
CARTIER DUALITY AND FORMAL GROUPS
OVER Z

Autor(en): Rotman, Joseph

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 24 (1978)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Persistenter Link: https://doi.org/10.5169/seals-49705

PDF erstellt am: 19.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-49705


CARTIER DUALITY AND FORMAL GROUPS OVER Z

by Joseph Rotman

§1. Introduction

There is an intimate relation between group theory and Lie algebra

theory: the Lie algebras associated to Lie groups and to algebraic groups
are powerful tools. For an abstract group, however, there is still no method

of associating a Lie algebra that reveals secrets of the group. Nevertheless,
when one studies abstract groups or abstract Lie algebras, he is immediately
struck by analogies. It is even quite easy to construct a dictionary of such

analogies containing such words as "center", "central series", "derived

series", "simple"; indeed, the adjective "nilpotent" in group theory (the
descending central series reaches {1}) comes from Engel's Theorem that,
for such a Lie algebra, the regular representation has its image comprised
of nilpotent matrices. There are also common theorems. A minor illustration :

ifL is a Lie algebra with center Z (L), then L/Z (L) is never one-dimensional ;

if G is a group with center Z (G), then G/Z (G) is never a nontrivial cyclic

group. Alas, there are breakdowns : if L is a finite dimensional Lie algebra
over a field of characteristic 0 and if L has trivial radical, then L L2 ;

the false group-theoretic statement: if a finite group G has no normal
solvable subgroups, then G is perfect (the symmetric group S5 is a
counterexample). Note that the ground field k of the Lie algebra was mentioned;
the cited result is not true if one allows the field to have characteristic

p > 0. Indeed, it is the aim of this paper to replace k by the ring of integers
Z; one then deals with Lie rings, which means an additive free abelian

group equipped with a multiplication satisfying the Jacobi identity and
having all squares zero.

One reason for studying "formal groups" is to make precise the analogy
between groups and Lie algebras. Let us give the context. The usual
definition of a group G may be given with arrows. For example, multiplication
is a function m: G x G -» G ; associativity asserts commutativity of the
diagram
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G x G x G >G x G

1 x m | m

m
G x G G.

The identity axiom is commutativity of the triangles

t] X 1

G x G G x{*},

G ^

m

where {*} is a one-point set, rj : {*} G is the function ^ 1 e G, and the
slanted arrows are the obvious identifications (*,g)^g and (#, *) h*
The reader may supply the diagram for the inverse that involves a function
z: G-+G.

The point of the diagrams is that one may now define a group-object
in a category 38 if 38 has a product x and a final object Z (to play the role of
{*}). Thus, a group-object in 38 is an object B and morphisms m ; B x B ^ B,

rj : Z-> B, and i : B B which makes the appropriate diagrams commute.

It is clear how to define homomorphisms, so that the group-objects form a

subcategory G38 of 38. Here are some easy examples: if 38 is the category of
sets, then G38 is groups; if 38 is topological spaces, then G38 is topological
groups; if 38 is groups, then G38 is abelian groups (minor exercise). Formal

groups will be group-objects in a suitable category 38.

The arrow definition of group may be dualized to define cogroup-
objects in a category sé. If one reverses all arrows and assumes sé has a

coproduct H and an initial object K, then a cogroup-object A has a co-

multiplication <5: A -> A H A that is "coassociative", a "counit" s: A -> K,
and a "coinverse" j : A -> A making the appropriate dual diagrams
commute. In this way, one obtains a subcategory Csé of sé. For example,

if sé is the category of commutative /^-algebras, then Csé is the category of
commutative Hopf algebras. Now Hopf algebras arise, not only as co-

group-objects in sé, but also as group-objects in another category 38.

