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ON SOME STATISTICAL PROPERTIES OF THE ALTERNATING
GROUP OF DEGREE n

J. Denes, P. Erdös and P. Turän

To the memory of J. Karamata

1. In a sequence of papers 1) the last two named authors are developing
a statistical theory of the symmetric group Sn of n letters. Some of the
results can be immediately extended to An, to the alternating group of
n letters but not all. To mention some, Cauchy has found already that the
number of conjugacy-classes of Sn is p (n), the number of unrestricted

partitions of n 2), the same reasoning does not work with An. Denoting
further the elements of Sn by P, their order by O (P) and with any fixed
real x by /(«, x) the number P's satisfying the inequality

logO(P) ^ }log2 n -i—— log1/! (1.1)
V3

we proved in III the relation

lim PUlA _P__j e 2dz. (1.2)n\ ' ~
«->00 2n -o

the corresponding reasoning for An must be changed. We proved further
in IV that the elements of almost all conjugacy classes in Sn, i.e. with exception

of the elements of o (p (n)) conjugacy-classes the others can be
commuted exactly with

exp |(1 + o (1))^ 7,t log2 «I (exp x (1.3)

elements of Sn. In what follows we shall prove the following three theorems.

1) " On some problems of a statistical group theory, I-IV." The first paper is printed in Zeitsehr
f. Wahrscheinlichkeitstheorie unci verw. Gebiete, 4 (1965), pp. 175-186, the second and third in Acta MathAcad. Sei. Hung. T. 18, Fasc. 1-2 (1967), pp. 151-163 resp. T. 18, Fasc. 3-4 (1967), pp. 607-618 the fourth
in press. We quote them as I, II, III resp. IV. The sequence will be continued.

2) Throughout this paper two partitions which differ only in the order of summands are considered asidentical and the summands are positive integers.
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Theorem I. Thenumber of the conjugacy-classes g (n) A„ given by

9{n)=ip(n) +!(-!)" £ (- *

N<VÄ V2 4

r In and (2/2+1) mod 4

with above defined p (n), i.e. expressed with the number of conjugacy-
classes of S„.

Using the classical asymptotical formula of Hardy-Ramanujanx)

1 In
6v"j (M)

which was the subject of several papers of Karamata 2) it follows at once

'<">= ipM + 0(i)exp(^v;:)~S7lexp(^v")' (1'5)

Another, less explicit representation (see (5.7)) will give

9(n)- ip(n)>exp (1.6)

with an explicit positive numerical B; hence the expectation, g (n) being
equal or " very nearly " equal to \ p (/z), is false.

Further we shall prove the

Theorem II. Denoting for any fixed real x by F (n, x) the number of P*s

in An satisfying the inequality (1.1) the relation

F (n, x) 1 -A?
lim —= j e 2 dX
«-»•oo 2 ^ • V 271 —oo

holds.

A combination of Theorem I with (1.3) gives at once the

Corollary. For almost all conjugacy-classes of An (i.e. with exception of
o (g (n)) o (p (n)) classes at most) the elements can be commuted

exactly with

exp <J(l+o(l)) + V„log2n

elements of An.

1) "Asymptotic formulae in combinatory analysis." Proc. of London Math. Soc2, XVII (1918)
pp. 75-115.

2) See e.g. his paper written with V. Avakumovic: " Über einige Taubersche Sätze deren Asymptotik
von Exponentialcharakter ist, I." Math. Zeitschr. 41 (1936), pp. 345-356.
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The proofs will illustrate again the role of partitions problems in group

theory.

2. For the proof of Theorem I we shall need some lemmata which were

partly indicated by Frobenius 1).

Lemma I. The necessary and sufficient condition that a conjugacy-
class H in Sn should be at the same time a conjugacy-class in A„, is, that it
should contain an even permutation Pt and denoting its centraliser in Sn

by C (Pi) this should contain odd permutations too.

