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for every sequence (y„) satisfying (2.4) the series

Z»eNynKx„ (2.14)

is normally convergent in E; and

/*(*) oo (2.15)

for every sum x of the series (2.14).
In the sequel we shall denote by ll(N) the set of sequences (Xn) satisfying

(2.13).

Proof. Define by recurrence a strictly increasing sequence (kn) of
positive integers, taking ki to the first k e N such that fk(xk) > l3 and

kn + 1 to be the first ke N such that k > kn and fk(xk) > (/z+1)3. Then

apply 2.1 and 2.2 with xn and fn replaced by n~2 xk and fk respectively.
n n

This furnishes at least one strictly increasing sequence (nv) of positive
integers such that (2.4) entails that the series

ZveN Tv«v~2 Xk (2.16)
V

is normally convergent in E and that (2.15) holds for every sum x of (2.16).

It thus suffices to define Xn to be n~2 when n kn for some v e N and to

be zero for all other ne N; it is obvious that (2.13) is then satisfied.

§ 3. The construction when E is sequentially complete

3.1 In this section we assume merely that E is a locally convex space
which is sequentially complete. Again P will denote a set of bounded

gauges on E, and /* will denote its upper envelope. Suppose given

sequences (xn) in E and (/„) inP such that (2.1), (2.2") and (2.3) are satisfied.

Then the conclusion of 2.4 remains valid.

Proof. Consider the continuous linear map T of ll{N) into E defined

by
TZ Y**NZnXn.

Evidently, xn Tan for suitably chosen ocn such that {a„ : ne N} is a bounded
subset of Z1^). It therefore suffices to apply 2.4 with E replaced by

l\N), xn by a„, and /„ by /„ o T.

The following corollary will find application in §§ 5 and 6 below.
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3.2 Corollary. Suppose that H is a Hausdorff topological linear

space and that {EßieI is a family of linear subspaces of H such that

(i) Et is a Banach space relative to a norm || • ||f and the injection

Et -> H is continuous.

Let ê n {Ei : i e 1} be topologised as a topological linear space by

taking a base at 0 in ê formed of the sets {xei : sup^j jj x ||f < s},
where s ranges over positive numbers and J over finite subsets of I. Let

E be a sequentially closed linear subspace of ê and (fn)neN a sequence of
bounded gauges on E, and write /* for the upper envelope of (fn)neN.

Suppose finally that (.xn)neN is a sequence of elements of E such that

(ii) f*(xn) < oo for every ne N;

(iii) sup„eA, j] .v„ |]; < co for every i e 7;

(iv) sup nENf„(xn)oo.

The conclusion is that, given real numbers ß > a > 0, a sequence
(Âi)neiv G /+( A0 may be constructed such that, for every sequence (y„)neN

satisfying (2.4), the series (2.14) is normally convergent in E to a (unique)
sum x satisfying (2.15).

Proof. In view of 3.1, it will suffice to verify that ê (which is obviously
locally convex) is sequentially complete and Hausdorff. The latter property
is evidently present. As to the former, suppose that (y„)neN is a Cauchy
sequence in S. Then, by definition of the topology on <f, (y„) is Cauchy
in Ei for every z g I. Hence, by the first clause of (i), (yn) is convergent in
Ei to a limit y(i) e Ev The second clause of (i), plus the fact that H is

Hausdorff, entails that there exists y e H such that y(i) y for every i e I.
Accordingly, yei; and, since lim,^^ y(0 — y in Ei for every i e /,
lim^^^L, y in S. This shows that S is sequentially complete.

3.3 Remarks. (1) If the elements of P are seminorms (rather than
merely gauges), we may everywhere permit (yn) to be a sequence taking
values in the (real or complex) scalar field of E, replacing (2.4) by the
condition

a ^ I In \ ß f°r every n e N. (2.4')

This is easily seen by reverting to 2.2 and using the fact that now
fn(yx) I y I/„(*) for every xeE, every ne N and every scalar y. No
changes are needed in the choice of the nv.
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(2) Local convexity is needed in the proof of 3.1 since otherwise (2.2"), f
i.e., the boundedness of S — {xn : n e N} in E, does not guarantee the ]

existence of any continuous or bounded linear map T from lx(N) into E *

such that S is contained in the T-image of a bounded subset of l1(N). '

For it is plain that such a T can exist, only if the convex envelope S' of S %

is bounded in E. On the other hand, it is not difficult to verify that any
1

first countable linear topological space E, in which the convex envelope
of every bounded set (or of the range of every sequence converging to zero
in E is bounded, is necessarily locally convex.

(3) Naturally, local convexity of E may be dropped from the hypotheses
of 3.1, if one assumes in place of (2.2") that the convex envelope of
{xn : n e TV} is a bounded subset of E.

§ 4. Deduction of boundedness principles

4.1 Theorem. Suppose that E is a sequentially complete locally convex
space and that P is a set of bounded gauges on E. If f*(x) — sup {/ (x) :

feP} < oo for every xeE, then /* is bounded.

Proof. Suppose the contrary, that is, that/*(x) < oo for every xeE
and yet there exists a bounded subset B of E on which /* is unbounded.
Then we can choose xne B, fne P such that f„(xn) > n for every ne N.
Then (2.1), (2.2") and (2.3) are satisfied; hence, by 3.1, there exists xeE
such that /*(x) oo, which is the required contradiction.

4.2 Remarks. (1) If we assume also that E is infrabarrelled and that
each feP is continuous, it follows that/* is continuous, that is, that P is

equicontinuous if it is pointwise bounded; cf. [2], pp. 47, 480-81. For, if
V denotes the interval [—e, e], where e > 0, then

/*- i(F) H {f~\:feP}
is closed, convex and balanced and absorbs bounded sets in E. Since E
is infrabarrelled,/*~1(F) is therefore a neighbourhood of the origin in E
and thus /* is continuous^ as asserted.

(2) If one drops the hypothesis that E be locally convex (the remaining
assumptions of Theorem 4.1 remaining intact), the substance of
Remark 3.3 (3) shows that one may still conclude that f*(B) is bounded !'

whenever B is a subset of E whose convex envelope in E is bounded.
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