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Example. Let d be a square-free number > 1 and suppose d 2 mod 4

or d 3 mod 4. The 1) is an admissible Z-base of the ideal (1) in

oK for K Q (yfd). The quadratic form is given by

— u2d + v2

- J~d 1

and has discriminant 4d. The first root equals —-— — which
d Jd

is equivalent to yfd. (Take always the positive square root). The admissible

cycle of natural numbers is obtained by developing ^fd in a continued
fraction.

§ 3. Numerical invariants of singularities
and of Hilbert modular surfaces

3.1. Let X be a compact oriented manifold of dimension 4k with or
without boundary. Then Hlk (X, dX; R) is a finite dimensional real vector

space over which we have a bilinear symmetric form B with

B (x, y) (x u y) [X, dX], for x, y g H2k (X, ÔX; R),

where [X, dX] denotes the generator of HAk (X, dX; Z) defined by the
orientation. The signature of B, i.e., the number of positive entries minus
the number of negative entries in a diagonalized version, is called sign (X).
If X has no boundary and is differentiate, then according to the signature
theorem ([36], p. 86)

(1) sign (X) Lk(pu

where Lk is a certain polynomial of weight k in the Pontrjagin classes of
X with rational coefficients (pj e H*J (X, Z)).

Let TV be a compact oriented differentiate manifold without boundary
of dimension 4k — 1 together with a given trivialization a of its stable

tangent bundle. (Such a trivialization need not exist). We shall associate

to the pair (TV, a) a rational number ô (TV, a). Since TV has a trivial stable

tangent bundle, all its Pontrjagin and Stiefel-Whitney numbers vanish.

Therefore TV bounds a 4T:-dimensional compact oriented differentiable
manifold X. By the parallelization a we get from the stable tangent bundle

of X an SO-bundle over X/N. We denote its Pontrjagin classes by
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Pj e lW (X/N,Z). Then the element e HAk Z)
HAk(X, ôX; Z) is well-defined.

The number 3 (N, a) is defined by the following formula

(2) ö (N, a) Lk (pl9..., pk) [X, 8X] - sign (X)

Thus 3 (N, a) is the deviation from the validity of the signature theorem.

It follows from the Novikov additivity of the signature ([3], p. 588) that
3 (N, a) does not depend on the choice of X. If N is of dimension 2n — 1

(n odd), then we put 3(N, a) 0.

Remark. The invariant 3 (N, a) and similar invariants were studied

also by other authors (Atiyah [1], Kreck [48], W. Meyer [57], S. Morita
[59]). In [48] the invariant <5 (A, a) was calculated in several cases.

3.2. We now go back to 2.1. For a cusp of type (M, V) with isotropy

group © (see 2.1. (1)) we have a (2n— l)-dimensional manifold N which
is a T"-bundle over Tn~x (see 1.5). We can write (for a fixed positive d)

N ÔX, where X W(d) j ©, and

W(d) { z j z e §M, Yl Im (zj) ^ d}-
j= i

Here X is a (non-compact) complex manifold and is canonically
parallelized. Namely, it inherits the standard parallelization of §rt given by the

coordinates xu yu x„, yn (with zk xk + iyk). This parallelization is

respected by © if we use unit vectors with respect to the invariant metric
of S)n. Thus the stable tangent bundle of N has a canonical parallelization
a. We orient N by the orientation induced by the orientation of X. The
rational number 3 (N, a) is now defined. We associate it to the cusp and
call it 3 (®) or 3 (M, V) if © G (M, V). Observe that X cannot be used

for the calculation of 3 according to (2) because it is not compact. If one
compactifies X by adding the point oo, then one would get a compact
manifold X with dX N after resolving the singularity at oo. This manifold

X could be used to calculate 3.

We have associated a rational number 3 (©) to any "cusp" of type
(M, V) with isotropy group © where M is a complete Z-module of a totally
real field K of degree n over Q and V a subgroup offinite index of U^. If
V Um, we write 3{M) instead of 3{M, U^) 8(G(M9 Um))-

L'Enseignement mathém., t. XIX, fasc. 3-4. 15
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By definition, <5(©) 0 if n is odd

If we multiply M by yeK, then

ö (yM, V) sign N(y) • 8 (M, V)

where N(y) y(1) • y(2) •... • y(n). Namely, the map

Zj |-> yU) Zj{y)

with z/y) Zj if yU) > 0 and z/y) Zj if yU) < 0 induces a diffeo-
morphism of W (d) / G (M, V) onto W (| N (y) | • d) / G {yM, F) of degree

sign N (y) which is compatible with the parallelizations, and it follows
from (2) that the invariant changes sign under orientation reversal.

In particular, ô (M, V) 0 if there exist a unit e of K with sM M
and N (e) — 1.

Problem. Give a number-theoretical formula for <5 (M, V). This
problem can be solved for n 2:

Theorem. Let M be a complete Z-module of a real quadratic field
and [Um : V] a, then

(3) ô (M, V) — - [ — (b0 +bt + +br-.1) + 3r]

where ((60,..., i)) is the primitive cycle associated to M, (see 2.5).

