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EXTENSION AND LIFTING OF ^°° WHITNEY FIELDS

by Edward Bierstone and Pierre Milman

Whitney's Extension Theorem [10] provides a continuous linear extension

operator from the space of <6m Whitney fields (m< oo) on a closed subset X
of R", to the space of functions on R". For ^°° Whitney fields, however,
there does not in general exist a continuous linear extension operator [3].
Hence an extension problem arises: Efnder what conditions on X does

there exist a continuous linear extension operator from the space ê (X)
of #°° Whitney fields on X to the space S (R") of ^°° functions In fact
we can formulate a more general lifting problem (cf. [4, Section 7]): Let Tx :

<§ (Rw) S (X) be the canonical projection, associating to each ^°° function
its jet of infinite order on X. If E is a topological vector space, and G: E
-> S (X) a continuous linear map, then under what conditions is there a

continuous linear map G\E-*ê(R") such that the following diagram
commutes

(i)

^ #(R")
G, '
G

> g(X)

By a lifting of G at the point a e X, we will mean a continuous linear
map Ga\ E ë (RB) such that G (f) - Txo Ga (0 is flat at a, for all £ eE.
In this paper we prove that if E is a locally convex topological vector space,

then a lifting G of G exists provided that there exist pointwise lifts Ga : E
ê (R"), uniformly in a e X. The uniformity of the pointwise lifts is the

key ingredient in the proof, which is a simple argument using a Whitney
partition of unity, analogous to the proof of Whitney's theorem in the cêm

case (m< oo). Nevertheless the result is a useful technical lemma.
Corollary 1 extends Mather's variant of Borel's Lemma [4, Section 7]

to ^ Whitney fields on an arbitrary closed subset X of R". Corollary 2,
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together with the well-known extension of #°° functions defined on a half-
space [7], [6], provides a new proof of Stein's extension theorem for
functions on a domain with boundary which is Lipschitz of order 1 [8,

Chapter VI, Theorem 5]. Corollary 2 is also used by one of the authors in [1],
where Stein's theorem, for ^°° Whitney fields, is extended to the case of a
domain with boundary which is Lipschitz of any order, and this result is

applied to the extension of #°° Whitney fields from a semianalytic subset X
c= Rn which is the closure of an open set.

Notation. Our notation is that of [9, Chapter IV]. If k (ku kn)

e Nn, x (xl9 xn) e R", write | k | k1 + + kn9 k Î k1 kn

xk Xx1, x*nn. Nn is partially ordered by the relation: k < / if and only

if k, Write Q - if < Q 0 otherwise.

If £2 is an open subset of Rn, then ê (£2) denotes the space of ^°° functions
on £2. ê (£2) is a Fréchet space; its topology is defined by the seminorms

I / I

m SUp
xeK

\k\^m

0i*i/
XX ^

where me N and K a £2 is compact.
Let X be a closed subset of £2. A jet of infinite order on X is a sequence of

continuous functions F (.Fk) keNn on X. J (X) denotes the space of such

jets. Write \F\^ sup | Fk (x) |, and F(x) F0 (x), x e X.
xeK

\k\^m
There is a linear map J: S (£2) -> J (V), associating to each /e S (ß)

/Ô^f
I —7- X J For each k e N", there is a linear map D :

Usn"
k £7 / £p/c + I

MsN

a1*1/

ax'

fusion since Dk o J Jo Dk.

If ßel, m e N, F eJ (X), then the Taylor polynomial of order m of
F at a h the polynomial

T F(x)y Idfiix-af
\k\^m & '

of degree < m. Define RF F — J (T^i7), so that

the iet J f 1 — I w \ pqcIi i' /— lVP1 1e a linear- mar-» •
J w \ dxk

J (X)—k J (X), defined by DkF {Fk+l)lmn. We also denote by the

d'*1/
map of S (Ü) to itself, given by D / k

This should cause no con-
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(R";F)k (x) Fk (x)-£ — (x ~~a)

if I k I < m. Note that Dk o K"F{a) 0, | <
We say that Fe J{X)isa Whitney field of class on if for each

m e N, I A: I < m :

{RmxFf(y) o{\x-y\m-W)

as I x - y I -> 0, x, y e X. S(X) <= J denotes the subspace of Whitney
fields of class S (X) is a Fréchet space, with the seminorms

F\\* Im + sup
I (WOO!

x, \X-yr~W '

I k J

where m e N and K a X is compact.