Let 38 be the category of cocommutative /:-coalgebras (which, by definition,
have a counit and are coassociative). An example of such a fellow is the

universal enveloping algebra U. (L) of a Lie algebra L. It is straightforward
to see that G38 consists of cocommutative Hopf algebras, and also

U (L) e obj G38 for every Lie algebra L. This last category G38 is essentially
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the formal groups we seek. It is no coincidence that Hopf algebras arose

as Csé and as with suitable hypotheses on sé and Cartier duality
asserts these categories are antiequivalent; there are thus two ways to view

formal groups.
The "good" commutative k-algebras, those corresponding to universal

enveloping algebras, are rings of formal power series k\[Xu XJ]. In
fact, here is the definition of formal group as it appears in [3] : a "formal

group of dimension n" is a system of n formal power series Ft (X, Y)
in 2n indeterminates X — {Xl5 X„] and Y= {71?..., Yn] satisfying

(1) Ft(X, 0) X and Ffi0, 7) 7, all i;
(2) 7), Z) =Fi(X,Fj(Y, Z)), all ij.
To see that this definition coincides with the definition above, just note

that k [[X1? XJ] ® k [[Xl3 XJ] - k [[X1?..., Xn, Yu ...,7J], and
/V

that a comultiplication in a Hopf algebra, ô: k [[X]] -» k [[X]] ® k [[X]],
is completely determined by Ô (XJ, i 1, n. Properties (1) and (2) are
the necessary constraints on ö, e.g., (2) gives coassociativity.

Before discussing Cartier duality in more detail, let us show how one
links formal groups to Lie algebras. We consider Gas above, namely,
all cocommutative Hopf algebras over a field k. If He obj Gk$ has co-

A

multiplication d: H -» H ® H, then define

P (H) {x e H : ôx 1®x+x®1}.
It is easy to check that P (H) is a Espace which is a Lie algebra under
ordinary bracket [x, y] xy — yx. If is the category of Lie algebras
over /c, then P: G& -> is a functor. There is a functor U: G0$

taking Lv->U (L), the universal enveloping algebra. These functors define
an equivalence of categories when k has characteristic 0 [3, p. 49]. (In
characteristic p > 0, these functors do not define an equivalence).

Let us return to our main topic, Cartier duality, and give its precise
statement; a proof may be found in [1].

Theorem (Cartier Duality). Let sé be the category of linearly compact
commutative k-algebras, where k is afield; let kß be the category of co-
commutative k-coalgebras ; for A e obj sé, let

A* Homc (A, k) {all continuous functional on ^4}.
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(i) The contravariantfunctor sé & given by A i-> A* is an antiequivalence of
categories taking products to coproducts andfinal objects to initial objects.

(ii) The restriction of this functor is an equivalence (Csf)op -» G0ÏÏ.

Several remarks are in order. First, we shall not define "linearly
compact"; its role is to guarantee that A and A** are isomorphic vector
spaces, and this is false for discrete infinite dimensional spaces. Second,
the proof of (ii) is a routine inspection of the various diagrams, once statement

(i) has been proved.
There are at least two papers giving a Cartier duality between certain

categories of commutative topological k-algebras and of cocommutative
&-coalgebras, where k is a commutative ring. (Ditters [2]; Morris and

Pareigis [5]). We present a version of Cartier duality between certain
commutative Z-algebras commutative rings) and cocommutative
Z-coalgebras ; actually, our proof works if one replaces Z by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
Thus, our theorem is weaker than those of Ditters and Morris-Pareigis in
that the ground rings k are restricted; it is stronger than their results in
that we need not assume the algebras are topological algebras. Indeed, it
is easy to see our category of commutative algebras is a proper, full
subcategory of the corresponding categories of Ditters and of Morris-Pareigis.
We add that our proof is quite easy and all details are given.

§2. Groups

All groups are abelian and are written additively.

Definition. A subgroup A' of a group A is cofinite if A/A' if f.g. free

(f.g. abbreviates "finitely generated").
Of course, A' cofinite implies A — A' © A", where A" A/A'.

Definition. The cofinite topology on a group A is that (linear) topology
having a fundamental system of neighborhoods of 0 consisting of all
cofinite subgroups of A.

It is clear that A is a topological group in the cofinite topology.
Suppose A Z1 for some index set I. We may also topologize A with

the product topology, i.e., equip each factor Z with the discrete topology
and consider A in the corresponding product topology. The first lemma
shows that the cofinite topology gives a coordinate-free description of the

product topology.
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Lemma \. If A Z1 and I is countable, then the cofinite topology

coincides with the product topology.

