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ON THE GELFAND-FUKS COHOMOLOGY *

by André HAEFLIGER

In this talk, we would like to report on the work of Gelfand and Fuks
on the cohomology of the Lie algebra L,, of smooth vector fields on a
manifold M, as well as on more recent developments, some of them obtained
in collaboration with Raoul Bott.

1. DEFINITIONS

Gelfand-Fuks cohomology.

L, will denote the Lie algebra of smooth vector fields on M, with the
topology of uniform convergence of all derivatives on compact sets. For M
compact, L,, can be thought as the Lie algebra of the group Diff,, of diffeo-
morphisms of M. ‘

Gelfand and Fuks [7], have considered the differential graded algebra
C* (L) of continuous multilinear alternate forms on L,, with values in R,
the differential of a k-form f being the (k+ 1)-form df defined by

A A

df (Vg, ..., v;) = Y (=D f ([0 U]y Vs nes Upy ey Uy vvns Uy)
0=r<s=k

. where the v,’s are vector fields on M. So those cochains are like distribu-

tions.

Suppose that G is a Lie group acting smoothly and effectively on M.
Then the Lie algebra g of G is identified with a subalgebra of LM. We shall
denote by C* (L,; G) the subalgebra of C*(L,,) of G-basic cochains,
namely cochains invariant by G and which vanish if one of the argument v,
belongs to g.

The cohomology of C* (L) (resp. C* (Ly; G)) will be denoted by
H* (Lyy) (resp. H* (Lyy; G)), and will be called the Gelfand-Fuks coho-
mology of M (resp. of M rel. to G).

1) Presented at the Colloquium on Topology and Algebra, April 1977, Zurich
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Models (Sullivan Theory) (cf. [18]).

C*(Ly) and C* (Ly; G) are examples of differential graded com-
mutative (in the graded sense) algebras over R, abbreviated DG-algebras.

Among DG-algebras, we consider the equivalence relation generated
by “4 ~ B” if there is a morphism ©: A — B of DG-algebras inducing an
isomorphism on cohomology. We say that M is a model for A if M is
equivalent to 4 under this equivalence relation. Following the terminology
of Sullivan, we say that M is a minimal model for A (assuming H° (4) = R
and H' (4) = 0) if M is a free algebra (namely the tensor product of a
polynomial algebra on even dimensional generators by an exterior algebra
on odd dimensional generators), the differential of each generator being
decomposable (we also assume that generators are of degree bigger than
one). The free algebra on a set of generators x, will be denoted by
A (x,).

There is a contravariant functor from the category of topological spaces
to the category of DG-algebras associating to the space X the DG-algebra
A*(X) of real polynomial forms on its singular complex. If one takes instead
rational polynomial forms, this functor induces an equivalence between
rational homotopy types of 1-connected spaces with finite dimensional
cohomology and equivalence classes of l-connected DG algebras over Q
with finite dimensional cohomology. A minimal model corresponds to a
Postnikov decomposition. In particular the vector space of generators in
the minimal model is the dual of the graded vector space =, (X) ® R,
where ; (X) is the 7-th homotopy group of X.

We shall say that a DG-algebra 4 is a model for the space X if it is a
model for the DG-algebra A4* (X).

The main problem is to find good models for the DG-algebras C* (Ly,)
or C* (L,; G), if possible finite dimensional in each degree.

As an example computed by Gelfand and Fuks [6], consider the case
of the circle S*. Then H* (Lg) is the free algebra on generators u and v
of degree 2 and 3 represented by the cocycles

1 fl fll f f, f”
u(f,g) =J I g g,,\ dx and v (f,g,h) =J g g g" |dx
. h h' h”

where the vector fields on S* are identified with functions of period 1 on R.
This is also a model for C* (Lg1).




— 145 —

If G is the group SO, of rotations of S*, then H (Lg1; SO,) is a model
for C* (Lgi; SO,). It is generated by u and by an element e of degree 2

represented by
1
e(f,9) = f |
0

The only relation is eu = 0.

2. CONNECTION WITH FOLIATIONS

Let me indicate very briefly the relation with characteristic classes of flat
bundles (cf. [12]).

H* (L, G) could also be interpreted as the differentiable cohomology
of a suitable differentiable category (for more informations see [4] and [15]).