Remarks 1. If Fe/ (0), and for all x e R", m g N, \ k\ < m we have

I (RF)k(y) I

lim jJT 0
^cij-*r~|/c|

then there exists f e S {Q) such that F J (/). This simple converse of
Taylor's Theorem shows, in particular, that the two spaces we have denoted

ê (Q) are equivalent. On ê (ß), the topologies defined by the seminorms
I ' I in || * ||

m are equivalent (by the Open Mapping Theorem).

2. The norms | • |* || • ||* are not in general equivalent. They are,
however, if the compact set K is connected by rectifiable arcs, and the

geodesic distance on K is equivalent to the Euclidean distance (e.g. if K is

convex) [9, Chapter IV, Proposition 2.6].

Theorem. Let X be a closed subset of RM, and E a topological vector

space, topologized by a family of seminorms || • ||Agyl. Let G : E -» S (X)
be a continuous linear map. Suppose thatfor each a e X, there is a continuous
linear map Ga: E -» ê (R") such that

a) Ga (Q* (a) - G (0k (a) for all Ç e E, k e Nn;

b) for each me N and LcR" compact, there exists X X (m, L) e A
and a constant c — c (im, L) such that for all Ç e E,

(2) I Ga(£)I J; < c(m, L) || £ || A(m_L).

Then there exists a continuous linear map G: E -» ê (R,r) such that G (f) | X
G {Ç), ç e E; i.e. the diagram (\ commutes.
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To state Corollary 1, let X be a closed subset of R", and F: S (Rk)

-> ê (X) a continuous linear map. As in [4, Section 7], we say F is null at
x eRk if there exists a neighbourhood U of x such that iff e ê (Rk) and

supp /c [/, then F (f) 0. The support of F is the complement of the set

of points where F is null. Clearly supp F is closed.

Corollary I. If F has compact support, then there is a continuous linear

map F: S QRk) ê (Rn) such that F(f)\X F (/) for all feE(Rk);
i.e. the following diagram commutes :

S (R")

Tx

S (Rk)

Proof. It suffices to assume X K, a compact subset of R'1. Let a e K.
Mather's variant of Borel's Lemma [4, Section 7] provides a continuous
linear map Fa: ê (Rfc) -> ê (R") such that F(f) ~ Tx o Fa (/) is flat at a,

for allf e ê (Rk). Let L be a cube in Rk such that supp F c= Int L. For each

re N, there exists s (r) e N and a constant c (r), such that for all a e K,

sup |J7(/)"t(a)|<|f(/)|f<c(r)|/||^r).
\k\=r

The uniformity condition (2) for the pointwise lifts Fa then follows from
Mather's estimates in [4]. Hence Corollary 1 follows from the Theorem,
with the pointwise lifts given by the maps Fa.

Remark 3. If Y is a closed subspace of Rk for which there exists

a continuous linear extension operator S Y) -> S (Rfc), then Corollary 1

holds more generally with S (Rk) replaced by S (F).

Corollary 2. Let X be a closed subset of Rn. Suppose that for each

a e X, there is a continuous linear map Wa : ê (X) — S (R") such that

a) Wa{F)k(a) Fk (a) for all Fe S (X) and ke N";

b) for each m e 1ST and L c Rn compact, there exists 2 2 (m, L)
e N, K K (m, L) c X compact, and a constant c c (m, L), such that

for all FeS (X),
U7 /Z7\ IL Ä || 17 |!Wa(F)\Lm<c\\FfK



— 133 —

Then there exists a continuous linear map W: i (X) -» S (R") such that

W (F) I X F for all Fei (X).

This extension result follows immediately from the Theorem, with G

given by the identity map of i (X).

