determination of the cohomology H* (an) of the topological Lie
algebra of formal vector fields on Rn.

Theorem 1. (Gelfand-Fuks [8], [9]). Let E(hu hn) be the exterior
algebra on generators ht of degree 2i.— \ and let R [c1, cn]2n be the

quotient of the polynomial algebra in generators ct of degree 2i by the

ideal of elements of degree > 2n.



— 147 —

Then a model for C* (an) is the DG-algebra

WUn E(hu. 2a„

with dht Cf and dct 0.

It follows that FT (a„) 0 for 1 < i < 2n and i > n2 + 2n. Also the

multiplicative structure is trivial; more precisely, WUn is a model for a

wedge of spheres (for instance S3 for n 1, S5 v S5 v S7 v S8v S8

for n 2) (cf. Vey [9]).

WUn is also a model for the space Fn obtained by taking the restriction

of the {/„-universal bundle over the 2ft-skeleton of its base space BUn

(cf. Gelfand-Fuks [8]). Note that this representation is compatible with
the natural actions of On cz Un.

One can also consider the relative complex C* (a„, On) or C* (a„, SOn)

of On or SO„-basic elements in C* (a„), where On is the orthogonal group
acting in the usual way on Rn, hence on an.

Define WOn as the subalgebra of WUn generated by the ht with i odd
and all the ct. From theorem 1, it is easy to deduce the

Theorem F [12]. WOn is a model for C* (a„, On).

A model for C * (a„, SOn) is WOn for n odd and

WSO„ WOn® R[e

for n even, where deg e n and de 0.

From the finite dimensionality of H* (a„), using a suitable spectral

sequence, Gelfand and Fuks prove in particular [7].

Theorem 2. If H* (M) is finite dimensional, then H* (LM) is finite
dimensional in each degree.

The Guillemin-Losik double complex.

First define C* (LM, QM) as the algebra of continuous alternate multilinear

forms on LM with values in the algebra QM of differential forms on M.
I We have two differentials, the first one defined as in 1 and the second one
j.j by the exterior differential in QM. So this is a double complex and we can

consider the associated total differential.
^m) ^ subcomplex of G (T^j, 12of those forms asso-

\ dating to a sequence vu vk of vector fields on M a differential form
f f(vi, ...,%) whose value at xeM depends only on finite order jets of
I the vts at x.

I
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Theorem 3. (Guillemin [10], Losik [17]). CA (FM, QM) is a model

for a bundle E with fiber Fn, base space M, associated to the tangent
bundle of M.

More precisely, a modelfor CA (LM, QM) is the DG-algebra QM ® WUn
over Qm, where

d (1 ®Ci) =0 d (1 ®ht) 1 ® ct — pi/2 ® 1

where pij2 is zero if i is odd and is a form representing the Pontrjagin class

of M of degree 2i if i is even.

Note that if a foliation F on X x M transverse to the fibers {v} x M
is given, one has a characteristic homomorphism

C* (Lm, Qm) QxxM

One has also a morphism

WOn^C*A(LM, Qm)

(or WUn -> C* (Lm, Qm) in case M has trivial Pontrjagin classes) whose

composition with the previous one is the usual characteristic homomorphism

for the foliation F (cf. [3], [12]).

4. Main theorem

Theorem 1. C* (LM) is a modelfor the space r of continuous sections

of the bundle E described in the theorem above.

This result, first conjectured by Bott (and also Fuks), has been proved by
several people (Bott-Segal *), Fuks-Segal, Haefliger [13], Ph. Trauber, and

others).
Suppose that G is a compact connected Lie group acting on M. Then it

also acts on the bundle E and on its space of sections. Let us denote by rG
the total space of the bundle with fiber F associated to the universal G-

bundle with base space BG.

Theorem Y. C * (EM ; G) is a model for the space rG.

The way I proved theorem 1 was to construct first a tentative algebraic
model A for F following ideas of R. Thorn [20] and D. Sullivan [18], and

0 Added on proof: Topology 16 (1977), pp. 285-298.



— 149 —

a morphism of A in C* (LM). Then one proves directly that it induces an

isomorphism in cohomology. The fact that A is also a model for F was

proved in a similar way (cf. [14]).
When M has a finite dimensional model, one can construct a model for F

which is finite dimensional in each degree, and with it one can make explicit
calculations.

Note that the inclusion (FM, QM) C* (FM, QM) is a model for
the evaluation map F x M E associating to a section s and a point
x of M the element s (x) of E.