Proof. It is easy to see that, in either topology (and for any index sets /
and 7), every homomorphism /: Z1 -> ZJ is sequentially continuous

(if xn -> x, then/(x„) -> /(x)) ; if we assume I and / countable, then ZJ

and ZJ are first countable (even metrizable), and so / is continuous.

Assume A' is cofinite in A, and A has the product topology. For finite n,

we see Zn is discrete (in either topology), whence the natural map
n: A -» A/A* Z" is continuous and A' 7i"1 ({0}) is open.

Now assume A has the cofinite topology. If Ui 17 Xp where
jel

Xj Z if j ^ z and Zy {0} if j ~ i, then is cofinite, hence open.
It follows easily that every basic open set in the product topology is open
in cofinite topology.

One may prove that Lemma 1 is true for any set / whose cardinal is

nonmeasurable [6].

Definition. The completion of a group A is lim A/A', where A' ranges
over all cofinite subgroups of A; we denote lim A/A' by ZA. There is a

canonical map A: A -> A^ ; we say A is complete if A is an isomorphism.

Corollary 2. If A Zf, where I is countable, then A is complete.

Proof : It is easy to see that, in the product topology, A is complete in
the usual metric. By Lemma 1 and [4, Theorem 13.7], the two notions of
completeness coincide.

The following remarkable result of Los is the reason we need not mention
linear compactness. Let us denote Homz (A, Z) by A*,

Lemma 3. (Los)
oo

(i) Let A ZNn <e„>. IfZ or G Zu\ the direct
II 1

sum of card I copies of Z, then the map f\-> (f\ <en>) is an
OD

isomorphism Homz (A, G) S+ £ Homz < en >, G).
n=i

(ii) If I is countable, then (Z1)* U Z(/).

(iii) If I is countable and either A Z1 or A Z(/), then A is reflexive
in the sense that the natural map A T** is an isomorphism.

Proof: [4; §94]. This Lemma is true if Z is replaced by any principal
ideal domain that is neither a field nor a complete discrete valuation ring.
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Again the countability assumption is too strong; one only needs the
cardinal of I nonmeasurable. Also, part (i) is true for groups G other than Z
and Z(7), namely, "slender" groups.

For any index sets 1 and /, there is a natural imbedding Z1 ® ZJ -> Z1 x 3

given by (mt) (x) (rij) (m^nf.

Lemma 4. Assume I and J are countable. Then if Z1 ® ZJ and
ZIXJ are given the cofinite topology, then Z1 ® ZJ is a dense subspace

of ZIXJ.

Proof: By "subspace" we mean that the cofinite topology on Z1 ® ZJ
coincides with the relative topology Z1 ® ZJ inherits from the larger
space ZIXJ. Let us write A Z1 ® ZJ and G ZIXJ. If G' is cofinite
in G, then

A\G' nA^(A + G')/G' c G\G',

whence G' n A is cofinite in A. Assume that A' is cofinite in A. Now A'
is cofinite in A if and only if there are finitely many f e A* with A'

n ker f. Moreover, if f e A* and A' kerf then there exists a co-

finite G' in G with G' n A A' if and only if there is fe G* extendingf
Thus it suffices to show we may extend / e (Z7®ZJ)ï!î tof e (Z7XJ)*. But
this follows easily from the adjoint isomorphism and Lemma 3:

Horn (Z J®Z J, Z) Horn (Z 7, Horn (Z J, Z
Horn (Z 7, Z (J))

Z(/XJ) Horn (ZJXJ,Z).

We have shown that Z1 ® ZJ is a subspace of ZIXJ; it is dense because it
contains the dense subgroup Z(/XJ).

We remark that Lemma 4 is false for some subgroups of ZJXJ; for
example, if A Z(IXJ) ® < x >, where a has each coordinate 1, then Z(/x J)

is cofinite in A; the corresponding functional / on A cannot extend to

ZIXJ, for every fe{ZIXJy that vanishes on Z(/x/) must be 0 [4;
Theorem 94.4].