Remarks 4. Corollary 2 may be used to prove Stein's extension theorem

[8, Chapter VI, Theorem 5] for ^°° functions. Let y </> (xl5 x„) be a

continuous function which satisfies the Lipschitz condition

(3) I f(x) - 4> (V) [ < M I x — x' 1

for all x, x' e R". We consider extension of ^°° Whitney fields from the

closed set

X {(x, y) g R"+1 \ y > f{x)}
Let r be the closed half-cone defined by y > M (jx^ +... + |x„|), and

let r (a) a + T for any ceR" + 1. The Lipschitz condition (3) implies

that r (a) ci X for any a e X. Since F is defined by linear inequalities,

Seeley's extension theorem [7] provides a continuous linear extension

operator S' : S (F) S (R" + 1). Let p: R'7 + 1 -> R be a compactly supported
^°° function which equals 1 in a neighborhood of 0. Define a continuous

linear operator S: i (T) ^ i (Rn + 1) by S (F) S'(p-F), F e i (r). The

operators Wa: i {F (a)) -* S (R" + 1), obtained by translating S to T (.a) for
each a e X, provide the pointwise extensions needed to apply Corollary 2.

5. Let ip be the ring of germs at 0 e Rp of functions, and m its

maximal ideal. Let <fi ' Rw Rp be a ^°° map such that <f> (0) 0. Then <p

induces a ring homomorphism (/)*:$ (Rp) i (R"), defined by <fi* (/)
/o 0, f e S (Rp). We also denote by 0* the induced homomorphism

(f)* : S in. We say (j) is finite at 0 if ijcf)* (m) • in is a finite dimensional
real vector space. Let bu bk e S (R") represent a basis of this vector space;
we take b1 s 1. By the Malgrange Preparation Theorem [9, Chapter IX,
Theorem 3.2], the germs of bu bk at 0 generate in over ip; i.e. for all

fei (R"), there exist gu gk e i (Rp) such that / Yj=i (dj) ' bj in
some neighborhood of 0. A careful study of Mather's proof of this result
([5, Section 6] or [9, Chapter IX, Section 3]) shows, in fact, that there exist a

neighborhood U of 0 in R", and continuous linear operators Gj \ i (R")
-»• S (Rp), j1,k,suchthat / (4>*oGj (/)) " in for all

fei(R").
Consider a ^ map 4>:R"-> R" such that <p (0) 0. Let X, X' be

closed subsets of R" containing 0, such that (f> (X') X. Suppose there is a
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continuous linear operator W': S (X') -> ê (Rn) such that g - Tx> o W (g)
is flat at 0, for all g e e (R-). If <fi is finite at 0, then there exists a continuous
linear operator W: S (X) -» ê (Rn) such that f — Tx o W (/) is flat at 0,

for all/e# (Rw).

To see this, choose bj e ê (R") and Gf. ê (Rn) ê (Rn), j — 1, k,
as above. Let W Gxo W'o </>*. That f-TxoW(f) is flat at 0,

/ e ê (R"), follows from the fact that for all g e S (Rn), the jets of Gj (g) at 0,

j 1, k, are uniquely determined by that of g (by [2, Proposition 5.2]).
This remark might be useful in constructing the pointwise extensions needed

to apply Corollary 2.

Proof of the Theorem. By an easy partition of unity argument, it suffices

to assume X K, a compact subset of R". Let { 1 / e / } be a Whitney
partition of unity on Rn — K (as in [9, Chapter IV, Lemma 2.1]); i.e. a

family of functions <Pt e ê (Rrt-7^) satisfying the following conditions:

i) { supp T>i I i e 1} is a locally finite family. If N (x) is the number of
supp T>i to which x belongs, then N (x) < 4".

ii) <£>i > 0 for all i e I. IieI <&i (x) ==: 1 for all x g Rn — K.

iii) 2d (supp K) > diam (supp <Pt) for all i e I.

iv) There exists a constant Ck, depending only on k and n, such that
for all x e Rn - K,

I Dk 0t(x) I < Ck 1 + n-r I1 lWI k\ X)1 '/
Let F G (Ç) e S (.K). For each i e /, choose a point ate K such that

d (supp <Ph K) d (supp at). Define / G (£) e ê (RM) by

/(x) F0 (x), xeK,
fix) - Y, 4>i(x)Gai(0(x), xtK.

iel

Then / G (Ç) clearly depends linearly on £, and is ^°° on R" - K. We

must show that/is ^°°, Dkf | K Fk, and that G is continuous. We write

fk(x)=Fk(x), xeK,
fk(x)Dkf(x),xfK.

Let meN,and L be a cube in R" such that K c: Int L. There is a constant

e?! (m, L) such that if g e S(L), | /c | < m, then
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(4) |(O)*(*)l<Cij0|»-|*-ar"IM
for all a, x eL (for example by [9, Chapter IV, (1.5.2)] and Remark 2 above).