For computations along the lines of the spectral sequence of Gelfand-
Fuks, see Cohen and Taylor [22].

The proof of theorem Y is very similar to the proof of theorem 1. In
the next paragraph, we explain the construction of an algebraic model for
rG suitable for computations. In § 6, we indicate briefly why this is a model

5. Construction of an algebraic model for the space
OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]).

As a guide, consider first the geometric situation. Let p: E -» M be a
fiber bundle with base space M, fiber F and let F be the space of continuous
sections of E.

We have the commutative diagramm

for

e

M x r

1)

where e is the evaluation map associating to the point x of M and the
section s the point s (x) of E. The other maps are natural projections (* is a
point).
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Suppose that a topological group G acts on M and also on E in a way
compatible with p. Then G acts also on D, and all the maps in the diagramm
are equivariant.

For a space X on which G acts, let us denote by XG the bundle with
fiber X associated to the principal universal (7-bundle P with base space

We try now to construct an algebraic analogue of this diagramm. We

assume that the connectivity of the fiber F of E is bigger than the dimension

n of M.
Choose a DG-algebra B which is a model of BG and assume that we

can represent the bundle MG by a DG-algebra A, the projection being
represented by a morphism B A, and such that A, as a module over B,
is free and finite dimensional with a basis su sk, where the degree of st
is not bigger than n (see examples below).

Then we construct the Postnikov decomposition (or minimal model)
of the bundle EG -> MG. Algebraically, this means that we take a model
for Eg which is a tensor product A ® A (xa), where A (xa) is a free graded
algebra on an ordered set of generators xa, the differential of each xa,

being in the subalgebra generated by A and the preceding xß. Of course the

natural inclusion of A in A ® A (xa) has to be a model for the projection
Eg Mg. Such a model, with a finite number of generators xa in each

degree, always exists if Fis 1-connected and with finite dimensional coho-

mology, and if G is a connected Lie group (cf. [13], [18]).

A model for rG will be the algebra B ® A (xla), where A (xla) is the free

algebra on generators xLa, i 1, ...,&, and degxla degxa - deg^1.

By our assumptions, deg x\ > 0.

A model for the map e will be the morphism

(M x Og

2)

BG

s: A ® A (xa) A ® A (xia)
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of ^4-algebras defined by

s(l®xa) £ ® x\
i

The differential on B ® A (xf) is then uniquely defined by the conditions

that B ® A (xz) should be a ThFalgebra over B and that s should commute

with the differential given by the isomorphism with A ® b(B ® A (xlJ).
The algebraic analogue of diagramm 2) is the commutative diagramm

of T>(/-algebras

A ®b(B®A (xla)) < A ® A (xa)

1

2) B®A(x\) A

B

Examples.

1. For M, take the 2-sphere S2 and for E the trivial bundle S2 x S4,

so that r is the space of continuous maps of S2 in S4. The group G will
be the rotation group S03 acting on S2 as usual and trivialy on S4.

As model B for BG we take the polynomial algebra R [/?J in a generator

px of degree 4. A model for MG is the algebra A quotient of the polynomial
algebra A(s,p1% where deg s 2, by the ideal generated by s2 — p1.
The differential is zero. The elements 1 and s form a basis for the F-module A.

A minimal model for the bundle EG is A ® A (x, y), where A (x, y)
is the free algebra with generators x of degree 4, and y of degree 7, and

dy x2.

According to the preceding recipe, a model for rG is the algebra R [px]
® A (x, y, 5c, y) with deg5c 2, degy 5, the image of x by s being
1 ® x + s ® x, similarly for y. The differential is given by dx dx 0,

dy x2 + /?i5c2, dy 2x5c.

2. Take M as the circle, E as the product S1 x F, where Fis a simply
connected space, so that E is just the space of continuous maps of S1 in F
(case studied by Sullivan [19]). For G we take the group of rotations of the
circle, acting trivially on F.

Represent E by its minimal model A (xa). A model B for BG is the
polynomial algebra R [e] in a generator e of degree 2 and a model A for MG
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is the free commutative algebra A (s, e), where deg s 1 and ds e.