We consider on the product X X M of a smooth manifold X with M
a smooth foliation F whose leaves have the same dimension as X and cut
each fibers { x } X M transversally.

To such a foliation is naturally associated a continuous DG-algebra map

xr: C*(Ly) — Qx

where Q2 is the DG-algebra of differential forms on X. In fact there is a
bijection between such morphisms and foliations F as above.
Passing to cohomology, we get the characteristic map

H*(Ly) - H*(X; R)

If we replace the trivial bundle by a bundle E with fiber M, base space X
and structural group G, then for a foliation F on E complementary to the
fibers, we still get a morphism

xr: C*(Ly; G) —» Qy
hence a characteristic homomorphism
H*(Ly, G) > H*(X; R)

Denoting by BG the classifying space for G-bundles, we also have the
usual characteristic map H* (BG; R) - H* (X; R). This map factorizes

L’Enseignement mathém., t. XXIV, fasc. 1-2. 10
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through a map H* (BG; R) —» H* (L,,; G) so that we get a commutative
diagram

H*(Ly; G)
/”
H*(BG; R)
A \\ !
H*(X; R)

So it is important to compute the map H* (BG; R) » H* (L,;; G).
When G is a compact connected Lie group, then H* (BG; R) is the algebra
I (G) of invariant polynomials on the Lie algebra of G, and the map from
I(G) to C* (Ly; G) is given by a G-connexion in C* (L,,) (cf. [5]).

In the example above, namely M = S* and G = SO,, then H* (BSO,)
is a polynomial algebra in a generator of degree 2, the Euler class, which is
mapped on a non zero multiple of e.

3. THE FORMAL VECTOR FIELDS AND THE DIAGONAL COMPLEX

Given a point x on M, we can consider the Lie algebra L;; of infinite
jets at x of vector fields on M with the quotient topology. It is isomorphic
to the Lie algebra a, of formal vector fields ) v; (x) 6/0 x* in R", where the
v; (x) are formal power series in the coordinates x', ..., x".

The natural map L,, — L;; associating to a vector field its jet at x gives

a DG-algebra morphism
C*(Ly) = C* (Lay)

where C* (Lj;) is the algebra of multilinear alternate forms on L}, depending
only on finite order jets.

The first and most important step in the work of Gelfand-Fuks was the
complete determination of the cohomology H* (qa,) of the topological Lie
algebra of formal vector fields on R".

THEOREM 1. (Gelfand-Fuks [8], [9]). Let E (hy, ..., h,) be the exterior
algebra on generators h; of degree 2i—1 and let Rcy, ..., c,), be the
quotient of the polynomial algebra in generators c; of degree 2i by the
ideal of elements of degree > 2n.
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Then a model for C* (a,) is the DG-algebra
WUn B E(hI, ceeg hn) ® R [Cl’ cees Cn] 2/:,
with dh; = ¢; and dc; = 0.

It follows that H'(a,) = 0 for 1 < i < 2n and i > n* + 2n. Also the
multiplicative structure is trivial; more precisely, WU, is a model for a
wedge of spheres (for instance S° forn = 1,S° v S° v §7v §% v §°
for n = 2) (cf. Vey [9)).

WU, is also a model for the space F, obtained by taking the restriction
of the U, -universal bundle over the 2n-skeleton of its base space BU,
(cf. Gelfand-Fuks [8]). Note that this representation is compatible with
the natural actions of O, < U,,.

One can also consider the relative complex C* (a,, O,) or C* (a,, SO,)
of O, or SO,-basic elements in C* (a,), where O, is the orthogonal group
acting in the usual way on R", hence on a,.

Define WO, as the subalgebra of WU, generated by the /; with i odd
and all the ¢;. From theorem 1, it is easy to deduce the

THEOREM 1’ [12]. WO, is a model for C* (a,, O,).
A model for C* (a,, SO,) is WO, for n odd and

WSO0, = WO, ® R[e]/(¢* —c,)

for n even, where dege = n and de = O.

From the finite dimensionality of H* (a,), using a suitable spectral
sequence, Gelfand and Fuks prove in particular [7].

THEOREM 2. If H* (M) is finite dimensional, then H* (L,,) is finite
dimensional in each degree.
The Guillemin-Losik double complex.

First define C* (L, Q,,) as the algebra of continuous alternate multi-

linear forms on L,, with values in the algebra Q,, of differential forms on M.