Sufficiency. Let P2 be an arbitrary element of H and

P2=P3P1P3~1 (2.1)

Then (P2 is even and) P3 belongs to the coset

PsCiPJ (2.2)

of C (Pi) in Sn. But since C (PJ contains odd permutations and also even

ones (e.g. the unit element) the coset (2.2) contains certainly even permutations

too and thus P2 is conjugate to Px in An too.

Necessity. Let now H be an arbitrary conjugate class in Sn. The

necessity of the existence of an even Px in H is evident. If P4 is an arbitrary
odd permutation, the element

P5 - P.PiP*-1

belongs to H. Since all P 's with

p5 pp.p-1
belong to the same coset P4 C (Px), the fact that C (PJ contains only even
permutations would imply that the whole coset P4 C(P1) consists of odd
permutations, i.e. P1 and P5 could not be conjugate in An. Q.e.d.

3. Hence the only conjugacy classes of Sn we have to investigate are
those with the property the centralisers of all elements consisting of even
permutations exclusively. Calling these shortly " bad " classes we assert the

Lemma II. The necessary and sufficient condition for a conjugacy-
class H in Sn to be " bad " is that the canonical cycle-representation of its

i) " Uber die Charaktere der alternierenden Gruppe Sitzungsberichte der Kön. Preussischen Akad. d.
Wiss. zu Berlin (1901), pp. 303-315.

T .'F.nseirm^mpnt matfiAm t VV -
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elements (which is the same for all as to the number of cycles as well as to
their length)

(3.1)
a) should contain no cycles of even length

b) the occuring odd cycle-lengths are different.

a) is necessary. If P e H and

P (12 2v)

then the permutation

p (123 2v)

is odd and owing to

pPp~x P

p would belong to C (.P).

b) is necessary. If two cycles of equal length would occur

P (12 v) (v + 1, 2v)

then the permutation

p1 (1, v + 1, 2, v + 2, v, 2v)

is odd and owing to

PiPpI1 P

px would belong to C (P).

a) and b) are sufficient. As well-known the order O (C (P)) of the

centraliser C (P) of any element of Sn is

m1l m2 \ mk n1 n2 nk (3.2)

if the canonical cycle-representation consists of mv cycles of length

nv (v 1, 2, k), 1 ^ nt < n2 < < nk. Thus owing to a) and b) all

mv 's being 1 we have in our case

0(C(P)) ltl2...lk

the lv 's being different odd integers. But then all elements of C (P) are of
odd order, i.e. all cycle-lengths are odd and thus all elements of C(P) are

even permutations indeed.
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4. Hence we characterised all conjugacy-classes of Sn which are not

conjugacy-classes in An, i.e. which split into more classes. What can be

said on their number

Lemma III. A conjugacy class in Sn can split only into two conjugacy-
classes in An at most.

For the proof suppose for a P1

and both can be realised by odd p2 and p3 permutations only. Then

and p3 P2
1

being even, P6 and P7 belong to the same conjugacy-class in An

indeed.

Thus all conjugacy classes of Sn consisting exclusively of even permutations

contribute to the total number of conjugacy classes in An at least

by one ; their number is evidently g1 (n) where g1 (n) stands for the number
of those partitions of n where the number of summands is congruent to
n mod 2. In addition we get owing to lemma II and III one more conjugacy-
class in An from all conjugacy-classes in Sn which satisfy a) and b) in (3.1);
their number is g2 (n) where g2 (n) stands for the number of those partitions
of n consisting of unequal and odd summands. Thus we proved the

Lemma IV. The total number g (n) of conjugacy classes in An is

0i(«) + 02 («) •

5. Now we can turn to the proof of Theorem I. Perhaps the shortest

way is the following. Let pk (ri) be the number of all partitions of n consisting
of k summands. Then we have for \w\ ^ 1, I z I < 1

P2P1P21 —Pôi P3 Pi Pz —Pi (4.1)

(p3 P2 Pß (P3 P2 —Pi

(5.1)