As a F-module, it is free with basis 1 and s. A model for EG is just A ® A (xa).
As model for rG, we take R [e] ® A (xa, xa), where deg 3ca deg xa — 1,

the image of xa by s being 1 ® xa + ^ ® 3ca. The differential d is described
as follows (compare with Sullivan [18] or [19]). Let h be the derivation of
degree — 1 of A (xa, xa) given by hxa 3ca and hxa 0. Then if d0 denotes
the differential in A (xj identified to a subalgebra of A (xa, xa), we have

de 0, dxa d0xa — e 5ca, dxa — — hd0xa

Remark. In the case where E is the bundle described in § 4, its minimal
model A ® A (xa) over MG is complicated, because there is an infinite
number of generators xa (except for n 1) labelled by a basis of the rational
homotopy of a wedge of spheres, so by a basis of the free graded Lie algebra
L (n) generated by the spheres of this wedge (cf. [13]).

6. Sketch of the proof of the main theorem and applications

We represent the universal principal G-bundle as a limit of finite dimensional

bundles Pk and we denote by QP the inverse limit of algebras of
forms QPk.

First note that we can replace C* (LM; G) by the D(/-algebra C* (LM, QP)G

of (/-basic elements in C* (LM, QP) (compare with Cartan [5], exposé 20).

A model for EG will be the algebra (EM, QMxp)G [C*a{L Qm

0 Qp]g and a model for the evaluation map will be the inclusion of this

2)(/-algebra in C* (LM, QMxP)G.

In the construction of § 5, we choose B QBG as model for BG and,
instead of taking for A a finite dimensional module over B, we take the

2)(/-algebra QMq & [&MxP]G as model for MG. We have to build the model

for rG along the same lines as in § 5, but in more intrinsic terms like in [13].

The minimal model (or Postnikov decomposition of EG) will be of the form
A ® S* (V), where S* (V) denotes the algebra of symmetric multilinear
forms on a graded vector space V (cf. [13]).

As an algebra, the model for FG will be the algebra Sp (A ® V, B)
of continuous symmetric ^-multilinear forms on the graded ^-module
A ® V. One can construct a map of this model in C* (LM, Qm><p)g and

prove that it induces an isomorphism in cohomology.
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Similarly, one can prove that (A 0 V, B) is effectively a model for
the space of sections rG (cf. [14]).

Eventually for computations, one proves that one gets also a model

for rG by using instead of QMq a DG-algebra A as in § 5 which is a finite

dimensional free ^-module.

7. Example of a computation

Let us consider the case where M is the ^-sphere Sn, G the rotation
group SOn+1 and E the bundle described in § 3. A model for MG is the

.DG-algebra A defined by

A R [p1? pk, s] / (s2 —Pk) d 0 for n 2k

or A R [pl5 x] ® E (s) ds x f°r n 2/c — 1

where deg pt Ai and deg s n.

A model for EG is obtained by taking the tensor product of A with WUn,
the differential being defined by

dht ct — Pi/2 and dct 0

By the way, WSOn is also a model for EG.

We now consider the case n 2. The minimal model of EG is the .DG-

algebra which begins as

A 0 A(x1,X2,x3,X4,x5,X12,X13,x23,...)
where

degxt degx2 5,degx3 7, degx4 degx5 8,
degx12 9, degx13 degx23 11,

etc.

(there is an infinite number of generators).
The differential is defined by

dxi dx2 0, dx$ Pi, dx4 — Pi%i> dx$ p^x2
dx±2 x^x2, dx±3 a^x2 P1A4, dx23 — x2x3 — P1X5

etc.

According to the construction of § 5, a minimal model for the bundle
Fg Bg begins as

RlPl] ® A(XU X2, X1? X2, X3, X4, X5, X3, X^2, X4, x5,
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where

deg x1 deg xt - 2, s (xt) 1 <g) xt + 5 0 xi9

dxt is as above and dx12 x1x2 + PiX1x2

dx1 dx2 dx3 0, dx4 p1x1,dx5 p1x2,

dx12 x±x2 + x1x2,
etc.

A basis for H* ÇTG) H* (Ls2, SOd) is given by the classes of the

cocycles

^2? Pl> ^1? ^2? ^3? ^1^2? ^I^Ij ^1^2? X2X2m ^1^3?

x2x3, x1x4, x2x5, x1x5 + x2x4, p1x3
etc.

The first multiplicative relations are

p1x1 ~ 0, p1x2 ~ 0, X-]LX2 ~ x2x1,p\ ~ 0, etc.

The first "exotic" class is given by the cocycle x1x2x12 of degree 13.

The classes x1 and x2 correspond to the classes described by Raoul in
his lecture [4], for n 2.