We have two differentials, the first one defined as in 1 and the second one

by the exterior differential in Q,,. So this is a double complex and we can
consider the associated total differential.

C (Lyp, Q4) is the subcomplex of C* (Ly, 2,,) of those forms asso-

: ciating to a sequence v, ..., v, of vector fields on M a differential form

f (vl,,...,vk) whose value at x e M depends only on finite order jets of
the v;s at x.

g

gpaemr
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THEOREM 3. (Guillemin [10], Losik [17]). C& (Ly, 25) is a model
for a bundle E with fiber F,, base space M, associated to the tangent
bundle of M. .

More precisely, a model for C Z; (Lar, Qp) is the DG-algebra Q,; ® WU,
over ., where

d(l@cl)ZO d(1®h1)=1®cl—pl/2®1
where p;,, is zero if i is odd and is a form representing the Pontrjagin class
of M of degree 2i if i is even.
Note that if a foliation F on X X M transverse to the fibers { x } x M
is given, one has a characteristic homomorphism
C*(La, @y) = Lxyom
One has also a morphism
WO, — Cx (Ly, Q)

(or WU, —» C* (Ly, 2, in case M has trivial Pontrjagin classes) whose
composition with the previous one is the usual characteristic homomor-
phism for the foliation F (cf. [3], [12]).

4, MAIN THEOREM

THEOREM 1. C* (L,,) is a model for the space I' of continuous sections
of the bundle E described in the theorem above.

This result, first conjectured by Bott (and also Fuks), has been proved by
several people (Bott-Segal'), Fuks-Segal, Haefliger [13], Ph. Trauber, and

others).
Suppose that G is a compact connected Lie group acting on M. Then it

also acts on the bundle £ and on its space of sections. Let us denote by I';
the total space of the bundle with fiber I' associated to the universal G-
bundle with base space BG.

THEOREM 1'. C* (Ly; G) is a model for the space TI';.

The way I proved theorem 1 was to construct first a tentative algebraic

model A for I following ideas of R. Thom [20] and D. Sullivan [18], and

1) Added on proof: Topology 16 (1977), pp. 285-298.
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a morphism of 4 in C* (L,,). Then one proves directly that it induces an
isomorphism in cohomology. The fact that A is also a model for I' was
proved in a similar way (cf. [14]).

When M has a finite dimensional model, one can construct a model for I’
which is finite dimensional in each degree, and with it one can make explicit
calculations.

Note that the inclusion Cj (Ly, Q) = C* (Lyy, Qy) is a model for
the evaluation map I' X M — E associating to a section s and a point
x of M the element s (x) of E.

For computations along the lines of the spectral sequence of Gelfand-
Fuks, see Cohen and Taylor [22].

The proof of theorem 1’ is very similar to the proof of theorem 1. In
the next paragraph, we explain the construction of an algebraic model for
I'; suitable for computations. In § 6, we indicate briefly why this is a model
for I';.

5. CONSTRUCTION OF AN ALGEBRAIC MODEL FOR THE SPACE
OF SECTIONS OF A FIBER BUNDLE ([20], [18], [13]).

As a guide, consider first the geometric situation. Let p: E —» M be a
fiber bundle with base space M, fiber F and let I be the space of continuous
sections of E.

We have the commutative diagramm

e
M x I -~ E
1) \\» ¢/p
¥ M
o
N

‘ where e is the evaluation map associating to the point x of M and the sec-
}1 tion s the point s (x) of E. The other maps are natural projections (* is a
i point).

i
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Suppose that a topological group G acts on M and also on E in a way
compatible with p. Then G acts also on I', and all the maps in the diagramm
are equivariant.

For a space X on which G acts, let us denote by X, the bundle with
fiber X associated to the principal universal G-bundle P with base space
BG (= *¢).

From 1) we get the corresponding commutative diagramm

(M X INg ~ Eg
~_
2) |
I' Mg
.

BG

We try now to construct an algebraic analogue of this diagramm. We
assume that the connectivity of the fiber F of E is bigger than the dimension
n of M.

Choose a DG-algebra B which is a model of BG and assume that we
can represent the bundle M; by a DG-algebra A, the projection being
represented by a morphism B — A, and such that A, as a module over B,
is free and finite dimensional with a basis s, ..., s,, where the degree of s;
is not bigger than n (see examples below).