Lemma 5. If I and J are countable, there is a natural isomorphism

(ZJ®ZJ)A (Z(/)®Z(J))*

(Recall:
A

means completion and * means dual space).
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Proof : Since Z(/) 0 Z(J) ^ Z(IXJ\ the right hand side is ZIXJ. By

Lemma 4, Z1 0 ZJ is a dense subspace of ZIXJ, so that both have the same

completion. This finishes the argument, for Z/XJ is complete, by Corollary

2.

Corollary 6. If I and J are countable, then (Z/0Z/)A ZK,
where K is countable.

Proof: Indeed, we have just seen that we may take K / x J.

Lemma 7. Assume A and B torsion-free. If A' is cofinite in A and

B' is cofinite in B, then there is a natural isomorphism

A 0 B/(Af ®B + A ®B') Ä A/A' 0 B/B'

Proof : Define 6:A®B-> A/A' 0 B/Bf by a 0 b û 0 b (where

bar denotes appropriate coset); let ^ ker 6. As Z and i? are torsion-free,
they are Z-flat, and so there is a commutative diagram with exact rows:

0 K A 0 B
9

> A/A' 0 B/Bf 0

I Î-
0 -> A' ®B + A ®B' -> A® B -4 A ®B/(Af ®B + A ®B') -> 0

The dotted arrow exists and is an epimorphism, by diagram-chasing; it is

an isomorphism because both right hand terms are f.g. free of the same rank
(to compute the bottom quotient, observe that A Ä 0 A\ B B' © B\
where A" ^ A/A' and B" ^ B\B'\

Lemma 8. Let A Z1 and B ZJ, where I and J are countable.
The subgroups of A ® B of the form A' ® B + A ® B\ where A' is

cofinite in A and B' is cofinite in B, form a fundamental system of neighborhoods

at 0 for the cofinite topology of A ® B.

Proof: First of all, Lemma 7 shows that each of these special subgroups
of A 0 B is cofinite.

Next, assume C is cofinite in A ® B, so there is an exact sequence

0- C A 0 B —* F 0

with F f.g. free. Define A' {aeA: 6 (a®b) 0 for all b e B} and,
similarly, B' {b e B : 6 (a®b) 0 for all aeA}. Clearly A' ® B
+ A 0 B' ci C. Now A' is pure in A and B' is pure in B, so that A/A'
and B\B' are torsion-free. Also, A' is closed in A (and B' is closed in B)
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because 6 is continuous (I and J are countable), so that A/A' is complete.
By considering maximal independent subsets of A and B and observing
that only finitely many elements of A are involved in lifting a (finite) basis

of F, we see that A/A' has finite rank (similarly for B/B'). As the only finite
rank complete groups are fig. free, it follows that A' and B' are cofinite.

§3. Formal Groups

Definition. Let sé denote the category of all commutative rings with 1

whose underlying additive group is of the form ZJ, where card 7 < K0.
Note that Z[[xl9 xj], formal power series over Z in n variables,

is an object of sé. Further, sé has an initial object, namely, Z.

Lemma 9. Every A e obj sé is a complete topological ring in the co-

finite topology.

Proof: By Lemma 1 and Corollary 2, we know A is a complete
topological group. It remains to show that multiplication m: A x A -» A is

continuous, and, for this it suffices to prove the corresponding homo-

morphism m': A ® A -> A is continuous; this is so because every homo-
morphism is continuous in the cofinite topology.

The next lemma is taken almost verbatim from [1 ; p. 12].

Lemma 10. If A e obj sé, then A has a fundamental system ofneighborhoods

of 0 consisting of cofinite ideals.

Proof: Let A' be a cofinite subgroup of A. Since multiplication is

continuous, there is a cofinite subgroup W of A with W2 cz A'. Since W
is cofinite, it has a fig. free complement <au ar>. For each j, the

continuity of x aj - x at 0 implies the existence of a cofinite Wj a W with
Y

aj Wj c A'. If U n Wj, then U is cofinite in A. Moreover, aj U a A'
j =1

for all j and WU c A' (in fact, W2 c A' and U c W); hence AU a A'.
Since 1 e A, we have U cz AU, so that A/AU is fig. Now if (AU)% is the pure
subgroup of A generated by AU, then (AU)* is also an ideal, is cofinite,
and (AU)* cz A* A' (for A' is already pure).