We now give an example of a general statement

Theorem. The kernel of the map

H*(BSOn+1)^H*(LSn,SOn+1)

is the ideal generated by the elements which are polynomials of degree > In
in the Pontrjagin classes pu p[nj2y

As a consequence, we get exactly what is implied by the vanishing theorem

of Bott [1]. For instance, for n odd, the image of the powers of the Euler
class is non zero. So one can ask for examples of flat (2k + l)-sphere bundles

with a non zero power of the Euler class.

One can also check that the homomorphism (see end of § 3)

WSOH-+C*(LSn,SOn+l9QSn)

induces an injection in cohomology.
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8. Case of a manifold with boundary

More generally we consider a closed manifold N of dimension p in a

manifold M of dimension n. LM N will denote the subalgebra of Lu of
those vector fields on M which are tangent to N. An interesting particular
case is when N is the boundary dM of M. For M compact, LM eM can be

considered as the Lie algebra of the group of diffeomorphisms of M.
First we consider the formal vector fields. Let an^p be the Lie subalgebra

offormal vector fields on Rn which are tangent to Rp identified to a linear
subspace of Rn. Again C* (aWjP) denotes the DC-algebra of those multilinear

alternate forms on an>p depending only on finite order jets.
We describe a finite dimensional model for C* (an>p). Let E (h[, hp,

h"1%..., h"n_p) be the exterior algebra in generators hfi and h"} of degree 2/ — 1.

Let R [cf cp, cf, c'lp]fp be the quotient of the polynomial algebra
in generators c-L and cf of degree 2 i by the ideal of elements of degree >2p.

Define

WUn,pE(h[,h'p,hi
®R[c[,...,c'p,c[,

as the DC-algebra with differential defined by

dh/ cf dhf cf, dc{ 0, dcf 0

This is a model for the space Fn p
obtained by restricting the universal

principal (Upx D/7.p)-bundle over the 2/?-skeleton of its basis represented
by a product of Grassmanians with the usual even dimensional cell
decomposition.

If n <2/?, WUlup is also a model for a wedge of spheres. When n > 2

it is a model for the product of the wedge of spheres corresponding to
WU2p,p by 5,2p+1 x s2p+3... x S2,,-2P-i_

Theorem 1 (Koszul [11]). There is a natural morphism

inducing an isomorphism in cohomology.

As a consequence, Hl (a„,p) 0 for 0 < < and i > p2 + (n-p)2
+ 2 p. When n < 2p, the multiplication is trivial.
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To have a model for the homomorphism induced by the inclusion of
ct„5p in an, we have the commutative diagramm

C*(an) -C*(<W)
t

wun+- WVn,p

where the second horizontal map sends ht on ht' + h" and ct on c/ + cf
(by convention, /z/ or hf is zero for i > p or / > n-p, idem for and c").
Note that the natural map of theorem 1 should map the c/ s and c" not
on the usual Chern classes defined by the connection but on the polynomials
in Chern classes corresponding to xlk, the Chern classes being the

elementary symmetric functions in the formal variables xk. These horizontal

maps are also models for an inclusion of Fn p in Fn.

We consider again the bundle E over M associated to the tangent
bundle of M and with fiber Fn. Its restriction above N contains a subbundle

E' with fiber Fn>p.

Theorem. C* (Lm n) is a model for the space Fm,n of continuous

sections of the bundle E whose restriction to N have values in the sub-

bundle E'.

To make explicit computations, we construct a model for EMfN, which
will be finite dimensional in each degree when M and N have finite dimensional

models. This is the purpose of the next paragraph.

9. Construction of a model for C* (Lm,n)

Consider the commutative diagramm of Lie algebras

Lm,N * Lm

L'm,N L'm

where L'M and L'M)jv are the quotients of LM and LM N by the subalgebra

Lm of vector fields on M whose infinite jet vanish at points of N.



— 157 —

The corresponding geometric diagramm is

Fm,N *

TC

Fm,N * rM

where T'M denotes the space of sections of E restricted to TV and r'MtN the

space of sections of E'. The vertical maps associate to a section its restriction

above TV.

re is a fibration and rM>N is the fiber product of TM and r'MiN over

rfM-
The spectral sequence of the fibration rM N -+rfM N will correspond

to the Hochschild-Serre spectral sequence [16] associated to the ideal
L°m in LM N (using continuous cochains). The Z)G-algebra C* (L°M) will be

a model for the fiber.
We assume that we can represent the inclusion of TV in M by a surjection

r: A -> B of DG-algebras which are finite dimensional and such that A1 0

for i > n dim M and Bl 0 for i > p dim TV.