Putting iv + 1 we get at once

and

00 r co -j °o -j -\

Z zm(Lk)pk())=i IIt—v + Ut—4 (5.2)
m — o \/ceven / (v=l ^ v=l ^ t Z J

00 r co a °o 1 ^

Z =i n^ryv - ÏÏT—-Î • (5-3)
m — o \k odd / tv=l ^ v=l % j
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Hence

r °o i oc I
91 0) i coeffs z" in fi 1 v +(-!)" 11 T

v 1 t Z v 1 1 + zv

(5.4)
-1)" 00 1

i P (n) +——- coeffs z" in
2 v i 1 + z

To get an alternative form of gt (n) we remark that for | z | < 1

CO 1 00 -J v 00

0^= nr^= n (5.5)
V — 1 1 "T Z V 1 1 ~~ Z V ~ 1

and also

00 00

coeffs zn in (1 — z2v_1) — l)n coeffs zn in (1 + z2v_1) (5.6)
V=1 V=1

Thus we get alternatively

00

9i (n) 2 P(n) + i coeffs zn in (1 +z2v_1). (5.7)
v l

Owing to Lemma IV we get

g(n) - ip(n) ^ ^ (n) - ip(n)
n

\ coeffs zn in (1 + z2v~*).
(5.8)

Since for real z -> 1 — 0

z z2
+ iz z2 z3

2v-l\ 1 I JL
_i°gn(i+^i)-r3^-T —

1 z z2 z3
+ •

1 — z \ 1.2 2.4 3.(

1/111 \ 7i2 1

^ O _ O T 1 —2
1 - z\l2 2 3 / 24 1 - z

and the assertion (1.6) follows from the Tauberian theorem of Hardy and

Ramanujan x) at once.

l) " Asymptotic formulae for the distribution of integers of various types." Proc. of Lond. Math.
Soc. (2), 16 (1917), pp. 117-132.
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Returning to Theorem I we need a representation of g2 («)• Since

obviously
n

g2 (ri) coeffs zn in Yl (1 +^2v_1), (5.9)
V=1

this, (5.6) and Lemma IV give

00

g(n) ip(n) + 1 coeffs z" in f] (1 + z2v_1). (5.10)
v — 1

6. In order to get the finite exact representation of g (ri) given in
Theorem I we have to study the representation

g(n)\p(n) + f(-l)" coeffs z" in J] j >

1 - z

based on (5.5)-(5.6)-(5.10). Then Theorem I follows at once from the

identities
00 00

ÏÏ7—5=Ep(')'!'
V= 1 J- 2 v — 0

and the classical " Pentagonalzahlsatz " of Euler

00 00 3 v2 + V

na-zv)= iV= 1 V= — 00

7. Next we turn to the proof of Theorem II. The proof will be based on
the theorem proved in I, according which for almost all Pe Sn O (P) satisfies
the inequality

exp - log n (log log n)4)^^ l ; (7.1)
n2 nk

here we use again the notation used in 3. Thus as in III, it will suffice to
prove

F*(n,x) 1 * -4
"ttt-=T r1 (7-2)

n~+co 2 n ' \J Z71 -00

where F* (n, x) denotes the number of P's satisfying

PeAn (7.3)

x
«1 »2 ••• nk S exp ilog 2

n -j= log (7.4)
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1 ^ nl < < nk k k (P) (7.5)

If as in 3. mv stands for the number of cycles of length ny, we have

£ mv nv n mv ^ 1

V=1
(7.6)

the condition (7.3) is equivalent to

£ mv n mod 2 (7.7)

Defining as summation extended to mv 's and nv 's
(7.4)-(7.5)-(7.6)-(7.7)

restricted by (7.4)-(7.5)-(7.6)-(7.7) we define for fixed n

F* (n,x)
n

"n (*) X'
1

«Ï" ...1?*

and

(P„ (0 1 eUxdo„(x)

(7.8)

(7.9)

This gives

00

<Pn (0 X X'
Jt=l (7.6)-(7.7) ?'*1 ' m2

exp

X lo8 "v - i log2 n

t /3'HV log*n J nj" «?•••»».k

or putting
^ V 3

log^ n

and

we have

y y (nl
~

1 (7.6H7.7) «1 m2!...mt!nr «?...«?»