Proof The torus bundle N bounds X which is obtained by resolving
the singularity oo of X u oo where X — W(d)/G(M,V). The boundary
of W(d) is a principal homogeneous space (1.5). Therefore the normal
unit vector field of the boundary (defined using the orthogonal structure
of the tangent bundle of$2 given by the invariant metric of §2) has constant
coefficients with respect to the parallelization of $2. The same holds for
the normal unit vector field of N SX. By a classical result of H. Hopf
we can extend the normal field to a section of the tangent bundle of X
admitting finitely many singularities whose number counted with the

proper multiplicities equals the Euler number e (X). Because this section
is constant on the boundary with respect to the parallelization, it can be

pushed down to a section of the complex vector bundle £ (fibre C2) over
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X/Ninduced from the parallelization of the tangent bundle of X. Therefore,

(4) e(X) c2(OlX,m

where ct (£) e H2'(X/N,Z)are the Chern classes. The equation (4)

follows from the definition of c2 (£) by obstruction theory.
We have ([36], Theorem 4.5.1)

Pi(0Ct (02 - 2C2 (f)

and, since Pi/3,

(5) 5 (M, F) ^ (0 [X, X] - sign (X)

^ (ci (02 [X, X] - 2e (X)) - sign (X)

By the theorem at the end of 2.5, the manifold X is obtained from

X u oo by blowing up oo into a cycle of ar rational curves. X has the union
of these curves as deformation retract. Thus

(6) e{X) =b0(X)-b1(X) + b2(X)

1-1-1- ar ar.

The intersection matrix of the curves is negative-definite :

(7) sign (X) - ar.

The cohomology class c1 (£) e H2 (X, N; Z) corresponds by Poincaré

duality to an element ze H2 (X, Z). Let us denote the rational curves of
the cycle by Sj (je Z/arZ). Then z must be an integral linear combination
of the Sj which satisfies

(8) z ' Sj Sj • Sj 2 (for ar ^ 2)

(80 z-S0-S0-S0+ 2 2 (ar 1).

This follows from the adjunction formula and the information given
in 2.4. Since the intersection matrix of the curves of the resolution has

non-vanishing determinant, the equations (8) are satisfied by exactly one
element z. We obtain that the first Chern class cx (£) corresponds by
Poincaré duality to
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ar- 1

(9) * I S;
j=o

r- 1

Since cx (£)2 [X, N] z- z — a ]T bj + 2ar, formula (3) follows

from (5), (6), (7).

3J. We shall define an invariant (p for certain isolated normal
singularities of a complex space of dimension n. In my Tokyo lectures the
invariant cp was introduced for n 2 and then generalized to arbitrary n

by Morita [59]. Let us first recall that the signature theorem (3.1 (1)) for
a compact complex manifold X can be written in terms of the Chern classes

(10) sign (X) Ln(cu...,cn)[X]

where Ln is a certain polynomical of weight n with rational coefficients

in the Chern classes of X, (ct e H21 (X, Z)). It is identically zero if n is

odd. Let ßn be the coefficient of cn in Lrt. If n is even (n 2k), then

n2k+l /^2k—l t>

do &, (-D'?—''.ui(2k) l

where Bk is the k-th Bernoulli number ([36], 1.3(7) and 1.5(11)). For
n odd, ßn 0.

An isolated normal singularity P of a complex space of complex
dimension n is called rationally parallelizable if there exists a compact
neighborhood U of P containing no further singularities such that the
Chern classes of U — {P} are torsion classes, i.e. their images in the

rational cohomology groups of U — {P} vanish. We may assume that
dU is a (2n— l)-dimensional manifold and U the cone over dU with P as

center. According to Hironaka [34a] the point P can be "blown-up". We

obtain a compact complex manifold U which has a boundary as differentiate

manifold, namely dU dU. The Chern classes ct of t/have vanishing

images in the rational cohomology of dU, thus can be pulled back to

classes cte H2i (U, dU; Q). The Chern numbers ch • cj2... cjs [U, dU]
where j\ + + js — n and s ^ 2 are rational numbers not depending

on the pull-back. Therefore, the rational number Ln (clf..., cn) [U, dU]

is well-defined if we replace in this expression cn[U,dU] by the Euler

number of U. The invariant cp of the isolated normal singular point P
is now defined by
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(12) q> CP) L„ (cu c„) [U, dU] - sign (CO

It can be shown (compare [59]) that q> does not depend on the

resolution. By definition cp (P) 0 for n odd.

For a cusp singularity of type (M, V) the invariants ô and cp coincide.

This follows from (4) with 2 replaced by n. The proof of (4) remains

unchanged for arbitrary n. Of course, X and X in 3.2 play the role of U

and U here.

How to calculate cp for a quotient singularity? Let G be the group of

p-th roots of unity where p is a natural number. Let qu qn be integers

which are all prime to p. Then G operates on CM by

(13) (z^...,zn)H>(r C* 1.1

and Cn/G is a normal complex space with exactly one singular point coming

from the origin of C".

Theorem. Let P be the quotient singularity defined by (p; qu qn)

where (p, qfi — 1 for all j, then

(14) „ (P)- "ef(P-") +
P-

P P

where

At, ^ -« V ,n(hJ <nq»J
(15) def (p;q1,...,qn)in^cot cotjiPis the cotangent sum arising from the equivariant signature theorem ofAtiyah-
Bott-Singer ([2], [3]) and studied in [38], [79]. Recall that for n odd the

cotangent sum (15), the number ßn and the invariant cp (P) all vanish.
The proof of (14) was given by Don Zagier and the author for n 2

using the explicit resolution of the singularity ([35], 3.4). For arbitrary n

see Morita [59] whose proof uses the equivariant signature theorem and
is similar to a proof in [1] concerning a related invariant. It would be

interesting to check (14) also for n > 2 by an explicit resolution. But,
unfortunately, these are not known.