This is possible in particular if M and TV are simply connected with
finite dimensional real cohomology.

Let au as, bu bt be a basis of A such that the a' ts form a basis

of the kernel Ä of r. Hence the r (bjf s form a basis of B.

Let A (xa) (resp. A (yj) be a minimal model for Fn (resp. Fn>p), or
equivalently of WUn (resp. WUn>p). Then the bundle E (resp. E') has a

minimal model of the form A ® A (xa) (resp. B ® A (j^)), where the
differential is twisted by terms depending on the choice of representatives for
the Pontrjagin classes of M (cf. [13]).

A model for rM?iV will be the free algebra A(x\,yJ\) on generators
xla, i 1, 6-, and yJ\9 j 1, t, deg xla deg x ~ deg ai9

deg yJ\ deg yÀ - deg by
To get the differential, we proceed as follows. Recall that a model for

rM is the algebra A (x\, zja), deg deg xa - deg bj, with a suitable
differential (cf. [18], [13] or § 5 with G the identity). Also models for r'M)N
and r'M are of the form A (y3A) and A (z\), resp. with suitable differentials.
One has DG-algebra maps

A zsa)-> A {x\, zJa)

A (z\) -»• A
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which are models for the maps rM -» r'M and rfM N r'M. The first one
is obvious and the second one is completely characterized by the map
wun -+ wuthp.

Now we get the differential on A (xJa, yJ\) by considering this algebra as

the tensor product over A (z\) of A (;xf, zJ\) with A (yJ\).
One can make a similar construction using for A and B the Z>G-algebras

Qm and Qn of differential forms on M and N. Of course one has to work
again in more intrisic terms and use the C°°-topology on QM and QN (compare

with [13]). In this way one gets a Z>G-algebra which is also a model for
Fm,n G11 fact one proves directly that it is a model for the DG-algebra
constructed above), with a map in C* (LM N) inducing an isomorphism in
cohomology.

Summing up, we get the following result.

Theorem. Assume that the inclusion of N in M has a model which

is a surjection offinite dimensional DG-algebras. One can construct explicitely
a model for C* (LM N) which is finite dimensional in each degree.

Example. Suppose that M is the disk D2 and N its boundary ô D2 S1.

As the inclusion of F2tl in F2 is homotopically trivial (equivalently the mor-
phism WU2 WU2,i is homotopic to zero), the bundle rM N r'M N

is trivial. WrU2 is a model for S5 v S5 \/ S1 v S8 v S8andW2>3Lfor
S3 V s3 V S3 V S* V 54.

Hence C* (LD2, dD2) is a model for the space which is the product of the

space of maps of S1 in S3 v S3 v S3 v S4 v S4 with the second

loop space of S5 \j S5 v S7 v S8 v S8.

One can write down quite explicitely the minimal model for that space,
but it is harder to compute the cohomology of the first factor. It has an

infinite number of multiplicative generators.

10. Some other problems

1. As coefficient for the Gelfand-Fuks cochains, one might consider,

instead of the field R with the trivial action of LM, a topological LM-algebra
A. The problem is to find a model for the DG-algebra C* (LM, A) of
continuous multilinear alternate forms on LM with values in A. The differential
is defined by the usual formula involving the action of LM on A.
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For that case, results similar to the one mentionned in this report have

been obtained by Fuks-Segal (unpublished) and by T. Tsujishita [21].

For instance, when A is the algebra of smooth functions on M on

which Lm acts by Lie derivative, their result is as follows. As it is described

in § 3, the bundle E over M has a fiber Fn which is itself a principal Un-

bundle. Let us fix a fiber F°n œ Un of this bundle; as it is invariant by the

structural group On cz Un of E, we get a subbundle E0 of E with typical
fiber F°n. Then C* (LM, A) will be a model for the inverse image of E0

by the evaluation map M x r -» E.

2. One of the most interesting problems is to know when, for a given
class a in H* (LM), there is a space Xand a foliation Ton X x M transverse

to the fibers such that the image of a in FT* (X) by the characteristic homo
morphism (cf. 2) is non zero.

Very recent and remarkable results of Fuchs [23] show that this is the

case for all classes coming from WSOn. (For earlier partial results, see [4].)
One might expect that his method will apply in general and show that the

answer is affirmative for all classes in FT* (Lu) (and also for the similar
problem with //* (LM ; G)).

There is also the problem of the possible continuous variations of
characteristic classes for flat bundles which would be interesting to study
(cf. [23]).
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