Recall that a modulus of continuity is a continuous increasing function

a: [0, oo [-» [0, oo[ such that a is concave downwards and a (0) 0. By

[9, Chapter IV, Remark 1.8] there exists a modulus of continuity a such that

(5) I (RmaFf(x)I< a(|x —a|) • [x

if a, x e K, I k I < m ; and

(6)
a(t) a (diam K) if t > diam K

F II f + a (diam K)

It follows from (5) that if a, b e K, | k | < m, then

(7) \ Dk(T:F)(x) -Dk(T^F)(x)\
< 2m~en'2a(\a-b\) (|x -a\m~M + \x-b\m"|fc|)

for all x e R" [9, Chapter IV, Remark 1.7].

Claim. There exists a constant c2 c2 (m, L) such that if | k | < m,
a e K, x eL, then

(8) \fk(x) -DkoGa{f){x)
< c2 •(||<J|Um,L) + a(|x-a|))

Once the claim is established, the proof of the theorem may be completed
as follows. Let (/) be the multiindex whose j'th component is 1 and whose
other components are 0. Let k e N", a e K, x K. Then

\fk(x)-fk(a)-y I

< \fk(x) -DkoGa(0(x

+ \DkoGa (£) (x) -DkoGa (0 (a) - J - aj) o G0 (£) (a) |

j i

The second term in the right hand side is o (|jc— <ar|) since Ga (f) e S (R"),
while the first is o(|x-a|) by the claim. Hence fk is continuously differ-

entiable, and —L f^+U) _

8xj

Let psup d (x, K m e N, | kj < Applying the claim to a point
xeL

x eL and a point a eK such that d (x, K) d (x, a), we have
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I Dkf(x)\<\DkoGa (0(x)I + c2 • (I£||A(m>L) + a(ji)) • /T" W

< c |U I Hm,L) + c2nm' • (|| £|| À(miL) +1 G ||S

by (8), (6). Hence there is a constant c3 c3 L) such that

|G(S \Lm< c3 • (|C|U(„,,i.) +1 G(||S-
It follows that G is continuous.

Proof of claim. We may assume x $ K. Then

fix) - G,(ÖW y #,(*)'(G(.(ÖW - G„( ç) <x)).
iel

Hence

fk(x) — Dk oGaiO (x£ QSi (x),

where

S,(x) y Dl^i(x)-Dk~l(Gai(Oix)-Ga(9(x)).
iel

If a, b g K, I / J < m, write

G„(sj>) - Ga(0J'(S g„(ç)'(.V) - (r;oG,(()y(x)
+ (T; o Ga(£))J(x) - Ga(SJ'(x) + (TjO -
Since G'„ (f)J a).FJ (a), then

(9) 'G„lc)y<x) - G„(ç)J(x) |

<c1\Gbit)\Lm-\x-b \m~J I G0({) • I x - r~" I

+ 2m~ bl e"/2 a (|a -b\) • (|x —a(m_ 1/1 + \x-b\m~ m)

by (4), (7)

<(cc1\\H\\À(mM + 2m-^e">2a(\a-b\))-(lx-ar-W+\x-br-"t)
by (2).

To estimate | S0 (x) |, note that ifx e supp <Ph then | x — at \ < 3 | x— |

by iii), so that | a —at|< 4 | x —a|and a (|a— < 4a (|x —a|). Hence

I S0 (x) I < 4" (3"1" "I + 1) • (cc,Ie|| + 2m" I+ 2 e"/2 a (| |))

•| x - a

by i), ii).
Now consider | S, (x) |, I#0. For all b e K,

Si(x)I Dl4>i(x)-Dk-'(Ga.(0(x)



since I ieI Dl0t (x) 0. Choose b so that | x - b | d(x, K). As before,

then I x — at | < 3 | x — b | < 3d (x, K), | b — at | < 4d (x, K), a (|b — at|)

< 4a (d(x, K)). By (9) and iv), there exist constants c', cH depending only

on m, L, such that

I St(x) I < lc'\\t;\\x(nhL)+c»<x(d(x,X))]
1*1

^ (^'1 ^1 A(m,L)+c"oc (|x — a[)) • I —
' '

This completes the proof of the claim, and the theorem.
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