Then we construct the Postnikov decomposition (or minimal model)
of the bundle E; — M. Algebraically, this means that we take a model
for E; which is a tensor product 4 ® 4 (x,), where A (x,) is a free graded
algebra on an ordered set of generators x, the differential of each x,,
being in the subalgebra generated by 4 and the preceding x,. Of course the
natural inclusion of 4 in 4 ® A (x,) has to be a model for the projection
E; - M. Such a model, with a finite number of generators x, in each
degree, always exists if F is 1-connected and with finite dimensional coho-
mology, and if G is a connected Lie group (cf. [13], [18]).

A model for I'; will be the algebra B ® A (x',), where A (x') is the free
algebra on generators x',,7 = 1,...,k, and degx’, = degx, — degs".
By our assumptions, deg x’, > 0.

A model for the map e will be the morphism

e: AR A(x) > A® A(x')
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of A-algebras defined by
e(1®x,) = Z st ® X, .

The differential on B ® A (x') is then uniquely defined by the conditions
that B ® A (x") should be a DG-algebra over B and that € should commute
with the differential given by the isomorphism with 4 @ z(B® 4 (x)).

The algebraic analogue of diagramm 2) is the commutative diagramm
of DG-algebras

A ®p (BRA(X)) AR® A(xy,)
0

| h g
N4
2) B ® A(x') A

N

N

S

Examples.

1. For M, take the 2-sphere S? and for E the trivial bundle S? x S%,
so that I" is the space of continuous maps of S* in S*. The group G will
be the rotation group SO; acting on S? as usual and trivialy on S*.

As model B for BG we take the polynomial algebra R [p,] in a generator
p, of degree 4. A model for M is the algebra 4 quotient of the polynomial
algebra A (s, p;), where degs = 2, by the ideal generated bys* — p,.
The differential is zero. The elements 1 and s form a basis for the B-module 4.

A minimal model for the bundle E; is 4 ® A (x,y), where A (x, y)
is the free algebra with generators x of degree 4, and y of degree 7, and
dy = x*.

According to the preceding recipe, a model for I'; is the algebra R [p,]
® A(x,y, X, y) with degx = 2, degy = 5, the image of x by e being
1 ® x + 5 ® X, similarly for y. The differential is given by dx = dx = 0,
dy = x* + p,X*, dy = 2xX.

2. Take M as the circle, E as the product S* x F, where Fis a simply
connected space, so that I' is just the space of continuous maps of S*! in F
(case studied by Sullivan [19]). For G we take the group of rotations of the
circle, acting trivially on F.

Represent F by its minimal model 4 (x,). A model B for BG is the poly-
nomial algebra R [e] in a generator e of degree 2 and a model 4 for M,
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is the free commutative algebra A (s, e), where deg s = 1 and ds = e.
As a B-module, it is free with basis 1 and 5. A model for E; is just 4 ® 4 (x,).
As model for I';, we take R [¢] ® 4 (x,, X,), where deg X, = deg x, — 1,
the image of x, by € being 1 ® x, + s ® X,. The differential d is described
as follows (compare with Sullivan [18] or [19]). Let /4 be the derivation of
degree —1 of 4 (x,, X,) given by hx, = X, and kX, = 0. Then if d, denotes
the differential in A (x,) identified to a subalgebra of 4 (x,, X,), we have

de = 0,dx, = dyx, — eX,,dX, = — hdyx,

Remark. In the case where E is the bundle described in § 4, its minimal
model 4 ® A (x,) over M, is complicated, because there is an infinite
number of generators x, (except for n=1) labelled by a basis of the rational
homotopy of a wedge of spheres, so by a basis of the free graded Lie algebra
L (n) generated by the spheres of this wedge (cf. [13]).

6. SKETCH OF THE PROOF OF THE MAIN THEOREM AND APPLICATIONS

‘We represent the universal principal G-bundle as a limit of finite dimen-
sional bundles P, and we denote by Q, the inverse limit of algebras of
forms Qp,.

First note that we can replace C* (L,,; G) by the DG-algebra C* (L,,, Qp)¢
of G-basic elements in C* (L, Qp) (compare with Cartan [5], exposé 20).