For a quotient singularity P we put

nA, ,rDl rn,
ßn defG

(16) Ô(P)<p(P)
P P
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Observe that the ^-invariant in the sense of 3.1 (2) is not defined for a

quotient singularity because the boundary N of a neighborhood of such a

singularity is a lens space which in general does not admit a parallelization
of its stable tangent bundle. However, Atiyah [1] has defined ô (N, a)

by (2) if N is an arbitrary compact oriented differentiate (4k— ^-dimensional

manifold without boundary and a an integrate connection of the
stable tangent bundle of N:

The connection a is extended to a connection a for the stable tangent
bundle of X (the extension being taken trivial in a collar of N). Then the

Pontrjagin differential forms pt of a vanish near N and in (2) the value

Lk (j?i, ...,/7/c) is an integral over a form with compact support in X. Again
ô (N, a) does not depend on the choice of X. If one takes in the special
case of a quotient singularity for N the lens space and for a the connection
inherited from the flat connection on the Euclidean space R4fc :=> S4fe_1

(n 2k) then S (N, a) equals the number ô (P) in (16), (see [1]).
As an example, we calculate S (P) if P is the quotient singularity given

by (p; l9p— 1). Since p/(p— 1) [[2,..., 2]] with p — 1 denominators 2

in the continued fraction, the resolution ([35], 3.4) looks as follows:

where Sj • Sj — 2. The adjunction formula implies cx 0.

Thus

5(P)
P 3pP

Therefore

(17)
def(p; (p-l)'(p-l)

3pP
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Let us recall

(18) def (p; l,q) - def(p; 1, -q)
def (p; 1, #) def (p; 1, #') if qqf s 1 modp

To check the first equation (18) choose the quotient singularity (p\ 1, 1).

The resolution consists of one curve Sx with Sx - Sx — p. Therefore by
the adjunction formula c1 is represented by a homology class a • Sx with

a Sx • Sx — Sx • Si =2

~ 2rr, (^Z_2)2

P
Thus a and Ci2 [t/, dU] We get

1 l( (p-2)2 \ 2/3
- def (p ; 1, 1) - — 4 + 1 + ~—
P 3 \ p J P

-7-(/>-!)(/>-2)3p

which checks with (17) and the first equation of (18).

3.4. If r is a discrete irreducible subgroup of (PL J (R))M satisfying
the condition (F) of the definition in 1.5, then $>n/r has finitely many
quotient singularities and no other singularities. It is a rational homology
manifold, i.e. every point has a neighborhood which is a cone over a rational
homology sphere (in our case a lens space). For n 2k the signature of
§2fc/T can be defined using the bilinear symmetric form over H2k (§>2k/r; R)
given by the intersection number of two elements of this homology group.

In 9)2k we choose around each point z with | Fz | > 1 a closed disk
with radius e measured in the invariant metric and sufficiently small. Then

the image of these disks in §2fe/F is a finite disjoint union u Dz where
v= 1

zl9..., zs are s points in §2fc representing the s quotient singularities of
§>2k/r, each Dzv can be identified with the quotient of the chosen disk
around zv by the isotropy group FZv.

Let xu...,xt be a complete set of T-inequivalent parabolic points.
Choose open sets Uy as in the definition of 1.5 and denote their images
in S27r by DXv UjrXv. Then

(19) X s2*/r - Ô Du
v= 1 v- 1
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is a compact manifold with boundary whose signature (as defined in 3.1)

equals the signature of $)2kjr.

Theorem. Let T be a group of type (F) acting on $)2k. Then

(20) sign (§ 2'7T) X (z„) + X <Hxv)
v — 1 v — 1

where zl9 zs are points of 9)2k representing the quotient singularities of
§>2k/T and xl9 xt is a complete set of T-inequivalent parabolic points.
For the invariants ö (zv) see (16). Recall that the structure of each cusp
is determined by a group © Tx (see 2.1 (1)). The number ô (xv) is defined
as the number ô (©) introduced in 3.2.

Proof We first remark that sign (.9)lkjT) 0 if T operates freely and
$>2k/r is compact. This is a special case of the proportionality of $>2k/r
and (PiC)2*, see 1.2, and explains already why (20) does not involve a

volume contribution.
Let ct be the Chern classes of X and ct pull-backs to the rational coho-

mology of X/dX. Then the additivity of the signature and of the Euler
number and the validity of the signature theorem for the manifold obtained

by resolving all the singularities of the compactification of §>2k/T imply

(21) L2k(cu ~c2k) [X/dX] - sign XX <P (zv) + X (xv) 0
V=1 Val

where cp is defined as in 3.3. In L2k (cl9 c2k) we have to interpret
c2k [X/dX] as Euler number e (X). By § 1 (21)

e (X)J CO-X^2fc/r

The coefficient of C2k in L2k equals ß2k. Therefore by (21), (16) and

because cp (xv) ô (.xv), (see 3.3),

(22) sign X sign $2fc/T

L2k(c1,...,c2k^i,m)[X/dX]+ X à(z,)+ X <5CO
V 1 v= 1

where co [X/dX] has to be interpreted as J co

£2k/r
Let dt be the invariant differential form on 9)2k representing the

z-th Chern class in terms of the invariant metric of §2/c. In fact d-t is the
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1 dxj A dyj
i-th elementary symmetric function of the forms (Dj — 2