<P„(0=exp( -^y^Vlogn)<PnW-

(7.10)

(7.11)

(7.12)

Let us define further for integer <7
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* / \ V V" (^1 ^2 nk)
/rj -|

(Pn, d (T) ~ X! iL
I « I mx mk '

Ä=1 ml i m2 \ mk i n1 ...nk

where is extended to the systems satisfying beside (7.6) also

YJmv dmod2. (7.14)

8. In order to obtain a more handy representation for (p*f d (t) we fix
first the nv's as in (7.5) and consider the infinite series

_ 1 /z"1 \mi (znk \mk
D (z, y, nu nk) £ ~ — — y (8.1)

„,vm m1\ m2\ mkl\n1 J \nk J

This is

V — 1

Putting y ± 1 we get at once

_ 1

f[f-l +exp(^j

mvSi m1 m2 mk !\«i/
Imv d mod 2 ^

i +exP -)+(-Dd n(-l +exp(-
(v=i \ nvJ v l V \

Multiplying by (^ n2 «fc)lT and performing the summation first for
(«1? /72> •••, W/t) in (7.5) and then for k we get from (7.12)

i+ zK.dM^Hnu+^v-iy
CO

+ (-1/ nU+*"le~T- iJJb
1=1

Z\

Factoring out exp resp. exp - T the right side takes the form

n(i + c/ir-i>(i-
(.i_ z i=i

Zl (8,3)

+ (-!)"(!- z) n (l - I"-1){eT-l))j i (z) + - l)d (Z))
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and hence

<P*n,d 0) 2 coeffs z" in (0l (z) + - \)d <P2 (z))

and putting d n

<P*n 0) 2 coeffs z" in («^ (z) + -1)" 4>2 (z)) (8.4)

Taking in account (7.12) and as proved in III

f it yj 3 \ _ —
lim exp I Vlog n

1 coeffs. z" in (z) c 2

«->00 \ ^ J

we get

V vlog n
+

+ —lim exp - \/log n) coeffs. z" in (1 - z) • f] (8.5)
^ «->oo \ ^ J 1=1

\ / zl

1 -I / 2 -1 [eT-l

Hence if we can prove that

lim coeffs. z" in (1 — z) U |l — 1) — lj j> 0 (8.6)
«->oo l—l J

the proof of theorem II can be completed as in III.

9. But (8.6) can be proved as follows. Similar process as in III reduces

the proof of (8.6) to the proof that for n -» oo

f it ,1coeffs. zn in (1 — z) exp < — —— log f
l log2 n 1 — z

t2 1

+ ——3— log > -> 0
6 log n 1 — zj

holds, which is equivalent to show that for n -+ 00

1 1 - z f it 1

2ri exp
I
~ '°i*» T^ +

+ 6i^logIr^rz-*°-
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Here as in III L means the following path of integration. Cutting up the

z x + iy -plane along the segment 1 ^ x < oo L runs along the circle
I z I 2 avoiding however the point z 1 by a " Schleife " on both sides

of the cut 1 ^ x ^ 2 closing it by the corresponding arc of the circle

I z — 1 J —. The only part of the line-integral in III which did not tend

to 0 with - was the contribution of the " small " circle; all the corresponding

ones tend to 0 also in the present case. The last integral in the present
equals to

n
1

n

1 +-e*

e

n

+ ——3— (log n + i (n-cp))3 V dcp -> 0
6 log3 n

trivially indeed.

Reçu le 15 Décembre 1967)

Institut de Mathématiques
Académie des Sciences de Hongrie
Réaltanoda U. 13-15, Budapest.
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