A model for E; will be the algebra C, (Ly, Quyp)e = [CA (La Qg
(;j Qple and a model for the evaluation map will be the inclusion of this
DG-algebra in C* (L, Qur, p)g-

In the construction of § 5, we choose B = Qp; as model for BG and,
instead of taking for 4 a finite dimensional module over B, we take the
DG-algebra Q. & [Qy, ple a5 model for M;. We have to build the model

for I'; along the same lines as in § 5, but in more intrinsic terms like in [13].
The minimal model (or Postnikov decomposition of E;) will be of the form
A ® S*(V), where S* (V) denotes the algebra of symmetric multilinear
forms on a graded vector space V (cf. [13]).

As an algebra, the model for I'; will be the algebra S; (4 ® V, B)
of continuous symmetric B-multilinear forms on the graded B-module
'A ® V. One can construct a map of this model in C* (L,;, Qyxp)g and
prove that it induces an isomorphism in cohomology.
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Similarly, one can prove that S (A®V, B) is effectively a model for
the space of sections I'; (cf. [14]).

Eventually for computations, one proves that one gets also a model
for I'; by using instead of Q) . a DG-algebra 4 as in § 5 which is a finite

dimensional free B-module.

7. EXAMPLE OF A COMPUTATION

Let us consider the case where M is the n-sphere S”, G the rotation
group SO, ; and E the bundle described in § 3. A model for Mg is the
DG-algebra A defined by

A =R[pi,. i8]/ (s*=p) d=0 for n =2k
or A =R[py,.,Ph-1,x] ®E(s) ds =y for n = 2k-1

where deg p; = 4/ and deg s = n.

A model for E;; is obtained by taking the tensor product of 4 with WU,
the differential being defined by

dhi = Cl- - pi/Z and dCi = 0 .

By the way, WSO, is also a model for E;.

We now consider the case n = 2. The minimal model of E; is the DG-
algebra which begins as

A A(xy, x5, X3,X4, X5, X125,X13, X33, «..)
where

degx; = degx, = 5,degx; = 7,degx, = degxs = 8,
degxy, = 9,degx;; = degx,; = 11,
etc.

(there is an infinite number of generators).
The differential is defined by

dx,, = XXy, dXy3 = X1X3 — P1X4,dXy3 = X2X3 — P1Xs5,
etc.

According to the construction of § 5, a minimal model for the bundle
I'c = Bg; begins as |

R [p1] ® A(J—Cp X2y X1, X9, X3, Xy, Xs, X3,X19, X4, X5, ...)
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where
degx; = degx; —2,6(x) =1 ®x; +s X,

dx; is as above and dx,, = x;x, + p,;X;X,

d)?l = d.)zz — djés = O, d.f4 = plfl,dfs - pl.)_c-z,
dXi, = X1Xy + X1X,,
etc.

A basis for H* (I'g) = H* (Lgs, SO5) is given by the classes of the
cocycles |

X1, X2, P1s> X1, X, X3, X1 X5, X1X1, X1 X5, X5X5, X1 X3,
X3X3, X1X4, X5X5, X1 X5 + XpX4, P1X3 5
etc.
The first multiplicative relations are

— — - - 2
piXy ~0,px, ~0,X;x, ~ X,x4, p7 ~ 0, etc.

The first “exotic” class is given by the cocycle X,X,X,, of degree 13.
The classes x; and X, correspond to the classes described by Raoul in
his lecture [4], for n = 2.

We now give an example of a general statement

THEOREM. The kernel of the map
H* (BSOn+1) - H* (LSna SOn+1)

is the ideal generated by the elements which are polynomials of degree > 2n
in the Pontrjagin classes pq, ..., Ppyoy-

As a consequence, we get exactly what is implied by the vanishing theo-
rem of Bott [1]. For instance, for n odd, the image of the powers of the Euler
class is non zero. So one can ask for examples of flat (2k + 1)-sphere bundles
with a non zero power of the Euler class.

One can also check that the homomorphism (see end of § 3)

WSO, — C*(Lgn, SO, 41, Qsn)

induces an injection in cohomology.

EIT T s
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8. CASE OF A MANIFOLD WITH BOUNDARY

More generally we consider a closed manifold N of dimension p in a
manifold M of dimension n. L, y will denote the subalgebra of L, of
those vector fields on M which are tangent to N. An interesting particular
case is when N is the boundary 0M of M. For M compact, Ly, s, can be
considered as the Lie algebra of the group of diffeomorphisms of M.