Z7i yj
(see 1.2). The form L2k (dl9..., d2k) is identically 0, because it is a symmetric

function in the 00
2 which vanish. Recall that d2k co. By (22) it remains

to show that

(23) ~ch.~~cJê[XldX]= j dh...djs
%2k/r

for j\ + + js 2k and s ^ 2. In the neighborhood of a parabolic

point (transformed to 00) we write

1 dxj
CD: dtt: With 0C: — -J J J 2% yj

The form ocj is invariant under the isotropy group of the cusp. In the

neighborhood of zve$$2k we introduce in each factor of $p2k geodesic

polar coordinates rp cpj with

(24) (Dj sinh (r,) drj a dcpj
2ii

(Dj — doij, where a • (cosh (ry) — 1) dcpj
2%

The form ocj is invariant under the isotropy group TZv. Take compact
manifolds X'" c= X" a X' c: X all defined as in (19) and each a compact
subset of the interior of the next larger one. We may assume that all the

otj are defined in 9)2k/r — X'". Choose a C00-function p which is 0 on
X" and 1 outside X'. Then pocj is a form on 9)2kjr minus singular points.
The form 00j — d (pocj) has compact support in X. Thus the elementary
symmetric functions in the cdj — d (pocj) represent the ci and the left side

of (23) becomes also an integral over &2k/r. Recall that the dt are the

elementary symmetric function in the coj. By Stokes' theorem the difference
of the two sides of (23) is a sum of expressions

(25) lim j otj a cd1 a a coj a a oo2k
8DX

(26) lim j A CD :

where the limit means that the neighborhoods DXv and Dz become smaller
and smaller, (the number d in 1.5 (16) converges to 00, the radii of the
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discs converge to zero). The form in (25) is invariant under the isotropy
group of xv in the whole group (PL 2 (R))2fc. Therefore, the integral equals
a constant factor times the (4k — l)-dimensional volume of dDXy.

But this volume converges to zero. In (26) for the limit process the

integral can be extended over the boundary of a cartesian product of 2k
discs of radius r divided by FZv. Let Wr be this cartesian product
divided by FZv. Then

I TZv I • J OLj A CÛ± A A COj A A C02k (cosh (r) — l)2kv
dWr

which converges to zero for r -> 0.

3.5. Suppose a cusp is of type (M, V), see 2.1. For n > 1 Shimizu

([71], p. 63) associates to the cusp a number w (M, V) which depends only
on the strict equivalence class M and the group V c U^'

Let (jßjS„) be a base of M. We define

d(M) I det (ßiU)) |.

Consider the function

T CK* T/ ^ v(27) L{M, V,s)£ I

peM — {0} IV I 2V(/x) I

where N(/r) /i(1) • /r(2) •... /r(n). (The summand in (27) does not change

if fi is multiplied with a totally-positive unit. Therefore, it makes sense to
sum over the elements of M — { 0 } / V.) The function L (M, V, s) can
be extended to a holomorphic function in the whole s-plane C. Shimizu
defines

(28) w(M, V)kTL—d(M). L(M, V,1)(2n)"We conjecture that also the invariant ô (©) (see 3.2) depends only
on the pair (M, V). This is clear for n 2. In 3.2 we have defined
5 (Af, V) 3 (©) if (5 G (M, V).

The two invariants 3 (M, V) and w (M, L) have similar properties.
For example, both vanish if there exists a unit s of negative norm with
sM M. Is there a relation between them? A guess would be, I hesitate

to say conjecture,

2" w(M, V) S(M,V)
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This would imply that w (M, V) is always rational. Even this is not

known in full generality. However, if M is an ideal in the ring of integers

of K, the number w (M, V) is rational. (As Gundlach told me this can be

deduced from his paper [24].)
The equation is true for n — 2 as we shall see. This was the motivation

for Atiyah and Singer to try to relate the invariant <5 to T-functions of
differential geometry (Lecture of Atiyah at the Arbeitstagung, Bonn 1972).

Compare the recent results of Atiyah, Patodi and Singer.

Theorem. Let K be a real-quadratic field, M a complete Z-module in

K and V c U^. Then

(29) 4 w(M, V) ô (M, V).

"Proof Curt Meyer [55] has already studied w(M, V) in 1957. He
expressed it in elementary number-theoretical terms using Dedekind sums.

It turns out that ô (M, V) as given in (3) equals Meyer's expression. This
will be shown in [42]. Meyer's formula can be found explicitly in [56] (see

formulas (6) and (11)) and in Siegel [75] (see formula (120) on p. 183).
For more information on the number theory involved we must refer to
[42].

