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§ 2 Relation with the classical notation

Throughout this section the base field is C.

2.1 Jacobians. I recall briefly the data associated with a nonsingular
projective curve C. We have two abelian varieties, the Jacobian variety
/(C) H1'0 (C)^/H1 (C, Z) and the Picard variety P° (C)
H0,1 (C)/H1 (C, Z). From standard dualities it turns out that P° (C) is

naturally isomorphic to the dual Jacobi variety / (C)A, and from Abel's
theorem it results that there is in addition a natural isomorphism
P° (C) / (C). Thus, we have associated with C a principally polarized
abelian variety that I will denote henceforth P° (C), 6C and will be called
the Picard or the Jacobi variety of C according to taste. If we visualize
P° (C) as the group of line bundles on C with Chern class zero, we are led

to introduce the family of sets Ph (C), where Ph (C) is the set of isomorphism
classes of line bundles with Chern class equal to he Z. Each of the sets

Ph (C) is a torsor under P° (C), i.e. is acted on by P° (C) in a simply
transitive way.

There is a natural embedding

C-+PX(C)

and it can be proved that this induces an isomorphism of P° (C)-torsors

(2.1.1) PicBP1 (C) (C)

where Pic0 P1 (C) is the set of line bundles P on P1 (C) belonging to 0,

and g is the genus of C (see next section 2.2). Observe that Pic0 P1 (C) is

properly a P° (C)A-torsor, but it becomes a P° (C)-torsor through the

polarization 9.

2.2 A simple formalism. Let X be an abelian variety, P and X-torsor
such that the group action X x P -» P be analytic. Then there are canonical

isomorphisms
1F(X, Z) ~ff(P,Z)
Hl{X9Oà ^ ff(P, Op)

and in particular
NS(X) ~ NS (P) Pic0 (X - Pic0 (P).

This is because the translations induce the identity both in H1 (X, Z),
H1 (X, OJ as it may be easily seen. Recall that the Néron-Severi group
of X (resp. of P) is the quotient
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NS(X) Pic (X)/Pic°(X

or also the kernel of the homomorphism

ff2(X,Z)-+ff2(X,0 x).
A

Now let 8: X -> Xbe a polarization, 8 corresponds naturally to an element

6 e NS (X), and the set Pic0 (X) of isomorphism classes of line bundles
A

on X belonging to 9is the coset of X in Pic (X) corresponding to 9 (cf. for
example, Mumford, Abelian Varieties). Thus, Pic0 (P) is well defined too,
since NS (P) and NS (X) identify.

Starting from (X, 9) and P we have the following situation. The set
A

Pic0 (P) is a torsor over Pic0 (P), but Pic0 (P) identifies naturally with X,
A

thus Pic0 (P) is an X-torsor. The following formula makes explicit this
A
X-torsor as tensor product (the natural operation between torsors over a

A A
fixed abelian group) of two other X-torsors, Pic0 X and the X-torsor

A A
P ®xX obtained from P through the extension of scalars 0: X -> X.

(2.2.1) Pic0(P) - Pic0 (X) ® (P®xX)

To have this natural isomorphism it is enough to define an X-equivariant
pairing Pic0 (X) x p -» Pic0 (P) and this is the obvious one: ifL e Pic0 (X),
p e P and if tp : X - P is the isomorphism tp (x) p + x, then the pairing
associates with (L,p) the line bundle (tp)* (L).

This isomorphism will be used in the next section.

2.3 Relation between 7.7, 1.2. Let C be a nonsingular projective
algebraic curve, (P° (C), 0C) its Picard variety with its principal polarization.
Then, the definitions of theta characteristics of 1.1, 1.2 applied respectively
to C, (P° (C), 0C) yield objects that identify naturally. Indeed, if follows
from (2.1.1) and (2.2.1) that for any he Z there is a natural isomorphism
of P° (C)-torsors.

Pic0 (Pft(C)) -P^-^C),
where g is the genus of C. In particular, we have isomorphisms

Pic0 (P°(C)) -P^C)
Pic20 (P°(C)) ~ P2g~2(C).