First we consider the formal vector fields. Let a, , be the Lie subalgebra
of formal vector fields on R" which are tangent to R? identified to a linear
subspace of R". Again C* (a, ,) denotes the DG-algebra of those multi-
linear alternate forms on a, , depending only on finite order jets.

We describe a finite dimensional model for C* (a, ,). Let E (hi, ..., h
h"y, ..., h",.,) be the exterior algebra in generators ’'; and 2”; of degree 2i— 1.
Let R [cq, .o Cpy €1y . be the quotient of the polynomlal algebra
in generators c; and ¢;” of degree 2/ by the ideal of elements of degree > 2p.

Define

s 11 p]2p

WU, , =E(,...h, by, ...,y )
® R [cisonns Cps c'll e cn_pjzp
as the DG-algebra with differential defined by
dh;’ = ¢/, dh" =¢,", de¢;/ =0, d¢,” = 0.

i

This is a model for the space F, , obtained by restricting the universal
principal (U, x U,_)-bundle over the 2p-skeleton of its basis represented
by a product of Grassmanians with the usual even dimensional cell decom-
position.

It n < 2p, WU, , is also a model for a wedge of spheres. When n > 2p,

it is a model for the product of the wedge of spheres corresponding to
WUpr by S2p+1 % S‘Zp—}—?) X SZn—Zp—l.

THEOREM 1 (Koszul [11]). There is a natural morphism
wu, , - C*(a,,,)

inducing an isomorphism in cohomology.

As a consequence, H* (ap,,) = O0for 0 < i <2pandi>p?+ (n—p)?
+ 2p. When n < 2p, the multiplication is trivial.
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To have a model for the homomorphism induced by the inclusion of
a,, in a,, we have the commutative diagramm

Cc* (an) - C* (an,p)
4
WU, « wu,,

where the second horizontal map sends 4; on A, + A" and c¢; on ¢, + ¢,
(by convention, 4;" or &,” is zero for i > p or i > n-p, idem for ¢;,” and ¢;").
Note that the natural map of theorem 1 should map the ¢;” s and ¢;” not
on the usual Chern classes defined by the connection but on the polynomials
in Chern classes corresponding to ). xi, the Chern classes being the ele-
mentary symmetric functions in the formal variables x,. These horizontal
maps are also models for an inclusion of F, , in F,.

We consider again the bundle E over M associated to the tangent
bundle of M and with fiber F,. Its restriction above N contains a subbundle
E' with fiber F, ,.

THEOREM. C* (Ly,y) is a model for the space I'y y of continuous

sections of the bundle E whose restriction to N have values in the sub-
bundle E'.

To make explicit computations, we construct a model for I'y, y, which
will be finite dimensional in each degree when M and N have finite dimen-
sional models. This is the purpose of the next paragraph.

9. CONSTRUCTION OF A MODEL FOR C* (Ly,n)

Consider the commutative diagramm of Lie algebras

LM,N ~ Ly

14 14
LM,N e LM

where L'y, and L’y y are the quotients of L, and L), y by the subalgebra
LY, of vector fields on M whose infinite jet vanish at points of N.
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The corresponding geometric diagramm is

FM,N “’FM
T

\L ’

FM,N ~ I'y

where I'’;; denotes the space of sections of E restricted to N and I'’y y the
space of sections of E’. The vertical maps associate to a section its restric-
tion above N.

7 is a fibration and Iy, y is the fiber product of I'y, and I'"y, v over
Iy

The spectral sequence of the fibration I'y, y — I’y y Will correspond
to the Hochschild-Serre spectral sequence [16] associated to the ideal
LY in L,y (using continuous cochains). The DG-algebra C* (Lyy) will be
a model for the fiber.

We assume that we can represent the inclusion of N in M by a surjection
r: A — B of DG-algebras which are finite dimensional and such that A' = 0
for i>n=dim M and B' =0 for i>p = dim N.

This is possible in particular if M and N are simply connected with
finite dimensional real cohomology. :

Let a4, ..., a,, by, ..., b, be a basis of 4 such that the a’ ;s form a basis
of the kernel 4 of r. Hence the r (b;)’s form a basis of B.