3.6. For a non-singular compact connected algebraic surface S the
arithmetic genus is defined:

x(S) l - 0i + g2,

where gj is the dimension of the space of holomorphic differential forms
of degree j on S. In classical notation gx q and g2 pg. The first Betti
number of S equals 2gv The numbers gj are birational invariants. Therefore

we can speak of the invariants gj and of the arithmetic genus of an
arbitrary surface possibly with singularities meaning always the
corresponding invariant of some non-singular model. We have ([36], 0.1, 0.3)

(30) xOS) 2(c2 + C2)[lS]

\{c2 [S] +1-[5]),
(31) X(S) ^(e(5) + sign (5)),
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where e (S) is the Euler number and sign (S) the signature of S. Thus the
arithmetic genus is expressed in topological terms, a fact which does not
hold in dimensions > 2.

Let F be a discrete irreducible group of type (F) acting on §2 (see

1.5). The compactification of $2/r is an algebraic surface. A non-singular
model S is obtained by resolving the quotient singularities and the cusp
singularities. Then S is a union (glueing along the boundaries) of a manifold

X like (19) and of suitable neighborhoods of the configurations of
curves into which the singularities were blown up. For every manifold in
this union we consider the expression \ (Euler number + signature). A
quotient singularity has a linear resolution ([35], 3.4) and therefore for
the neighborhood i (e + sign) J, a cusp singularity has a cyclic resolution

and therefore J {e + sign) 0 by (6) and (7). The signature and the
Euler number behave additively and thus in the notation of (19)

X(S)=1- (e(X) + sign(U)) +

Since c($2/T) e(X) + we get

(32) x (S) I (e (£2/r) + sign ($2/T))

Using the formulas for e (§2/F) (see § 1 (21)) and sign (H2/T) (see 20))
we obtain

(33) X(S) =- J ©
4 62/r

+ t 3
(<5 (zv) + (I rZv I -1) : I rZv I) + y Uxv)

v — 1 4 v=i 4

We have proved the following theorem.

Theorem. Let T be a discrete irreducible group of type (F) acting on

§2. Then the arithmetic genus of the compactification 9)2jF can be expressed

by topological invariants of $>2/F: Four times the arithmetic genus equals
the sum of the Euler number and the signature of §)2/r. The arithmetic

genus is also given by (33) in terms of the Eider volume and contributions

coming from the quotient singularities and the cusps.
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Instead of x (S) where S is a non-singular model for $2/T we shall

write x 052AO or simply x CO- Shimizu ([71], Theorem 11) calculated

the dimension of the space Sr(r) of cusp forms of weight r. A cusp form

of weight r is defined on §2 by a holomorphic form a (z) (dzx a dz2)r

invariant under F which vanishes in the cusps. If r is a multiple of all

|T |, then the Shimizu contributions of the quotient singularities are

independent of r and are exactly the contributions which enter in (33).
<5 (*v)

By (29) Shimizu's cusp contributions are exactly the ———. Therefore,

we can rewrite a special case of Shimizu's result in the following way.

Theorem. The assumptions are as in the preceding theorem. Let r ^ 2

be a multiple of all the orders of the isotropy groups of the elliptic fixed
points (quotient singularities). Then

(34) dim Sr(r) (r2 -r) • J co + x (O
%2ir

Hence the arithmetic genus of §>2/T appears as constant term of the
Shimizu polynomial (compare [15], [26]).

Lemma. Let T be a discrete irreducible group of type (F) acting on

9)2. The invariant g1 of the algebraic surface §)2/T vanishes. The number

g2 (§2/0 equals the dimension of the space (1) of cusp forms of weight 1.

"Proof". For gu see ([14] Teil I, Satz 8) and [26]. For the result
on g2, we have to show that any cusp form of weight 1 can be extended
to a holomorphic form 6 of degree 2 on the non-singular model obtained

by resolving the singularities of £>2/F. A priori, we have a holomorphic
form 0 of degree 2 only outside the singularities. It can be extended to the
resolution of the quotient singularities ([14], Teil I, Satz 1).

^ ^ • duk a dvk
For a cusp singularity the form does not depend on the

ukvk
coordinate system (see 2.2 (5)). The form 6 is a holomorphic function

duk a dvk
f(uk, vk) multiplied with This follows from 2.3 (9) and the

ukvk
remark in 2.5. It is a cusp form if and only if f{uk, vk) is divisible by
ukvk. Therefore, 9 can be extended.

By the lemma we have



— 234 —

(35) X(n= I+g2 ($>2IO 1 + dim Gr (1)

The group f operates also on § x where is the lower half
plane of all complex numbers with negative imaginary part. Since §2 and

§ x are equivalent domains, our results are applicable for the action
of r on $ x 9)~. The map (zl9 z2) (zl9 z2) induces a homeomorphism

(36) K:$2/r->(§x§-)/r
It follows that r (as a group acting on $ x $") is also of type (F).

Because k is a homeomorphism, the Euler numbers of (§x$")/r and
§>2/r are equal. Since k is orientation reversing, we have

(37) sign (§x$")/r - sign §2 / r
We have denoted the arithmetic genus of §2/T by % (T) and shall

put x~ CO for the arithmetic genus of ($x$")/r. By (32), (35) and (37):

(38) X CO - (O dim Sr (1) - dim (1) \ sign $2/r,

where (1) is the space of cusp forms of weight 1 for T on § x

Remark. The quotient singularities of 5)2/r are of the form (r; 1, q).