Lemma 11. sé has coproducts.
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Proof:If A, Be ob] st, define A\\B (A®Bf Observe that

A H B has the correct additive structure, by Corollary 6. By Lemmas 7

and 8,

cA®B)A s Hm Z®£/(Z'®J3 + Z(x)£') Hm (A/A'®B/B'),

where A' and B' are cofinite subgroups. By Lemma 10, we may assume A'

and B' are cofinite ideals. It follows that A II B is a commutative ring

with 1, i.e.. A n B e obj sä.

To see that we have a coproduct, consider the diagram

vl/
A B

/P'\ c '
where a : a i-> a ® 1, /?: 1 ® Ce obj sä, and a', ß' are ring maps.
Since im a and im ß lie in A ® B a A n B, the fact that A ® B is a co-

product in the category of commutative rings with 1 provides a unique ring

map y: A ® B — C with yoc a' and yß =» />'. As C is complete, however,

y has a unique extension / : Z U I? -» C making the diagram above

commute.

Definition. Let M be the category of cocommutative Z-coalgebras
whose underlying additive group is of the form Z(l\ where card I < K0.

(N.B. All coalgebras are, by definition, coassociative and have a counit.)
If L is a f.g. Lie ring (i.e., a Lie ring whose additive group is f.g. free),

then its universal enveloping algebra is an object of Note also that dd

has a final object, namely, Z.

Proposition 12. There is an antiequivalence of categories säop $
given by A i-> A* Homz (A, Z) taking products to coproducts and final
objects to initial objects.

Proof: By Lemma 3, we know that Z** A (and, if B e obj Td, then
B** B). It remains to consider multiplication m: A ® A -> A. As A is

complete, we may regard m: A ]J A -> A. Write A qua groups.
Then Lemma 5 gives

AUA B* n B* (B* ®£*)A (B ®5)*
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whence multiplication may be viewed as a map m: -> B*. Thus
m* : B -> B ® B. This comultiplication is coassociative and cocommutative
(because m is associative and commutative). Finally, the unit u: Z -» A B*
yields a counit w* : B Z. Thus B A* e obj J*.

The rest of the argument follows as in [1; Chapter I, §13]; we merely
give notation and results.

Definition. Let G& denote the category of all group-objects in 3 (call
such objects formal groups over Z); let C$0 denote the category of all
cogroup-objects in $0.

Lemma 13. A g obj Csé ifand only if A is a commutative Hopf algebra
with A g obj $0\ Be obj Gkß if and only if B is a cocommutative Hopf
algebra with B e obj

N.B. (By Hopf algebra, we mean a Z-bialgebra with antipode.)

We may now state our version of Cartier duality.

Theorem 14. There is an equivalence of categories (C$0)op G3
implemented by A A* Homz (A, Z).

Proof : Precisely as in [1], using Proposition 12.

Let us now compare our result with that of Morris and Pareigis [5].
For a commutative ring k, they consider a category k-A\gpf defined as a
certain full subcategory of all commutative topological /^-algebras. When
k Z, this is their analogue of our category $0. In essence, a commutative
topological ring A Z-algebra) lies in Z-A\gpf if A lim Dh where

{Dhpl} is an inverse system with directed index set of discrete
commutative rings Dt that are f.g. free as abelian groups and the p{ are ring
surjections. There is further hypothesis on the inverse system, but suffice

it to say that our Z-algebras in $0 do lie in Z-A\gpf ; moreover, continuity
of every ring map in sé shows that $0 is a full subcategory of Z-A\gpf.
Since Z-A\gpf may contain algebras of cardinal larger than continuum,
$0 is genuinely smaller than Z-A\gpf.

In [2], Ditters gives a Cartier duality in which the analogue of $0 is

called Alz: its objects are all commutative topological Z-algebras that are

isomorphic to Z[ as a Z-module for some index set / (not necessarily

countable) and such that the topology on Z1 is the product topology (each

Z being discrete).
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Theorem 15. The category sé is a proper, full subcategory of the

category Z-A\gpf of Morris-Pareigis ; the category sé is a proper, full
subcategory of the category Alz of Ditters.
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