Let A (x,) (resp. A (y ;) be a minimal model for F, (resp. F, ), or
equivalently of WU, (resp. WU, ,). Then the bundle E (resp. £') has a
minimal model of the form 4 ® A (x,) (resp. B ® A (» 2)), where the diffe-
rential is twisted by terms depending on the choice of representatives for
the Pontrjagin classes of M (cf. [13]).

A model for I'y y will be the free algebra A (¥',, y’;) on generators
X, 0= 1, .,s and 3, j =1,..,1, degx! = deg x — deg g,
deg y7; = degy, — deg b,.

To get the differential, we proceed as follows. Recall that a model for
I'y is the algebra A (x', z%,), degz] = degx, — degb,, with a suitable
differential (cf. [18], [13] or § S with G the identity). Also models for I'",
and I''y, are of the form A (37,) and A4 (z',), resp. with suitable differentials.
One has DG-algebra maps

A(2,) » A, 27,)
A (Zja) - A (y]/l)




which are models for the maps I'y, - I''y; and I'’y; y = I'’;. The first one
1s obvious and the second one is completely characterized by the map
wu, - wu,,.

Now we get the differential on 4 (x/,, y7,) by considering this algebra as
the tensor product over A (z7,) of A (x7,, z7,) with A (3/)).

One can make a similar construction using for 4 and B the DG-algebras
Q, and Qy of differential forms on M and N. Of course one has to work
again in more intrisic terms and use the C”-topology on Q,, and Q, (com-
pare with [13]). In this way one gets a DG-algebra which is also a model for
I'y vy (in fact one proves directly that it is a model for the DG-algebra
constructed above), with a map in C* (L, ) inducing an isomorphism in
cohomology.

Summing up, we get the following result.

THEOREM. Assume that the inclusion of N in M has a model which
is a surjection of finite dimensional DG-algebras. One can construct explicitely
a model for C* (L y) which is finite dimensional in each degree.

Example. Suppose that M is the disk D? and N its boundary 0 D?* = S1.
As the inclusion of F, ; in F, is homotopically trivial (equivalently the mor-
phism WU, - WU, ; is homotopic to zero), the bundle I'y y — I'"y/ n
is trivial. WU, is a model for S° v S° v §7 v §® v S® and WU, , for
S3 v Sy SPv Sty st

Hence C* (Lp?, ;p%) is amodel for the space which is the product of the
space of maps of S'in 3 v S3 v S v S* v S* with the second
loop space of S°> v S° v ST v S% v S8

One can write down quite explicitely the minimal model for that space,
but it is harder to compute the cohomology of the first factor. It has an
infinite number of multiplicative generators.

10. SOME OTHER PROBLEMS

1. As coefficient for the Gelfand-Fuks cochains, one might consider,
instead of the field R with the trivial action of L;,, a topological L,,-algebra
A. The problem is to find a model for the DG-algebra C* (L, A) of con-
tinuous multilinear alternate forms on L,, with values in 4. The differential
is defined by the usual formula involving the action of L,, on 4.
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For that case, results similar to the one mentionned in this report have
been obtained by Fuks-Segal (unpublished) and by T. Tsujishita [21].

For instance, when A4 is the algebra of smooth functions on M on
which L,, acts by Lie derivative, their result is as follows. As it is described
in § 3, the bundle E over M has a fiber F, which is itself a principal U,-
bundle. Let us fix a fiber F, ~ U, of this bundle; as it is invariant by the
structural group O, < U, of E, we get a subbundle £, of E with typical
fiber F?. Then C* (L,;, A) will be a model for the inverse image of £,
by the evaluation map M X I' —» E.

2. One of the most interesting problems is to know when, for a given
class o in H* (L,,), there is a space X and a foliation Fon X X M transverse
to the fibers such that the image of « in H* (X) by the characteristic homo-
morphism (cf. 2) is non zero.

Very recent and remarkable results of Fuchs [23] show that this is the
case for all classes coming from WSO,. (For earlier partial results, see [4].)
One might expect that his method will apply in general and show that the
answer is affirmative for all classes in H* (L,,) (and also for the similar
problem with H* (L, ; G)).

There is also the problem of the possible continuous variations of
characteristic classes for flat bundles which would be interesting to study

(cf. [23]).
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