Any such singularity corresponds under k to a singularity (r; 1, — g). A
cusp singularity of type (M, V) goes over into one of type (yM, F) where

A (y) — 1. Therefore (37) agrees with (20): all contributions coming
from the singularities change their sign.

3.7. Let G be the Hilbert modular group for a totally real field
K of degree n over Q. The parabolic points are exactly the points of
PXK where VXK is regarded as a subset of (PiR)n by the embedding

(x(1), x(2),X(n)). The group G acts on P^. The orbits are in one-
to-one correspondence with the wide ideal classes of (two ideals a, h

are equivalent if there exists an element yeK(y^0) such that ya b).

mIf — e P^ (with m,ne oK) represents an orbit, then a (m, n) represents
n

the corresponding ideal class. Thus the number ofparabolic orbits (cusps)
equals the class number h of K. As in ([75], p. 244) we choose a matrix

(39) A "), mv — nu 1, u, v e a~1.



A simple calculation shows that

(40) A-1SL2 (ok) A SL2 (ok,

where, for any ideal h c= oK, we set (compare [31])

(41) SL2 (ok, b) { (5 5) J «5 -by l,aeoK,<5eox, ß eb"y 6Ï)}

vn
Instead of studying the cusp of G at —, we can consider the cusp of

n

SL2(ox, a2)/{l, —1} at oo. Its isotropy group is

{(ôi7«)leeC/>ea~2}/{1»~1}
{ (<f 1) I seU,wea~2}=G(a~2,U2), see 2.1.

m
Thus the cusp of G at — with m,neoK and (m, n) a is given by

n

the pair (a-2, U2).

The extended Hilbert modular group G (see 1.7) has the same number

of cusps (we have (P^/G (PiK)/G). They are given by (a~2, U+).
Let C be the ordinary ideal class group (i.e., the group of wide ideal

classes of oK) and C+ the group of narrow ideal classes of (with respect
to strict equivalence : a, h are strictly equivalent if there exists a totally
positive y e K with -ya b). Then a a-2 induces a homomorphism

(42) Sq : C C+.

Both G and G have h cusps (h | C\ h(K)). The corresponding
modules are the squares in C+, each module occurs k times where k is

the order of the kernel of Sq and is a power of 2.

3.8. We consider the Hilbert modular group G and the extended

group G for K Q (yfd) with d as in 1.4. The cusp singularities of 9)2jG

and §2/(j are in one-to-one correspondence with the elements of C. They
admit cyclic resolutions. To resolve the cusp belonging to aeC we take
the primitive cycle ((b0, bl9br-±)) associated to Sq (a) e C+ (see 2.5).

This is already the cycle of the resolution if we consider the group G. For
G the cycle of the resolution is ((Z?0, bu ^r-i))c where c | U+ : U2 |.

The cusp at oo ^ e P^ has the module oK. For d 2 or 3 mod 4

the corresponding primitive cycle is the cycle of the continued fraction
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for y/'d (see 2.6). For d 1 mod 4 it is the cycle of
1 +

\ye list
2

these primitive cycles for those d in the table of 1.7 for which does not
have a unit of negative norm. Also the values of <5 (oK) (see 3.2 (3)) and
of the class numbers h (K) are tabulated. If K has a unit of negative norm,
then ô (oK) 0.

d cycle of 0K S(0X) h{K)

3 ((4)) l
3

1

6 ((2, 6)) 2
3

1

7 ((3, 6)) - 1 1

11 ((2, 2, 8)) - 1 1

14 ((4, 8)) - 2 1

15 ((8)) 5

3

19 ((2, 3, 2, 2, 3, 2, 10)) - 1 1

21 ((5)) 2
3

1

22 ((4, 2, 2, 2, 4, 10)) - 2 1

23 ((5, 10)) - 3 1

30 ((2, 12))
8

3

31 ((3, 2, 2, 7, 2, 2, 3, 12)) - 3 1

33 ((2, 3, 2, 7)) 2
3

1

34 ((6, 12)) - 4 2

35 ((12)) - 3 2

38 ((2, 2, 2, 2, 2, 14)) - 2 1

39 ((2, 2, 2, 14))
8
3

2
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3.9. In the next sections we study the signatures of §2/G and §>2/G.

Because of (32) this gives also the arithmetic genera % (G) and % (G).

Theorem. If K Q (sjd has a unit s of negative norm, then

(43) sign§2/G 0, X(G) ^(§2/G).

Proof The actions of G on $2 and are equivalent under

(zl9 z2) h> (ezl9 s'z2), (we choose s positive). The formula (43) follows
from (37) and (32).

The following lemma is a corollary of the theorem in 3.4.

Lemma. If K does not have a unit of negative norm, then

(44) sign §2/G y <5 (zv) + 2 £ <5 (Sq(a)),
v— 1 aeC

(45) sign §>2/GX <5(zv)+ y 5 (Sq(a)),
v=1 aeC

Where the points zv and zv represent the quotient singularities of $>2/G and

$2/G respectively.