In the last one it is easily seen that the canonical bundle corresponds to
the unique totally symmetric bundle in Pic20 P°(C). As the symmetric
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bundles in Pic0 (P° (C)) are exactly the square roots of this totally symmetric
line bundle, it follows that S (C), S (P° (C), 6C) identify naturally. Moreover,

this identification is compatible with their structures of J2 (C)-torsors
and with the maps Q : S.(C) ->• Z/2Z, Q: S (P° (C), 6C) -> Z/2Z. This last

point follows easily from proposition 2 in § 2 of Mumford [4] and from
the theorem of Riemann (see Fay [2], theorem 1.1) stating that for a line
bundle LeP9~1 (C), the dimension of F (C,L) equals the multiplicity of
the theta divisor at the point L. (In fact, observe that the theta divisor as

an element of Pic0(P6r~1 (C)) corresponds to the canonical bundle on C

under the isomorphism Pic0 (P9-1 (C)) » p2^~2 (C).

2.4 Theta functions. Let (X, 9) be a principally polarized abelian variety.
There is a canonical isomorphism

X ~ H1>°(X)*IH1(X,Z)

and the principal polarization corresponds to a nondegenerate alternate
bilinear pairing

Q:H± (X, Z)xH± (X, Z) ^ Z

Let xl9xg, x'g be a symplectic basis for 6 on H1 (X, Z); then the

images of x[, xg in H1,0 (X)* constitute a basis for this C-vector space,
and let wu wg be its dual basis for H1,0 (X). In other words,

L wj su

Then the matrix t (tz7) defined by

L wj

belongs to the Siegel upper-half space of degree g9 i.e. % is symmetric and

Im (t) is positive definite. The choice of the symplectic basis sets an
identification

X ~ C9l(TZg® Zg)

We may now consider the classical theta functions (Igusa [3])

z) Y e [i(C+m)Tf(C + m) + (C + m)'(z + m*)]
SeTß

By the properties of these theta functions and through the preceding

identification, each 9mm*(t, -) defines a line bundle on X, and indeed an

element of Pic® (X) that is independent of (m, m*) e R2g mod Z2g. In this

way we get a bijection
Pic°(X) ^ R^/Z29
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It follows from formula (6. 1) in p. 49 of Igusa [3] that the subset of
Pic0 (X) defined by the symmetric line bundles on X corresponds to the

image in R2*/Z2* of^Z2*.
We finally see that the symplectic basis on H1 (X, Z) defines an

identification

s(x, e) ~(z/2Z)2*.

It is easy to see that this identification depends only on the symplectic

basis induced on
H1 (X, Z)/2H1 (X, Z) ~ if (X, Z/2Z),

and that it is compatible with the identification

X2 Ä H, (X, Z/2Z) =* (Z/2Z)2*
A

that the later basis defines and with the respective action of X2 on S (X, 6)

and of (.Z/2Z)2g on itself by translations.

2.5 Summing up. If C is a nonsingular projective algebraic curve of
genus g, there are two equivalent ways of defining the set of theta
characteristics, either directly as in 1.1, or through its Picard variety as in 1.2.

The set of theta characteristic is endowed with a simply transitive action
of the group J2 (C) and with a function Q : S (C) -> Z/2Z closely related

to the intersection pairing e on J2 (C). Also, we know that Q~1 (0) has

2g-i (29+l) elements and Q~1 (1) has 26r_1 (2^—1) elements. Indeed, there
is a third way of defining the set of theta characteristics, namely as the

set Q {J2 (C), e) of all quadratic forms g on J2 (C) whose associated
bilinear form is e; we saw in § 0 that on this set there is a structure of the

same type as in S (C), S (X, 0), and in fact S (X, 6) is clearly isomorphic

with Q (X2, e) ~ Q (X2, e).

Now if we choose a symplectic basis xl9 xg, x{,..., x'g for J2 (C),
the set S (C) identifies with (Z/2Z)2g. In particular, 0 e (Z/2Z)2g defines

a "base" theta characteristic. In terms of quadratic forms, this identification
corresponds to the one discussed in 0.5, in particular the base theta characteristic

is even (i.e. belongs to g-1 (0)) and it corresponds to the quadratic
form q0 defined by q0(xt) q0 (*•) 0. for i 1, ...,#. Looking at
S (C) as a subset of P9-1 (C), the base theta characteristic is nothing else

that the Riemann constant A in the non-intrinsic version of the Riemann
theorem referred to at the end of 2.3. (See theorem 1.1 in Fay [2] and its
corollary 1.5).
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