The contribution of the quotient singularities in (44) can be calculated

using [61], (see 1.7). In [61] not only the orders of the quotient singularities
of <o2/G are given, but also their types (r;q1,q2), see (13). Since

def(2; 1,1) 0 (see (17)), we only have to consider the quotient
singularities of order r ^ 3. For d fé 0 (3) the singularities of order 3 occur
in pairs, one of type (3; 1, 1) together with one of type (3; 1, —1). Therefore,

their contributions cancel out.
If d is divisible by 3, but d ^ 3, we have

(46) «3 (G) - 5h (Q (7 - d/3)) for d s= 3 mod 9

a3 (G) 3/z (Q (7 — d/3)) for d 6 mod 9

4
In the first case - of the singularities are of type (3; 1, 1), the others

of type (3; 1, -1), in the second case all are of type (3; 1, 1). Therefore,
in both cases their contribution in (44) equals (see (17)):

L'Enseignement mathém,. t. XIX, fasc. 3-4. 16
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.3h (Q (V - dl3))• Idef (3 ; 1, 1) ~\h(Q (J^dß

For d —3 there are two singularities of type (3; 1, 1) and one of type
(6; 1,-1):

2 10 1

d 3 => sign)?) /G - 2.- + 2.- 0
9 9 3

We have proved:

Theorem. If KQ {sjd) does not have a unit of negative norm, then

(47) sign §>2/G 2^5 Sq(a))for 0 mod 3

aeC

sign §)2/G 0 for d — 3

sign§>2/G ~\h(Q {J-<f/3)) + 2 £ <5 (&/(a))
3 aeC

for d 0 mod 3, d > 3.

The group C+ of narrow ideal classes contains the ideal class 0

represented by the principal ideals (y) with N (y) < 0. If 6 is a square, then

(48) 2 £ S(Sq(a)) £ ô(Sq(a)) + X Ô (Sq(a)0) =0
aeC aeC aeC

0 is a square if and only if d is a sum of two squares [25] which happens

if and only if d does not contain a prime 3 mod 4.

In the contrary case, £ <5 (Sq(a)) < 0, see [27].
aeC

Theorem. Let G be the Hilbert modular group for K Q (-sfd).
Then sign 9)2jG 0 if and only if d 3 or d does not contain a prime

3 mod 4. In all other cases, sign9)2jG < 0.

If the class number of K equals 1, then £ 5 (Sq(a)) — 5 (ioK). If the
aeC

class number equals 2 and 6 is not a square in C + then C'v is a product
of two cyclic groups of order 2 a,nd £ ô (Sq (,a)) 2<5 (oK). Using the

aeC

tables in 1.7 and 3.8 we have now enough information to calculate the

arithmetic genera % (G) for d ^ 41. The class numbers h (Q — <7/3)) which

we need for d 3, 6, 15, 21, 30, 33, 39 are 1, 1. 2, 1, 2, 1, 2.
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d e (£2/G) sign &2/G x(& d e sign (§>2/G) x(0
2 4 0 1 22 16 -4 3

3 4 0 1 23 18 -6 3

5 4 0 1 26 20 0 5

6 6 -2 1 29 8 0 2

7 6 -2 1 30 24 -12 3

10 8 0 2 31 22 -6 4

11 10 -2 2 33 6 -2 1

13 4 0 1 34 24 0 6

14 12 -4 2 35 28 -12 4

15 12 -8 1 37 8 0 2

17 4 0 1 38 28 -4 6

19 14 —2 3 39 40 -12 7

21 6 -2 1 41 8 0 2

Estimates as in [40] and [42] show that x (G) 1 onty f°r finitely

many d. Are those in the table the only ones? If d is a prime p, then

x(G) 1 if and only if p 2, 3, 5, 7, 13, 17 (see 3.12).

The values for sign §>2/G are also of interest because (see (38))

(49) dim SG (1) — dim SG(1) — -sign$)2/G

Thus dim 6G (1) ^ dim 0G (1), where the inequality is true if and

only if d is greater than 3 and divisible by a prime p 3 mod 4.

3.10. In view of the preceding theorems it is interesting to calculate

£ ô (Sq (a)). This was done in [27] for any d using the relation to L-series
aeC

as explained in 3.5. If d is a prime 3 mod 4 the result is especially simple.

Theorem. Let p be a prime 3 mod 4 and p > 3. Then, for
K Q 0sfp X we have

(50) £ S(Sq(a)) -h{-p)
aeC

Proof. The formulas (27), (28) and (29) imply ([71], p. 69)

(51) Z ô(Sq(a))
aeC 71
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Here % is the unique character with values in { 1, — 1 } which is

defined for all ideals in oK, depends only on the narrow ideal class and
satisfies % ((a)) sign N (a) for principal ideals (a).

The function

l(sy)y 1
,X)

a an ideal | N (a) |5
in ox

can be written as a product

(52) L(s,x) L_4(s)L_p(s),

where L_4 and L_p are the L-functions of QÇJ — 4) and Q (a/ — p)
over Q. The product decomposition (52) belongs to a decomposition of
the discrimant 4p of K, namely 4p — 4) (—p), and / is the genus
character corresponding to it ([75], p. 79-80). Evaluating (52) for s 1

implies by a classical formula ([6], F § 4, p. 369)

L{1,x) =^4->l2h(-4).^p-^

and this gives (50).
The formula (50) establishes an amusing connection between continued

fractions and class numbers. Ordinary continued fractions

1

4 1

+ —
a2 +

will be denoted by [a0, au a2,...]. Let p be a prime 3 mod 4. Then

([60], §§24-26)

(53) Jp [a0,aua2, ...a2s], at ^ 1,

where a0 [>//>] and a2s 2a0. The bar over au a2y..., a2s indicates

here the primitive period. The continued fraction development for y/p
which we needed for the resolution is of the form
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^/p=a0 + l— — 1 [K + 15 ^05 br-i]]>
b 0 ~~ t~b 1 •

where the bar indicates again the primitive period. The primitive cycle

((60, 6r-i)) looks as follows:

((2, u2 + 2, ^...,2, u4 + 2, ^^2, a2s + 2))

af-1 ap-l «2s-l~ 1

This is shown by an easy calculation (see 2.5 (19)). For K Q (^/p")

the signature deviation invariant <5 (oK) is defined (see 3.2 (3)). We have

(54) - 3(5 (oK) - £ (bi-3) - £ (-1)^-
i=o j= 1

By (50) and (53) we get:

Proposition. Let p be a prime 3 mod 4 and p > 3. Suppose that

the class number of K Q (a//F) equals 1. 77z£/?

(55) E'C-lVflj - 3Ä(-p)
J=i

where (au a2, a2s), ß2S 2 [\/p]» ^ ^ primitive period for the

ordinary contained fraction development (53) of yfp

Example, p 163, h(K) 1

^fÏ63 [12, 1, 3, 3, 2, 1, 1, 7, 1, 11, 1, 7,1, 1, 2, 3, 3, 1, 24]

3 A (-163) 3-1

-1 + 3-3 + 2-1 + 1-7+1-11 + 1-7+1-1+2-3 + 3-1+24

For further information on these and more general number theoretical
facts see [42].

3.11. The theorem in 3.10 enables us to give very explicit formulas

for the signatures of ?>2/G and Sy2jG in terms of class numbers of imaginary

quadratic fields if K Q {-Jp and p a prime 3 mod 4. (For the other
primes the signatures vanish).
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Theorem. Let p be a prime 3 mod 4 and G the Hilbert modular

group (G the extended one) for K Q (Jp Then

sign §>2/G 0 for p 3

(56) sign$2/G — 2h(—p) forp > 3

sign§>2/G 0 for;; 3 mod 8

sign9)2/G — 2h(—p) forp 7 mod 8

Proof The first two equations follow from (47) and (50). For p > 3

the quotient singularities of order 3 in $2/G occur again in pairs (3; 1, 1),

(3; 1, — 1) and cancel out in (45). For p > 3 and p 3 mod 8, there are

h(—p) singularities of type (4; 1, 1) and 3h(—p) singularities of type
(4; 1,-1). For p 7 mod 8 there are 2h(—p) singularities of type
(4,1,1), see [61].

The sum of their contributions in (45) equals (see (17))

def (4; 1, -1)
2h (—p) — h (—p) for p 3 mod 8

def (4; 1,1)
2h —p) — h (—p) for p 7 mod 8

By (45), sign §2\G ± h(-p) - h(-p).
It remains to consider the case p 3. We have 3 quotient singularities

of order 2, there are 3 others of type (4; 1, —1), (3; 1, 1), (12; 1, 5). By
Dedekind-Rademacher reciprocity ([38], (36)) and because def (5; 1, 12) 0

(see (18))

def (12; 1, 5)
_ 1

144 + 1 + 25
_

1

12 180 18

Therefore (see (17) and 3.8):

12 1 1

p — 3 => sign 9)1G — 1 0F 2 9 18 3

3.12. For any prime p we know the Euler numbers and the signatures

of &2/G and $>2IG. Using 1.6 (21), 3.6 (32) and the theorem of 3.11 we

can write down explicit formulas for the arithmetic genera x (&) and

i (G).
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Theorem. Let p be aprime KQ p Let G be the Hilbert modular

group for K and G the extended one. Then

l{G) 1 for 2,3,5

X(G) 1 for 3

For p >5 we have

X(G) + h-^^- + \h(-3p) forp= 1 mod 4

X(G) UK(-l) + -h(-p) +1A (-12/0 for p s 3 mod 8
2 4 o

X(G) kt(-i) + ^A(-12/>) for/> s 7 mod 8
2 6

X (G) ~ U(-1) + ^ A (-/>) + l-h(- 8p) + 2 A (- Up) for p s 3 mod 8

X(ö) -XA-Ï) + \h(-%p) + L-h{-\2p) forp 7 mod 8
4 o 12

The formulas at the end of 1.3 imply

1 1 D3^2

2Ck(-1) -.n-*D3K/2CK(2)>-7Î-4D^2C(4) ^
It is easy to deduce from this estimate that % (G) 1 if and only if

p 2,3, 5, 7,13,17 and (for p m 3 mod 4) x (G) 1 if and only if
p 3,1. Because of (38) and (56) we also know the arithmetic genera

of (§ x $~)/G and (§ x §>~)/G (p 3 mod 4). They are equal to 1 if
p 3, and both different from 1 if p > 3.

§ 4. Curves on the Hilbert modular surfaces
AND PROOFS OF RATIONALITY

We shall construct curves in the Hilbert modular surfaces. They can
be used to show that these surfaces are rational in some cases and also

for further investigations of the surfaces ([41], [42]). Such curves were
studied earlier by Gundlach [23] and Hammond [25]. We need information
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